WorldWideScience

Sample records for genetic programming theory

  1. Academic training: From Evolution Theory to Parallel and Distributed Genetic Programming

    CERN Multimedia

    2007-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 15, 16 March From 11:00 to 12:00 - Main Auditorium, bldg. 500 From Evolution Theory to Parallel and Distributed Genetic Programming F. FERNANDEZ DE VEGA / Univ. of Extremadura, SP Lecture No. 1: From Evolution Theory to Evolutionary Computation Evolutionary computation is a subfield of artificial intelligence (more particularly computational intelligence) involving combinatorial optimization problems, which are based to some degree on the evolution of biological life in the natural world. In this tutorial we will review the source of inspiration for this metaheuristic and its capability for solving problems. We will show the main flavours within the field, and different problems that have been successfully solved employing this kind of techniques. Lecture No. 2: Parallel and Distributed Genetic Programming The successful application of Genetic Programming (GP, one of the available Evolutionary Algorithms) to optimization problems has encouraged an ...

  2. Genetic programming theory and practice XII

    CERN Document Server

    Riolo, Rick; Kotanchek, Mark

    2015-01-01

    These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer funct

  3. Genetic programming theory and practice X

    CERN Document Server

    Riolo, Rick; Ritchie, Marylyn D; Moore, Jason H

    2013-01-01

    These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of  injecting

  4. Applications of genetic programming in cancer research.

    Science.gov (United States)

    Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M

    2009-02-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.

  5. From evolution theory to parallel and distributed genetic

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Lecture #1: From Evolution Theory to Evolutionary Computation. Evolutionary computation is a subfield of artificial intelligence (more particularly computational intelligence) involving combinatorial optimization problems, which are based to some degree on the evolution of biological life in the natural world. In this tutorial we will review the source of inspiration for this metaheuristic and its capability for solving problems. We will show the main flavours within the field, and different problems that have been successfully solved employing this kind of techniques. Lecture #2: Parallel and Distributed Genetic Programming. The successful application of Genetic Programming (GP, one of the available Evolutionary Algorithms) to optimization problems has encouraged an increasing number of researchers to apply these techniques to a large set of problems. Given the difficulty of some problems, much effort has been applied to improving the efficiency of GP during the last few years. Among the available proposals,...

  6. Unifying diseases from a genetic point of view: the example of the genetic theory of infectious diseases.

    Science.gov (United States)

    Darrason, Marie

    2013-08-01

    In the contemporary biomedical literature, every disease is considered genetic. This extension of the concept of genetic disease is usually interpreted either in a trivial or genocentrist sense, but it is never taken seriously as the expression of a genetic theory of disease. However, a group of French researchers defend the idea of a genetic theory of infectious diseases. By identifying four common genetic mechanisms (Mendelian predisposition to multiple infections, Mendelian predisposition to one infection, and major gene and polygenic predispositions), they attempt to unify infectious diseases from a genetic point of view. In this article, I analyze this explicit example of a genetic theory, which relies on mechanisms and is applied only to a specific category of diseases, what we call "a regional genetic theory." I have three aims: to prove that a genetic theory of disease can be devoid of genocentrism, to consider the possibility of a genetic theory applied to every disease, and to introduce two hypotheses about the form that such a genetic theory could take by distinguishing between a genetic theory of diseases and a genetic theory of Disease. Finally, I suggest that network medicine could be an interesting framework for a genetic theory of Disease.

  7. Scientific discovery using genetic programming

    DEFF Research Database (Denmark)

    Keijzer, Maarten

    2001-01-01

    programming paradigm. The induction of mathematical expressions based on data is called symbolic regression. In this work, genetic programming is extended to not just fit the data i.e., get the numbers right, but also to get the dimensions right. For this units of measurement are used. The main contribution......Genetic Programming is capable of automatically inducing symbolic computer programs on the basis of a set of examples or their performance in a simulation. Mathematical expressions are a well-defined subset of symbolic computer programs and are also suitable for optimization using the genetic...... in this work can be summarized as: The symbolic expressions produced by genetic programming can be made suitable for analysis and interpretation by using units of measurements to guide or restrict the search. To achieve this, the following has been accomplished: A standard genetic programming system...

  8. On the relation between gene flow theory and genetic gain

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2000-01-01

    Full Text Available Abstract In conventional gene flow theory the rate of genetic gain is calculated as the summed products of genetic selection differential and asymptotic proportion of genes deriving from sex-age groups. Recent studies have shown that asymptotic proportions of genes predicted from conventional gene flow theory may deviate considerably from true proportions. However, the rate of genetic gain predicted from conventional gene flow theory was accurate. The current note shows that the connection between asymptotic proportions of genes and rate of genetic gain that is embodied in conventional gene flow theory is invalid, even though genetic gain may be predicted correctly from it.

  9. Geometric Semantic Genetic Programming Algorithm and Slump Prediction

    OpenAIRE

    Xu, Juncai; Shen, Zhenzhong; Ren, Qingwen; Xie, Xin; Yang, Zhengyu

    2017-01-01

    Research on the performance of recycled concrete as building material in the current world is an important subject. Given the complex composition of recycled concrete, conventional methods for forecasting slump scarcely obtain satisfactory results. Based on theory of nonlinear prediction method, we propose a recycled concrete slump prediction model based on geometric semantic genetic programming (GSGP) and combined it with recycled concrete features. Tests show that the model can accurately p...

  10. Genetic programming in microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, D A

    1981-11-01

    Formerly, when microbiologists had only existing organisms at their disposal whose characteristics could only be changed randomly by genetic experiments, they used to dream of programmed genetic changes. This dream has come true with modern genetic engineering.

  11. Elementary number theory with programming

    CERN Document Server

    Lewinter, Marty

    2015-01-01

    A successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and con

  12. Genetics and Justice: Must One Theory Fit All Contexts?

    Science.gov (United States)

    Gunson, Darryl

    2018-04-01

    Appeals to social justice that argue medicine and healthcare should have certain priorities and not others are common. It is an obvious question to ask: What does social justice demand of the new genetic technologies? However, it is important to note that there are many theories and sub-theories of justice. There are utilitarian theories, libertarian theories, and egalitarian theories. There are so-called luck egalitarians, equality-as-fairness thinkers, and capability theorists, with each having his or her own distinctive approach to the distribution of medical goods and technologies, and to healthcare priorities. This article argues that the discussion surrounding this question is potentially hampered by an implicit assumption that if one theory of justice is applicable in one context, then it must also be applicable in others. Instead, it is proposed that one adopt the stance, influenced by Michael Waltzer, that different theories with their opposing principles may be applicable to different questions regarding justice and genetics. The specific view advanced is that to answer questions about what justice requires regarding the therapeutic and enhancement use of genetic techniques, a method of reflective equilibrium can show how intuitions, in context, may support different theories of justice. When particular pre-theoretic ethical judgments are balanced against the theories that might explain or justify them, and are in accord with what seems emotionally acceptable, then it can be seen how different general theories may be applicable in the different contexts in which questions of justice and genetics arise.

  13. Hybrid of Genetic Programming with PBIL

    International Nuclear Information System (INIS)

    Caldas, Gustavo Henrique Flores; Schirru, Roberto

    2005-01-01

    Genetic programming and PBIL (Population-Based Incremental Learning) are evolutionary algorithms that have found applications in several fields of application. The Genetic Programming searches a solution allowing that the individuals of a population modify, mainly, its structures. The PBIL, on the other hand, works with individuals of fixed structure and is particularly successful in finding numerical solutions. There are problems where the simultaneous adjustment of the structure and numerical constants in a solution is essential. The Symbolic Regression is an example where both the form and the constants of a mathematical expression must be found. Although the traditional Genetic Programming is capable to solve this problem by itself, it is interesting to explore a cooperation with the PBIL, allowing each algorithm to do only that they do best: the Genetic Programming tries to find a structure while the PBIL adjust the constants that will be enclosed in the structure. In this work, the benchmark 'the sextic polynomial regression problem' is used to compare some traditional techniques of Genetic Programming with the proposed Hybrid of Genetic Programming with PBIL. The results are presented and discussed. (author)

  14. Applications of Genetic Programming

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Toma, Laura

    1996-01-01

    In this report a study of genetic programming (GP) has been performed with respect to a number of applications such as Symbolic function regression, Solving Symbolic Differential Equations, Image encoding, the ant problem etc.......In this report a study of genetic programming (GP) has been performed with respect to a number of applications such as Symbolic function regression, Solving Symbolic Differential Equations, Image encoding, the ant problem etc....

  15. A nursing theory-guided framework for genetic and epigenetic research.

    Science.gov (United States)

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  16. Linear genetic programming

    CERN Document Server

    Brameier, Markus

    2007-01-01

    Presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. This book serves as a reference for researchers, but also contains sufficient introduction for students and those who are new to the field

  17. When public health and genetic privacy collide: positive and normative theories explaining how ACA's expansion of corporate wellness programs conflicts with GINA's privacy rules.

    Science.gov (United States)

    Bard, Jennifer S

    2011-01-01

    The Patient Protection and Affordable Care Act of 2010 (ACA) contains many provisions intended to increase access to and lower the cost of health care by adopting public health measures. One of these promotes the use of at-work wellness programs by both providing employers with grants to develop these programs and also increasing their ability to tie the price employees pay for health insurance for participating in these programs and meeting specific health goals. Yet despite ACA's specific alteration of three different statues which had in the past shielded employees from having to contribute to the cost of their health insurance based on their achieving employer-designated health markers, it chose to leave alone recently enacted rules implementing the Genetic Non-Discrimination Act (GINA), which prohibits employers from asking employees about their family health history in any context, including assessing their risk for setting wellness targets. This article reviews how both the changes made by ACA and the restrictions recently put place by GINA will affect the way employers are likely to structure Wellness Programs. It also considers how these changes reflect the competing social goals of both ACA, which seeks to expand access to the population by lowering costs, and GINA, which seeks to protect individuals from discrimination. It does so by analyzing both positive theories about how these new laws will function and normative theories explaining the likelihood of future friction between the interests of the population of the United States as a whole who are in need of increased and affordable access to health care, and of the individuals living in this country who risk discrimination, as science and medicine continue to make advances in linking genetic make-up to risk of future illness. © 2011 American Society of Law, Medicine & Ethics, Inc.

  18. Quasispecies theory in the context of population genetics

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2005-08-01

    Full Text Available Abstract Background A number of recent papers have cast doubt on the applicability of the quasispecies concept to virus evolution, and have argued that population genetics is a more appropriate framework to describe virus evolution than quasispecies theory. Results I review the pertinent literature, and demonstrate for a number of cases that the quasispecies concept is equivalent to the concept of mutation-selection balance developed in population genetics, and that there is no disagreement between the population genetics of haploid, asexually-replicating organisms and quasispecies theory. Conclusion Since quasispecies theory and mutation-selection balance are two sides of the same medal, the discussion about which is more appropriate to describe virus evolution is moot. In future work on virus evolution, we would do good to focus on the important questions, such as whether we can develop accurate, quantitative models of virus evolution, and to leave aside discussions about the relative merits of perfectly equivalent concepts.

  19. Genetic contribution to 'theory of mind' in adolescence.

    Science.gov (United States)

    Warrier, Varun; Baron-Cohen, Simon

    2018-02-22

    Difficulties in 'theory of mind' (the ability to attribute mental states to oneself or others, and to make predictions about another's behaviour based on these attributions) have been observed in several psychiatric conditions. We investigate the genetic architecture of theory of mind in 4,577 13-year-olds who completed the Emotional Triangles Task (Triangles Task), a first-order test of theory of mind. We observe a small but significant female-advantage on the Triangles Task (Cohen's d = 0.19, P theory of mind. Genome-wide association analyses did not identify any significant loci, and SNP heritability was non-significant. Polygenic scores for six psychiatric conditions (ADHD, anorexia, autism, bipolar disorder, depression, and schizophrenia), and empathy were not associated with scores on the Triangles Task. However, polygenic scores of cognitive aptitude, and cognitive empathy, a term synonymous with theory of mind and measured using the "Reading the Mind in the Eyes" Test, were significantly associated with scores on the Triangles Task at multiple P-value thresholds, suggesting shared genetics between different measures of theory of mind and cognition.

  20. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory.

    Science.gov (United States)

    König, S; Tsehay, F; Sitzenstock, F; von Borstel, U U; Schmutz, M; Preisinger, R; Simianer, H

    2010-04-01

    Due to consistent increases of inbreeding of on average 0.95% per generation in layer populations, selection tools should consider both genetic gain and genetic relationships in the long term. The optimum genetic contribution theory using official estimated breeding values for egg production was applied for 3 different lines of a layer breeding program to find the optimal allocations of hens and sires. Constraints in different scenarios encompassed restrictions related to additive genetic relationships, the increase of inbreeding, the number of selected sires and hens, and the number of selected offspring per mating. All these constraints enabled higher genetic gain up to 10.9% at the same level of additive genetic relationships or in lower relationships at the same gain when compared with conventional selection schemes ignoring relationships. Increases of inbreeding and genetic gain were associated with the number of selected sires. For the lowest level of the allowed average relationship at 10%, the optimal number of sires was 70 and the estimated breeding value for egg production of the selected group was 127.9. At the highest relationship constraint (16%), the optimal number of sires decreased to 15, and the average genetic value increased to 139.7. Contributions from selected sires and hens were used to develop specific mating plans to minimize inbreeding in the following generation by applying a simulated annealing algorithm. The additional reduction of average additive genetic relationships for matings was up to 44.9%. An innovative deterministic approach to estimate kinship coefficients between and within defined selection groups based on gene flow theory was applied to compare increases of inbreeding from random matings with layer populations undergoing selection. Large differences in rates of inbreeding were found, and they underline the necessity to establish selection tools controlling long-term relationships. Furthermore, it was suggested to use

  1. Program Theory for Participatory Design

    DEFF Research Database (Denmark)

    Bossen, Claus; Dindler, Christian; Iversen, Ole Sejer

    2018-01-01

    How does participatory design work and what are the links between investments in terms of time, people and skills, the processes and the resulting effects? This paper explores program theory as a way for Participatory Design (PD) to investigate and evaluate these issues. Program theory comes out...

  2. Behavioral program synthesis with genetic programming

    CERN Document Server

    Krawiec, Krzysztof

    2016-01-01

    Genetic programming (GP) is a popular heuristic methodology of program synthesis with origins in evolutionary computation. In this generate-and-test approach, candidate programs are iteratively produced and evaluated. The latter involves running programs on tests, where they exhibit complex behaviors reflected in changes of variables, registers, or memory. That behavior not only ultimately determines program output, but may also reveal its `hidden qualities' and important characteristics of the considered synthesis problem. However, the conventional GP is oblivious to most of that information and usually cares only about the number of tests passed by a program. This `evaluation bottleneck' leaves search algorithm underinformed about the actual and potential qualities of candidate programs. This book proposes behavioral program synthesis, a conceptual framework that opens GP to detailed information on program behavior in order to make program synthesis more efficient. Several existing and novel mechanisms subs...

  3. Integer programming theory, applications, and computations

    CERN Document Server

    Taha, Hamdy A

    1975-01-01

    Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming.Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other

  4. Genetic Network Programming with Reconstructed Individuals

    Science.gov (United States)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  5. Developing robotic behavior using a genetic programming model

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1998-01-01

    This report describes the methodology for using a genetic programming model to develop tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles for surveillance and detection operations has become increasingly important in defense and humanitarian applications. Through an evolutionary process similar to that found in nature, the genetic programming model generates a computer program that when downloaded onto a robotic vehicle's on-board computer will guide the robot to successfully accomplish its task. Simulations of multiple robots engaged in problem-solving tasks have demonstrated cooperative behaviors. This report also discusses the behavior model produced by genetic programming and presents some results achieved during the study

  6. Genetic theory – a suggested cupping therapy mechanism of action

    OpenAIRE

    Shaban , Tamer; Ravalia , Munir

    2017-01-01

    The Cupping Therapy mechanism of action is not clear. Cupping may increase local blood circulation, and may have an immunomodulation effect. Local and systemic effects of Cupping Therapy were reported. Genetic expression is a physiological process that regulates body functions. Genetic modulation is a reported acupuncture effect. In this article, the authors suggest genetic modulation theory as one of the possible mechanisms of action of cupping therapy.

  7. Pangenesis as a source of new genetic information. The history of a now disproven theory.

    Science.gov (United States)

    Bergman, Gerald

    2006-01-01

    Evolution is based on natural selection of existing biological phenotypic traits. Natural selection can only eliminate traits. It cannot create new ones, requiring a theory to explain the origin of new genetic information. The theory of pangenesis was a major attempt to explain the source of new genetic information required to produce phenotypic variety. This theory, advocated by Darwin as the main source of genetic variety, has now been empirically disproved. It is currently a theory mainly of interest to science historians.

  8. Information theory and the ethylene genetic network.

    Science.gov (United States)

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  9. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  10. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  11. Experimental game theory and behavior genetics.

    Science.gov (United States)

    Cesarini, David; Dawes, Christopher T; Johannesson, Magnus; Lichtenstein, Paul; Wallace, Björn

    2009-06-01

    We summarize the findings from a research program studying the heritability of behavior in a number of widely used economic games, including trust, dictator, and ultimatum games. Results from the standard behavior genetic variance decomposition suggest that strategies and fundamental economic preference parameters are moderately heritable, with estimates ranging from 18 to 42%. In addition, we also report new evidence on so-called "hyperfair" preferences in the ultimatum game. We discuss the implications of our findings with special reference to current efforts that seek to understand the molecular genetic architecture of complex social behaviors.

  12. [Neurosis and genetic theory of etiology and pathogenesis of ulcer disease].

    Science.gov (United States)

    Kolotilova, M L; Ivanov, L N

    2014-01-01

    Based on the analysis of literature data and our own research, we have developed the original concept of etiology and pathogenesis of peptic ulcer disease. An analysis of the literature shows that none of the theories of pathogenesis of peptic ulcer disease does not cover the full diversity of the involved functions and their shifts, which lead to the development of ulcers in the stomach and the duodenum. Our neurogenic-genetic theory of etiology and pathogenesis of gastric ulcer and duodenal ulcer very best explains the cause-and-effect relationships in the patient peptic ulcer, allowing options for predominance in one or the other case factors of neurosis or genetic factors. However, it is clear that the only other: combination of neurogenic factor with genetically modified reactivity of gastroduodenal system (the presence of the target organ) cause the chronicity of the sores. The theory of peptic ulcer disease related to psychosomatic pathologies allows us to develop effective schema therapy, including drugs with psychocorrective action. On the basis of our theory of the role of Helicobacter pylori infection is treated as a pathogenetic factor in the development of peptic ulcer disease.

  13. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Directory of Open Access Journals (Sweden)

    Gottesman Irving I

    2005-02-01

    Full Text Available Abstract Background Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. Discussion A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular

  14. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory?

    Science.gov (United States)

    Horne, Justine; Madill, Janet; O'Connor, Colleen; Shelley, Jacob; Gilliland, Jason

    2018-04-10

    Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other

  15. Genetics Education in Nurse Residency Programs: A Natural Fit.

    Science.gov (United States)

    Hamilton, Nalo M; Stenman, Christina W; Sang, Elaine; Palmer, Christina

    2017-08-01

    Scientific advances are shedding light on the genetic underpinning of common diseases. With such insight, the entire health care team is faced with the need to address patient questions regarding genetic risk, testing, and the psychosocial aspects of genetics information. Nurses are in a prime position to help with patient education about genetic conditions, yet they often lack adequate genetics education within their nursing curriculum to address patient questions and provide resources. One mechanism to address this knowledge deficit is the incorporation of a genetics-based curriculum into nurse residency programs. This article describes a novel genetics-based curriculum designed and implemented in the UCLA Health System Nurse Residency Program. J Contin Educ Nurs. 2017;48(8):379-384. Copyright 2017, SLACK Incorporated.

  16. Use of Program Theory in a Nutrition Program for Grandchildren and Grandparents

    Science.gov (United States)

    Koenings, Mallory; Arscott, Sara

    2013-01-01

    Grandparents University ® (GPU) is a 2-day campus-based nutrition education program for grandparents and grandchildren based on constructs from Social Cognitive Theory and the Theory of Planned Behavior. This article describes how program theory was used to develop a working model, design activities, and select outcome measures of a 2-day…

  17. Genetic Programming for Medicinal Plant Family Identification System

    Directory of Open Access Journals (Sweden)

    Indra Laksmana

    2014-11-01

    Full Text Available Information about medicinal plants that is available in text documents is generally quite easy to access, however, one needs some efforts to use it. This research was aimed at utilizing crucial information taken from a text document to identify the family of several species of medicinal plants using a heuristic approach, i.e. genetic programming. Each of the species has its unique features. The genetic program puts the characteristics or special features of each family into a tree form. There are a number of processes involved in the investigated method, i.e. data acquisition, booleanization, grouping of training and test data, evaluation, and analysis. The genetic program uses a training process to select the best individual, initializes a generate-rule process to create several individuals and then executes a fitness evaluation. The next procedure is a genetic operation process, which consists of tournament selection to choose the best individual based on a fitness value, the crossover operation and the mutation operation. These operations have the purpose of complementing the individual. The best individual acquired is the expected solution, which is a rule for classifying medicinal plants. This process produced three rules, one for each plant family, displaying a feature structure that distinguishes each of the families from each other. The genetic program then used these rules to identify the medicinal plants, achieving an average accuracy of 86.47%.

  18. The Development of a Program Engagement Theory for Group Offending Behavior Programs.

    Science.gov (United States)

    Holdsworth, Emma; Bowen, Erica; Brown, Sarah; Howat, Douglas

    2017-10-01

    Offender engagement in group offending behavior programs is poorly understood and under-theorized. In addition, there is no research on facilitators' engagement. This article presents the first ever theory to address this gap. A Program Engagement Theory (PET) was derived from a constructivist grounded theory analysis that accounts for both facilitators' and offenders' engagement in group offending behavior programs (GOBPs). Interviews and session observations were used to collect data from 23 program facilitators and 28 offenders (group members). The analysis revealed that group members' engagement involved shared identities and moving on as a group. In turn, this was dependent on facilitators personalising treatment frameworks and establishing a hook to help group members move on. The PET emphasizes the importance of considering change during treatment as a process rather than simply a program outcome. Solution-focused (SF) programs were more conducive to engagement and the change process than offence-focused programs.

  19. Engaging nurses in genetics: the strategic approach of the NHS National Genetics Education and Development Centre.

    Science.gov (United States)

    Kirk, Maggie; Tonkin, Emma; Burke, Sarah

    2008-04-01

    The UK government announced the establishment of an NHS National Genetics Education and Development Centre in its Genetics White Paper. The Centre aims to lead and coordinate developments to enhance genetics literacy of health professionals. The nursing program takes a strategic approach based on Ajzen's Theory of Planned Behavior, using the UK nursing genetics competences as the platform for development. The program team uses innovative approaches to raise awareness of the relevance of genetics, working collaboratively with policy stakeholders, as key agents of change in promoting competence. Providing practical help in preparing learning and teaching resources lends further encouragement. Evaluation of the program is dependent on gathering baseline data, and the program has been informed by an education needs analysis. The challenges faced are substantial and necessitate international collaboration where expertise and resources can be shared to produce a global system of influence to facilitate the engagement of non-genetic nurses.

  20. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    1982-01-01

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  1. Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lee-Ing Tong

    2012-02-01

    Full Text Available Solar energy has become an important energy source in recent years as it generates less pollution than other energies. A photovoltaic (PV system, which typically has many components, converts solar energy into electrical energy. With the development of advanced engineering technologies, the transfer efficiency of a PV system has been increased from low to high. The combination of components in a PV system influences its transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one must consider the relationship among system components. This work accurately predicts whether transfer efficiency of a PV system is high or low using a novel hybrid model that combines rough set theory (RST, data envelopment analysis (DEA, and genetic programming (GP. Finally, real data-set are utilized to demonstrate the accuracy of the proposed method.

  2. Interest in and reactions to genetic risk information: The role of implicit theories and self-affirmation.

    Science.gov (United States)

    Taber, Jennifer M; Klein, William M P; Persky, Susan; Ferrer, Rebecca A; Kaufman, Annette R; Thai, Chan L; Harris, Peter R

    2017-10-01

    Implicit theories reflect core assumptions about whether human attributes are malleable or fixed: Incremental theorists believe a characteristic is malleable whereas entity theorists believe it is fixed. People with entity theories about health may be less likely to engage in risk-mitigating behavior. Spontaneous self-affirmation (e.g., reflecting on one's values when threatened) may lessen defensiveness and unhealthy behaviors associated with fixed beliefs, and reduce the likelihood of responding to health risk information with fixed beliefs. Across two studies conducted in the US from 2012 to 2015, we investigated how self-affirmation and implicit theories about health and body weight were linked to engagement with genetic risk information. In Study 1, participants in a genome sequencing trial (n = 511) completed cross-sectional assessments of implicit theories, self-affirmation, and intentions to learn, share, and use genetic information. In Study 2, overweight women (n = 197) were randomized to receive genetic or behavioral explanations for weight; participants completed surveys assessing implicit theories, self-affirmation, self-efficacy, motivation, and intentions. Fixed beliefs about weight were infrequently endorsed across studies (10.8-15.2%). In Study 1, participants with stronger fixed theories were less interested in learning and using genetic risk information about medically actionable disease; these associations were weaker among participants higher in self-affirmation. In Study 2, among participants given behavioral explanations for weight, stronger fixed theories about weight were associated with lower motivation and intentions to eat a healthy diet. Among participants given genetic explanations, being higher in self-affirmation was associated with less fixed beliefs. Stronger health-related fixed theories may decrease the likelihood of benefiting from genetic information, but less so for people who self-affirm. Published by Elsevier Ltd.

  3. Amount of Genetics Education is Low Among Didactic Programs in Dietetics.

    Science.gov (United States)

    Beretich, Kaitlan; Pope, Janet; Erickson, Dawn; Kennedy, Angela

    2017-01-01

    Nutritional genomics is a growing area of research. Research has shown registered dietitian nutritionists (RDNs) have limited knowledge of genetics. Limited research is available regarding how didactic programs in dietetics (DPDs) meet the genetics knowledge requirement of the Accreditation Council for Education in Nutrition and Dietetics (ACEND®). The purpose of this study was to determine the extent to which the study of nutritional genomics is incorporated into undergraduate DPDs in response to the Academy of Nutrition and Dietetics position statement on nutritional genomics. The sample included 62 DPD directors in the U.S. Most programs (63.9%) reported the ACEND genetics knowledge requirement was being met by integrating genetic information into the current curriculum. However, 88.7% of programs reported devoting only 1-10 clock hours to genetics education. While 60.3% of directors surveyed reported they were confident in their program's ability to teach information related to genetics, only 6 directors reported having specialized training in genetics. The overall amount of clock hours devoted to genetics education is low. DPD directors, faculty, and instructors are not adequately trained to provide this education to students enrolled in DPDs. Therefore, the primary recommendation of this study is the development of a standardized curriculum for genetics education in DPDs.

  4. The Genetic Theory of Infectious Diseases: A Brief History and Selected Illustrations

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2016-01-01

    Until the mid-nineteenth century, life expectancy at birth averaged 20 years worldwide, owing mostly to childhood fevers. The germ theory of diseases then gradually overcame the belief that diseases were intrinsic. However, around the turn of the twentieth century, asymptomatic infection was discovered to be much more common than clinical disease. Paradoxically, this observation barely challenged the newly developed notion that infectious diseases were fundamentally extrinsic. Moreover, interindividual variability in the course of infection was typically explained by the emerging immunological (or somatic) theory of infectious diseases, best illustrated by the impact of vaccination. This powerful explanation is, however, best applicable to reactivation and secondary infections, particularly in adults; it can less easily account for interindividual variability in the course of primary infection during childhood. Population and clinical geneticists soon proposed a complementary hypothesis, a germline genetic theory of infectious diseases. Over the past century, this idea has gained some support, particularly among clinicians and geneticists, but has also encountered resistance, particularly among microbiologists and immunologists. We present here the genetic theory of infectious diseases and briefly discuss its history and the challenges encountered during its emergence in the context of the apparently competing but actually complementary microbiological and immunological theories. We also illustrate its recent achievements by highlighting inborn errors of immunity underlying eight life-threatening infectious diseases of children and young adults. Finally, we consider the far-reaching biological and clinical implications of the ongoing human genetic dissection of severe infectious diseases. PMID:23724903

  5. The genetic theory of infectious diseases: a brief history and selected illustrations.

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2013-01-01

    Until the mid-nineteenth century, life expectancy at birth averaged 20 years worldwide, owing mostly to childhood fevers. The germ theory of diseases then gradually overcame the belief that diseases were intrinsic. However, around the turn of the twentieth century, asymptomatic infection was discovered to be much more common than clinical disease. Paradoxically, this observation barely challenged the newly developed notion that infectious diseases were fundamentally extrinsic. Moreover, interindividual variability in the course of infection was typically explained by the emerging immunological (or somatic) theory of infectious diseases, best illustrated by the impact of vaccination. This powerful explanation is, however, best applicable to reactivation and secondary infections, particularly in adults; it can less easily account for interindividual variability in the course of primary infection during childhood. Population and clinical geneticists soon proposed a complementary hypothesis, a germline genetic theory of infectious diseases. Over the past century, this idea has gained some support, particularly among clinicians and geneticists, but has also encountered resistance, particularly among microbiologists and immunologists. We present here the genetic theory of infectious diseases and briefly discuss its history and the challenges encountered during its emergence in the context of the apparently competing but actually complementary microbiological and immunological theories. We also illustrate its recent achievements by highlighting inborn errors of immunity underlying eight life-threatening infectious diseases of children and young adults. Finally, we consider the far-reaching biological and clinical implications of the ongoing human genetic dissection of severe infectious diseases.

  6. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  7. Stigmatization of carrier status: social implications of heterozygote genetic screening programs.

    Science.gov (United States)

    Kenen, R H; Schmidt, R M

    1978-01-01

    Possible latent psychological and social consequences ensuing from genetic screening programs need to be investigated during the planning phase of national genetic screening programs. The relatively few studies which have been performed to determine psychological, social, and economic consequences resulting from a genetic screening program are reviewed. Stigmatization of carrier-status, having major psychosocial implications in heterozygote genetic screening programs, is discussed and related to Erving Goffman's work in the area of stigmatization. Questions are raised regarding the relationship between such variables as religiosity and sex of the individual and acceptance of the status of newly identified carrier of a mutant gene. Severity of the deleterious gene and visibility of the carrier status are two important factors to consider in an estimation of potential stigma. Specific implications are discussed for four genetic diseases: Tay-Sachs, Sickle-Cell Anemia, Huntington's disease and Hemophilia. PMID:152585

  8. Routine human-competitive machine intelligence by means of genetic programming

    Science.gov (United States)

    Koza, John R.; Streeter, Matthew J.; Keane, Martin

    2004-01-01

    Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.

  9. Using a systems orientation and foundational theory to enhance theory-driven human service program evaluations.

    Science.gov (United States)

    Wasserman, Deborah L

    2010-05-01

    This paper offers a framework for using a systems orientation and "foundational theory" to enhance theory-driven evaluations and logic models. The framework guides the process of identifying and explaining operative relationships and perspectives within human service program systems. Self-Determination Theory exemplifies how a foundational theory can be used to support the framework in a wide range of program evaluations. Two examples illustrate how applications of the framework have improved the evaluators' abilities to observe and explain program effect. In both exemplars improvements involved addressing and organizing into a single logic model heretofore seemingly disparate evaluation issues regarding valuing (by whose values); the role of organizational and program context; and evaluation anxiety and utilization. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. The relation between multilocus population genetics and social evolution theory.

    Science.gov (United States)

    Gardner, Andy; West, Stuart A; Barton, Nicholas H

    2007-02-01

    Evolution at multiple gene positions is complicated. Direct selection on one gene disturbs the evolutionary dynamics of associated genes. Recent years have seen the development of a multilocus methodology for modeling evolution at arbitrary numbers of gene positions with arbitrary dominance and epistatic relations, mode of inheritance, genetic linkage, and recombination. We show that the approach is conceptually analogous to social evolutionary methodology, which focuses on selection acting on associated individuals. In doing so, we (1) make explicit the links between the multilocus methodology and the foundations of social evolution theory, namely, Price's theorem and Hamilton's rule; (2) relate the multilocus approach to levels-of-selection and neighbor-modulated-fitness approaches in social evolution; (3) highlight the equivalence between genetical hitchhiking and kin selection; (4) demonstrate that the multilocus methodology allows for social evolutionary analyses involving coevolution of multiple traits and genetical associations between nonrelatives, including individuals of different species; (5) show that this methodology helps solve problems of dynamic sufficiency in social evolution theory; (6) form links between invasion criteria in multilocus systems and Hamilton's rule of kin selection; (7) illustrate the generality and exactness of Hamilton's rule, which has previously been described as an approximate, heuristic result.

  11. Developing close combat behaviors for simulated soldiers using genetic programming techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Richard J.; Schaller, Mark J.

    2003-10-01

    Genetic programming is a powerful methodology for automatically producing solutions to problems in a variety of domains. It has been used successfully to develop behaviors for RoboCup soccer players and simple combat agents. We will attempt to use genetic programming to solve a problem in the domain of strategic combat, keeping in mind the end goal of developing sophisticated behaviors for compound defense and infiltration. The simplified problem at hand is that of two armed agents in a small room, containing obstacles, fighting against each other for survival. The base case and three changes are considered: a memory of positions using stacks, context-dependent genetic programming, and strongly typed genetic programming. Our work demonstrates slight improvements from the first two techniques, and no significant improvement from the last.

  12. Genetic programming applied to RFI mitigation in radio astronomy

    Science.gov (United States)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  13. Game Theory and its Relationship with Linear Programming Models ...

    African Journals Online (AJOL)

    Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.

  14. Genetic programs can be compressed and autonomously decompressed in live cells

    Science.gov (United States)

    Lapique, Nicolas; Benenson, Yaakov

    2018-04-01

    Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.

  15. Formal Theory versus Stakeholder Theory: New Insights from a Tobacco-Focused Prevention Program Evaluation

    Science.gov (United States)

    Chen, Huey T.; Turner, Nannette C.

    2012-01-01

    Health promotion and social betterment program interventions are based on either formal theory from academia or stakeholder theory from stakeholders' observations and experiences in working with clients. Over time, formal theory-based interventions have acquired high prestige, while stakeholder theory-based interventions have been held in low…

  16. The complement of research and theory in practice: contact theory at work in nonfamilial intergenerational programs.

    Science.gov (United States)

    Jarrott, Shannon E; Smith, Cynthia L

    2011-02-01

    We assessed whether a shared site intergenerational care program informed by contact theory contributed to more desirable social behaviors of elders and children during intergenerational programming than a center with a more traditional programming approach that lacks some or all of the contact theory tenets. We observed 59 elder and child participants from the two sites during intergenerational activities. Using the Intergenerational Observation Scale, we coded participants' predominant behavior in 15-s intervals through each activity's duration. We then calculated for each individual the percentage of time frames each behavior code was predominant. Participants at the theory-based program demonstrated higher rates of intergenerational interaction, higher rates of solitary behavior, and lower rates of watching than at the traditional program. Contact theory tenets were optimized when coupled with evidence-based practices. Intergenerational programs with stakeholder support that promotes equal group status, cooperation toward a common goal, and mechanisms of friendship among participants can achieve important objectives for elder and child participants in care settings.

  17. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  18. Selecting the Best Forecasting-Implied Volatility Model Using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Wafa Abdelmalek

    2009-01-01

    Full Text Available The volatility is a crucial variable in option pricing and hedging strategies. The aim of this paper is to provide some initial evidence of the empirical relevance of genetic programming to volatility's forecasting. By using real data from S&P500 index options, the genetic programming's ability to forecast Black and Scholes-implied volatility is compared between time series samples and moneyness-time to maturity classes. Total and out-of-sample mean squared errors are used as forecasting's performance measures. Comparisons reveal that the time series model seems to be more accurate in forecasting-implied volatility than moneyness time to maturity models. Overall, results are strongly encouraging and suggest that the genetic programming approach works well in solving financial problems.

  19. Programming peptidomimetic syntheses by translating genetic codes designed de novo.

    Science.gov (United States)

    Forster, Anthony C; Tan, Zhongping; Nalam, Madhavi N L; Lin, Hening; Qu, Hui; Cornish, Virginia W; Blacklow, Stephen C

    2003-05-27

    Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.

  20. The Development of Genetics in the Light of Thomas Kuhn's Theory of Scientific Revolutions.

    Science.gov (United States)

    Portin, Petter

    2015-01-01

    The concept of a paradigm is in the key position in Thomas Kuhn's theory of scientific revolutions. A paradigm is the framework within which the results, concepts, hypotheses and theories of scientific research work are understood. According to Kuhn, a paradigm guides the working and efforts of scientists during the time period which he calls the period of normal science. Before long, however, normal science leads to unexplained matters, a situation that then leads the development of the scientific discipline in question to a paradigm shift--a scientific revolution. When a new theory is born, it has either gradually emerged as an extension of the past theory, or the old theory has become a borderline case in the new theory. In the former case, one can speak of a paradigm extension. According to the present author, the development of modern genetics has, until very recent years, been guided by a single paradigm, the Mendelian paradigm which Gregor Mendel launched 150 years ago, and under the guidance of this paradigm the development of genetics has proceeded in a normal fashion in the spirit of logical positivism. Modern discoveries in genetics have, however, created a situation which seems to be leading toward a paradigm shift. The most significant of these discoveries are the findings of adaptive mutations, the phenomenon of transgenerational epigenetic inheritance, and, above all, the present deeply critical state of the concept of the gene.

  1. Interfacing theories of program with theories of evaluation for advancing evaluation practice: Reductionism, systems thinking, and pragmatic synthesis.

    Science.gov (United States)

    Chen, Huey T

    2016-12-01

    Theories of program and theories of evaluation form the foundation of program evaluation theories. Theories of program reflect assumptions on how to conceptualize an intervention program for evaluation purposes, while theories of evaluation reflect assumptions on how to design useful evaluation. These two types of theories are related, but often discussed separately. This paper attempts to use three theoretical perspectives (reductionism, systems thinking, and pragmatic synthesis) to interface them and discuss the implications for evaluation practice. Reductionism proposes that an intervention program can be broken into crucial components for rigorous analyses; systems thinking view an intervention program as dynamic and complex, requiring a holistic examination. In spite of their contributions, reductionism and systems thinking represent the extreme ends of a theoretical spectrum; many real-world programs, however, may fall in the middle. Pragmatic synthesis is being developed to serve these moderate- complexity programs. These three theoretical perspectives have their own strengths and challenges. Knowledge on these three perspectives and their evaluation implications can provide a better guide for designing fruitful evaluations, improving the quality of evaluation practice, informing potential areas for developing cutting-edge evaluation approaches, and contributing to advancing program evaluation toward a mature applied science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SPSS and SAS programs for generalizability theory analyses.

    Science.gov (United States)

    Mushquash, Christopher; O'Connor, Brian P

    2006-08-01

    The identification and reduction of measurement errors is a major challenge in psychological testing. Most investigators rely solely on classical test theory for assessing reliability, whereas most experts have long recommended using generalizability theory instead. One reason for the common neglect of generalizability theory is the absence of analytic facilities for this purpose in popular statistical software packages. This article provides a brief introduction to generalizability theory, describes easy to use SPSS, SAS, and MATLAB programs for conducting the recommended analyses, and provides an illustrative example, using data (N = 329) for the Rosenberg Self-Esteem Scale. Program output includes variance components, relative and absolute errors and generalizability coefficients, coefficients for D studies, and graphs of D study results.

  3. Towards program theory validation: Crowdsourcing the qualitative analysis of participant experiences.

    Science.gov (United States)

    Harman, Elena; Azzam, Tarek

    2018-02-01

    This exploratory study examines a novel tool for validating program theory through crowdsourced qualitative analysis. It combines a quantitative pattern matching framework traditionally used in theory-driven evaluation with crowdsourcing to analyze qualitative interview data. A sample of crowdsourced participants are asked to read an interview transcript and identify whether program theory components (Activities and Outcomes) are discussed and to highlight the most relevant passage about that component. The findings indicate that using crowdsourcing to analyze qualitative data can differentiate between program theory components that are supported by a participant's experience and those that are not. This approach expands the range of tools available to validate program theory using qualitative data, thus strengthening the theory-driven approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory

    Science.gov (United States)

    Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...

  5. Algorithmic Trading with Developmental and Linear Genetic Programming

    Science.gov (United States)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  6. Evolving rule-based systems in two medical domains using genetic programming.

    Science.gov (United States)

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf

    2004-11-01

    To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.

  7. Linear programming mathematics, theory and algorithms

    CERN Document Server

    1996-01-01

    Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.

  8. The sheep blowfly genetic control program in Australia

    International Nuclear Information System (INIS)

    Foster, Geoffrey G.

    1989-01-01

    The blowfly Lucilia cuprina is the most important myiasis pet of sheep in Australia. Other species are associated with sheep myiasis, but L. cuprina is probably responsible for initiating more than 90% of infestations. Annual costs of production losses, prevention and treatment have been estimated at $149 millions in 1985. Prevention and treatment encompass both insecticidal applications to sheep and non-chemical management practices. In the absence of effective preventive measures, the sheep industry would be non-viable over much of Australia. Insecticide usage against L. cuprina has been marked by the appearance of widespread resistance to cyclodienes in 1956, the organophosphates in 1965, and carbamates in 1966. Resistance has not yet been reported against the triazine compounds introduced for blowfly control in 1981. The most effective non-chemical control measures are surgical (removal of skin from the breech in certain breeds of sheep, and tail-docking). They protect sheep by reducing favourable oviposition sites (dung and urine-stained wool). The spectre of insecticide resistance and the early success of the sterile insect technique (SIT) against screwworm fly in the U.S.A., led this Division to consider SIT and other autocidal methods in the 1960s. The L. cuprina genetics research program was established in 1966 and subsequently expanded in 1971. More recently, lobbying by animal welfare groups against surgical blowfly control practices, as well as increasing consumer awareness of insecticide residues in animal products, have accelerated the search for alternatives to chemical control. When SIT was first considered for L. cuprina control in 1960, little was known about the population dynamics of L. cuprina. There were insufficient ecological data to evaluate the prospects of alternative strategies such as suppression or containment. The number of flies which would have to be released in a SIT program was unknown, as were the costs. Assuming that the cost of

  9. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  10. Guidelines on the use of molecular genetics in reintroduction programs

    Science.gov (United States)

    Michael K. Schwartz

    2005-01-01

    The use of molecular genetics can play a key role in reintroduction efforts. Prior to the introduction of any individuals, molecular genetics can be used to identify the most appropriate source population for the reintroduction, ensure that no relic populations exist in the reintroduction area, and guide captive breeding programs. The use of molecular genetics post-...

  11. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    Science.gov (United States)

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  12. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination.

    Science.gov (United States)

    Frankham, R

    2012-03-01

    Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.

  13. Fuzzy Information Retrieval Using Genetic Algorithms and Relevance Feedback.

    Science.gov (United States)

    Petry, Frederick E.; And Others

    1993-01-01

    Describes an approach that combines concepts from information retrieval, fuzzy set theory, and genetic programing to improve weighted Boolean query formulation via relevance feedback. Highlights include background on information retrieval systems; genetic algorithms; subproblem formulation; and preliminary results based on a testbed. (Contains 12…

  14. Non-linear nuclear engineering models as genetic programming application

    International Nuclear Information System (INIS)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

  15. Evaluation of Optimum Genetic Contribution Theory to Control Inbreeding While Maximizing Genetic Response

    Directory of Open Access Journals (Sweden)

    S.-H. Oh

    2012-03-01

    Full Text Available Inbreeding is the mating of relatives that produce progeny having more homozygous alleles than non-inbred animals. Inbreeding increases numbers of recessive alleles, which is often associated with decreased performance known as inbreeding depression. The magnitude of inbreeding depression depends on the level of inbreeding in the animal. Level of inbreeding is expressed by the inbreeding coefficient. One breeding goal in livestock is uniform productivity while maintaining acceptable inbreeding levels, especially keeping inbreeding less than 20%. However, in closed herds without the introduction of new genetic sources high levels of inbreeding over time are unavoidable. One method that increases selection response and minimizes inbreeding is selection of individuals by weighting estimated breeding values with average relationships among individuals. Optimum genetic contribution theory (OGC uses relationships among individuals as weighting factors. The algorithm is as follows: i Identify the individual having the best EBV; ii Calculate average relationships ( r j ¯ between selected and candidates; iii Select the individual having the best EBV adjusted for average relationships using the weighting factor k, E B V * = E B V j ( 1 - k r j ¯ . iv Repeat process until the number of individuals selected equals number required. The objective of this study was to compare simulated results based on OGC selection under different conditions over 30 generations. Individuals (n = 110 were generated for the base population with pseudo random numbers of N~ (0, 3, ten were assumed male, and the remainder female. Each male was mated to ten females, and every female was assumed to have 5 progeny resulting in 500 individuals in the following generation. Results showed the OGC algorithm effectively controlled inbreeding and maintained consistent increases in selection response. Difference in breeding values between selection with OGC algorithm and by EBV only was 8

  16. Laboratory specimens and genetic privacy: evolution of legal theory.

    Science.gov (United States)

    Lewis, Michelle Huckaby

    2013-03-01

    Although laboratory specimens are an important resource for biomedical research, controversy has arisen when research has been conducted without the knowledge or consent of the individuals who were the source of the specimens. This paper summarizes the most important litigation regarding the research use of laboratory specimens and traces the evolution of legal theory from property claims to claims related to genetic privacy interests. © 2013 American Society of Law, Medicine & Ethics, Inc.

  17. An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics

    Science.gov (United States)

    Molenaar, Peter C. M.

    2015-01-01

    The main theme of this paper concerns the persistent critique of Gilbert Gottlieb on developmental behavior genetics and my reactions to this critique, the latter changing from rejection to complete acceptation. Concise characterizations of developmental behavior genetics, developmental systems theory (to which Gottlieb made essential…

  18. Considering genetic characteristics in German Holstein breeding programs.

    Science.gov (United States)

    Segelke, D; Täubert, H; Reinhardt, F; Thaller, G

    2016-01-01

    Recently, several research groups have demonstrated that several haplotypes may cause embryonic loss in the homozygous state. Up to now, carriers of genetic disorders were often excluded from mating, resulting in a decrease of genetic gain and a reduced number of sires available for the breeding program. Ongoing research is very likely to identify additional genetic defects causing embryonic loss and calf mortality by genotyping a large proportion of the female cattle population and sequencing key ancestors. Hence, a clear demand is present to develop a method combining selection against recessive defects (e.g., Holstein haplotypes HH1-HH5) with selection for economically beneficial traits (e.g., polled) for mating decisions. Our proposed method is a genetic index that accounts for the allele frequencies in the population and the economic value of the genetic characteristic without excluding carriers from breeding schemes. Fertility phenotypes from routine genetic evaluations were used to determine the economic value per embryo lost. Previous research has shown that embryo loss caused by HH1 and HH2 occurs later than the loss for HH3, HH4, and HH5. Therefore, an economic value of € 97 was used against HH1 and HH2 and € 70 against HH3, HH4, and HH5. For polled, € 7 per polled calf was considered. Minor allele frequencies of the defects ranged between 0.8 and 3.3%. The polled allele has a frequency of 4.1% in the German Holstein population. A genomic breeding program was simulated to study the effect of changing the selection criteria from assortative mating based on breeding values to selecting the females using the genetic index. Selection for a genetic index on the female path is a useful method to control the allele frequencies by reducing undesirable alleles and simultaneously increasing economical beneficial characteristics maintaining most of the genetic gain in production and functional traits. Additionally, we applied the genetic index to real data and

  19. 1981 Magnetic-fusion theory program project summaries

    International Nuclear Information System (INIS)

    1982-02-01

    The theory program supports research projects at three different types of sites: DOE and other government laboratories, universities, and industrial contractors. This report is organized into three sections corresponding to the three types of sites and within each section is organized alphabetically by site name. Summaries of each program are given

  20. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    Science.gov (United States)

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  1. The genetical theory of social behaviour.

    Science.gov (United States)

    Lehmann, Laurent; Rousset, François

    2014-05-19

    We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.

  2. The Theory and Practice of Programmed Instruction; A Guide for Teachers.

    Science.gov (United States)

    Pocztar, Jerry

    A historical sketch which traces behavioral theory from Pavlov to Skinner and explains the application of Skinner's theory to teaching begins this introduction to programed instruction. Next, three models of programed courses, Skinner's, Crowder's, and skip-branching, are described. The third section, techniques for elaborating programed courses,…

  3. Using Program Theory-Driven Evaluation Science to Crack the Da Vinci Code

    Science.gov (United States)

    Donaldson, Stewart I.

    2005-01-01

    Program theory-driven evaluation science uses substantive knowledge, as opposed to method proclivities, to guide program evaluations. It aspires to update, clarify, simplify, and make more accessible the evolving theory of evaluation practice commonly referred to as theory-driven or theory-based evaluation. The evaluator in this chapter provides a…

  4. Mathematical programming and game theory for decision making

    CERN Document Server

    Bapat, R B; Das, A K; Parthasarathy, T

    2008-01-01

    This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel pro

  5. Formulated linear programming problems from game theory and its ...

    African Journals Online (AJOL)

    Formulated linear programming problems from game theory and its computer implementation using Tora package. ... Game theory, a branch of operations research examines the various concepts of decision ... AJOL African Journals Online.

  6. Polyglot programming in applications used for genetic data analysis.

    Science.gov (United States)

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.

  7. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer

    Directory of Open Access Journals (Sweden)

    Mauro Castelli

    2015-01-01

    Full Text Available Energy consumption forecasting (ECF is an important policy issue in today’s economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  8. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  9. Genetic variability of broodstocks of restocking programs in Brazil

    Directory of Open Access Journals (Sweden)

    Nelson Lopera-Barrero

    2015-09-01

    Full Text Available Objective. The aim of this study was evaluate the genetic diversity of the following broodstocks: piapara (Leporinus elongatus, dourado (Salminus brasiliensis, jundiá (Rhamdia quelen and cachara (Pseudoplatystoma fasciatum already useful for restocking programs in the Paranapanema, Iguaçu and Paraná Brazilian Rivers. Materials and methods. Samples from the caudal fin of 122 fish were analyzed. DNA was extracted by NaCl protocol. PCR products were separated by a horizontal agarose gel electrophoresis. The fragments were visualized by staining with ethidium bromide. Results. The amplification of 25 primers generated different fragments in studied species that allowed characterizing 440 fragments of 100-2900 bp. High percentage of polymorphic fragments (66.67 to 86.29, Shannon index (0.365 to 0.486 and genetic diversity of Nei (0.248 to 0.331 were detected. Conclusions. The level of genetic variability in the broodstocks was adequate for allowing their use in restocking programs in the studied Rivers. However, periodical monitoring studies of genetic variability in these stocks, the mating system, reproductive system and general management must be made to guarantee the preservation of wild populations.

  10. Feature extraction from multiple data sources using genetic programming.

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, J. J. (John J.); Brumby, Steven P.; Pope, P. A. (Paul A.); Eads, D. R. (Damian R.); Galassi, M. C. (Mark C.); Harvey, N. R. (Neal R.); Perkins, S. J. (Simon J.); Porter, R. B. (Reid B.); Theiler, J. P. (James P.); Young, A. C. (Aaron Cody); Bloch, J. J. (Jeffrey J.); David, N. A. (Nancy A.); Esch-Mosher, D. M. (Diana M.)

    2002-01-01

    Feature extration from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. The tool used is the GENetic Imagery Exploitation (GENIE) software, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land-cover features including towns, grasslands, wild fire burn scars, and several types of forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.

  11. Genetic similarity of polyploids - A new version of the computer program POPDIST (ver. 1.2.0) considers intraspecific genetic differentiation

    DEFF Research Database (Denmark)

    Tomiuk, Jürgen; Guldbrandtsen, Bernt; Loeschcke, Volker

    2009-01-01

    For evolutionary studies of polyploid species estimates of the genetic identity between species with different degrees of ploidy are particularly required because gene counting in samples of polyploid individuals often cannot be done, e.g., in triploids the phenotype AB can be genotypically either...... ABB or AAB. We recently suggested a genetic distance measure that is based on phenotype counting and made available the computer program POPDIST. The program provides maximum-likelihood estimates of the genetic identities and distances between polyploid populations, but this approach...

  12. A program in BASIC for calclation of cavity theory corrections

    International Nuclear Information System (INIS)

    Bugge Christensen, E.; Miller, A.

    1982-05-01

    A program in BASIC for a desk-top calculator HP 9830A is described. The program allows calculation of cavity theory corrections according to Burlin's general cavity theory. The calculations are made by using tabulated values for stopping powers and energy absorption coefficients, stored either as coefficients to a fitted polynomial or as the actual table data. (author)

  13. Using genetic programming to find Lyapunov functions

    NARCIS (Netherlands)

    Soute, I.A.C.; Molengraft, van de M.J.G.; Angelis, G.Z.; Ryan, C; Spector, L.

    2001-01-01

    In this paper Genetic Programming is used to find Lyapunov functions for (non)linear dif ferential equations of autonomous systems. As Lyapunov functions can be difficult to find, we use OP to make the decisions concerning the form of the Lyapunov function. As an e5cample two systems are taken to

  14. A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.

    Science.gov (United States)

    Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie

    2018-06-04

    Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.

  15. Tracking the Genetic Stability of a Honey Bee (Hymenoptera: Apidae) Breeding Program With Genetic Markers.

    Science.gov (United States)

    Bourgeois, Lelania; Beaman, Lorraine

    2017-08-01

    A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian Honey Bee Breeders Association. These data were used to assess stability of the breeding program and the diversity levels of the contemporary breeding stock through comparison of POA values and genetic diversity parameters from the initial release to current values. POA values fluctuated throughout 2010-2016, but have recovered to statistically similar levels in 2016 (POA(2010) = 0.82, POA(2016) = 0.74; P = 0.33). Genetic diversity parameters (i.e., allelic richness and gene diversity) in 2016 also remained at similar levels when compared to those in 2010. Estimates of genetic structure revealed stability (FST(2009/2016) = 0.0058) with a small increase in the estimate of the inbreeding coefficient (FIS(2010) = 0.078, FIS(2016) = 0.149). The relationship among breeding lines, based on genetic distance measurement, was similar in 2008 and 2016 populations, but with increased homogeneity among lines (i.e., decreased genetic distance). This was expected based on the closed breeding system used for Russian honey bees. The successful application of the GSI assay in a commercial breeding program demonstrates the utility and stability of such technology to contribute to and monitor the genetic integrity of a breeding stock of an insect species. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  16. Stochastic control theory dynamic programming principle

    CERN Document Server

    Nisio, Makiko

    2015-01-01

    This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...

  17. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  18. The program ORTOCARTAN for applications in the relativity theory

    International Nuclear Information System (INIS)

    Krasinski, A.

    1985-01-01

    A general outline of the program ORTOCARTAN for algebraic computing in the relativity theory is presented. A short history of the program is given. The base-programming language is LISP. The details of the calculation are presented. An example of application of the ORTOCARTAN is given

  19. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results.

    Science.gov (United States)

    Bruhn, Peter; Geyer-Schulz, Andreas

    2002-01-01

    In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.

  20. Algebraic computing program for studying the gauge theory

    International Nuclear Information System (INIS)

    Zet, G.

    2005-01-01

    An algebraic computing program running on Maple V platform is presented. The program is devoted to the study of the gauge theory with an internal Lie group as local symmetry. The physical quantities (gauge potentials, strength tensors, dual tensors etc.) are introduced either as equations in terms of previous defined quantities (tensors), or by manual entry of the component values. The components of the strength tensor and of its dual are obtained with respect to a given metric of the space-time used for describing the gauge theory. We choose a Minkowski space-time endowed with spherical symmetry and give some example of algebraic computing that are adequate for studying electroweak or gravitational interactions. The field equations are also obtained and their solutions are determined using the DEtools facilities of the Maple V computing program. (author)

  1. The Father Friendly Initiative within Families: Using a logic model to develop program theory for a father support program.

    Science.gov (United States)

    Gervais, Christine; de Montigny, Francine; Lacharité, Carl; Dubeau, Diane

    2015-10-01

    The transition to fatherhood, with its numerous challenges, has been well documented. Likewise, fathers' relationships with health and social services have also begun to be explored. Yet despite the problems fathers experience in interactions with healthcare services, few programs have been developed for them. To explain this, some authors point to the difficulty practitioners encounter in developing and structuring the theory of programs they are trying to create to promote and support father involvement (Savaya, R., & Waysman, M. (2005). Administration in Social Work, 29(2), 85), even when such theory is key to a program's effectiveness (Chen, H.-T. (2005). Practical program evaluation. Thousand Oaks, CA: Sage Publications). The objective of the present paper is to present a tool, the logic model, to bridge this gap and to equip practitioners for structuring program theory. This paper addresses two questions: (1) What would be a useful instrument for structuring the development of program theory in interventions for fathers? (2) How would the concepts of a father involvement program best be organized? The case of the Father Friendly Initiative within Families (FFIF) program is used to present and illustrate six simple steps for developing a logic model that are based on program theory and demonstrate its relevance. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Genetic Programming for Sea Level Predictions in an Island Environment

    Directory of Open Access Journals (Sweden)

    M.A. Ghorbani

    2010-03-01

    Full Text Available Accurate predictions of sea-level are important for geodetic applications, navigation, coastal, industrial and tourist activities. In the current work, the Genetic Programming (GP and artificial neural networks (ANNs were applied to forecast half-daily and daily sea-level variations from 12 hours to 5 days ahead. The measurements at the Cocos (Keeling Islands in the Indian Ocean were used for training and testing of the employed artificial intelligence techniques. A comparison was performed of the predictions from the GP model and the ANN simulations. Based on the comparison outcomes, it was found that the Genetic Programming approach can be successfully employed in forecasting of sea level variations.

  3. Towards a Theory for Testing Non-terminating Programs

    DEFF Research Database (Denmark)

    Gotlieb, Arnaud; Petit, Matthieu

    2009-01-01

    Non-terminating programs are programs that legally perform unbounded computations. Though they are ubiquitous in real-world applications, testing these programs requires new theoretic developments as usual definitions of test data adequacy criteria ignore infinite paths. This paper develops...... a theory of program-based structural testing based on operational semantics. Reasoning at the program semantics level permits to cope with infinite paths (and non-feasible paths) when defining test data adequacy criteria. As a result, our criteria respect the first Weyuker’s property on finite...... applicability, even for non-terminating programs. We discuss the consequences of this re-interpretation of test data adequacy criteria w.r.t. existing test coverage criteria....

  4. Learning Theories Applied to Teaching Technology: Constructivism versus Behavioral Theory for Instructing Multimedia Software Programs

    Science.gov (United States)

    Reed, Cajah S.

    2012-01-01

    This study sought to find evidence for a beneficial learning theory to teach computer software programs. Additionally, software was analyzed for each learning theory's applicability to resolve whether certain software requires a specific method of education. The results are meant to give educators more effective teaching tools, so students…

  5. Online Financial Education Programs: Theory, Research, and Recommendations

    Directory of Open Access Journals (Sweden)

    Jinhee Kim

    2017-03-01

    Full Text Available Technological advances have created unprecedented opportunities for online financial education that can be used to improve financial literacy and money management practices. While online financial education programs have become popular, relevant research and theoretical frameworks have rarely been considered in the development of such programs. This article synthesizes lessons from literature and theories for the development of an effective online financial education program. Drawing from literature on financial literacy education and online education, implications and recommendations for integrating technology into online financial education programs for adults are discussed.

  6. The potential use of genetics to increase the effectiveness of treatment programs for criminal offenders.

    Science.gov (United States)

    Beaver, Kevin M; Jackson, Dylan B; Flesher, Dillon

    2014-01-01

    During the past couple of decades, the amount of research examining the genetic underpinnings to antisocial behaviors, including crime, has exploded. Findings from this body of work have generated a great deal of information linking genetics to criminal involvement. As a partial result, there is now a considerable amount of interest in how these findings should be integrated into the criminal justice system. In the current paper, we outline the potential ways that genetic information can be used to increase the effectiveness of treatment programs designed to reduce recidivism among offenders. We conclude by drawing attention to how genetic information can be used by rehabilitation programs to increase program effectiveness, reduce offender recidivism rates, and enhance public safety.

  7. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    Science.gov (United States)

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  8. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard

    2017-01-01

    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  9. Generation Expansion Planning in pool market: A hybrid modified game theory and improved genetic algorithm

    International Nuclear Information System (INIS)

    Shayanfar, H.A.; Lahiji, A. Saliminia; Aghaei, J.; Rabiee, A.

    2009-01-01

    Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each Generation Company (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a Modified Game Theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, an Improved Genetic Algorithm (IGA) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-type of power plants. The results show that the presented method is both satisfactory and consistent with expectation. (author)

  10. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. NASA's Heliophysics Theory Program - Accomplishments in Life Cycle Ending 2011

    Science.gov (United States)

    Grebowsky, J.

    2011-01-01

    NASA's Heliophysics Theory Program (HTP) is now into a new triennial cycle of funded research, with new research awards beginning in 2011. The theory program was established by the (former) Solar Terrestrial Division in 1980 to redress a weakness of support in the theory area. It has been a successful, evolving scientific program with long-term funding of relatively large "critical mass groups" pursuing theory and modeling on a scale larger than that available within the limits of traditional NASA Supporting Research and Technology (SR&T) awards. The results of the last 3 year funding cycle, just ended, contributed to ever more cutting edge theoretical understanding of all parts of the Sun-Earth Connection chain. Advances ranged from the core of the Sun out into the corona, through the solar wind into the Earth's magnetosphere and down to the ionosphere and lower atmosphere, also contributing to understanding the environments of other solar system bodies. The HTP contributions were not isolated findings but continued to contribute to the planning and implementation of NASA spacecraft missions and to the development of the predictive computer models that have become the workhorses for analyzing satellite and ground-based measurements.

  12. Genetic algorithm based on virus theory of evolution for traveling salesman problem; Virus shinkaron ni motozuku identeki algorithm no junkai salesman mondai eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, N. [Osaka Inst. of Technology, Osaka (Japan); Fukuda, T. [Nagoya University, Nagoya (Japan)

    1998-05-31

    This paper deals with virus evolutionary genetic algorithm. The genetic algorithms (GAs) have been demonstrated its effectiveness in optimization problems in these days. In general, the GAs simulate the survival of fittest by natural selection and the heredity of the Darwin`s theory of evolution. However, some types of evolutionary hypotheses such as neutral theory of molecular evolution, Imanishi`s evolutionary theory, serial symbiosis theory, and virus theory of evolution, have been proposed in addition to the Darwinism. Virus theory of evolution is based on the view that the virus transduction is a key mechanism for transporting segments of DNA across species. This paper proposes genetic algorithm based on the virus theory of evolution (VE-GA), which has two types of populations: host population and virus population. The VE-GA is composed of genetic operators and virus operators such as reverse transcription and incorporation. The reverse transcription operator transcribes virus genes on the chromosome of host individual and the incorporation operator creates new genotype of virus from host individual. These operators by virus population make it possible to transmit segment of DNA between individuals in the host population. Therefore, the VE-GA realizes not only vertical but also horizontal propagation of genetic information. Further, the VE-GA is applied to the traveling salesman problem in order to show the effectiveness. 20 refs., 10 figs., 3 tabs.

  13. Multimedia messages in genetics: design, development, and evaluation of a computer-based instructional resource for secondary school students in a Tay Sachs disease carrier screening program.

    Science.gov (United States)

    Gason, Alexandra A; Aitken, MaryAnne; Delatycki, Martin B; Sheffield, Edith; Metcalfe, Sylvia A

    2004-01-01

    Tay Sachs disease is a recessively inherited neurodegenerative disorder, for which carrier screening programs exist worldwide. Education for those offered a screening test is essential in facilitating informed decision-making. In Melbourne, Australia, we have designed, developed, and evaluated a computer-based instructional resource for use in the Tay Sachs disease carrier screening program for secondary school students attending Jewish schools. The resource entitled "Genetics in the Community: Tay Sachs disease" was designed on a platform of educational learning theory. The development of the resource included formative evaluation using qualitative data analysis supported by descriptive quantitative data. The final resource was evaluated within the screening program and compared with the standard oral presentation using a questionnaire. Knowledge outcomes were measured both before and after either of the educational formats. Data from the formative evaluation were used to refine the content and functionality of the final resource. The questionnaire evaluation of 302 students over two years showed the multimedia resource to be equally effective as an oral educational presentation in facilitating participants' knowledge construction. The resource offers a large number of potential benefits, which are not limited to the Tay Sachs disease carrier screening program setting, such as delivery of a consistent educational message, short delivery time, and minimum financial and resource commitment. This article outlines the value of considering educational theory and describes the process of multimedia development providing a framework that may be of value when designing genetics multimedia resources in general.

  14. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  15. Models for Theory-Based M.A. and Ph.D. Programs.

    Science.gov (United States)

    Botan, Carl; Vasquez, Gabriel

    1999-01-01

    Presents work accomplished at the 1998 National Communication Association Summer Conference. Outlines reasons for theory-based education in public relations. Presents an integrated model of student outcomes, curriculum, pedagogy, and assessment for theory-based master's and doctoral programs, including assumptions made and rationale for such…

  16. Intervention mapping protocol for developing a theory-based diabetes self-management education program.

    Science.gov (United States)

    Song, Misoon; Choi, Suyoung; Kim, Se-An; Seo, Kyoungsan; Lee, Soo Jin

    2015-01-01

    Development of behavior theory-based health promotion programs is encouraged with the paradigm shift from contents to behavior outcomes. This article describes the development process of the diabetes self-management program for older Koreans (DSME-OK) using intervention mapping (IM) protocol. The IM protocol includes needs assessment, defining goals and objectives, identifying theory and determinants, developing a matrix to form change objectives, selecting strategies and methods, structuring the program, and planning for evaluation and pilot testing. The DSME-OK adopted seven behavior objectives developed by the American Association of Diabetes Educators as behavioral outcomes. The program applied an information-motivation-behavioral skills model, and interventions were targeted to 3 determinants to change health behaviors. Specific methods were selected to achieve each objective guided by IM protocol. As the final step, program evaluation was planned including a pilot test. The DSME-OK was structured as the 3 determinants of the IMB model were intervened to achieve behavior objectives in each session. The program has 12 weekly 90-min sessions tailored for older adults. Using the IM protocol in developing a theory-based self-management program was beneficial in terms of providing a systematic guide to developing theory-based and behavior outcome-focused health education programs.

  17. THEORY OF CREATION AND THE GENETIC INTEGRITY OF THE WORLD – THE FUTURE OF HUMANITY BASIS OF IDEOLOGY

    Directory of Open Access Journals (Sweden)

    B. A. Astafyev

    2013-01-01

    Full Text Available Article describes one of the most difficult problems – the Theory of genetic energy-information unity of the World, according to which the World is the single entity hierarchically organized and directed by the World Creator, appearance of the Creator and creation by Him the Basic Genome of the World (BGW. The integral-dynamic formula of the BGW is described. The World Genome manifests the basic idea of the evolution: it is the code for structural and functional organization and evolution of all entities. The World Genome forms the General Laws of the World. The Theory of genetic energy-information unity of the World is proved the general idea – modern crisis can be transformed by realization of genetic energyinformation unity of the World-Natura-Man.

  18. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  19. Theory and Practice in Quantitative Genetics

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Beem, A Leo; de Geus, Eco J C

    2003-01-01

    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative...... geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships......) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each...

  20. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2002-01-01

    OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  1. Modeling the Isentropic Head Value of Centrifugal Gas Compressor using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Safiyullah Ferozkhan

    2016-01-01

    Full Text Available Gas compressor performance is vital in oil and gas industry because of the equipment criticality which requires continuous operations. Plant operators often face difficulties in predicting appropriate time for maintenance and would usually rely on time based predictive maintenance intervals as recommended by original equipment manufacturer (OEM. The objective of this work is to develop the computational model to find the isentropic head value using genetic programming. The isentropic head value is calculated from the OEM performance chart. Inlet mass flow rate and speed of the compressor are taken as the input value. The obtained results from the GP computational models show good agreement with experimental and target data with the average prediction error of 1.318%. The genetic programming computational model will assist machinery engineers to quantify performance deterioration of gas compressor and the results from this study will be then utilized to estimate future maintenance requirements based on the historical data. In general, this genetic programming modelling provides a powerful solution for gas compressor operators to realize predictive maintenance approach in their operations.

  2. A NEW MUTATION OPERATOR IN GENETIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Anuradha Purohit

    2013-01-01

    Full Text Available This paper proposes a new type of mutation operator, FEDS (Fitness, Elitism, Depth, and Size mutation in genetic programming. The concept behind the new mutation operator is inspired from already introduced FEDS crossover operator to handle the problem of code bloating. FEDS mutation operates by using local elitism replacement in combination with depth limit and size of the trees to reduce bloat with a subsequent improvement in the performance of trees (program structures. We have designed a multiclass classifier for some benchmark datasets to test the performance of proposed mutation. The results show that when the initial run uses FEDS crossover and the concluding run uses FEDS mutation, then not only is the final result significantly improved but there is reduction in bloat also.

  3. Educational Program Evaluation Model, From the Perspective of the New Theories

    Directory of Open Access Journals (Sweden)

    Soleiman Ahmady

    2014-05-01

    Full Text Available Introduction: This study is focused on common theories that influenced the history of program evaluation and introduce the educational program evaluation proposal format based on the updated theory. Methods: Literature searches were carried out in March-December 2010 with a combination of key words, MeSH terms and other free text terms as suitable for the purpose. A comprehensive search strategy was developed to search Medline by the PubMed interface, ERIC (Education Resources Information Center and the main journal of medical education regarding current evaluation models and theories. We included all study designs in our study. We found 810 articles related to our topic, and finally 63 with the full text article included. We compared documents and used expert consensus for selection the best model. Results: We found that the complexity theory using logic model suggests compatible evaluation proposal formats, especially with new medical education programs. Common components of a logic model are: situation, inputs, outputs, and outcomes that our proposal format is based on. Its contents are: title page, cover letter, situation and background, introduction and rationale, project description, evaluation design, evaluation methodology, reporting, program evaluation management, timeline, evaluation budget based on the best evidences, and supporting documents. Conclusion: We found that the logic model is used for evaluation program planning in many places, but more research is needed to see if it is suitable for our context.

  4. Report on an Investigation into an Entry Level Clinical Doctorate for the Genetic Counseling Profession and a Survey of the Association of Genetic Counseling Program Directors.

    Science.gov (United States)

    Reiser, Catherine; LeRoy, Bonnie; Grubs, Robin; Walton, Carol

    2015-10-01

    The master's degree is the required entry-level degree for the genetic counseling profession in the US and Canada. In 2012 the Association of Genetic Counseling Program Directors (AGCPD) passed resolutions supporting retention of the master's as the entry-level and terminal degree and opposing introduction of an entry-level clinical doctorate (CD) degree. An AGCPD workgroup surveyed directors of all 34 accredited training programs with the objective of providing the Genetic Counseling Advanced Degrees Task Force (GCADTF) with information regarding potential challenges if master's programs were required to transition to an entry-level CD. Program demographics, projected ability to transition to an entry-level CD, factors influencing ability to transition, and potential effects of transition on programs, students and the genetic counseling workforce were characterized. Two programs would definitely be able to transition, four programs would close, thirteen programs would be at risk to close and fourteen programs would probably be able to transition with varying degrees of difficulty. The most frequently cited limiting factors were economic, stress on clinical sites, and administrative approval of a new degree/program. Student enrollment under an entry-level CD model was projected to decrease by 26.2 %, negatively impacting the workforce pipeline. The results further illuminate and justify AGCPD's position to maintain the master's as the entry-level degree.

  5. Intervention mapping: a process for developing theory- and evidence-based health education programs.

    Science.gov (United States)

    Bartholomew, L K; Parcel, G S; Kok, G

    1998-10-01

    The practice of health education involves three major program-planning activities: needs assessment, program development, and evaluation. Over the past 20 years, significant enhancements have been made to the conceptual base and practice of health education. Models that outline explicit procedures and detailed conceptualization of community assessment and evaluation have been developed. Other advancements include the application of theory to health education and promotion program development and implementation. However, there remains a need for more explicit specification of the processes by which one uses theory and empirical findings to develop interventions. This article presents the origins, purpose, and description of Intervention Mapping, a framework for health education intervention development. Intervention Mapping is composed of five steps: (1) creating a matrix of proximal program objectives, (2) selecting theory-based intervention methods and practical strategies, (3) designing and organizing a program, (4) specifying adoption and implementation plans, and (5) generating program evaluation plans.

  6. "The Theory was Beautiful Indeed": Rise, Fall and Circulation of Maximizing Methods in Population Genetics (1930-1980).

    Science.gov (United States)

    Grodwohl, Jean-Baptiste

    2017-08-01

    Describing the theoretical population geneticists of the 1960s, Joseph Felsenstein reminisced: "our central obsession was finding out what function evolution would try to maximize. Population geneticists used to think, following Sewall Wright, that mean relative fitness, W, would be maximized by natural selection" (Felsenstein 2000). The present paper describes the genesis, diffusion and fall of this "obsession", by giving a biography of the mean fitness function in population genetics. This modeling method devised by Sewall Wright in the 1930s found its heyday in the late 1950s and early 1960s, in the wake of Motoo Kimura's and Richard Lewontin's works. It seemed a reliable guide in the mathematical study of deterministic effects (the study of natural selection in populations of infinite size, with no drift), leading to powerful generalizations presenting law-like properties. Progress in population genetics theory, it then seemed, would come from the application of this method to the study of systems with several genes. This ambition came to a halt in the context of the influential objections made by the Australian mathematician Patrick Moran in 1963. These objections triggered a controversy between mathematically- and biologically-inclined geneticists, with affected both the formal standards and the aims of population genetics as a science. Over the course of the 1960s, the mean fitness method withered with the ambition of developing the deterministic theory. The mathematical theory became increasingly complex. Kimura re-focused his modeling work on the theory of random processes; as a result of his computer simulations, Lewontin became the staunchest critic of maximizing principles in evolutionary biology. The mean fitness method then migrated to other research areas, being refashioned and used in evolutionary quantitative genetics and behavioral ecology.

  7. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    Science.gov (United States)

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  8. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  9. Eye growth and myopia development: Unifying theory and Matlab model.

    Science.gov (United States)

    Hung, George K; Mahadas, Kausalendra; Mohammad, Faisal

    2016-03-01

    The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs

  10. Genetic counseling for schizophrenia: a review of referrals to a provincial medical genetics program from 1968–2007

    Science.gov (United States)

    Hunter, MJ; Hippman, Catriona; Honer, William G; Austin, Jehannine C.

    2014-01-01

    Purpose Recent studies have shown that individuals with schizophrenia and their family members are interested in genetic counseling, but few have received this service. We conducted an exploratory, retrospective study to describe (a) the population of individuals who were referred to the provincial program for genetic counseling for a primary indication of schizophrenia, and (b) trends in number of referrals between 1968 and 2007. Methods Referrals for a primary indication of schizophrenia were identified through the provincial program database. Charts were reviewed and the following information was recorded: discipline of referring physician, demographics, psychiatric diagnosis, referred individual’s and partner’s (if applicable) family history, and any current pregnancy history. Data were characterized using descriptive statistics. Results Between 1968 and 2007, 288 referrals were made for a primary indication of schizophrenia. Most referrals were made: (a) for individuals who had a first-degree family member with schizophrenia, rather than for affected individuals, (b) for preconception counseling, and (c) by family physicians (69%), with only 2% by psychiatrists. Conclusions In British Columbia, individuals affected with schizophrenia and their family members are rarely referred for psychiatric genetic counseling. There is a need to identify barriers to psychiatric genetic counseling and develop strategies to improve access. PMID:20034078

  11. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  12. Implementation of the program for conservation and sustainable utilization of forest genetic resources in Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2017-01-01

    Full Text Available Program for conservation and sustainable utilization of forest genetic resources has been defined for 2016-2025 period and it is a base for concrete activities in this field. This Program could be divided into several parts that deal with: the legal framework for the conservation and sustainable utilization of forest genetic resources; status of forest genetic resources in Serbia; previous activities on the conservation of forest genetic resources; and objectives, priorities and measures of conservation. The Program should have an impact on the development of the forestry sector through the following activities: conservation and sustainable utilization of the available gene pool; improving forest management in accordance with conservation principles; improving the production of reproductive material of forest trees; make the public awareness of the need for conservation and sustainable utilization of forest genetic resources; fulfillment of international obligations related to this field and the possibility of joining FAO activities related to forest genetic resources - development of the national report as a part of the publication The State of the World's Forest Genetic Resources. Implementation of the Program will depend upon raising the awareness on the importance, conservation and sustainable utilization of forest genetic resources, as a precondition for the forests survival; it will depend of funds that will be allocated for this purpose and enthusiasm of people who deal with these issues.

  13. Including nonadditive genetic effects in mating programs to maximize dairy farm profitability.

    Science.gov (United States)

    Aliloo, H; Pryce, J E; González-Recio, O; Cocks, B G; Goddard, M E; Hayes, B J

    2017-02-01

    We compared the outcome of mating programs based on different evaluation models that included nonadditive genetic effects (dominance and heterozygosity) in addition to additive effects. The additive and dominance marker effects and the values of regression on average heterozygosity were estimated using 632,003 single nucleotide polymorphisms from 7,902 and 7,510 Holstein cows with calving interval and production (milk, fat, and protein yields) records, respectively. Expected progeny values were computed based on the estimated genetic effects and genotype probabilities of hypothetical progeny from matings between the available genotyped cows and the top 50 young genomic bulls. An index combining the traits based on their economic values was developed and used to evaluate the performance of different mating scenarios in terms of dollar profit. We observed that mating programs with nonadditive genetic effects performed better than a model with only additive effects. Mating programs with dominance and heterozygosity effects increased milk, fat, and protein yields by up to 38, 1.57, and 1.21 kg, respectively. The inclusion of dominance and heterozygosity effects decreased calving interval by up to 0.70 d compared with random mating. The average reduction in progeny inbreeding by the inclusion of nonadditive genetic effects in matings compared with random mating was between 0.25 to 1.57 and 0.64 to 1.57 percentage points for calving interval and production traits, respectively. The reduction in inbreeding was accompanied by an average of A$8.42 (Australian dollars) more profit per mating for a model with additive, dominance, and heterozygosity effects compared with random mating. Mate allocations that benefit from nonadditive genetic effects can improve progeny performance only in the generation where it is being implemented, and the gain from specific combining abilities cannot be accumulated over generations. Continuous updating of genomic predictions and mate

  14. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the

  15. Towards a predictive theory for genetic regulatory networks

    Science.gov (United States)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  16. Explicating Practicum Program Theory: A Case Example in Human Ecology

    Science.gov (United States)

    Chandler, Kathryn M. M.; Williamson, Deanna L.

    2013-01-01

    This study explicated the theory underpinning the Human Ecology Practicum Program offered in the Department of Human Ecology at the University of Alberta. The program has operated for 40 years but never been formally evaluated. Using a document analysis, focus group and individual interviews, and a stakeholder working group, we explored…

  17. Investigating the genetic basis of theory of mind (ToM): the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Xia, Haiwei; Wu, Nan; Su, Yanjie

    2012-01-01

    The ability to deduce other persons' mental states and emotions which has been termed 'theory of mind (ToM)' is highly heritable. First molecular genetic studies focused on some dopamine-related genes, while the genetic basis underlying different components of ToM (affective ToM and cognitive ToM) remain unknown. The current study tested 7 candidate polymorphisms (rs4680, rs4633, rs2020917, rs2239393, rs737865, rs174699 and rs59938883) on the catechol-O-methyltransferase (COMT) gene. We investigated how these polymorphisms relate to different components of ToM. 101 adults participated in our study; all were genetically unrelated, non-clinical and healthy Chinese subjects. Different ToM tasks were applied to detect their theory of mind ability. The results showed that the COMT gene rs2020917 and rs737865 SNPs were associated with cognitive ToM performance, while the COMT gene rs5993883 SNP was related to affective ToM, in which a significant gender-genotype interaction was found (p = 0.039). Our results highlighted the contribution of DA-related COMT gene on ToM performance. Moreover, we found out that the different SNP at the same gene relates to the discriminative aspect of ToM. Our research provides some preliminary evidence to the genetic basis of theory of mind which still awaits further studies.

  18. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-01-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  19. Genetic algorithm for lattice gauge theory on SU(2) and U(1) on 4 dimensional lattice, how to hitchhike to thermal equilibrium state

    International Nuclear Information System (INIS)

    Yamaguchi, A.; Sugamoto, A.

    2000-01-01

    Applying Genetic Algorithm for the Lattice Gauge Theory is formed to be an effective method to minimize the action of gauge field on a lattice. In 4 dimensions, the critical point and the Wilson loop behaviour of SU(2) lattice gauge theory as well as the phase transition of U(1) theory have been studied. The proper coding methodi has been developed in order to avoid the increase of necessary memory and the overload of calculation for Genetic Algorithm. How hichhikers toward equilibrium appear against kidnappers is clarified

  20. 76 FR 72424 - Submission for OMB Review; Comment Request Information Program on the Genetic Testing Registry

    Science.gov (United States)

    2011-11-23

    ... particular tests; and (3) facilitating genetic and genomic data-sharing for research and new scientific...; Comment Request Information Program on the Genetic Testing Registry AGENCY: National Institutes of Health... currently valid OMB control number. Proposed Collection: Title: The Genetic Testing Registry; Type of...

  1. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2017-11-07

    The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which-this theory-would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses-in the genetic code table-in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance-regarding the classes of ARSs-is appreciable for the CAG code, whereas for its complement-the UNN/NUN code-only a marginal

  2. Systems theory as a framework for examining a college campus-based support program for the former foster youth.

    Science.gov (United States)

    Schelbe, Lisa; Randolph, Karen A; Yelick, Anna; Cheatham, Leah P; Groton, Danielle B

    2018-01-01

    Increased attention to former foster youth pursuing post-secondary education has resulted in the creation of college campus based support programs to address their need. However, limited empirical evidence and theoretical knowledge exist about these programs. This study seeks to describe the application of systems theory as a framework for examining a college campus based support program for former foster youth. In-depth semi-structured interviews were conducted with 32 program stakeholders including students, mentors, collaborative members, and independent living program staff. Using qualitative data analysis software, holistic coding techniques were employed to analyze interview transcripts. Then applying principles of extended case method using systems theory, data were analyzed. Findings suggest systems theory serves as a framework for understanding the functioning of a college campus based support program. The theory's concepts help delineate program components and roles of stakeholders; outline boundaries between and interactions among stakeholders; and identify program strengths and weakness. Systems theory plays an important role in identifying intervention components and providing a structure through which to identify and understand program elements as a part of the planning process. This study highlights the utility of systems theory as a framework for program planning and evaluation.

  3. Applying ecological models to communities of genetic elements: the case of neutral theory.

    Science.gov (United States)

    Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan

    2015-07-01

    A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.

  4. An integrated biochemistry and genetics outreach program designed for elementary school students.

    Science.gov (United States)

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.

  5. Genetics/genomics education for nongenetic health professionals: a systematic literature review.

    Science.gov (United States)

    Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih

    2017-07-01

    The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.

  6. Extracting classification rules from an informatic security incidents repository by genetic programming

    Directory of Open Access Journals (Sweden)

    Carlos Javier Carvajal Montealegre

    2015-04-01

    Full Text Available This paper describes the data mining process to obtain classification rules over an information security incident data collection, explaining in detail the use of genetic programming as a mean to model the incidents behavior and representing such rules as decision trees. The described mining process includes several tasks, such as the GP (Genetic Programming approach evaluation, the individual's representation and the algorithm parameters tuning to upgrade the performance. The paper concludes with the result analysis and the description of the rules obtained, suggesting measures to avoid the occurrence of new informatics attacks. This paper is a part of the thesis work degree: Information Security Incident Analytics by Data Mining for Behavioral Modeling and Pattern Recognition (Carvajal, 2012.

  7. Research on non-uniform strain profile reconstruction along fiber Bragg grating via genetic programming algorithm and interrelated experimental verification

    Science.gov (United States)

    Zheng, Shijie; Zhang, Nan; Xia, Yanjun; Wang, Hongtao

    2014-03-01

    A new heuristic strategy for the non-uniform strain profile reconstruction along Fiber Bragg Gratings is proposed in this paper, which is based on the modified transfer matrix and Genetic Programming(GP) algorithm. The present method uses Genetic Programming to determine the applied strain field as a function of position along the fiber length. The structures that undergo adaptation in genetic programming are hierarchical structures which are different from that of conventional genetic algorithm operating on strings. GP regress the strain profile function which matches the 'measured' spectrum best and makes space resolution of strain reconstruction arbitrarily high, or even infinite. This paper also presents an experimental verification of the reconstruction of non-homogeneous strain fields using GP. The results are compared with numerical calculations of finite element method. Both the simulation examples and experimental results demonstrate that Genetic Programming can effectively reconstruct continuous profile expression along the whole FBG, and greatly improves its computational efficiency and accuracy.

  8. The Course Research for the Software Program Based on the Constructivism Teaching Theories

    Science.gov (United States)

    Zhang, Quanyou; Kou, Qiongjie

    The theory of constructivism teaching emphasizes that: firstly, the center of teaching should be students; secondly, teaching should cultivate the student's character of autonomy and cooperation. The constructivism teaching gets rid of some disadvantage in the traditional teaching. Through using constructivism teaching theories to instruct programming course, it can liven up the lesson mood and cultivate the independent study; improve the team spirit and the ability of programming software for students.

  9. Leveraging Sociocultural Theory to Create a Mentorship Program for Doctoral Students

    Science.gov (United States)

    Crosslin, Matt; Wakefield, Jenny S.; Bennette, Phyllis; Black, James William, III

    2013-01-01

    This paper details a proposed doctoral student connections program that is based on sociocultural theory. It is designed to assist new students with starting their educational journey. This program is designed to leverage social interactions, peer mentorship, personal reflection, purposeful planning, and existing resources to assist students in…

  10. Evolving Rule-Based Systems in two Medical Domains using Genetic Programming

    DEFF Research Database (Denmark)

    Tsakonas, A.; Dounias, G.; Jantzen, Jan

    2004-01-01

    We demonstrate, compare and discuss the application of two genetic programming methodologies for the construction of rule-based systems in two medical domains: the diagnosis of Aphasia's subtypes and the classification of Pap-Smear Test examinations. The first approach consists of a scheme...

  11. Model-based problem solving through symbolic regression via pareto genetic programming

    NARCIS (Netherlands)

    Vladislavleva, E.

    2008-01-01

    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust

  12. Social contract theory and just decision making: lessons from genetic testing for the BRCA mutations.

    Science.gov (United States)

    Williams-Jones, Bryn; Burgess, Michael M

    2004-06-01

    Decisions about funding health services are crucial to controlling costs in health care insurance plans, yet they encounter serious challenges from intellectual property protection--e.g., patents--of health care services. Using Myriad Genetics' commercial genetic susceptibility test for hereditary breast cancer (BRCA testing) in the context of the Canadian health insurance system as a case study, this paper applies concepts from social contract theory to help develop more just and rational approaches to health care decision making. Specifically, Daniel's and Sabin's "accountability for reasonableness" is compared to broader notions of public consultation, demonstrating that expert assessments in specific decisions must be transparent and accountable and supplemented by public consultation.

  13. Epileptic MEG Spike Detection Using Statistical Features and Genetic Programming with KNN

    Directory of Open Access Journals (Sweden)

    Turky N. Alotaiby

    2017-01-01

    Full Text Available Epilepsy is a neurological disorder that affects millions of people worldwide. Monitoring the brain activities and identifying the seizure source which starts with spike detection are important steps for epilepsy treatment. Magnetoencephalography (MEG is an emerging epileptic diagnostic tool with high-density sensors; this makes manual analysis a challenging task due to the vast amount of MEG data. This paper explores the use of eight statistical features and genetic programing (GP with the K-nearest neighbor (KNN for interictal spike detection. The proposed method is comprised of three stages: preprocessing, genetic programming-based feature generation, and classification. The effectiveness of the proposed approach has been evaluated using real MEG data obtained from 28 epileptic patients. It has achieved a 91.75% average sensitivity and 92.99% average specificity.

  14. A theory-informed, process-oriented Resident Scholarship Program.

    Science.gov (United States)

    Thammasitboon, Satid; Darby, John B; Hair, Amy B; Rose, Karen M; Ward, Mark A; Turner, Teri L; Balmer, Dorene F

    2016-01-01

    The Accreditation Council for Graduate Medical Education requires residency programs to provide curricula for residents to engage in scholarly activities but does not specify particular guidelines for instruction. We propose a Resident Scholarship Program that is framed by the self-determination theory (SDT) and emphasize the process of scholarly activity versus a scholarly product. The authors report on their longitudinal Resident Scholarship Program, which aimed to support psychological needs central to SDT: autonomy, competence, and relatedness. By addressing those needs in program aims and program components, the program may foster residents' intrinsic motivation to learn and to engage in scholarly activity. To this end, residents' engagement in scholarly processes, and changes in perceived autonomy, competence, and relatedness were assessed. Residents engaged in a range of scholarly projects and expressed positive regard for the program. Compared to before residency, residents felt more confident in the process of scholarly activity, as determined by changes in increased perceived autonomy, competence, and relatedness. Scholarly products were accomplished in return for a focus on scholarly process. Based on our experience, and in line with the SDT, supporting residents' autonomy, competence, and relatedness through a process-oriented scholarship program may foster the curiosity, inquisitiveness, and internal motivation to learn that drives scholarly activity and ultimately the production of scholarly products.

  15. Developmental Systems Theory and the Person-Oriented Approach. Commentary on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    Science.gov (United States)

    Bergman, Lars R.

    2015-01-01

    Molenaar's (2015) article concerns Developmental Systems Theory (DST) in relation to behavior genetics and he presents implications of DST for empirical research, especially the need for subject-specific studies. In this commentary, the article is discussed from a broader developmental science perspective, particularly regarded through the lens of…

  16. Genetic diversity of tambaqui broodstocks in stock enhancement programs

    Directory of Open Access Journals (Sweden)

    Americo Moraes Neto

    2017-06-01

    Full Text Available Natural populations of tambaqui (Colossoma macropomum have significantly decreased in recent decades especially due to human extraction activities. So that the environmental impact may be reduced, the restocking of fish and increase in fish production are enhanced. Genetic evaluations using molecular markers are essential for this purpose. Current study evaluates the genetic variability of two tambaqui broodstocks used in restocking programs. Sixty-five samples (33 samples from broodstock A and 32 samples from broodstock B were collected. DNA was extracted from caudal fin samples, with the amplification of four microsatellite loci: Cm1A11 (EU685307 Cm1C8 (EU685308 Cm1F4 (EU685311 and Cm1H8 (EU685315. Fourteen alleles in the stock of broodstock A were produced, five alleles for Cm1A11 locus (230, 255, 260, 270 and 276 bp, three alleles Cm1C8 (239, 260, and 273 bp, two alleles Cm1F4 (211 and 245 bp, four alleles for Cm1H8 (275, 290, 320 and 331 bp and two unique alleles were found for Cm1A11 loci (alleles 270 and 276 bp and Cm1H8 (alleles 275 and 331 bp. In broodstock B, ten alleles were produced, the same alleles of the first stock except for alleles 270 and 276 bp in Cm1A11 locus and 275 and 331 bp in Cm1H8 locus. Broodstock A revealed low frequency alleles in Cm1A11 loci, Cm1C8, Cm1F4 and Cm1H8, whereas broodstock B had no locus with low allelic frequency. Loci Cm1A11, Cm1C8 and Cm1H8 exhibited significant deficit of heterozygotes in both broodstocks, revealing changes in Hardy-Weinberg equilibrium. Genetic diversity between stocks was 0.1120, whilst genetic similarity was 0.894, with FST rate = 0.05, and Nm = 3.93, indicating gene flow between the two broodstocks. Results show that broodstocks are genetically closely related, with no great genetic variability. Strategies such as a previous genetic analysis of breeding with its marking, use of a large Ne crossing between the most genetically divergent specimens, and the introduction of new

  17. Towards Merging Binary Integer Programming Techniques with Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Reza Zamani

    2017-01-01

    Full Text Available This paper presents a framework based on merging a binary integer programming technique with a genetic algorithm. The framework uses both lower and upper bounds to make the employed mathematical formulation of a problem as tight as possible. For problems whose optimal solutions cannot be obtained, precision is traded with speed through substituting the integrality constrains in a binary integer program with a penalty. In this way, instead of constraining a variable u with binary restriction, u is considered as real number between 0 and 1, with the penalty of Mu(1-u, in which M is a large number. Values not near to the boundary extremes of 0 and 1 make the component of Mu(1-u large and are expected to be avoided implicitly. The nonbinary values are then converted to priorities, and a genetic algorithm can use these priorities to fill its initial pool for producing feasible solutions. The presented framework can be applied to many combinatorial optimization problems. Here, a procedure based on this framework has been applied to a scheduling problem, and the results of computational experiments have been discussed, emphasizing the knowledge generated and inefficiencies to be circumvented with this framework in future.

  18. Empirical study of self-configuring genetic programming algorithm performance and behaviour

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Semenkin, E; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Semenkina, M

    2015-01-01

    The behaviour of the self-configuring genetic programming algorithm with a modified uniform crossover operator that implements a selective pressure on the recombination stage, is studied over symbolic programming problems. The operator's probabilistic rates interplay is studied and the role of operator variants on algorithm performance is investigated. Algorithm modifications based on the results of investigations are suggested. The performance improvement of the algorithm is demonstrated by the comparative analysis of suggested algorithms on the benchmark and real world problems

  19. The Behavior Intervention Support Team (BIST) Program: Underlying Theories

    Science.gov (United States)

    Boulden, Walter T.

    2010-01-01

    The Behavior Intervention Support Team (BIST) is a proactive school-wide behavior management plan for all students, emphasizing schools partnering with students and parents through caring relationships and high expectations. The BIST program is well-grounded in behavioral theory and combines strength-based and resiliency principles within the…

  20. How robotics programs influence young women's career choices : a grounded theory model

    Science.gov (United States)

    Craig, Cecilia Dosh-Bluhm

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced young women's career decisions and the program's effect on engineering, physics, and computer science career interests. To test this, a study was mounted to explore how the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition (FRC) program influenced young women's college major and career choices. Career theories suggested that experiential programs coupled with supportive relationships strongly influence career decisions, especially for science, technology, engineering, and mathematics careers. The study explored how and when young women made career decisions and how the experiential program and! its mentors and role models influenced career choice. Online focus groups and interviews (online and face-to-face) with 10 female FRC alumnae and GT processes (inductive analysis, open coding, categorizations using mind maps and content clouds) were used to generate a general systems theory style model of the career decision process for these young women. The study identified gender stereotypes and other career obstacles for women. The study's conclusions include recommendations to foster connections to real-world challenges, to develop training programs for mentors, and to nurture social cohesion, a mostly untapped area. Implementing these recommendations could help grow a critical mass of women in engineering, physics, and computer science careers, a social change worth pursuing.

  1. Open pre-schools at integrated health services - A program theory

    Directory of Open Access Journals (Sweden)

    Agneta Abrahamsson

    2013-04-01

    Full Text Available Introduction: Family centres in Sweden are integrated services that reach all prospective parents and parents with children up to their sixth year, because of the co-location of the health service with the social service and the open pre-school. The personnel on the multi-professional site work together to meet the needs of the target group. The article explores a program theory focused on the open pre-schools at family centres.Method: A multi-case design is used and the sample consists of open pre-schools at six family centres. The hypothesis is based on previous research and evaluation data. It guides the data collection which is collected and analysed stepwise. Both parents and personnel are interviewed individually and in groups at each centre.Findings: The hypothesis was expanded to a program theory. The compliance of the professionals was the most significant element that explained why the open access service facilitated positive parenting. The professionals act in a compliant manner to meet the needs of the children and parents as well as in creating good conditions for social networking and learning amongst the parents. Conclusion: The compliance of the professionals in this program theory of open pre-schools at family centres can be a standard in integrated and open access services, whereas the organisation form can vary. The best way of increasing the number of integrative services is to support and encourage professionals that prefer to work in a compliant manner.

  2. Open pre-schools at integrated health services - A program theory

    Directory of Open Access Journals (Sweden)

    Agneta Abrahamsson

    2013-04-01

    Full Text Available Introduction: Family centres in Sweden are integrated services that reach all prospective parents and parents with children up to their sixth year, because of the co-location of the health service with the social service and the open pre-school. The personnel on the multi-professional site work together to meet the needs of the target group. The article explores a program theory focused on the open pre-schools at family centres. Method: A multi-case design is used and the sample consists of open pre-schools at six family centres. The hypothesis is based on previous research and evaluation data. It guides the data collection which is collected and analysed stepwise. Both parents and personnel are interviewed individually and in groups at each centre. Findings: The hypothesis was expanded to a program theory. The compliance of the professionals was the most significant element that explained why the open access service facilitated positive parenting. The professionals act in a compliant manner to meet the needs of the children and parents as well as in creating good conditions for social networking and learning amongst the parents. Conclusion: The compliance of the professionals in this program theory of open pre-schools at family centres can be a standard in integrated and open access services, whereas the organisation form can vary. The best way of increasing the number of integrative services is to support and encourage professionals that prefer to work in a compliant manner.

  3. Lean and leadership practices: development of an initial realist program theory.

    Science.gov (United States)

    Goodridge, Donna; Westhorp, Gill; Rotter, Thomas; Dobson, Roy; Bath, Brenna

    2015-09-07

    Lean as a management system has been increasingly adopted in health care settings in an effort to enhance quality, capacity and safety, while simultaneously containing or reducing costs. The Ministry of Health in the province of Saskatchewan, Canada has made a multi-million dollar investment in Lean initiatives to create "better health, better value, better care, and better teams", affording a unique opportunity to advance our understanding of the way in which Lean philosophy, principles and tools work in health care. In order to address the questions, "What changes in leadership practices are associated with the implementation of Lean?" and "When leadership practices change, how do the changed practices contribute to subsequent outcomes?", we used a qualitative, multi-stage approach to work towards developing an initial realist program theory. We describe the implications of realist assumptions for evaluation of this Lean initiative. Formal theories including Normalization Process Theory, Theories of Double Loop and Organization Leaning and the Theory of Cognitive Dissonance help understand this initial rough program theory. Data collection included: key informant consultation; a stakeholder workshop; documentary review; 26 audiotaped and transcribed interviews with health region personnel; and team discussions. A set of seven initial hypotheses regarding the manner in which Lean changes leadership practices were developed from our data. We hypothesized that Lean, as implemented in this particular setting, changes leadership practices in the following ways. Lean: a) aligns the aims and objectives of health regions; b) authorizes attention and resources to quality improvement and change management c) provides an integrated set of tools for particular tasks; d) changes leaders' attitudes or beliefs about appropriate leadership and management styles and behaviors; e) demands increased levels of expertise, accountability and commitment from leaders; f) measures and

  4. A theory-informed, process-oriented Resident Scholarship Program

    Science.gov (United States)

    Thammasitboon, Satid; Darby, John B.; Hair, Amy B.; Rose, Karen M.; Ward, Mark A.; Turner, Teri L.; Balmer, Dorene F.

    2016-01-01

    Background The Accreditation Council for Graduate Medical Education requires residency programs to provide curricula for residents to engage in scholarly activities but does not specify particular guidelines for instruction. We propose a Resident Scholarship Program that is framed by the self-determination theory (SDT) and emphasize the process of scholarly activity versus a scholarly product. Methods The authors report on their longitudinal Resident Scholarship Program, which aimed to support psychological needs central to SDT: autonomy, competence, and relatedness. By addressing those needs in program aims and program components, the program may foster residents’ intrinsic motivation to learn and to engage in scholarly activity. To this end, residents’ engagement in scholarly processes, and changes in perceived autonomy, competence, and relatedness were assessed. Results Residents engaged in a range of scholarly projects and expressed positive regard for the program. Compared to before residency, residents felt more confident in the process of scholarly activity, as determined by changes in increased perceived autonomy, competence, and relatedness. Scholarly products were accomplished in return for a focus on scholarly process. Conclusions Based on our experience, and in line with the SDT, supporting residents’ autonomy, competence, and relatedness through a process-oriented scholarship program may foster the curiosity, inquisitiveness, and internal motivation to learn that drives scholarly activity and ultimately the production of scholarly products. PMID:27306995

  5. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    Directory of Open Access Journals (Sweden)

    Chenlu Miao

    2016-01-01

    Full Text Available Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP, which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard problem. Consequently, using traditional methods to solve such problems is difficult. Genetic algorithms (GAs have great value in solving BLP problems, and many studies have designed GAs to solve BLP problems; however, such GAs are typically designed for special cases that do not involve MINLBLP with one or multiple followers. Therefore, we propose a bilevel GA to solve these particular MINLBLP problems, which are widely used in product family problems. We give numerical examples to demonstrate the effectiveness of the proposed algorithm. In addition, a reducer family case study is examined to demonstrate practical applications of the proposed BLGA.

  6. Promoting Supportive Relationships in Youth Programs: A Self-Determination Theory Perspective

    Directory of Open Access Journals (Sweden)

    Mat D. Duerden

    2008-12-01

    Full Text Available Although research suggests that positive contact with non-parental adults is developmentally beneficial for youth; many adolescents do not have access to such relationships. It is important that adults structure existing relationships to optimize positive youth development. Relationships with adults, who support youth’s needs for autonomy, relatedness, and competence, provide youth with scaffolding as they navigate their way through adolescence. Self-Determination Theory offers a straight-forward approach to understanding the elements of contexts that best promote the development of supportive relationships. The purpose of this paper is to review the literature concerning youth-adult relationships, including their associated prevalence and developmental benefits across multiple contexts. These findings are then integrated into a framework of best practices for developing and supporting positive youth relationships with adults within youth program settings. Several theory-based recommendations are offered for youth program administrators and staff who wish to improve youth-adult relationships in their programs.

  7. [High energy particle physics]: Task A, High energy physics program: Experiment and theory; Task B, High energy physics program: Numerical simulation of quantum field theories

    International Nuclear Information System (INIS)

    Lannutti, J.E.

    1991-01-01

    This report discusses the following research: fixed target experiments; collider experiments; computing, networking and VAX upgrade; SSC preparation, detector development and detector construction; solid argon calorimetry; absorption of CAD system geometries into GEANT for SSC; and particle theory programs

  8. The synthesis paradigm in genetics.

    Science.gov (United States)

    Rice, William R

    2014-02-01

    Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics--and other fields of biology--are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous "-omics" data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.

  9. Using Contact Theory to Assess Staff Perspectives on Training Initiatives of an Intergenerational Programming Intervention.

    Science.gov (United States)

    Weaver, Raven H; Naar, Jill J; Jarrott, Shannon E

    2017-12-25

    Project TRIP (Transforming Relationships through Intergenerational Programs) was developed as a sustainable intergenerational community project involving child care participants and elders attending an elder care program or volunteering at the children's program. The project focused on staff development of evidence-based intergenerational practices. To enhance available intervention research, contact theory provided a theoretical framework to explore how staff members' and administrators' perceptions of the intervention influenced their ability to implement programming in social care settings. We used a directed content analysis approach to analyze small group and individual interviews with 32 participants from 6 program sites over 5 years. Participants highlighted inherent challenges and subsequent benefits of academic-community partnerships. Greater on-site presence, open communication, and relationship-building proved critical to improve community partnerships, project fidelity, and program sustainability. When interactions reflected contact theory tenets, collaborators reported positive attitudes toward and interactions with research partners. Contact theory provided a useful framework to understand the researcher-practitioner partnership. Researchers should plan for partnerships that: (a) are supported by authority figures, including staff and participants, (b) utilize a shared expertise approach where partners have equal group status, (c) involve close cooperation; (d) align research and program goals, and (e) foster positive communication through frequent contact using practitioners' preferred methods and including in-person contact. We recommend future intergenerational programming interventions build on a foundation of both theory and practice. © The Author(s) 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The genetic algorithm for the nonlinear programming of water pollution control system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Zhang, J. [China University of Geosciences (China)

    1999-08-01

    In the programming of water pollution control system the combined method of optimization with simulation is used generally. It is not only laborious in calculation, but also the global optimum of the obtained solution is guaranteed difficult. In this paper, the genetic algorithm (GA) used in the nonlinear programming of water pollution control system is given, by which the preferred conception for the programming of waste water system is found in once-through operation. It is more succinct than the conventional method and the global optimum of the obtained solution could be ensured. 6 refs., 4 figs., 3 tabs.

  11. PROGRAMMED LEARNING--THEORY AND RESEARCH, AN ENDURING PROBLEM IN PSYCHOLOGY. SELECTED READINGS.

    Science.gov (United States)

    MOORE, J. WILLIAM, ED.; SMITH, WENDELL I., ED.

    THIS IS A COMPILATION OF ARTICLES DEALING WITH PROGRAMED INSTRUCTION AND AUTO-INSTRUCTIONAL DEVICES (TEACHING-MACHINES). THE LITERATURE IS REVIEWED AND AN OVERVIEW OF THE FIELD IS PRESENTED. THE APPLICATION OF INSTRUCTIONAL TECHNOLOGY AND LEARNING THEORY TO TEACHING MACHINES IS DISCUSSED, AND THE PROCEDURE AND RULES OF PROGRAMING METHOD. SAMPLES…

  12. Multi-objective genetic algorithm for solving N-version program design problem

    Energy Technology Data Exchange (ETDEWEB)

    Yamachi, Hidemi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan) and Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamachi@nit.ac.jp; Tsujimura, Yasuhiro [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: tujimr@nit.ac.jp; Kambayashi, Yasushi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: yasushi@nit.ac.jp; Yamamoto, Hisashi [Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamamoto@cc.tmit.ac.jp

    2006-09-15

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost.

  13. Multi-objective genetic algorithm for solving N-version program design problem

    International Nuclear Information System (INIS)

    Yamachi, Hidemi; Tsujimura, Yasuhiro; Kambayashi, Yasushi; Yamamoto, Hisashi

    2006-01-01

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost

  14. The Decision-Making Process of Genetically At-Risk Couples Considering Preimplantation Genetic Diagnosis: Initial Findings from a Grounded Theory Study

    Science.gov (United States)

    Hershberger, Patricia E.; Gallo, Agatha M.; Kavanaugh, Karen; Olshansky, Ellen; Schwartz, Alan; Tur-Kaspa, Ilan

    2012-01-01

    Exponential growth in genomics has led to public and private initiatives worldwide that have dramatically increased the number of procreative couples who are aware of their ability to transmit genetic disorders to their future children. Understanding how couples process the meaning of being genetically at risk for their procreative life lags far behind the advances in genomic and reproductive sciences. Moreover, society, policy makers, and clinicians are not aware of the experiences and nuances involved when modern couples are faced with using Preimplantation Genetic Diagnosis (PGD). The purpose of this study was to discover the decision-making process of genetically at-risk couples as they decide whether to use PGD to prevent the transmission of known single-gene or sex-linked genetic disorders to their children. A qualitative, grounded theory design guided the study in which 22 couples (44 individual partners) from the USA, who were actively considering PGD, participated. Couples were recruited from June 2009 to May 2010 from the Internet and from a large PGD center and a patient newsletter. In-depth semi-structured interviews were completed with each individual partner within the couple dyad, separate from their respective partner. We discovered that couples move through four phases (Identify, Contemplate, Resolve, Engage) of a complex, dynamic, and iterative decision-making process where multiple, sequential decisions are made. In the Identify phase, couples acknowledge the meaning of their at-risk status. Parenthood and reproductive options are explored in the Contemplate phase, where 41% of couples remained for up to 36 months before moving into the Resolve phase. In Resolve, one of three decisions about PGD use is reached, including: Accepting, Declining, or Oscillating. Actualizing decisions occur in the Engage phase. Awareness of the decision-making process among genetically at-risk couples provides foundational work for understanding critical processes

  15. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    Science.gov (United States)

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future broodstock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting broodstock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  16. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  17. Perspectives and Practices of Academics and Students of English Language Teaching Post-Graduate Programs within the Mediation Theory

    Science.gov (United States)

    Asmali, Mehmet

    2018-01-01

    Due to unsatisfactory number of researches investigating ELT post-graduate programs, and perceptions of academics and students in these programs regarding mediation theory of Feuerstein, this study attempted to investigate the aspects of this theory in doctorate and master programs in ELT department of a state university. Methodologically, this…

  18. Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks

    International Nuclear Information System (INIS)

    Zameer, Aneela; Arshad, Junaid; Khan, Asifullah; Raja, Muhammad Asif Zahoor

    2017-01-01

    Highlights: • Genetic programming based ensemble of neural networks is employed for short term wind power prediction. • Proposed predictor shows resilience against abrupt changes in weather. • Genetic programming evolves nonlinear mapping between meteorological measures and wind-power. • Proposed approach gives mathematical expressions of wind power to its independent variables. • Proposed model shows relatively accurate and steady wind-power prediction performance. - Abstract: The inherent instability of wind power production leads to critical problems for smooth power generation from wind turbines, which then requires an accurate forecast of wind power. In this study, an effective short term wind power prediction methodology is presented, which uses an intelligent ensemble regressor that comprises Artificial Neural Networks and Genetic Programming. In contrast to existing series based combination of wind power predictors, whereby the error or variation in the leading predictor is propagated down the stream to the next predictors, the proposed intelligent ensemble predictor avoids this shortcoming by introducing Genetical Programming based semi-stochastic combination of neural networks. It is observed that the decision of the individual base regressors may vary due to the frequent and inherent fluctuations in the atmospheric conditions and thus meteorological properties. The novelty of the reported work lies in creating ensemble to generate an intelligent, collective and robust decision space and thereby avoiding large errors due to the sensitivity of the individual wind predictors. The proposed ensemble based regressor, Genetic Programming based ensemble of Artificial Neural Networks, has been implemented and tested on data taken from five different wind farms located in Europe. Obtained numerical results of the proposed model in terms of various error measures are compared with the recent artificial intelligence based strategies to demonstrate the

  19. Adaptive Test Selection for Factorization-based Surrogate Fitness in Genetic Programming

    Directory of Open Access Journals (Sweden)

    Krawiec Krzysztof

    2017-12-01

    Full Text Available Genetic programming (GP is a variant of evolutionary algorithm where the entities undergoing simulated evolution are computer programs. A fitness function in GP is usually based on a set of tests, each of which defines the desired output a correct program should return for an exemplary input. The outcomes of interactions between programs and tests in GP can be represented as an interaction matrix, with rows corresponding to programs in the current population and columns corresponding to tests. In previous work, we proposed SFIMX, a method that performs only a fraction of interactions and employs non-negative matrix factorization to estimate the outcomes of remaining ones, shortening GP’s runtime. In this paper, we build upon that work and propose three extensions of SFIMX, in which the subset of tests drawn to perform interactions is selected with respect to test difficulty. The conducted experiment indicates that the proposed extensions surpass the original SFIMX on a suite of discrete GP benchmarks.

  20. A Constraint programming-based genetic algorithm for capacity output optimization

    Directory of Open Access Journals (Sweden)

    Kate Ean Nee Goh

    2014-10-01

    Full Text Available Purpose: The manuscript presents an investigation into a constraint programming-based genetic algorithm for capacity output optimization in a back-end semiconductor manufacturing company.Design/methodology/approach: In the first stage, constraint programming defining the relationships between variables was formulated into the objective function. A genetic algorithm model was created in the second stage to optimize capacity output. Three demand scenarios were applied to test the robustness of the proposed algorithm.Findings: CPGA improved both the machine utilization and capacity output once the minimum requirements of a demand scenario were fulfilled. Capacity outputs of the three scenarios were improved by 157%, 7%, and 69%, respectively.Research limitations/implications: The work relates to aggregate planning of machine capacity in a single case study. The constraints and constructed scenarios were therefore industry-specific.Practical implications: Capacity planning in a semiconductor manufacturing facility need to consider multiple mutually influenced constraints in resource availability, process flow and product demand. The findings prove that CPGA is a practical and an efficient alternative to optimize the capacity output and to allow the company to review its capacity with quick feedback.Originality/value: The work integrates two contemporary computational methods for a real industry application conventionally reliant on human judgement.

  1. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.

    Science.gov (United States)

    Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D

    2017-05-01

    Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.

  2. A study on the optimization of radwaste treatment system: using goal programming

    International Nuclear Information System (INIS)

    Yang, Jin Yeong

    1998-02-01

    This study is concerned with the applications of linear goal programming techniques and artificial intelligence algorithm (fuzzy theory and genetic algorithm) to the analysis of management and operational problems in the radioactive processing system (RWPS). A typical RWPS is modeled as a linear functions to study and resolve the effects of conflicting objectives such as cost, limitation of released radioactivity to the environment, equipment utilization and total treatable radioactive waste volume before discharge and disposal. The developed model is validated and verified using actual data obtained from the RWPS at Kyoto University in Japan. The solution by goal programming would show the optimal operation point which is to maximize the total treatable radioactive waste volume and minimize the released radioactivity of liquid waste even under the restricted resources. But goal programming has a demerit that the target values are decided by decision maker arbitrarily. To complement the goal programming's demerit, the fuzzy set theory is introduced and the target values are analyzed by it. Genetic algorithm is combined with goal programming and the results by it is compared with that of goal programming only

  3. Obesity Intervention Programs among Adolescents Using Social Cognitive Theory: A Systematic Literature Review

    Science.gov (United States)

    Bagherniya, Mohammad; Taghipour, Ali; Sharma, Manoj; Sahebkar, Amirhossein; Contento, Isobel R.; Keshavarz, Seyed Ali; Mostafavi Darani, Firoozeh; Safarian, Mohammad

    2018-01-01

    Social cognitive theory (SCT) is a well-known theory for designing nutrition education and physical activity programs for adolescents. This systematic review aimed to evaluate the efficacy of intervention studies based on SCT in reducing or preventing overweight and obesity in adolescents. An electronic literature search in PubMed-Medline, Web of…

  4. Cognitive Development, Genetics Problem Solving, and Genetics Instruction: A Critical Review.

    Science.gov (United States)

    Smith, Mike U.; Sims, O. Suthern, Jr.

    1992-01-01

    Review of literature concerning problem solving in genetics and Piagetian stage theory. Authors conclude the research suggests that formal-operational thought is not strictly required for the solution of the majority of classical genetics problems; however, some genetic concepts are difficult for concrete operational students to understand.…

  5. Stream Flow Prediction by Remote Sensing and Genetic Programming

    Science.gov (United States)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  6. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2004-01-01

    The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  7. Prediksi Nilai Tukar Rupiah Terhadap US Dollar Menggunakan Metode Genetic Programming

    Directory of Open Access Journals (Sweden)

    Daneswara Jauhari

    2016-12-01

    Exchange currency rate has a wide influence in the economy of a country, both domestically or internationally. The importance of knowing the pattern of exchange rate against the IDR to USD could help the economic growth due to foreign trade involves the use of currencies of different countries. Therefore, we need an application that can predict the value of IDR against the USD in the future. In this research, the authors use genetic programming (GP method which produces solutions (chromosome that obtained from the evaluation of exchange rate and then this solution used as an approximation or prediction of currency exchange rate in the future. These solutions formed from the combination of the set terminal and the set of function that generated randomly. After testing by the number popsize and different iterations, it was found that the GP algorithm can predict the value of the rupiah against the US Dollar with a very good, judging from the value of Mean Absolute Percentage Error (MAPE generated by 0.08%. This research can be developed even better by adding terminal parameters and operating parameters so they can add variation calculation results. Keywords:  prediction, exchange currency rate, genetic programming, MAPE.

  8. Reducing Violence in Non-Controlling Ways: A Change Program Based on Self Determination Theory

    Science.gov (United States)

    Assor, Avi; Feinberg, Ofra; Kanat-Maymon, Yaniv; Kaplan, Haya

    2018-01-01

    This paper presents and examines the first school change program focusing on violence and caring based on self-determination theory (Deci & Ryan, 2012). The program aimed at promoting teachers' capacity to cope with violence and enhance caring without becoming more controlling. Comparisons of the effects of a 22-month-long program in three…

  9. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    Science.gov (United States)

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  10. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    Science.gov (United States)

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  11. A High Precision Comprehensive Evaluation Method for Flood Disaster Loss Based on Improved Genetic Programming

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yuliang; LU Guihua; JIN Juliang; TONG Fang; ZHOU Ping

    2006-01-01

    Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGPEGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance.Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.

  12. Comprehensive bidding strategies with genetic programming/finite state automata

    International Nuclear Information System (INIS)

    Richter, C.W. Jr.; Sheble, G.B.; Ashlock, D.

    1999-01-01

    This research is an extension of the authors' previous work in double auctions aimed at developing bidding strategies for electric utilities which trade electricity competitively. The improvements detailed in this paper come from using data structures which combine genetic programming and finite state automata termed GP-Automata. The strategies developed by the method described here are adaptive--reacting to inputs--whereas the previously developed strategies were only suitable in the particular scenario for which they had been designed. The strategies encoded in the GP-Automata are tested in an auction simulator. The simulator pits them against other distribution companies (distcos) and generation companies (gencos), buying and selling power via double auctions implemented in regional commodity exchanges. The GP-Automata are evolved with a genetic algorithm so that they possess certain characteristics. In addition to designing successful bidding strategies (whose usage would result in higher profits) the resulting strategies can also be designed to imitate certain types of trading behaviors. The resulting strategies can be implemented directly in on-line trading, or can be used as realistic competitors in an off-line trading simulator

  13. NRL inertial confinement fusion theory program. 1979 annual report, October 1978 - December 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This is the 1979 annual report of the NRL Inertial Confinement Fusion Theory Program. It covers research performed from October 1978 through December 1979. Research in each of the four current program areas is reported: laser light absorption;fluid dynamics of ablative acceleration; development of computational techniques, and Rayleigh-Taylor stabilization techniques

  14. Indicators of theory of mind in narrative production : a comparison between individuals with genetic syndromes and typically developing children

    NARCIS (Netherlands)

    Lorusso, M. L.; Galli, R.; Libera, L.; Gagliardi, C.; Borgatti, R.; Hollebrandse, B.

    It is a matter of debate whether the development of theory of mind (ToM) depends on linguistic development or is, rather, an expression of cognitive development. The study of genetic syndromes, which are characterized by intellectual impairment as well as by different linguistic profiles, may

  15. Rethinking the transmission gap: What behavioral genetics and evolutionary psychology mean for attachment theory: A comment on Verhage et al. (2016).

    Science.gov (United States)

    Barbaro, Nicole; Boutwell, Brian B; Barnes, J C; Shackelford, Todd K

    2017-01-01

    Traditional attachment theory posits that attachment in infancy and early childhood is the result of intergenerational transmission of attachment from parents to offspring. Verhage et al. (2016) present meta-analytic evidence addressing the intergenerational transmission of attachment between caregivers and young children. In this commentary, we argue that their appraisal of the behavioral genetics literature is incomplete. The suggested research focus on shared environmental effects may dissuade the pursuit of profitable avenues of research and may hinder progress in attachment theory. Specifically, further research on the "transmission gap" will continue to limit our understanding of attachment etiology. We discuss recent theoretical developments from an evolutionary psychological perspective that can provide a valuable framework to account for the existing behavioral genetic data. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Evaluation of two-year Jewish genetic disease screening program in Atlanta: insight into community genetic screening approaches.

    Science.gov (United States)

    Shao, Yunru; Liu, Shuling; Grinzaid, Karen

    2015-04-01

    Improvements in genetic testing technologies have led to the development of expanded carrier screening panels for the Ashkenazi Jewish population; however, there are major inconsistencies in current screening practices. A 2-year pilot program was launched in Atlanta in 2010 to promote and facilitate screening for 19 Jewish genetic diseases. We analyzed data from this program, including participant demographics and outreach efforts. This retrospective analysis is based on a de-identified dataset of 724 screenees. Data were obtained through medical chart review and questionnaires and included demographic information, screening results, response to outreach efforts, and follow-up behavior and preferences. We applied descriptive analysis, chi-square tests, and logistic regression to analyze the data and compare findings with published literature. The majority of participants indicated that they were not pregnant or did not have a partner who was pregnant were affiliated with Jewish organizations and reported 100 % AJ ancestry. Overall, carrier frequency was 1 in 3.9. Friends, rabbis, and family members were the most common influencers of the decision to receive screening. People who were older, had a history of pregnancy, and had been previously screened were more likely to educate others (all p influencers who then encouraged screening in the target population. Educating influencers and increasing overall awareness were the most effective outreach strategies.

  17. Genetic Programming for the Generation of Crisp and Fuzzy Rule Bases in Classification and Diagnosis of Medical Data

    DEFF Research Database (Denmark)

    Dounias, George; Tsakonas, Athanasios; Jantzen, Jan

    2002-01-01

    This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic...

  18. Learning in Context: Technology Integration in a Teacher Preparation Program Informed by Situated Learning Theory

    Science.gov (United States)

    Bell, Randy L.; Maeng, Jennifer L.; Binns, Ian C.

    2013-01-01

    This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2-year Master of Teaching program. A specific program goal was to…

  19. Estimation of genetic parameters for growth traits in a breeding program for rainbow trout (Oncorhynchus mykiss) in China.

    Science.gov (United States)

    Hu, G; Gu, W; Bai, Q L; Wang, B Q

    2013-04-26

    Genetic parameters and breeding values for growth traits were estimated in the first and, currently, the only family selective breeding program for rainbow trout (Oncorhynchus mykiss) in China. Genetic and phenotypic data were collected for growth traits from 75 full-sibling families with a 2-generation pedigree. Genetic parameters and breeding values for growth traits of rainbow trout were estimated using the derivative-free restricted maximum likelihood method. The goodness-of-fit of the models was tested using Akaike and Bayesian information criteria. Genetic parameters and breeding values were estimated using the best-fit model for each trait. The values for heritability estimating body weight and length ranged from 0.20 to 0.45 and from 0.27 to 0.60, respectively, and the heritability of condition factor was 0.34. Our results showed a moderate degree of heritability for growth traits in this breeding program and suggested that the genetic and phenotypic tendency of body length, body weight, and condition factor were similar. Therefore, the selection of phenotypic values based on pedigree information was also suitable in this research population.

  20. Slender body theory programmed for bodies with arbitrary cross section. [including fuselages

    Science.gov (United States)

    Werner, J.; Krenkel, A. R.

    1978-01-01

    A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.

  1. When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming

    International Nuclear Information System (INIS)

    Pan, Indranil; Das, Saptarshi

    2015-01-01

    Highlights: •New 3D continuous time chaotic systems with analytical expressions are obtained. •The multi-gene genetic programming (MGGP) paradigm is employed to achieve this. •Extends earlier works for evolving generalised family of Lorenz attractors. •Over one hundred of new chaotic attractors along with their parameters are reported. •The MGGP method have the potential for finding other similar chaotic attractors. -- Abstract: In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone

  2. Experimental control of a fluidic pinball using genetic programming

    Science.gov (United States)

    Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.

    2017-11-01

    The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.

  3. Genetic diversity analysis in Malaysian giant prawns using expressed sequence tag microsatellite markers for stock improvement program.

    Science.gov (United States)

    Atin, K H; Christianus, A; Fatin, N; Lutas, A C; Shabanimofrad, M; Subha, B

    2017-08-17

    The Malaysian giant prawn is among the most commonly cultured species of the genus Macrobrachium. Stocks of giant prawns from four rivers in Peninsular Malaysia have been used for aquaculture over the past 25 years, which has led to repeated harvesting, restocking, and transplantation between rivers. Consequently, a stock improvement program is now important to avoid the depletion of wild stocks and the loss of genetic diversity. However, the success of such an improvement program depends on our knowledge of the genetic variation of these base populations. The aim of the current study was to estimate genetic variation and differentiation of these riverine sources using novel expressed sequence tag-microsatellite (EST-SSR) markers, which not only are informative on genetic diversity but also provide information on immune and metabolic traits. Our findings indicated that the tested stocks have inbreeding depression due to a significant deficiency in heterozygotes, and F IS was estimated as 0.15538 to 0.31938. An F-statistics analysis suggested that the stocks are composed of one large panmictic population. Among the four locations, stocks from Johor, in the southern region of the peninsular, showed higher allelic and genetic diversity than the other stocks. To overcome inbreeding problems, the Johor population could be used as a base population in a stock improvement program by crossing to the other populations. The study demonstrated that EST-SSR markers can be incorporated in future marker assisted breeding to aid the proper management of the stocks by breeders and stakeholders in Malaysia.

  4. Author's Response to Commentaries on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    Science.gov (United States)

    Molenaar, Peter C. M.

    2015-01-01

    In this article, Peter Molenaar responds to three commentaries (this issue) on his article, "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics." He addresses aspects of relational developmental systems (RDS) mentioned and questions raised in each of the…

  5. How youth get engaged: grounded-theory research on motivational development in organized youth programs.

    Science.gov (United States)

    Dawes, Nickki Pearce; Larson, Reed

    2011-01-01

    For youth to benefit from many of the developmental opportunities provided by organized programs, they need to not only attend but become psychologically engaged in program activities. This research was aimed at formulating empirically based grounded theory on the processes through which this engagement develops. Longitudinal interviews were conducted with 100 ethnically diverse youth (ages 14–21) in 10 urban and rural arts and leadership programs. Qualitative analysis focused on narrative accounts from the 44 youth who reported experiencing a positive turning point in their motivation or engagement. For 38 of these youth, this change process involved forming a personal connection. Similar to processes suggested by self-determination theory (Ryan & Deci, 2000), forming a personal connection involved youth's progressive integration of personal goals with the goals of program activities. Youth reported developing a connection to 3 personal goals that linked the self with the activity: learning for the future, developing competence, and pursuing a purpose. The role of purpose for many youth suggests that motivational change can be driven by goals that transcend self-needs. These findings suggest that youth need not enter programs intrinsically engaged--motivation can be fostered--and that programs should be creative in helping youth explore ways to form authentic connections to program activities.

  6. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  7. [Development of a program theory as a basis for the evaluation of a dementia special care unit].

    Science.gov (United States)

    Adlbrecht, Laura; Bartholomeyczik, Sabine; Mayer, Hanna

    2018-06-01

    Background: An existing dementia special care unit should be evaluated. In order to build a sound foundation of the evaluation a deep theoretical understanding of the implemented intervention is needed, which has not been explicated yet. One possibility to achieve this is the development of a program theory. Aim: The aim is to present a method to develop a program theory for the existing living and care concept of the dementia special care unit, which is used in a larger project to evaluate the concept theory-drivenly. Method: The evaluation is embedded in the framework of van Belle et al. (2010) and an action model and a change model (Chen, 2015) is created. For the specification of the change model the contribution analysis (Mayne, 2011) is applied. Data were collected in workshops with the developers and the nurses of the dementia special care unit and a literature research concerning interventions and outcomes was carried out. The results were synthesized in a consens workshop. Results: The action model describes the interventions of the dementia special care unit, the implementers, the organization and the context. The change model compromises the mechanisms through which interventions achieve outcomes. Conclusions: The results of the program theory can be employed to choose data collection methods and instruments for the evaluation. On the basis of the results of the evaluation the program theory can be refined and adapted.

  8. Study on the Method of Association Rules Mining Based on Genetic Algorithm and Application in Analysis of Seawater Samples

    Directory of Open Access Journals (Sweden)

    Qiuhong Sun

    2014-04-01

    Full Text Available Based on the data mining research, the data mining based on genetic algorithm method, the genetic algorithm is briefly introduced, while the genetic algorithm based on two important theories and theoretical templates principle implicit parallelism is also discussed. Focuses on the application of genetic algorithms for association rule mining method based on association rule mining, this paper proposes a genetic algorithm fitness function structure, data encoding, such as the title of the improvement program, in particular through the early issues study, proposed the improved adaptive Pc, Pm algorithm is applied to the genetic algorithm, thereby improving efficiency of the algorithm. Finally, a genetic algorithm based association rule mining algorithm, and be applied in sea water samples database in data mining and prove its effective.

  9. Automatic Creation of Machine Learning Workflows with Strongly Typed Genetic Programming

    Czech Academy of Sciences Publication Activity Database

    Křen, T.; Pilát, M.; Neruda, Roman

    2017-01-01

    Roč. 26, č. 5 (2017), č. článku 1760020. ISSN 0218-2130 R&D Projects: GA ČR GA15-19877S Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:67985807 Keywords : genetic programming * machine learning workflows * asynchronous evolutionary algorithm Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.778, year: 2016

  10. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-07

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  11. Quantitative genetics of disease traits.

    Science.gov (United States)

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.

  12. Drag reduction of a car model by linear genetic programming control

    Science.gov (United States)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  13. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

    Science.gov (United States)

    Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

    2017-06-01

    The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

  14. Non-Monotonic Spatial Reasoning with Answer Set Programming Modulo Theories

    OpenAIRE

    Wałęga, Przemysław Andrzej; Schultz, Carl; Bhatt, Mehul

    2016-01-01

    The systematic modelling of dynamic spatial systems is a key requirement in a wide range of application areas such as commonsense cognitive robotics, computer-aided architecture design, and dynamic geographic information systems. We present ASPMT(QS), a novel approach and fully-implemented prototype for non-monotonic spatial reasoning -a crucial requirement within dynamic spatial systems- based on Answer Set Programming Modulo Theories (ASPMT). ASPMT(QS) consists of a (qualitative) spatial re...

  15. Loss of genetic diversity in Culex quinquefasciatus targeted by a lymphatic filariasis vector control program in Recife, Brazil.

    Science.gov (United States)

    Cartaxo, Marina F S; Ayres, Constância F J; Weetman, David

    2011-09-01

    Recife is one of the largest cities in north-eastern Brazil and is endemic for lymphatic filariasis transmitted by Culex quinquefasciatus. Since 2003 a control program has targeted mosquito larvae by elimination of breeding sites and bimonthly application of Bacillus sphaericus. To assess the impact of this program on the local vector population we monitored the genetic diversity and differentiation of Cx. quinquefasciatus using microsatellites and a B. sphaericus-resistance associated mutation (cqm1(REC)) over a 3-year period. We detected a significant but gradual decline in allelic diversity, which, coupled with subtle temporal genetic structure, suggests a major impact of the control program on the vector population. Selection on cqm1(REC) does not appear to be involved with loss of neutral diversity from the population, with no temporal trend in resistant allele frequency and no correlation with microsatellite differentiation. The evidence for short-term genetic drift we detected suggests a low ratio of effective population size: census population size for Cx. quinquefasciatus, perhaps coupled with strong geographically-restricted population structure. Spatial definition of populations will be an important step for success of an expanded vector control program. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  16. Theory! The missing link in understanding the performance of neonate/infant home-visiting programs to prevent child maltreatment: a systematic review.

    Science.gov (United States)

    Segal, Leonie; Sara Opie, Rachelle; Dalziel, Kim

    2012-03-01

    Home-visiting programs have been offered for more than sixty years to at-risk families of newborns and infants. But despite decades of experience with program delivery, more than sixty published controlled trials, and more than thirty published literature reviews, there is still uncertainty surrounding the performance of these programs. Our particular interest was the performance of home visiting in reducing child maltreatment. We developed a program logic framework to assist in understanding the neonate/infant home-visiting literature, identified through a systematic literature review. We tested whether success could be explained by the logic model using descriptive synthesis and statistical analysis. Having a stated objective of reducing child maltreatment-a theory or mechanism of change underpinning the home-visiting program consistent with the target population and their needs and program components that can deliver against the nominated theory of change-considerably increased the chance of success. We found that only seven of fifty-three programs demonstrated such consistency, all of which had a statistically significant positive outcome, whereas of the fifteen that had no match, none was successful. Programs with a partial match had an intermediate success rate. The relationship between program success and full, partial or no match was statistically significant. Employing a theory-driven approach provides a new way of understanding the disparate performance of neonate/infant home-visiting programs. Employing a similar theory-driven approach could also prove useful in the review of other programs that embody a diverse set of characteristics and may apply to diverse populations and settings. A program logic framework provides a rigorous approach to deriving policy-relevant meaning from effectiveness evidence of complex programs. For neonate/infant home-visiting programs, it means that in developing these programs, attention to consistency of objectives, theory

  17. Implementation of visual programming methods for numerical techniques used in electromagnetic field theory

    Directory of Open Access Journals (Sweden)

    Metin Varan

    2017-08-01

    Full Text Available Field theory is one of the two sub-field theories in electrical and electronics engineering that for creates difficulties for undergraduate students. In undergraduate period, field theory has been taught under the theory of electromagnetic fields by which describes using partial differential equations and integral methods. Analytical methods for solution of field problems on the basis of a mathematical model may result the understanding difficulties for undergraduate students due to their mathematical and physical infrastructure. The analytical methods which can be applied in simple model lose their applicability to more complex models. In this case, the numerical methods are used to solve more complex equations. In this study, by preparing some field theory‘s web-based graphical user interface numerical methods of applications it has been aimed to increase learning levels of field theory problems for undergraduate and graduate students while taking in mind their computer programming capabilities.

  18. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    Science.gov (United States)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  19. PhyloGeoViz: a web-based program that visualizes genetic data on maps.

    Science.gov (United States)

    Tsai, Yi-Hsin E

    2011-05-01

    The first step of many population genetic studies is the simple visualization of allele frequencies on a landscape. This basic data exploration can be challenging without proprietary software, and the manual plotting of data is cumbersome and unfeasible at large sample sizes. I present an open source, web-based program that plots any kind of frequency or count data as pie charts in Google Maps (Google Inc., Mountain View, CA). Pie polygons are then exportable to Google Earth (Google Inc.), a free Geographic Information Systems platform. Import of genetic data into Google Earth allows phylogeographers access to a wealth of spatial information layers integral to forming hypotheses and understanding patterns in the data. © 2010 Blackwell Publishing Ltd.

  20. A Theory of Secondary Teachers' Adaptations When Implementing a Reading Intervention Program

    Science.gov (United States)

    Leko, Melinda M.; Roberts, Carly A.; Pek, Yvonne

    2015-01-01

    This study examined the causes and consequences of secondary teachers' adaptations when implementing a research-based reading intervention program. Interview, observation, and artifact data were collected on five middle school intervention teachers, leading to a grounded theory composed of the core component, reconciliation through adaptation, and…

  1. Application of linear programming and perturbation theory in optimization of fuel utilization in a nuclear reactor

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1985-01-01

    Proposed optimization procedure is fast due to application of linear programming. Non-linear constraints which demand iterative application of linear programming are slowing down the calculation. Linearization can be done by different procedures starting from simple empirical rules for fuel in-core management to complicated general perturbation theory with higher order of corrections. A mathematical model was formulated for optimization of improved fuel cycle. A detailed algorithm for determining minimum of fresh fuel at the beginning of each fuel cycle is shown and the problem is linearized by first order perturbation theory and it is optimized by linear programming. Numerical illustration of the proposed method was done for the experimental reactor mostly for saving computer time

  2. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    International Nuclear Information System (INIS)

    Dudek, Jozef; Melnitchouk, Wally

    2016-01-01

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German ''hub'' for visits of U.S. physicists, while Jefferson Lab served as the corresponding ''hub'' for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  3. Development of a program theory for shared decision-making: a realist review protocol.

    Science.gov (United States)

    Groot, Gary; Waldron, Tamara; Carr, Tracey; McMullen, Linda; Bandura, Lori-Ann; Neufeld, Shelley-May; Duncan, Vicky

    2017-06-17

    The practicality of applying evidence to healthcare systems with the aim of implementing change is an ongoing challenge for practitioners, policy makers, and academics. Shared decision- making (SDM), a method of medical decision-making that allows a balanced relationship between patients, physicians, and other key players in the medical decision process, is purported to improve patient and system outcomes. Despite the oft-mentioned benefits, there are gaps in the current literature between theory and implementation that would benefit from a realist approach given the value of this methodology to analyze complex interventions. In this protocol, we outline a study that will explore: "In which situations, how, why, and for whom does SDM between patients and health care providers contribute to improved decision making?" A seven step iterative process will be described including preliminary theory development, establishment of a search strategy, selection and appraisal of literature, data extraction, analysis and synthesis of extracted results from literature, and formation of a revised program theory with the input of patients, physicians, nurse navigators, and policy makers from a stakeholder session. The goal of the realist review will be to identify and refine a program theory for SDM through the identification of mechanisms which shape the characteristics of when, how, and why SDM will, and will not, work. PROSPERO CRD42017062609.

  4. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  5. Theory-Based Stakeholder Evaluation

    Science.gov (United States)

    Hansen, Morten Balle; Vedung, Evert

    2010-01-01

    This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…

  6. A comparison of fitness-case sampling methods for genetic programming

    Science.gov (United States)

    Martínez, Yuliana; Naredo, Enrique; Trujillo, Leonardo; Legrand, Pierrick; López, Uriel

    2017-11-01

    Genetic programming (GP) is an evolutionary computation paradigm for automatic program induction. GP has produced impressive results but it still needs to overcome some practical limitations, particularly its high computational cost, overfitting and excessive code growth. Recently, many researchers have proposed fitness-case sampling methods to overcome some of these problems, with mixed results in several limited tests. This paper presents an extensive comparative study of four fitness-case sampling methods, namely: Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and Keep-Worst Interleaved Sampling. The algorithms are compared on 11 symbolic regression problems and 11 supervised classification problems, using 10 synthetic benchmarks and 12 real-world data-sets. They are evaluated based on test performance, overfitting and average program size, comparing them with a standard GP search. Comparisons are carried out using non-parametric multigroup tests and post hoc pairwise statistical tests. The experimental results suggest that fitness-case sampling methods are particularly useful for difficult real-world symbolic regression problems, improving performance, reducing overfitting and limiting code growth. On the other hand, it seems that fitness-case sampling cannot improve upon GP performance when considering supervised binary classification.

  7. Education and certification of genetic counselors.

    Science.gov (United States)

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  8. Mathematical programming models for solving in equal-sized facilities layout problems. A genetic search method

    International Nuclear Information System (INIS)

    Tavakkoli-Moghaddam, R.

    1999-01-01

    This paper present unequal-sized facilities layout solutions generated by a genetic search program. named Layout Design using a Genetic Algorithm) 9. The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computational results on test problems are reported as compared with layout solutions generated by the branch - and bound algorithm a hybrid method merging simulated annealing and local search techniques, and an optimization process of an enveloped block

  9. Evolutionary genetics

    National Research Council Canada - National Science Library

    Maynard Smith, John

    1989-01-01

    .... It differs from other textbooks of population genetics in applying the basic theory to topics, such as social behaviour, molecular evolution, reiterated DNA, and sex, which are the main subjects...

  10. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  11. Improving health equity through theory-informed evaluations: a look at housing first strategies, cross-sectoral health programs, and prostitution policy.

    Science.gov (United States)

    Dunn, James R; van der Meulen, Emily; O'Campo, Patricia; Muntaner, Carles

    2013-02-01

    The emergent realist perspective on evaluation is instructive in the quest to use theory-informed evaluations to reduce health inequities. This perspective suggests that in addition to knowing whether a program works, it is imperative to know 'what works for whom in what circumstances and in what respects, and how?' (Pawson & Tilley, 1997). This addresses the important issue of heterogeneity of effect, in other words, that programs have different effects for different people, potentially even exacerbating inequities and worsening the situation of marginalized groups. But in addition, the realist perspective implies that a program may not only have a greater or lesser effect, but even for the same effect, it may work by way of a different mechanism, about which we must theorize, for different groups. For this reason, theory, and theory-based evaluations are critical to health equity. We present here three examples of evaluations with a focus on program theories and their links to inequalities. All three examples illustrate the importance of theory-based evaluations in reducing health inequities. We offer these examples from a wide variety of settings to illustrate that the problem of which we write is not an exception to usual practice. The 'Housing First' model of supportive housing for people with severe mental illness is based on a theory of the role of housing in living with mental illness that has a number of elements that directly contradict the theory underlying the dominant model. Multisectoral action theories form the basis for the second example on Venezuela's revolutionary national Barrio Adentro health improvement program. Finally, decriminalization of prostitution and related health and safety policies in New Zealand illustrate how evaluations can play an important role in both refining the theory and contributing to improved policy interventions to address inequalities. The theoretically driven and transformative nature of these interventions create

  12. A two-year follow-up on a program theory of return to work intervention.

    Science.gov (United States)

    Jensen, Anne Grete Claudi

    2013-01-01

    Validation of a salutogenic theory for return to work (RTW) and an associated program process theory. A longitudinal non-randomized one-year trial study design was used with a two-year follow-up and with comparison to a reference group. Changes in attitudes and active behaviour in the intervention group and at the workplace were supported by cognitive and behavioural approaches. The intervention group included 118 unskilled Danish public employees and privately employed house-cleaners on sick leave due to musculoskeletal and/or common mental illnesses. Significant improvements of work ability index and perceived health (SF36 subgroups) were reported. A significantly higher RTW and a shorter sick leave than in the reference group also emerged. Positive predictors of RTW were keeping the pre-sick-leave job and improving work ability index and physical impairment/role physical. Decline in self-efficacy was a negative predictor. Support for the theory and associated program process theory was found. The intervention seemed to influence RTW and the employees' attitudes, behaviour and health by affecting comprehensibility, meaningfulness and manageability. Sustainable RTW emerged from a synergism of support from the work place and improved personal resources, especially such as concern mental health. The approach is consistent with integrating health promotion in RTW.

  13. Microsatellite data analysis for population genetics

    Science.gov (United States)

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  14. The Analysis of Polyploid Genetic Data

    NARCIS (Netherlands)

    Meirmans, P.G.; Liu, S.; van Tienderen, P.H.

    2018-01-01

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data—and the interpretation of the

  15. Genetic diversity of Prochilodus lineatus stocks using in the stocking program of Tietê River, Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Ribeiro

    2013-11-01

    Full Text Available Objective. Assess the genetic diversity in four brood stocks and one juvenile stock of curimba Prochilodus lineatus in a Hydropower plant in São Paulo - Brazil, using the Tietê River stocking program. Materials and methods. Five RAPD primers were used to amplify the extracted DNA from 150 fin-clip samples. Results. Fifty-nine fragments were polymorphic, 52 had frequencies with significant differences (p<0.05, 45 had low frequencies, 54 were excluded, and two were fixed fragments. High values for polymorphic fragments (71.19% to 91.53% and Shannon index (0.327 to 0.428 were observed. The genetic divergence values within each stock were greater than 50%. Most of the genetic variation was found within the groups through the AMOVA analysis, which was confirmed by the results of the identity and genetic distance. High ancestry levels (FST among the groups value indicated high and moderate genetic differentiation. The estimates of number of migrants by generation (Nm indicated low levels of gene flow. High and moderate genetic divergence between groups (0.58 to 0.83 was observed. Conclusions. The results indicate high variability within the stocks, and genetic differentiation among them. The fish stocks analyzed represent a large genetic base that will allow the fish technicians to release juveniles without genetic risks to wild populations present in the river. These genetic procedures may be used as models for other migratory species, including those threatened by extinction.

  16. Many body theory program

    International Nuclear Information System (INIS)

    Balatsky, A.V.; Scalapino, D.; Wilkins, J.; Pines, D.; Bedell, K.; Schrieffer, J.R.; Fisk, Z.

    1998-01-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops

  17. Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest?

    Science.gov (United States)

    Cazé, Ana Luiza R; Mäder, Geraldo; Nunes, Teonildes S; Queiroz, Luciano P; de Oliveira, Guilherme; Diniz-Filho, José Alexandre F; Bonatto, Sandro L; Freitas, Loreta B

    2016-08-01

    The Atlantic Forest is one of the most species-rich ecoregions in the world. The historical origins of this richness and the evolutionary processes that produced diversification and promoted speciation in this ecosystem remain poorly understood. In this context, focusing on Passiflora contracta, an endemic species from the Atlantic Forest distributed exclusively at sea level along forest edges, this study aimed to characterize the patterns of genetic variability and explore two hypotheses that attempt to explain the possible causes of the genetic diversity in this region: the refuge and riverine barrier theories. We employed Bayesian methods combined with niche modeling to identify genetically homogeneous groups, to determine the diversification age, and identify long-term climate stability areas to species survival. The analyses were performed using molecular markers from nuclear and plastid genomes, with samples collected throughout the entire geographic distribution of the species, and comparisons with congeners species. The results indicated that populations were genetically structured and provided evidence of demographic stability. The molecular markers indicated the existence of a clear structure and the presence of five homogeneous groups. Interestingly, the separation of the groups coincides with the geographical locations of local rivers, corroborating the hypothesis of rivers acting as barriers to gene flow in this species. The highest levels of genetic diversity and the areas identified as having long-term climate stability were found in the same region reported for other species as a possible refuge area during the climatic changes of the Quaternary. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Self-management programs based on the social cognitive theory for Koreans with chronic disease: a systematic review.

    Science.gov (United States)

    Jang, Yeonsoo; Yoo, Hyera

    2012-02-01

    Self-management programs based on social cognitive theory are useful to improve health care outcomes for patients with chronic diseases in Western culture. The purpose of this review is to identify and synthesize published research on the theory to enhance self-efficacy in disease management and examine its applicability to Korean culture regarding the learning strategies used. Ultimately, it was to identify the optimal use of these learning strategies to improve the self-efficacy of Korean patients in self-management of their hypertension and diabetic mellitus. The authors searched the Korean and international research databases from January 2000 to September 2009. Twenty studies were selected and reviewed. The most frequently used learning strategies of social cognitive theory was skill mastery by practice and feedback (N = 13), followed by social or verbal persuasion by group members (N = 7) and, however, observation learning and reinterpretation of symptoms by debriefing or discussion were not used any of the studies. Eight studies used only one strategy to enhance self-efficacy and six used two. A lack of consistency regarding the content and clinical efficacy of the self-efficacy theory-based self-management programs is found among the reviewed studies on enhancing self-efficacy in Koreans with hypertension and diabetes mellitus. Further research on the effectiveness of these theory-based self-management programs for patients with chronic diseases in Korea and other countries is recommended.

  19. Simple proof of the impossibility of bit commitment in generalized probabilistic theories using cone programming

    Science.gov (United States)

    Sikora, Jamie; Selby, John

    2018-04-01

    Bit commitment is a fundamental cryptographic task, in which Alice commits a bit to Bob such that she cannot later change the value of the bit, while, simultaneously, the bit is hidden from Bob. It is known that ideal bit commitment is impossible within quantum theory. In this work, we show that it is also impossible in generalized probabilistic theories (under a small set of assumptions) by presenting a quantitative trade-off between Alice's and Bob's cheating probabilities. Our proof relies crucially on a formulation of cheating strategies as cone programs, a natural generalization of semidefinite programs. In fact, using the generality of this technique, we prove that this result holds for the more general task of integer commitment.

  20. [Prospect and application of microsatellite population genetics in study of geoherbs].

    Science.gov (United States)

    Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li

    2013-12-01

    The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.

  1. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  2. Lessons to be learned from a contentious challenge to mainstream radiobiological science (the linear no-threshold theory of genetic mutations)

    International Nuclear Information System (INIS)

    Beyea, Jan

    2017-01-01

    There are both statistically valid and invalid reasons why scientists with differing default hypotheses can disagree in high-profile situations. Examples can be found in recent correspondence in this journal, which may offer lessons for resolving challenges to mainstream science, particularly when adherents of a minority view attempt to elevate the status of outlier studies and/or claim that self-interest explains the acceptance of the dominant theory. Edward J. Calabrese and I have been debating the historical origins of the linear no-threshold theory (LNT) of carcinogenesis and its use in the regulation of ionizing radiation. Professor Calabrese, a supporter of hormesis, has charged a committee of scientists with misconduct in their preparation of a 1956 report on the genetic effects of atomic radiation. Specifically he argues that the report mischaracterized the LNT research record and suppressed calculations of some committee members. After reviewing the available scientific literature, I found that the contemporaneous evidence overwhelmingly favored a (genetics) LNT and that no calculations were suppressed. Calabrese's claims about the scientific record do not hold up primarily because of lack of attention to statistical analysis. Ironically, outlier studies were more likely to favor supra-linearity, not sub-linearity. Finally, the claim of investigator bias, which underlies Calabrese's accusations about key studies, is based on misreading of text. Attention to ethics charges, early on, may help seed a counter narrative explaining the community's adoption of a default hypothesis and may help focus attention on valid evidence and any real weaknesses in the dominant paradigm. - Highlights: • Edward J Calabrese has made a contentious challenge to mainstream radiobiological science. • Such challenges should not be neglected, lest they enter the political arena without review. • Key genetic studies from the 1940s, challenged by Calabrese, were

  3. Lessons to be learned from a contentious challenge to mainstream radiobiological science (the linear no-threshold theory of genetic mutations)

    Energy Technology Data Exchange (ETDEWEB)

    Beyea, Jan, E-mail: jbeyea@cipi.com

    2017-04-15

    There are both statistically valid and invalid reasons why scientists with differing default hypotheses can disagree in high-profile situations. Examples can be found in recent correspondence in this journal, which may offer lessons for resolving challenges to mainstream science, particularly when adherents of a minority view attempt to elevate the status of outlier studies and/or claim that self-interest explains the acceptance of the dominant theory. Edward J. Calabrese and I have been debating the historical origins of the linear no-threshold theory (LNT) of carcinogenesis and its use in the regulation of ionizing radiation. Professor Calabrese, a supporter of hormesis, has charged a committee of scientists with misconduct in their preparation of a 1956 report on the genetic effects of atomic radiation. Specifically he argues that the report mischaracterized the LNT research record and suppressed calculations of some committee members. After reviewing the available scientific literature, I found that the contemporaneous evidence overwhelmingly favored a (genetics) LNT and that no calculations were suppressed. Calabrese's claims about the scientific record do not hold up primarily because of lack of attention to statistical analysis. Ironically, outlier studies were more likely to favor supra-linearity, not sub-linearity. Finally, the claim of investigator bias, which underlies Calabrese's accusations about key studies, is based on misreading of text. Attention to ethics charges, early on, may help seed a counter narrative explaining the community's adoption of a default hypothesis and may help focus attention on valid evidence and any real weaknesses in the dominant paradigm. - Highlights: • Edward J Calabrese has made a contentious challenge to mainstream radiobiological science. • Such challenges should not be neglected, lest they enter the political arena without review. • Key genetic studies from the 1940s, challenged by Calabrese, were

  4. Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.

    Science.gov (United States)

    Sztepanacz, Jacqueline L; Blows, Mark W

    2017-07-01

    The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.

  5. A Theory of Information Genetics: How Four Subforces Generate Information and the Implications for Total Quality Knowledge Management.

    Science.gov (United States)

    Tsai, Bor-sheng

    2002-01-01

    Proposes a model called information genetics to elaborate on the origin of information generating. Explains conceptual and data models; and describes a software program that was developed for citation data mining, infomapping, and information repackaging for total quality knowledge management in Web representation. (Contains 112 references.)…

  6. Adults' perceptions of genetic counseling and genetic testing.

    Science.gov (United States)

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Off-critical statistical models: factorized scattering theories and bootstrap program

    International Nuclear Information System (INIS)

    Mussardo, G.

    1992-01-01

    We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach

  8. Efficacy of a web-based intelligent tutoring system for communicating genetic risk of breast cancer: a fuzzy-trace theory approach.

    Science.gov (United States)

    Wolfe, Christopher R; Reyna, Valerie F; Widmer, Colin L; Cedillos, Elizabeth M; Fisher, Christopher R; Brust-Renck, Priscila G; Weil, Audrey M

    2015-01-01

    . Many healthy women consider genetic testing for breast cancer risk, yet BRCA testing issues are complex. . To determine whether an intelligent tutor, BRCA Gist, grounded in fuzzy-trace theory (FTT), increases gist comprehension and knowledge about genetic testing for breast cancer risk, improving decision making. . In 2 experiments, 410 healthy undergraduate women were randomly assigned to 1 of 3 groups: an online module using a Web-based tutoring system (BRCA Gist) that uses artificial intelligence technology, a second group read highly similar content from the National Cancer Institute (NCI) Web site, and a third that completed an unrelated tutorial. . BRCA Gist applied FTT and was designed to help participants develop gist comprehension of topics relevant to decisions about BRCA genetic testing, including how breast cancer spreads, inherited genetic mutations, and base rates. . We measured content knowledge, gist comprehension of decision-relevant information, interest in testing, and genetic risk and testing judgments. . Control knowledge scores ranged from 54% to 56%, NCI improved significantly to 65% and 70%, and BRCA Gist improved significantly more to 75% and 77%, P tutors, such as BRCA Gist, are scalable, cost-effective ways of helping people understand complex issues, improving decision making. © The Author(s) 2014.

  9. Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories

    OpenAIRE

    Brewer, Gregory J.

    2009-01-01

    Harman’s free radical theory of aging posits that oxidized macromolecules accumulate with age to decrease function and shorten life-span. However, nutritional and genetic interventions to boost antioxidants have generally failed to increase life-span. Furthermore, the free radical theory fails to explain why exercise causes higher levels of oxyradical damage, but generally promotes healthy aging. The separate anti-aging paradigms of genetic or caloric reductions in the insulin signaling pathw...

  10. Extraction of Static and Dynamic Reservoir Operation Rules by Genetic Programming

    Directory of Open Access Journals (Sweden)

    Habib Akbari Alashti

    2014-11-01

    Full Text Available Considering the necessity of desirable operation of limited water resources and assuming the significant role of dams in controlling and consuming the surface waters, highlights the advantageous of suitable operation rules for optimal and sustainable operation of dams. This study investigates the hydroelectric supply of a one-reservoir system of Karoon3 using nonlinear programming (NLP, genetic algorithm (GA, genetic programming (GP and fixed length gen GP (FLGGP in real-time operation of dam considering two approaches of static and dynamic operation rules. In static operation rule, only one rule curve is extracted for all months in a year whereas in dynamic operation rule, monthly rule curves (12 rules are extracted for each month of a year. In addition, nonlinear decision rule (NLDR curves are considered, and the total deficiency function as the target (objective function have been used for evaluating the performance of each method and approach. Results show appropriate efficiency of GP and FLGGP methods in extracting operation rules in both approaches. Superiority of these methods to operation methods yielded by GA and NLP is 5%. Moreover, according to the results, it can be remarked that, FLGGP method is an alternative for GP method, whereas the GP method cannot be used due to its limitations. Comparison of two approaches of static and dynamic operation rules demonstrated the superiority of dynamic operation rule to static operation rule (about 10% and therefore this method has more capabilities in real-time operation of the reservoirs systems.

  11. A Comparison of Genetic Programming Variants for Hyper-Heuristics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Sean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved, such as routing vehicles over highways with constantly changing traffic flows, because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. Hyper-heuristics typically employ Genetic Programming (GP) and this project has investigated the relationship between the choice of GP and performance in Hyper-heuristics. Results are presented demonstrating the existence of problems for which there is a statistically significant performance differential between the use of different types of GP.

  12. Minimalist Program and its fundamental improvements in syntactic theory: evidence from Agreement Asymmetry in Standard Arabic

    Directory of Open Access Journals (Sweden)

    Nasser Al-Horais

    2012-11-01

    Full Text Available Normal 0 21 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:auto; mso-para-margin-right:1.0cm; mso-para-margin-bottom:auto; mso-para-margin-left:2.0cm; text-align:justify; text-indent:-1.0cm; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} The Minimalist Program is a major line of inquiry that has been developing inside Generative Grammar since the early nineties, when it was proposed by Chomsky  (1993, 1995. In that time, Chomsky (1998: 5 presents Minimalist Program as a program, not as a theory, but today, Minimalist Program lays out a very specific view of the basis of syntactic grammar that, when compared to other formalisms, is often taken to look very much like a theory. The prime concern of this paper, however, is  to provide a comprehensive and accessible introduction to the art of minimalist approach to the theory of grammar. In this regard, this paper discusses some new ideas articulated recently by Chomsky, and have led to several fundamental improvements in syntactic theory  such as changing the function of movement and the Extended Projection Principle (EPP feature, or proposing new theories such as Phases and Feature Inheritance. In order to evidence the significance of these fundamental improvements, the current paper provides a minimalist analysis to account for agreement and word-order asymmetry in Stranded Arabic. This fresh minimalist account meets the challenges (to the basic tenets of syntactic theory occurred

  13. Using Evaluation and Research Theory to Improve Programs in Applied Settings: An Interview with Thomas D. Cook.

    Science.gov (United States)

    Buescher, Thomas M.

    1986-01-01

    An interview with T. Cook, author of works on the use of research and evaluation theory and design, touches on such topics as practical evaluation, planning programs with evaluation or research design, and evaluation of programs for gifted students. (CL)

  14. Genetic evaluation of reproductive potential in the Zatorska goose under a conservation program.

    Science.gov (United States)

    Graczyk, Magdalena; Andres, Krzysztof; Kapkowska, Ewa; Szwaczkowski, Tomasz

    2018-05-01

    The aim of this study was to estimate the genetic parameters and inbreeding effect on the fertility, embryo mortality and hatchability traits in the Zatorska goose covered by the animal genetic resources conservation program. The material for this study contains information about results of hatching of 18 863 eggs from 721 dams and 168 sires, laid between 1998-2015. Genetic parameters were estimated based on the threshold animal model by the use of Restricted Maximum Likelihood and Gibbs sampling. The percentage of fertilized eggs ranged yearly between 37-80%. The percentage of embryo mortality was very low, ranging between 4.63-23.73%. The percentage of the hatched goslings from the total number of analyzed eggs was on average 33.18%, and 53.72% from fertilized eggs. On average based on both methods, the heritability estimates of the fertility, embryo mortality and hatchability reached 0.36, 0.07, 0.24 for males and 0.44, 0.11, 0.32 for females. The genetic trend had increasing tendency for fertility and hatchability and was stable for embryo mortality for both sexes. The obtained result shows that the Zatorska goose can be still maintained in the reserves of the local gene pool according to current rules and use in the local market as a breed with good reproductive potential. © 2018 Japanese Society of Animal Science.

  15. Exploring the Disjunctures between Theory and Practice in Community College Visual Arts Programs

    Science.gov (United States)

    Holland, Arnold

    2012-01-01

    This study explored the perceptions of ten community college visual arts faculty in five different community college settings with regard to the theory and practice disjunctures they were experiencing in their roles as instructors teaching foundational level courses within visual arts programs. The study illuminated the responses of community…

  16. A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction

    Science.gov (United States)

    Danandeh Mehr, Ali; Kahya, Ercan

    2017-06-01

    Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.

  17. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Zibei Lin

    2016-03-01

    Full Text Available Genomic selection (GS provides an attractive option for accelerating genetic gain in perennial ryegrass ( improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time. Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot. Genomic estimated breeding values (GEBVs for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively. Higher accuracy of GEBVs was obtained for flowering time (up to 0.7, partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy.

  18. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.

    Science.gov (United States)

    Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D

    2016-03-01

    Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.

  19. Safeguarding Self-Governance: A Grounded Theory of Older Patients’ Pattern of Behavior in Relation to their Relatives in Fast-track Programs

    DEFF Research Database (Denmark)

    Berthelsen, Connie B.; Frederiksen, Kirsten; Lindhardt Damsgaard, Tove

    2014-01-01

    Abstract The aim of this study was to generate a grounded theory of older patients’ pattern of behavior in relation to their relatives’ involvement in fast-track programs during total joint replacement. Sixteen patients were recruited in orthopedic wards. Data collection included 11 interviews......, shielding, distancing, and masking. Keywords: Fast-track program, grounded theory, older patients, relatives, total joint replacement.......-governance emerged in the analysis as the core category of our theory and pattern of behavior of the older patients in relation to their relatives. The older patients’ main concern was to complete the fast-track program while maintaining autonomy, which they resolved through four strategies of actions: embracing...

  20. Facial averageness and genetic quality: Testing heritability, genetic correlation with attractiveness, and the paternal age effect.

    Science.gov (United States)

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2016-01-01

    Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample ( N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the 'genetic benefits' account of facial averageness, but cast doubt on others.

  1. CINESP - computational program of spatial kinetics for nuclear reactors in the one-two dimension multigroup diffusion theory

    International Nuclear Information System (INIS)

    Santos, R.S. dos

    1993-01-01

    This paper presents a computational program to solve numerically the reactor kinetics equations in the multigroup diffusion theory. One or two-dimensional problems in cylindrical or Cartesian geometries, with any number of energy and delayed-neutron precursors groups are dealt with. The main input and output of the program are briefly discussed. Various results demonstrate the accuracy and versatility of the program, when compared with other kinetics programs. (author)

  2. Non-linear nuclear engineering models as genetic programming application; Modelos nao-lineares de engenharia nuclear como aplicacao de programacao genetica

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1997-12-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs.

  3. Integrating design science theory and methods to improve the development and evaluation of health communication programs.

    Science.gov (United States)

    Neuhauser, Linda; Kreps, Gary L

    2014-12-01

    Traditional communication theory and research methods provide valuable guidance about designing and evaluating health communication programs. However, efforts to use health communication programs to educate, motivate, and support people to adopt healthy behaviors often fail to meet the desired goals. One reason for this failure is that health promotion issues are complex, changeable, and highly related to the specific needs and contexts of the intended audiences. It is a daunting challenge to effectively influence health behaviors, particularly culturally learned and reinforced behaviors concerning lifestyle factors related to diet, exercise, and substance (such as alcohol and tobacco) use. Too often, program development and evaluation are not adequately linked to provide rapid feedback to health communication program developers so that important revisions can be made to design the most relevant and personally motivating health communication programs for specific audiences. Design science theory and methods commonly used in engineering, computer science, and other fields can address such program and evaluation weaknesses. Design science researchers study human-created programs using tightly connected build-and-evaluate loops in which they use intensive participatory methods to understand problems and develop solutions concurrently and throughout the duration of the program. Such thinking and strategies are especially relevant to address complex health communication issues. In this article, the authors explore the history, scientific foundation, methods, and applications of design science and its potential to enhance health communication programs and their evaluation.

  4. Differential association of family subsystem negativity on siblings' maladjustment: using behavior genetic methods to test process theory.

    Science.gov (United States)

    Feinberg, Mark E; Reiss, David; Neiderhiser, Jenae M; Hetherington, E Mavis

    2005-12-01

    This study investigated the family context of adolescent sibling similarity and differentiation in maladjustment (antisocial behavior and depression) by examining negativity in different subsystems. Two hypotheses were proposed: (1) Parental and sibling negativity tends to diffuse through the family system, especially because of the high level of reciprocity in sibling relationships, leading to sibling similarity; and (2) interparental (coparenting) conflict disrupts cohesive functioning and thereby motivates and facilitates sibling differentiation and niche picking. To control for the effects of similar genes between siblings, the authors used behavioral genetic models with a genetically informed sample of 720 two-parent families, each with at least 2 adolescent siblings. Results for the differences in shared environmental influences across groups high and low in each of the domains of family negativity provided partial support for the hypotheses. The results further understanding of influences on individual differences and support a theory of how parent-child and interparental relationships intersect with sibling relationship dynamics. Copyright 2006 APA, all rights reserved).

  5. High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs

  6. Evaluation of a preschool nutrition education program based on the theory of multiple intelligences.

    Science.gov (United States)

    Cason, K L

    2001-01-01

    This report describes the evaluation of a preschool nutrition education program based on the theory of multiple intelligences. Forty-six nutrition educators provided a series of 12 lessons to 6102 preschool-age children. The program was evaluated using a pretest/post-test design to assess differences in fruit and vegetable identification, healthy snack choices, willingness to taste foods, and eating behaviors. Subjects showed significant improvement in food identification and recognition, healthy snack identification, willingness to taste foods, and frequency of fruit, vegetable, meat, and dairy consumption. The evaluation indicates that the program was an effective approach for educating preschool children about nutrition.

  7. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    Science.gov (United States)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  8. Genetics and plant development.

    Science.gov (United States)

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. The Topological Field Theory of Data: a program towards a novel strategy for data mining through data language

    Science.gov (United States)

    Rasetti, M.; Merelli, E.

    2015-07-01

    This paper aims to challenge the current thinking in IT for the 'Big Data' question, proposing - almost verbatim, with no formulas - a program aiming to construct an innovative methodology to perform data analytics in a way that returns an automaton as a recognizer of the data language: a Field Theory of Data. We suggest to build, directly out of probing data space, a theoretical framework enabling us to extract the manifold hidden relations (patterns) that exist among data, as correlations depending on the semantics generated by the mining context. The program, that is grounded in the recent innovative ways of integrating data into a topological setting, proposes the realization of a Topological Field Theory of Data, transferring and generalizing to the space of data notions inspired by physical (topological) field theories and harnesses the theory of formal languages to define the potential semantics necessary to understand the emerging patterns.

  10. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    Science.gov (United States)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  11. Structural health monitoring feature design by genetic programming

    International Nuclear Information System (INIS)

    Harvey, Dustin Y; Todd, Michael D

    2014-01-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems. (paper)

  12. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  13. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  14. Along the way to developing a theory of the program: a re-examination of the conceptual framework as an organizing strategy.

    Science.gov (United States)

    Helitzer, Deborah L; Sussman, Andrew L; Hoffman, Richard M; Getrich, Christina M; Warner, Teddy D; Rhyne, Robert L

    2014-08-01

    Conceptual frameworks (CF) have historically been used to develop program theory. We re-examine the literature about the role of CF in this context, specifically how they can be used to create descriptive and prescriptive theories, as building blocks for a program theory. Using a case example of colorectal cancer screening intervention development, we describe the process of developing our initial CF, the methods used to explore the constructs in the framework and revise the framework for intervention development. We present seven steps that guided the development of our CF: (1) assemble the "right" research team, (2) incorporate existing literature into the emerging CF, (3) construct the conceptual framework, (4) diagram the framework, (5) operationalize the framework: develop the research design and measures, (6) conduct the research, and (7) revise the framework. A revised conceptual framework depicted more complicated inter-relationships of the different predisposing, enabling, reinforcing, and system-based factors. The updated framework led us to generate program theory and serves as the basis for designing future intervention studies and outcome evaluations. A CF can build a foundation for program theory. We provide a set of concrete steps and lessons learned to assist practitioners in developing a CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mindstorms robots and the application of cognitive load theory in introductory programming

    Science.gov (United States)

    Mason, Raina; Cooper, Graham

    2013-12-01

    This paper reports on a series of introductory programming workshops, initially targeting female high school students, which utilised Lego Mindstorms robots. Cognitive load theory (CLT) was applied to the instructional design of the workshops, and a controlled experiment was also conducted investigating aspects of the interface. Results indicated that a truncated interface led to better learning by novice programmers as measured by test performance by participants, as well as enhanced shifts in self-efficacy and lowered perception of difficulty. There was also a transfer effect to another programming environment (Alice). It is argued that the results indicate that for novice programmers, the mere presence on-screen of additional (redundant) entities acts as a form of tacit distraction, thus impeding learning. The utility of CLT to analyse, design and deliver aspects of computer programming environments and instructional materials is discussed.

  16. The Topological Field Theory of Data: a program towards a novel strategy for data mining through data language

    International Nuclear Information System (INIS)

    Rasetti, M; Merelli, E

    2015-01-01

    This paper aims to challenge the current thinking in IT for the 'Big Data' question, proposing - almost verbatim, with no formulas - a program aiming to construct an innovative methodology to perform data analytics in a way that returns an automaton as a recognizer of the data language: a Field Theory of Data. We suggest to build, directly out of probing data space, a theoretical framework enabling us to extract the manifold hidden relations (patterns) that exist among data, as correlations depending on the semantics generated by the mining context. The program, that is grounded in the recent innovative ways of integrating data into a topological setting, proposes the realization of a Topological Field Theory of Data, transferring and generalizing to the space of data notions inspired by physical (topological) field theories and harnesses the theory of formal languages to define the potential semantics necessary to understand the emerging patterns. (paper)

  17. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  18. Utility of computer simulations in landscape genetics

    Science.gov (United States)

    Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale

    2010-01-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...

  19. Theories of Population Variation in Genes and Genomes

    DEFF Research Database (Denmark)

    Christiansen, Freddy

    This textbook provides an authoritative introduction to both classical and coalescent approaches to population genetics. Written for graduate students and advanced undergraduates by one of the world’s leading authorities in the field, the book focuses on the theoretical background of population...... genetics, while emphasizing the close interplay between theory and empiricism. Traditional topics such as genetic and phenotypic variation, mutation, migration, and linkage are covered and advanced by contemporary coalescent theory, which describes the genealogy of genes in a population, ultimately...... connecting them to a single common ancestor. Effects of selection, particularly genomic effects, are discussed with reference to molecular genetic variation. The book is designed for students of population genetics, bioinformatics, evolutionary biology, molecular evolution, and theoretical biology—as well...

  20. Review: fetal programming of polycystic ovary syndrome by androgen excess: evidence from experimental, clinical, and genetic association studies.

    Science.gov (United States)

    Xita, Nectaria; Tsatsoulis, Agathocles

    2006-05-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder of premenopausal women, characterized by hyperandrogenism, polycystic ovaries, and chronic anovulation along with insulin resistance and abdominal obesity as frequent metabolic traits. Although PCOS manifests clinically during adolescence, emerging data suggest that the natural history of PCOS may originate in intrauterine life. Evidence from experimental, clinical, and genetic research supporting the hypothesis for the fetal origins of PCOS has been analyzed. Female primates, exposed in utero to androgen excess, exhibit the phenotypic features of PCOS during adult life. Clinical observations also support a potential fetal origin of PCOS. Women with fetal androgen excess disorders, including congenital 21-hydroxylase deficiency and congenital adrenal virilizing tumors, develop features characteristic of PCOS during adulthood despite the normalization of androgen excess after birth. The potential mechanisms of fetal androgen excess leading to a PCOS phenotype in humans are not clearly understood. However, maternal and/or fetal hyperandrogenism can provide a plausible mechanism for fetal programing of PCOS, and this, in part, may be genetically determined. Thus, genetic association studies have indicated that common polymorphic variants of genes determining androgen activity or genes that influence the availability of androgens to target tissues are associated with PCOS and increased androgen levels. These genomic variants may provide the genetic link to prenatal androgenization in human PCOS. Prenatal androgenization of the female fetus induced by genetic and environmental factors, or the interaction of both, may program differentiating target tissues toward the development of PCOS phenotype in adult life.

  1. Diversity and genetic stability in banana genotypes in a breeding program using inter simple sequence repeats (ISSR) markers.

    Science.gov (United States)

    Silva, A V C; Nascimento, A L S; Vitória, M F; Rabbani, A R C; Soares, A N R; Lédo, A S

    2017-02-23

    Banana (Musa spp) is a fruit species frequently cultivated and consumed worldwide. Molecular markers are important for estimating genetic diversity in germplasm and between genotypes in breeding programs. The objective of this study was to analyze the genetic diversity of 21 banana genotypes (FHIA 23, PA42-44, Maçã, Pacovan Ken, Bucaneiro, YB42-47, Grand Naine, Tropical, FHIA 18, PA94-01, YB42-17, Enxerto, Japira, Pacovã, Prata-Anã, Maravilha, PV79-34, Caipira, Princesa, Garantida, and Thap Maeo), by using inter-simple sequence repeat (ISSR) markers. Material was generated from the banana breeding program of Embrapa Cassava & Fruits and evaluated at Embrapa Coastal Tablelands. The 12 primers used in this study generated 97.5% polymorphism. Four clusters were identified among the different genotypes studied, and the sum of the first two principal components was 48.91%. From the Unweighted Pair Group Method using Arithmetic averages (UPGMA) dendrogram, it was possible to identify two main clusters and subclusters. Two genotypes (Garantida and Thap Maeo) remained isolated from the others, both in the UPGMA clustering and in the principal cordinate analysis (PCoA). Using ISSR markers, we could analyze the genetic diversity of the studied material and state that these markers were efficient at detecting sufficient polymorphism to estimate the genetic variability in banana genotypes.

  2. Genetic Parameters and the Impact of Off-Types for Theobroma cacao L. in a Breeding Program in Brazil

    Science.gov (United States)

    DuVal, Ashley; Gezan, Salvador A.; Mustiga, Guiliana; Stack, Conrad; Marelli, Jean-Philippe; Chaparro, José; Livingstone, Donald; Royaert, Stefan; Motamayor, Juan C.

    2017-01-01

    Breeding programs of cacao (Theobroma cacao L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis. Three separate analyses (multisite, single site with and without off-types) were performed to estimate genetic parameters from statistical models fitted on nine important agronomic traits (yield, seed index, pod index, % healthy pods, % pods infected with witches broom, % of pods other loss, vegetative brooms, diameter, and tree height). Genetic parameters were estimated along with variance components and heritabilities from the multisite analysis, and a trial was fingerprinted with low-density SNP markers to determine the impact of off-types on estimations. Heritabilities ranged from 0.37 to 0.64 for yield and its components and from 0.03 to 0.16 for disease resistance traits. A weighted index was used to make selections for clonal evaluation, and breeding values estimated for the parental selection and estimation of genetic gain. The impact of off-types to breeding progress in cacao was assessed for the first time. Even when present at <5% of the total population, off-types altered selections by 48%, and impacted heritability estimations for all nine of the traits analyzed, including a 41% difference in estimated heritability for yield. These results show that in a mixed model analysis, even a low level of pedigree error can significantly alter estimations of genetic parameters and selections in a breeding program. PMID:29250097

  3. The general practitioner's role in promoting physical activity to older adults: a review based on program theory.

    Science.gov (United States)

    Hinrichs, Timo; Brach, Michael

    2012-02-01

    Positive influences of physical activity both on many chronic diseases and on preservation of mobility are well documented. But chronically ill or mobility restricted elderly living in their own homes are difficult to reach for interventions. The general practitioner's (GP) surgery offers one of the few opportunities to give advice for physical activity to those people. We used program theory to sound out knowledge on GP-centered physical activity counseling. The "conceptual theory" (evidence for training effects in old age) and the "implementation theory" (unique position of the GP) were reviewed narratively. The "action theory" (effects of GP counseling) was reviewed systematically. According to program theory, appropriate MeSH (Medical subject headings) concepts were Aged OR Aged, 80 and over (Target group), Physicians, Family OR Primary Health Care (Implementation/Setting), Counseling OR Patient Education as Topic OR Disease Management OR Health promotion (Intervention), Exercise OR Motor Activity OR Physical Fitness OR Sports (Determinants). The resulting six review papers (Pubmed, 2000-2009) were presented using the STARLITE mnemonic. Authors agree, that the GP plays a central role in the promotion of physical activity to elderly people, but there is conflicting evidence concerning counseling effectiveness. Utilizing behavioral change strategies and the collaboration between GPs and specialised professions are recommended and currently under research.

  4. Development and Pilot Test of the Workplace Readiness Questionnaire, a Theory-Based Instrument to Measure Small Workplaces' Readiness to Implement Wellness Programs.

    Science.gov (United States)

    Hannon, Peggy A; Helfrich, Christian D; Chan, K Gary; Allen, Claire L; Hammerback, Kristen; Kohn, Marlana J; Parrish, Amanda T; Weiner, Bryan J; Harris, Jeffrey R

    2017-01-01

    To develop a theory-based questionnaire to assess readiness for change in small workplaces adopting wellness programs. In developing our scale, we first tested items via "think-aloud" interviews. We tested the revised items in a cross-sectional quantitative telephone survey. The study setting comprised small workplaces (20-250 employees) in low-wage industries. Decision-makers representing small workplaces in King County, Washington (think-aloud interviews, n = 9), and the United States (telephone survey, n = 201) served as study subjects. We generated items for each construct in Weiner's theory of organizational readiness for change. We also measured workplace characteristics and current implementation of workplace wellness programs. We assessed reliability by coefficient alpha for each of the readiness questionnaire subscales. We tested the association of all subscales with employers' current implementation of wellness policies, programs, and communications, and conducted a path analysis to test the associations in the theory of organizational readiness to change. Each of the readiness subscales exhibited acceptable internal reliability (coefficient alpha range, .75-.88) and was positively associated with wellness program implementation ( p < .05). The path analysis was consistent with the theory of organizational readiness to change, except change efficacy did not predict change-related effort. We developed a new questionnaire to assess small workplaces' readiness to adopt and implement evidence-based wellness programs. Our findings also provide empirical validation of Weiner's theory of readiness for change.

  5. Geometric differential evolution for combinatorial and programs spaces.

    Science.gov (United States)

    Moraglio, A; Togelius, J; Silva, S

    2013-01-01

    Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind the GDE algorithm, then, we use this framework to formally derive specific GDE for search spaces associated with binary strings, permutations, vectors of permutations and genetic programs. The resulting algorithms are representation-specific differential evolution algorithms searching the target spaces by acting directly on their underlying representations. We present experimental results for each of the new algorithms on a number of well-known problems comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and vectors of permutations. We also present results for the regression, artificial ant, parity, and multiplexer problems within the genetic programming domain. Experiments show that overall the new DE algorithms are competitive with well-tuned standard search algorithms.

  6. Reactor Network Synthesis Using Coupled Genetic Algorithm with the Quasi-linear Programming Method

    OpenAIRE

    Soltani, H.; Shafiei, S.; Edraki, J.

    2016-01-01

    This research is an attempt to develop a new procedure for the synthesis of reactor networks (RNs) using a genetic algorithm (GA) coupled with the quasi-linear programming (LP) method. The GA is used to produce structural configuration, whereas continuous variables are handled using a quasi-LP formulation for finding the best objective function. Quasi-LP consists of LP together with a search loop to find the best reactor conversions (xi), as well as split and recycle ratios (yi). Quasi-LP rep...

  7. ASPMT(QS): Non-Monotonic Spatial Reasoning with Answer Set Programming Modulo Theories

    OpenAIRE

    Wałęga, Przemysław Andrzej; Bhatt, Mehul; Schultz, Carl

    2015-01-01

    The systematic modelling of \\emph{dynamic spatial systems} [9] is a key requirement in a wide range of application areas such as comonsense cognitive robotics, computer-aided architecture design, dynamic geographic information systems. We present ASPMT(QS), a novel approach and fully-implemented prototype for non-monotonic spatial reasoning ---a crucial requirement within dynamic spatial systems-- based on Answer Set Programming Modulo Theories (ASPMT). ASPMT(QS) consists of a (qualitative) s...

  8. Een Program Theory benadering voor het theoretisch onderbouwen van sociale interventies: een casestudie van vijf Nederlandse maatjesprojecten

    Directory of Open Access Journals (Sweden)

    Michelle van der Tier

    2016-12-01

    Full Text Available Een Program Theory benadering voor het theoretisch onderbouwen van sociale interventies: een casestudie van vijf Nederlandse maatjesprojectenSociale professionals worden steeds meer gevraagd het professioneel handelen te verantwoorden. De sociale sector weet zich echter slechts marginaal te verantwoorden en te profileren als kenniseigenaar op het eigen domein. Het aantal sociale interventies dat theoretisch dan wel wetenschappelijk onderbouwd is, is beperkt. In de literatuur zijn verschillende benaderingen te onderscheiden die een antwoord beogen te geven op de vraag hoe en op basis waarvan een sociale interventie verantwoord dient te worden. In dit artikel geven we een methodebeschrijving van de “Program Theory” benadering en reflecteren we aan de hand van een casestudie op de praktische en wetenschappelijke meerwaarde van deze methode voor het theoretisch onderbouwen van sociale interventies. We argumenteren dat een Program Theory benadering vanuit de uitgangspunten van het kritisch realisme een waardevolle aanvulling biedt op de “evidence-based practice” benadering, die vooral inzicht geeft in de effecten van een interventie. Een Program Theory aanpak levert daarnaast een verklarende theorie over de effectiviteit van de interventie en neemt de werking van de praktijkcontext hierin mee door een interventietheorie “bottom-up” te ontwikkelen vanuit de praktijk en deze theorie tevens te onderbouwen met wetenschappelijke evidentie. Deze benadering biedt daarmee een collaboratieve leeromgeving voor professionals en onderzoekers, door de werking van mechanismen binnen een praktijkcontext te onderzoeken en te expliciteren. Doordat sociale professionals eigenaarschap blijven houden over hun eigen interventietheorie draagt de benadering bovendien bij aan de professionalisering en versterking van de kennisbasis van het sociaal werk.  Theorizing social interventions using a Program Theory approach: a case study of five Dutch buddy

  9. Training the Millennial learner through experiential evolutionary scaffolding: implications for clinical supervision in graduate education programs.

    Science.gov (United States)

    Venne, Vickie L; Coleman, Darrell

    2010-12-01

    They are the Millennials--Generation Y. Over the next few decades, they will be entering genetic counseling graduate training programs and the workforce. As a group, they are unlike previous youth generations in many ways, including the way they learn. Therefore, genetic counselors who teach and supervise need to understand the Millennials and explore new ways of teaching to ensure that the next cohort of genetic counselors has both skills and knowledge to represent our profession well. This paper will summarize the distinguishing traits of the Millennial generation as well as authentic learning and evolutionary scaffolding theories of learning that can enhance teaching and supervision. We will then use specific aspects of case preparation during clinical rotations to demonstrate how incorporating authentic learning theory into evolutionary scaffolding results in experiential evolutionary scaffolding, a method that potentially offers a more effective approach when teaching Millennials. We conclude with suggestions for future research.

  10. Forecasting tourist arrivals to balearic islands using genetic programming

    Directory of Open Access Journals (Sweden)

    Rosselló-Nadal, Jaume

    2007-01-01

    Full Text Available Traditionally, univariate time-series models have largely dominated forecasting for international tourism demand. In this paper, the ability of a Genetic Program (GP to predict monthly tourist arrivals from UK and Germany to Balearic Islands (Spain is explored. GP has already been employed satisfactorily in different scientific areas, including economics. The technique shows different advantages regarding to other forecasting methods. Firstly, it does not assume a priori a rigid functional form of the model. Secondly, it is more robust and easy-to-use than other non-parametric methods. Finally, it provides explicitly a mathematical equation which allows a simple ad hoc interpretation of the results. Comparing the performance of the proposed technique against other method commonly used in tourism forecasting (no-change model, Moving Average and ARIMA, the empirical results reveal that GP can be a valuable tool in this field.

  11. Putting Children's Sleep Problems to Bed: Using Behavior Change Theory to Increase the Success of Children's Sleep Education Programs and Contribute to Healthy Development.

    Science.gov (United States)

    Blunden, Sarah; Benveniste, Tessa; Thompson, Kirrilly

    2016-07-01

    Sleep is critical for the healthy development of children, yet most children simply don't get enough. Whilst school based sleep education programs have been developed for parents and their children, they have had mixed success. We consider how use of behavior change theory in existing school-based sleep education programs can be improved by applying and apply a broader model to these programs. We find that the mixed success of school-based sleep education programs may be due to a plausible but misleading assumption that simply increasing information about the importance of sleep and the risks of insufficient and/or inefficient sleep will necessarily result in improved sleep behaviors. We identify the potential benefits of using behavior change theory in the development of sleep education programs but in particular, there is a need for theories incorporate the multiple biological, environmental and social impacts on children's sleep. Bronfenbrenner's Bioecological model is presented to illustrate how one such behavior change theory could significantly improve the success of sleep education programs and ultimately support the healthy development of children.

  12. Genetic screening: programs, principles, and research--thirty years later. Reviewing the recommendations of the Committee for the Study of Inborn Errors of Metabolism (SIEM).

    Science.gov (United States)

    Simopoulos, A P

    2009-01-01

    Screening programs for genetic diseases and characteristics have multiplied in the last 50 years. 'Genetic Screening: Programs, Principles, and Research' is the report of the Committee for the Study of Inborn Errors of Metabolism (SIEM Committee) commissioned by the Division of Medical Sciences of the National Research Council at the National Academy of Sciences in Washington, DC, published in 1975. The report is considered a classic in the field worldwide, therefore it was thought appropriate 30 years later to present the Committee's modus operandi and bring the Committee's recommendations to the attention of those involved in genetics, including organizational, educational, legal, and research aspects of genetic screening. The Committee's report anticipated many of the legal, ethical, economic, social, medical, and policy aspects of genetic screening. The recommendations are current, and future committees should be familiar with them. In 1975 the Committee stated: 'As new screening tests are devised, they should be carefully reviewed. If the experimental rate of discovery of new genetic characteristics means an accelerating rate of appearance of new screening tests, now is the time to develop the medical and social apparatus to accommodate what later on may otherwise turn out to be unmanageable growth.' What a prophetic statement that was. If the Committee's recommendations had been implemented on time, there would be today a federal agency in existence, responsive and responsible to carry out the programs and support research on various aspects of genetic screening, including implementation of a federal law that protects consumers from discrimination by their employers and the insurance industry on the basis of genetic information. Copyright 2008 S. Karger AG, Basel.

  13. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  14. Steerability Analysis of Tracked Vehicles: Theory and User’s Guide for Computer Program TVSTEER

    Science.gov (United States)

    1986-08-01

    Baladi , Donald E. Barnes, Rebecca P. BergerC oStructures Laboratory NDEPARTMENT OF THE ARMY ___ Waterways Experiment Station, Corps of Engineers . U P0 Box...Analysis of Tracked Vehicles: Theory and User’s Guide for Computer Program TVSTEER - 12 PERSONAL AUTHOR(S) Baladi , George Y., Barnes, Donald E...mathematical model was formulated by Drs. George Y. Baladi and Behzad Rohani. The logic and computer programming were accomplished by Dr. Baladi and

  15. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    Science.gov (United States)

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  16. Genetic GIScience

    DEFF Research Database (Denmark)

    Jacquez, Geoffrey; Sabel, Clive E; Shi, Chen

    2015-01-01

    The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic...... geographic information science (genetic GIScience), that is founded on the exposome, genome+, and behavome. It provides an improved understanding of human health in relation to biology (the genome+), environmental exposures (the exposome), and their social, societal, and behavioral determinants (the behavome......). Genetic GIScience poses three key needs: first, a mathematical foundation for emergent theory; second, process-based models that bridge biological and geographic scales; third, biologically plausible estimates of space?time disease lags. Compartmental models are a possible solution; this article develops...

  17. An experimental evaluation of theory-based mother and mother-child programs for children of divorce.

    Science.gov (United States)

    Wolchik, S A; West, S G; Sandler, I N; Tein, J Y; Coatsworth, D; Lengua, L; Weiss, L; Anderson, E R; Greene, S M; Griffin, W A

    2000-10-01

    This study evaluated the efficacy of 2 theory-based preventive interventions for divorced families: a program for mothers and a dual component mother-child program. The mother program targeted mother-child relationship quality, discipline, interparental conflict, and the father-child relationship. The child program targeted active coping, avoidant coping, appraisals of divorce stressors, and mother-child relationship quality. Families with a 9- to 12-year-old child (N = 240) were randomly assigned to the mother, dual-component, or self-study program. Postintervention comparisons showed significant positive program effects of the mother program versus self-study condition on relationship quality, discipline, attitude toward father-child contact, and adjustment problems. For several outcomes, more positive effects occurred in families with poorer initial functioning. Program effects on externalizing problems were maintained at 6-month follow-up. A few additive effects of the dual-component program occurred for the putative mediators; none occurred for adjustment problems.

  18. Theory-Based Evaluation Meets Ambiguity

    DEFF Research Database (Denmark)

    Dahler-Larsen, Peter

    2017-01-01

    As theory-based evaluation (TBE) engages in situations where multiple stakeholders help develop complex program theory about dynamic phenomena in politically contested settings, it becomes difficult to develop and use program theory without ambiguity. The purpose of this article is to explore...... ambiguity as a fruitful perspective that helps TBE face current challenges. Literatures in organization theory and political theory are consulted in order to cultivate the concept of ambiguity. Janus variables (which work in two ways) and other ambiguous aspects of program theories are classified...... and exemplified. Stances towards ambiguity are considered, as are concrete steps that TBE evaluators can take to identify and deal with ambiguity in TBE....

  19. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    Science.gov (United States)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  20. Complexity Theory

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  1. Genetic programming for evolving due-date assignment models in job shop environments.

    Science.gov (United States)

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2014-01-01

    Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.

  2. Within a smoking-cessation program, what impact does genetic information on lung cancer need to have to demonstrate cost-effectiveness?

    Directory of Open Access Journals (Sweden)

    Gordon Louisa G

    2010-09-01

    Full Text Available Abstract Background Many smoking-cessation programs and pharmaceutical aids demonstrate substantial health gains for a relatively low allocation of resources. Genetic information represents a type of individualized or personal feedback regarding the risk of developing lung cancer, and hence the potential benefits from stopping smoking, may motivate the person to remain smoke-free. The purpose of this study was to explore what the impact of a genetic test needs to have within a typical smoking-cessation program aimed at heavy smokers in order to be cost-effective. Methods Two strategies were modelled for a hypothetical cohort of heavy smokers aged 50 years; individuals either received or did not receive a genetic test within the course of a usual smoking-cessation intervention comprising nicotine replacement therapy (NRT and counselling. A Markov model was constructed using evidence from published randomized controlled trials and meta-analyses for estimates on 12-month quit rates and long-term relapse rates. Epidemiological data were used for estimates on lung cancer risk stratified by time since quitting and smoking patterns. Extensive sensitivity analyses were used to explore parameter uncertainty. Results The discounted incremental cost per QALY was AU$34,687 (95% CI $12,483, $87,734 over 35 years. At a willingness-to-pay of AU$20,000 per QALY gained, the genetic testing strategy needs to produce a 12-month quit rate of at least 12.4% or a relapse rate 12% lower than NRT and counselling alone for it to be equally cost-effective. The likelihood that adding a genetic test to the usual smoking-cessation intervention is cost-effective was 20.6% however cost-effectiveness ratios were favourable in certain situations (e.g., applied to men only, a 60 year old cohort. Conclusions The findings were sensitive to small changes in critical variables such as the 12-month quit rates and relapse rates. As such, the cost-effectiveness of the genetic testing

  3. Separable programming theory and methods

    CERN Document Server

    Stefanov, Stefan M

    2001-01-01

    In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered Convex separable programs subject to inequality equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well Audience Advanced undergraduate and graduate students, mathematical programming operations research specialists

  4. Shaping a valued learning journey: Student satisfaction with learning in undergraduate nursing programs, a grounded theory study.

    Science.gov (United States)

    Smith, Morgan R; Grealish, Laurie; Henderson, Saras

    2018-05-01

    Student satisfaction is a quality measure of increasing importance in undergraduate programs, including nursing programs. To date theories of student satisfaction have focused primarily on students' perceptions of the educational environment rather than their perceptions of learning. Understanding how students determine satisfaction with learning is necessary to facilitate student learning across a range of educational contexts and meet the expectations of diverse stakeholders. To understand undergraduate nursing students' satisfaction with learning. Constructivist grounded theory methodology was used to identify how nursing students determined satisfaction with learning. Two large, multi-campus, nursing schools in Australia. Seventeen demographically diverse undergraduate nursing students studying different stages of a three year program participated in the study. Twenty nine semi-structured interviews were conducted. Students were invited to describe situations where they had been satisfied or dissatisfied with their learning. A constructivist grounded theory approach was used to analyse the data. Students are satisfied with learning when they shape a valued learning journey that accommodates social contexts of self, university and nursing workplace. The theory has three phases. Phase 1 - orienting self to valued learning in the pedagogical landscape; phase 2 - engaging with valued learning experiences across diverse pedagogical terrain; and phase 3 - recognising valued achievement along the way. When students experience a valued learning journey they are satisfied with their learning. Student satisfaction with learning is unique to the individual, changes over time and maybe transient or sustained, mild or intense. Finding from the research indicate areas where nurse academics may facilitate satisfaction with learning in undergraduate nursing programs while mindful of the expectations of other stakeholders such as the university, nurse registering authorities

  5. Water Curtain System Pre-design for Crude Oil Storage URCs : A Numerical Modeling and Genetic Programming Approach

    NARCIS (Netherlands)

    Ghotbi Ravandi, Ebrahim; Rahmannejad, Reza; Karimi-Nasab, Saeed; Sarrafi, Amir; Raoof, Amir

    In this paper the main criteria of the water curtain system for unlined rock caverns (URCs) is described. By the application of numerical modeling and genetic programming (GP), a method for water curtain system pre-design for Iranian crude oil storage URCs (common dimension worldwide) is presented.

  6. Disability training in the genetic counseling curricula: bridging the gap between genetic counselors and the disability community.

    Science.gov (United States)

    Sanborn, Erica; Patterson, Annette R

    2014-08-01

    Over the past two decades, disability activists, ethicists, and genetic counselors have examined the moral complexities inherent in prenatal genetic counseling and considered whether and in what ways genetic counseling may negatively affect individuals in the disability community. Many have expressed concerns about defining disability in the context of prenatal decision-making, as the definition presented may influence prenatal choices. In the past few years, publications have begun to explore the responsibility of counselors in presenting a balanced view of disability and have questioned the preparedness of counselors for this duty. Currently, the Accreditation Council for Genetic Counseling (ACGC) only minimally includes disability training in their competencies for genetic counselors, and in their accreditation requirements for training programs. In an attempt to describe current practice, this article details two studies that assess disability training in ABGC-accredited genetic counseling programs. Results from these studies demonstrate that experience with disability is not required by the majority of programs prior to matriculation. Though most program directors agree on the importance of including disability training in the curriculum, there is wide variability in the amount and types of training students receive. Hours dedicated to disability exposure among programs ranged from 10 to 600 hours. Eighty-five percent of program directors surveyed agree that skills for addressing disability should be added to the core competencies. Establishing a set of disability competencies would help to ensure that all graduates have the skills necessary to provide patients with an accurate understanding of disability that facilitates informed decision-making. © 2014 Wiley Periodicals, Inc.

  7. What Use Is Population Genetics?

    Science.gov (United States)

    Charlesworth, Brian

    2015-07-01

    The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation. Copyright © 2015 by the Genetics Society of America.

  8. STICAP: A linear circuit analysis program with stiff systems capability. Volume 1: Theory manual. [network analysis

    Science.gov (United States)

    Cooke, C. H.

    1975-01-01

    STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.

  9. Genetic conservation and paddlefish propagation

    Science.gov (United States)

    Sloss, Brian L.; Klumb, Robert A.; Heist, Edward J.

    2009-01-01

    The conservation of genetic diversity of our natural resources is overwhelmingly one of the central foci of 21st century management practices. Three recommendations related to the conservation of paddlefish Polyodon spathula genetic diversity are to (1) identify genetic diversity at both nuclear and mitochondrial DNA loci using a suggested list of 20 sampling locations, (2) use genetic diversity estimates to develop genetic management units, and (3) identify broodstock sources to minimize effects of supplemental stocking on the genetic integrity of native paddlefish populations. We review previous genetic work on paddlefish and described key principles and concepts associated with maintaining genetic diversity within and among paddlefish populations and also present a genetic case study of current paddlefish propagation at the U.S. Fish and Wildlife Service Gavins Point National Fish Hatchery. This study confirmed that three potential sources of broodfish were genetically indistinguishable at the loci examined, allowing the management agencies cooperating on this program flexibility in sampling gametes. This study also showed significant bias in the hatchery occurred in terms of male reproductive contribution, which resulted in a shift in the genetic diversity of progeny compared to the broodfish. This shift was shown to result from differential male contributions, partially attributed to the mode of egg fertilization. Genetic insights enable implementation of a paddlefish propagation program within an adaptive management strategy that conserves inherent genetic diversity while achieving demographic goals.

  10. A social marketing theory-based diet-education program for women ages 54 to 83 years improved dietary status.

    Science.gov (United States)

    Francis, Sarah L; Taylor, Martha L

    2009-12-01

    Social Marketing Theory is a comprehensive approach of program development encompassing the needs and preferences of the intended audience. It was hypothesized a Social Marketing Theory-based, registered dietitian-led, in-home, cardiovascular disease-targeted diet-education program would improve the dietary status of community-residing older women. Using a randomized control group design, this 90-day program in two North Carolina counties included 58 women (30 control; 28 intervention) ages 54 to 83 years. Data were collected using the Mini Nutritional Assessment, three 3-day food records, and program evaluations. The intervention group received two individual registered dietitian-led in-home education sessions and the control group received education material mailings (Visits 2 and 3). Pretested education materials were used. Visits/mailings were scheduled 28 to 30 days apart. Variables measured included cardiovascular disease-related dietary practices and dietary status (Mini Nutritional Assessment). Data were analyzed using descriptive statistics, paired sample t tests, multivariant analyses, and independent t tests. Intervention and control Mini Nutritional Assessment scores improved (P=0.0001). Intervention subjects consumed more fiber than control (P=0.013) and reduced sodium intake (P=0.02). Controls reduced energy (P=0.01) and cholesterol intakes (P=0.029), likely because of the decreased food intake. The majority (n=51, 87.9%) rated the program as good to excellent and almost all (n=55, 94.8%) would recommend the program to a friend. The most popular features of the program were the individualized sessions (n=20, 34.5%) and diet analyses (n=11, 19%). These results suggest that cardiovascular disease diet-education materials utilizing Social Marketing Theory principles can lead to improved dietary status among community-residing older women.

  11. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  12. Quantum-genetic theory of the hafure of malignant tumors

    International Nuclear Information System (INIS)

    Ovsyannikov, V.A.

    1984-01-01

    It is shown, that all interactions, which can cause a transformation in genetic code of a cell, from energy viewpoint should possess quantum energy from 4 to 10 eV, i.e. they should be referred to radiations of UV range. All the reasons known presently, which cause initial carcinomas, are accompanied by UV radiation in the range. The mechanism of UV radiation interaction with living cells, mechanism of genetic code transformation and mechanism of appearance and development of initial and secondary carcinomas are considered

  13. Genetic counseling and the ethical issues around direct to consumer genetic testing.

    Science.gov (United States)

    Hawkins, Alice K; Ho, Anita

    2012-06-01

    Over the last several years, direct to consumer(DTC) genetic testing has received increasing attention in the public, healthcare and academic realms. DTC genetic testing companies face considerable criticism and scepticism,particularly from the medical and genetic counseling community. This raises the question of what specific aspects of DTC genetic testing provoke concerns, and conversely,promises, for genetic counselors. This paper addresses this question by exploring DTC genetic testing through an ethic allens. By considering the fundamental ethical approaches influencing genetic counseling (the ethic of care and principle-based ethics) we highlight the specific ethical concerns raised by DTC genetic testing companies. Ultimately,when considering the ethics of DTC testing in a genetic counseling context, we should think of it as a balancing act. We need careful and detailed consideration of the risks and troubling aspects of such testing, as well as the potentially beneficial direct and indirect impacts of the increased availability of DTC genetic testing. As a result it is essential that genetic counselors stay informed and involved in the ongoing debate about DTC genetic testing and DTC companies. Doing so will ensure that the ethical theories and principles fundamental to the profession of genetic counseling are promoted not just in traditional counseling sessions,but also on a broader level. Ultimately this will help ensure that the public enjoys the benefits of an increasingly genetic based healthcare system.

  14. Short- and Long-Term Theory-Based Predictors of Physical Activity in Women Who Participated in a Weight-Management Program

    Science.gov (United States)

    Wasserkampf, A.; Silva, M. N.; Santos, I. C.; Carraça, E. V.; Meis, J. J. M.; Kremers, S. P. J.; Teixeira, P. J.

    2014-01-01

    This study analyzed psychosocial predictors of the Theory of Planned Behavior (TPB) and Self-Determination Theory (SDT) and evaluated their associations with short- and long-term moderate plus vigorous physical activity (MVPA) and lifestyle physical activity (PA) outcomes in women who underwent a weight-management program. 221 participants (age…

  15. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    Science.gov (United States)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  16. Review of Mechanisms and Theories of Aging

    Directory of Open Access Journals (Sweden)

    Gholam Reza Azari

    2006-10-01

    Full Text Available Several factors have incentive role for study of aging which includes increasing of the average and maximum of human life span, the increase in percentage of elderly in the societies and proportion of the national expenditure utilized by them. The Recent views of aging indicating that aging is extremely a complex multifactorial process despite of earlier views about definite cause aging like gene or decline of a key factor(1. This brief review tries to inspect aging at the molecular, cellular, and systemic levels; and consider interaction between genetic and environmental factors. Evolutionary theories argue that aging results from a decline in the force of natural selection. On the other hand, molecular theories emphasis on the genetically regulation of aging and argue that aging results from changing in genes. There are cellular theories that telomere theory is most famous. Stress induced aging is in this group too. free radical theory is next known way for cellular damages. Finally, we see systemic theories that contain two main groups, neuroendocrine and immunologic theories.

  17. DNAStat, version 2.1--a computer program for processing genetic profile databases and biostatistical calculations.

    Science.gov (United States)

    Berent, Jarosław

    2010-01-01

    This paper presents the new DNAStat version 2.1 for processing genetic profile databases and biostatistical calculations. The popularization of DNA studies employed in the judicial system has led to the necessity of developing appropriate computer programs. Such programs must, above all, address two critical problems, i.e. the broadly understood data processing and data storage, and biostatistical calculations. Moreover, in case of terrorist attacks and mass natural disasters, the ability to identify victims by searching related individuals is very important. DNAStat version 2.1 is an adequate program for such purposes. The DNAStat version 1.0 was launched in 2005. In 2006, the program was updated to 1.1 and 1.2 versions. There were, however, slight differences between those versions and the original one. The DNAStat version 2.0 was launched in 2007 and the major program improvement was an introduction of the group calculation options with the potential application to personal identification of mass disasters and terrorism victims. The last 2.1 version has the option of language selection--Polish or English, which will enhance the usage and application of the program also in other countries.

  18. [Effects of Group Counseling Program Based on Goal Attainment Theory for Middle School Students with Emotional and Behavioral Problems].

    Science.gov (United States)

    Jeong, In Ju; Kim, Soo Jin

    2017-04-01

    The purpose of this study was to examine the effects of a group counseling program based on goal attainment theory on self-esteem, interpersonal relationships, and school adjustment of middle school students with emotional and behavioral problems. Forty-four middle school students with emotional and behavioral problems (22 in the experimental group and 22 in the control group) from G city participated in this study. Data were collected from July 30 to September 24, 2015. The experimental group received the 8-session program, scheduled once a week, with each session lasting 45 minutes. Outcome variables included self-esteem, interpersonal relationship, and school adjustment. There were significant increases for self-esteem (t=3.69, p=.001), interpersonal relationship (t=8.88, pgroup compared to the control group. These results indicate that the group counseling program based on goal attainment theory is very effective in increasing self-esteem, interpersonal relationship, and school adjustment for middle school students with emotional and behavioral problems. Therefore, it is recommended that the group counseling program based on goal attainment theory be used as an effective psychiatric nursing intervention for mental health promotion and the prevention of mental illness in adolescents. © 2017 Korean Society of Nursing Science

  19. Elevation, Not Deforestation, Promotes Genetic Differentiation in a Pioneer Tropical Tree.

    Science.gov (United States)

    Castilla, Antonio R; Pope, Nathaniel; Jaffé, Rodolfo; Jha, Shalene

    2016-01-01

    The regeneration of disturbed forest is an essential part of tropical forest ecology, both with respect to natural disturbance regimes and large-scale human-mediated logging, grazing, and agriculture. Pioneer tree species are critical for facilitating the transition from deforested land to secondary forest because they stabilize terrain and enhance connectivity between forest fragments by increasing matrix permeability and initiating disperser community assembly. Despite the ecological importance of early successional species, little is known about their ability to maintain gene flow across deforested landscapes. Utilizing highly polymorphic microsatellite markers, we examined patterns of genetic diversity and differentiation for the pioneer understory tree Miconia affinis across the Isthmus of Panama. Furthermore, we investigated the impact of geographic distance, forest cover, and elevation on genetic differentiation among populations using circuit theory and regression modeling within a landscape genetics framework. We report marked differences in historical and contemporary migration rates and moderately high levels of genetic differentiation in M. affinis populations across the Isthmus of Panama. Genetic differentiation increased significantly with elevation and geographic distance among populations; however, we did not find that forest cover enhanced or reduced genetic differentiation in the study region. Overall, our results reveal strong dispersal for M. affinis across human-altered landscapes, highlighting the potential use of this species for reforestation in tropical regions. Additionally, this study demonstrates the importance of considering topography when designing programs aimed at conserving genetic diversity within degraded tropical landscapes.

  20. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  1. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  2. Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers

    Directory of Open Access Journals (Sweden)

    Boris Briñez R.

    2011-05-01

    Full Text Available Objective. To determine and evaluate the genetic diversity of six populations of red hybrid tilapia, with the purpose to assess the potential benefit of a future breeding program conducted at the Research Center for Aquaculture (Ceniacua, Colombia. Material and methods. A total of 300 individuals, representing a wide genetic variability, were genotyped using a fluorescent microsatellite marker set of 5 gene-based SSRs in 6 different farms belonging to 4 States of Colombia. Results. The result showed that the mean number of alleles per locus per population was 8.367. The population 5 had the highest mean number of alleles with 9.6 alleles, followed by population 4 with 9.4 alleles, population 2 with 9.2, population 3 with 8.0, population 1 with 7.2 and population 6 with 6.8 alleles. The analysis of the distribution of genetic variation was (17.32% among population, while among individuals within populations was (28.55% and within individuals was high (54.12%. The standard diversity indices showed that population 4 was the more variable (mean He=0.837 followed by population 1 (mean He=0.728, population 3 (mean He=0.721, population 5 (mean He=0.705, population 2 (mean He=0.690, population 6 (mean He=0.586. Highly significant deviations from Hardy–Weinberg, exhibited all of the populations, mostly due to deficits of heterozygotes. Genotype frequencies at loci UNH 106 of population 5 and loci UNH 172 of population 6 were Hardy-Weinberg equilibrium (HWE. Conclusions. The results of this study, contribute to the genetic breeding program of Tilapia, conduced by the Research Center for Aquaculture. The Fst distance showed that the samples are differentiated genetically and it is possible to use at the beginning of the genetic program. However, it is recommended to introduce others individuals to the crossbreeding program.

  3. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Liane B.

    2013-10-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  4. Genetics in Relation to Biology.

    Science.gov (United States)

    Stewart, J. Bird

    1987-01-01

    Claims that most instruction dealing with genetics is limited to sex education and personal hygiene. Suggests that the biology curriculum should begin to deal with other issues related to genetics, including genetic normality, prenatal diagnoses, race, and intelligence. Predicts these topics will begin to appear in British examination programs.…

  5. Endometrial cancer : from a molecular genetic perspective

    NARCIS (Netherlands)

    E. Smid-Koopman (Ellen)

    2002-01-01

    textabstractThe first observations indicative of a role of genetic factors in carcinogenesis were made as early as 1912, when Rous demonstrated that a filterable agent (i.e. virus) could induce cancer in chicken (Rous 1965). In 1914, Boveri postulated a "genetic" theory on carcinogenesis by

  6. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. MANAN GUPTA. Articles written in Journal of Genetics. Volume 96 Issue 3 July 2017 pp 491-504 Perspectives. Niche construction in evolutionary theory: the construction of an academic niche? MANAN GUPTA N. G. PRASAD SUTIRTH DEY AMITABH JOSHI T. N. C. VIDYA.

  7. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    Energy Technology Data Exchange (ETDEWEB)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-07-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  8. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    International Nuclear Information System (INIS)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-01-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  9. New pillars of evolutionary theory in the light of genomics

    International Nuclear Information System (INIS)

    Lopez Carrascal, Camilo Ernesto

    2011-01-01

    The evolutionist theory proposed by Darwin is one of the fundamental pillars in biology. Darwin's theory was solidified with the modern synthesis of evolutionary biology thanks to the rediscovery of Mendel's work, which laid the genetic basis of heredity. In recent years, great progress has been acquired in the sequencing and analyses of complete genomes, which have provided several elements to discuss some Darwinists tenets of evolution. The evidence of gene duplication and whole-genome duplication, the horizontal gene transfer and the endosymbiosis process question the idea that evolution proceeds through the gradual accumulation of infinitesimally small random changes. The new evidence of neutral selection on the genomics context reveals other mechanisms of evolution not necessarily related with the idea of progress or with an adaptationist program as was originally stated by the Darwin's theory. in this paper, I present these and other concepts such as gene regulation, molecular mechanisms of development and some environmental aspects (epigenesis and phenotypic plasticity) as starting points to think in the necessity to update the evolutionary theory which in my opinion should be more inclusive, pluralistic and consistent with our current knowledge.

  10. A Genetic Programming Method for the Identification of Signal Peptides and Prediction of Their Cleavage Sites

    Directory of Open Access Journals (Sweden)

    David Lennartsson

    2004-01-01

    Full Text Available A novel approach to signal peptide identification is presented. We use an evolutionary algorithm for automatic evolution of classification programs, so-called programmatic motifs. The variant of evolutionary algorithm used is called genetic programming where a population of solution candidates in the form of full computer programs is evolved, based on training examples consisting of signal peptide sequences. The method is compared with a previous work using artificial neural network (ANN approaches. Some advantages compared to ANNs are noted. The programmatic motif can perform computational tasks beyond that of feed-forward neural networks and has also other advantages such as readability. The best motif evolved was analyzed and shown to detect the h-region of the signal peptide. A powerful parallel computer cluster was used for the experiment.

  11. A program plan addressing carpal tunnel syndrome: the utility of King's goal attainment theory.

    Science.gov (United States)

    Norgan, G H; Ettipio, A M; Lasome, C E

    1995-08-01

    1. Today's nurse is prepared to address the needs of groups of individuals who share common characteristics or risks (aggregates). Program planning skills and ability to use nursing theory can enhance the nurse's effectiveness in addressing the needs of such aggregates. 2. Carpal tunnel syndrome and other repetitive stress injuries are very costly to industry, both in terms of monetary loss and lost work hours. Such injuries can be reduced in the workplace through careful observation and communication of trends by the nurse. 3. The systems perspective of King's goal attainment theory guided the nurse in problem solving and facilitating the development of a workplace capable of responding to trends as they occur.

  12. A new measurement for the revised reinforcement sensitivity theory: psychometric criteria and genetic validation

    Directory of Open Access Journals (Sweden)

    Martin eReuter

    2015-03-01

    Full Text Available Jeffrey Gray’s Reinforcement Sensitivity Theory (RST represents one of the most influential biologically-based personality theories describing individual differences in approach and avoidance tendencies. The most prominent self-report inventory to measure individual differences in approach and avoidance behavior to date is the BIS/BAS scale by Carver & White (1994. As Gray & McNaughton (2000 revised the RST after its initial formulation in the 1970/80s, and given the Carver & White measure is based on the initial conceptualization of RST, there is a growing need for self-report inventories measuring individual differences in the revised behavioral inhibition system (BIS, behavioral activation system (BAS and the fight, flight, freezing system (FFFS. Therefore, in this paper we present a new questionnaire measuring individual differences in the revised constructs of the BIS, BAS and FFFS in N = 1814 participants (German sample. An English translated version of the new measure is also presented and tested in N = 299 English language participants. A large number of German participants (N = 1090 also filled in the BIS/BAS scales by Carver & White (1994 and the correlations between these measures are presented. Finally, this same subgroup of participants provided buccal swaps for the investigation of the arginine vasopressin receptor 1a (AVPR1a gene. Here, a functional genetic polymorphism (rs11174811 on the AVPR1a gene was shown to be associated with individual differences in both the revised BIS and classic BIS dimensions.

  13. Ethical issues in predictive genetic testing: a public health perspective.

    Science.gov (United States)

    Fulda, K G; Lykens, K

    2006-03-01

    As a result of the increase in genetic testing and the fear of discrimination by insurance companies, employers, and society as a result of genetic testing, the disciplines of ethics, public health, and genetics have converged. Whether relatives of someone with a positive predictive genetic test should be notified of the results and risks is a matter urgently in need of debate. Such a debate must encompass the moral and ethical obligations of the diagnosing physician and the patient. The decision to inform or not will vary depending on what moral theory is used. Utilising the utilitarian and libertarian theories produces different outcomes. The principles of justice and non-maleficence will also play an important role in the decision.

  14. From observational to dynamic genetics

    Directory of Open Access Journals (Sweden)

    Claire M. A. Haworth

    2014-01-01

    Full Text Available Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context and in response to behavioural and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment.

  15. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.

    Science.gov (United States)

    Daetwyler, Hans D; Hayden, Matthew J; Spangenberg, German C; Hayes, Ben J

    2015-08-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selection, optimal haploid value (OHV) selection, which predicts the best doubled haploid that can be produced from a segregating plant. This method focuses selection on the haplotype and optimizes the breeding program toward its end goal of generating an elite fixed line. We rigorously tested OHV selection breeding programs, using computer simulation, and show that it results in up to 0.6 standard deviations more genetic gain than genomic selection. At the same time, OHV selection preserved a substantially greater amount of genetic diversity in the population than genomic selection, which is important to achieve long-term genetic gain in breeding populations. Copyright © 2015 by the Genetics Society of America.

  16. Trading Rules on Stock Markets Using Genetic Network Programming with Reinforcement Learning and Importance Index

    Science.gov (United States)

    Mabu, Shingo; Hirasawa, Kotaro; Furuzuki, Takayuki

    Genetic Network Programming (GNP) is an evolutionary computation which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, it has been clarified that GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is a new element which is a criterion for decision making. In this paper, we combined GNP-IMX with Actor-Critic (GNP-IMX&AC) and create trading rules on stock markets. Evolution-based methods evolve their programs after enough period of time because they must calculate fitness values, however reinforcement learning can change programs during the period, therefore the trading rules can be created efficiently. In the simulation, the proposed method is trained using the stock prices of 10 brands in 2002 and 2003. Then the generalization ability is tested using the stock prices in 2004. The simulation results show that the proposed method can obtain larger profits than GNP-IMX without AC and Buy&Hold.

  17. Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs

    International Nuclear Information System (INIS)

    Nwulu, Nnamdi I.; Xia, Xiaohua

    2015-01-01

    Highlights: • In this work, a game theory based DR program is integrated into the DEED problem. • Objectives are to minimize fuel and emissions costs and maximize the DR benefit. • Optimal generator output, customer load and customer incentive are determined. • Developed model is tested with two different scenarios. • Model provides superior results than independent optimization of DR or DEED. - Abstract: The dynamic economic emission dispatch (DEED) of electric power generation is a multi-objective mathematical optimization problem with two objective functions. The first objective is to minimize all the fuel costs of the generators in the power system, whilst the second objective seeks to minimize the emissions cost. Both objective functions are subject to constraints such as load demand constraint, ramp rate constraint, amongst other constraints. In this work, we integrate a game theory based demand response program into the DEED problem. The game theory based demand response program determines the optimal hourly incentive to be offered to customers who sign up for load curtailment. The game theory model has in built mechanisms to ensure that the incentive offered the customers is greater than the cost of interruption while simultaneously being beneficial to the utility. The combined DEED and game theoretic demand response model presented in this work, minimizes fuel and emissions costs and simultaneously determines the optimal incentive and load curtailment customers have to perform for maximal power system relief. The developed model is tested on two test systems with industrial customers and obtained results indicate the practical benefits of the proposed model

  18. Radioprotection of the environment: on the context of biodiversity and evolutionary theory. A reference organism has no genetic properties

    International Nuclear Information System (INIS)

    Cedervall, Bjoern

    2008-01-01

    The recent efforts to define a basis for radioprotection of the environment include some concepts and ideas related to various endpoints which need a clarification. This paper focuses on the biodiversity concept and the context of individuals of a species as well as that of the species as a gene pool. A major problem with the ambition to radioprotect biodiversity is the concept 'reference organism' which has no genetic properties and therefore is in contradiction with a real biological species. Biodiversity and the species (gene pool) concept are, just as any other areas of biology, integral parts of evolutionary theory. With the reference organism as a basis no meaningful reasoning can take place which relates data on radioactivity levels or mutations to potential effects on populations or biodiversity. It is therefore suggested that the national and international bodies involved in radioprotection of the environment take advantage of evolutionary theory as a reference frame. (author)

  19. On the Reliability of Nonlinear Modeling using Enhanced Genetic Programming Techniques

    Science.gov (United States)

    Winkler, S. M.; Affenzeller, M.; Wagner, S.

    The use of genetic programming (GP) in nonlinear system identification enables the automated search for mathematical models that are evolved by an evolutionary process using the principles of selection, crossover and mutation. Due to the stochastic element that is intrinsic to any evolutionary process, GP cannot guarantee the generation of similar or even equal models in each GP process execution; still, if there is a physical model underlying to the data that are analyzed, then GP is expected to find these structures and produce somehow similar results. In this paper we define a function for measuring the syntactic similarity of mathematical models represented as structure trees; using this similarity function we compare the results produced by GP techniques for a data set representing measurement data of a BMW Diesel engine.

  20. LPmerge: an R package for merging genetic maps by linear programming.

    Science.gov (United States)

    Endelman, Jeffrey B; Plomion, Christophe

    2014-06-01

    Consensus genetic maps constructed from multiple populations are an important resource for both basic and applied research, including genome-wide association analysis, genome sequence assembly and studies of evolution. The LPmerge software uses linear programming to efficiently minimize the mean absolute error between the consensus map and the linkage maps from each population. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts. LPmerge is on CRAN at http://cran.r-project.org/web/packages/LPmerge. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs

    Science.gov (United States)

    Kroeger, Lori A.; Brown, Rhonda Douglas; O'Brien, Beth A.

    2012-01-01

    Research Findings: This article describes major theories and research on math cognition across the fields of neuroscience, cognitive psychology, and education and connects these literatures to intervention practices. Commercially available math intervention programs were identified and evaluated using the following questions: (a) Did neuroscience…

  2. Control of Angra 1' PZR by a fuzzy rule base build through genetic programming

    International Nuclear Information System (INIS)

    Caldas, Gustavo Henrique Flores; Schirru, Roberto

    2002-01-01

    There is an optimum pressure for the normal operation of nuclear power plant reactors and thresholds that must be respected during transients, what make the pressurizer an important control mechanism. Inside a pressurizer there are heaters and a shower. From their actuation levels, they control the vapor pressure inside the pressurizer and, consequently, inside the primary circuit. Therefore, the control of the pressurizer consists in controlling the actuation levels of the heaters and of the shower. In the present work this function is implemented through a fuzzy controller. Besides the efficient way of exerting control, this approach presents the possibility of extracting knowledge of how this control is been made. A fuzzy controller consists basically in an inference machine and a rule base, the later been constructed with specialized knowledge. In some circumstances, however, this knowledge is not accurate, and may lead to non-efficient results. With the development of artificial intelligence techniques, there wore found methods to substitute specialists, simulating its knowledge. Genetic programming is an evolutionary algorithm particularly efficient in manipulating rule base structures. In this work genetic programming was used as a substitute for the specialist. The goal is to test if an irrational object, a computer, is capable, by it self, to find out a rule base reproducing a pre-established actuation levels profile. The result is positive, with the discovery of a fuzzy rule base presenting an insignificant error. A remarkable result that proves the efficiency of the approach. (author)

  3. The use of genetic programming to develop a predictor of swash excursion on sandy beaches

    OpenAIRE

    M. Passarella; E. B. Goldstein; S. De Muro; G. Coco

    2018-01-01

    We use genetic programming (GP), a type of machine learning (ML) approach, to predict the total and infragravity swash excursion using previously published data sets that have been used extensively in swash prediction studies. Three previously published works with a range of new conditions are added to this data set to extend the range of measured swash conditions. Using this newly compiled data set we demonstrate that a ML approach can reduce the prediction errors compared ...

  4. Using diffusion of innovations theory to guide diabetes management program development: an illustrative example.

    Science.gov (United States)

    De Civita, Mirella; Dasgupta, Kaberi

    2007-09-01

    Optimal management of type 2 diabetes requires achievement of optimal glucose, blood pressure and lipid targets through promotion of prudent diet, regular physical activity and adherence to necessary medication. This may require the development of new programs for the coordination of required multidisciplinary services. Diffusion of innovations theory offers a conceptual framework that may facilitate the implementation of such programs. To illustrate this, we have re-examined the implementation experiences previously reported by the developers of an actual diabetes management pilot program in Montreal, with an eye toward identifying potentially important process factors that could effectively increase adoption and sustainability. Physician participation in the program appeared to be influenced by perceived advantages of participation, compatibility of the program with own perspective and perceived barriers to participation. Organizational features that may have influenced participation included the extent of the program's integration within the existing health care system. A thorough consideration of process factors that impact system and team integration must equally include a focus on ensuring ongoing partnerships among the producers of the model, governments, nongovernmental organizations, private industry, user professionals and patients. This can only be achieved when a knowledge transfer action plan is developed to guide program development, implementation and sustainability.

  5. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    OpenAIRE

    Chenlu Miao; Gang Du; Yi Xia; Danping Wang

    2016-01-01

    Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP) to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP), which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard pr...

  6. Ethical issues in predictive genetic testing: a public health perspective

    Science.gov (United States)

    Fulda, K G; Lykens, K

    2006-01-01

    As a result of the increase in genetic testing and the fear of discrimination by insurance companies, employers, and society as a result of genetic testing, the disciplines of ethics, public health, and genetics have converged. Whether relatives of someone with a positive predictive genetic test should be notified of the results and risks is a matter urgently in need of debate. Such a debate must encompass the moral and ethical obligations of the diagnosing physician and the patient. The decision to inform or not will vary depending on what moral theory is used. Utilising the utilitarian and libertarian theories produces different outcomes. The principles of justice and non‐maleficence will also play an important role in the decision. PMID:16507657

  7. Putting Children’s Sleep Problems to Bed: Using Behavior Change Theory to Increase the Success of Children’s Sleep Education Programs and Contribute to Healthy Development

    Directory of Open Access Journals (Sweden)

    Sarah Blunden

    2016-07-01

    Full Text Available Sleep is critical for the healthy development of children, yet most children simply don’t get enough. Whilst school based sleep education programs have been developed for parents and their children, they have had mixed success. We consider how existing school-based sleep education programs can be improved by applying a broader model to behaviour change theory. We find that the mixed success of school-based sleep education programs may be due to a plausible but misleading assumption that simply increasing information about the importance of sleep and the risks of insufficient and/or inefficient sleep, will necessarily result in improved sleep behaviours. We identify the potential benefits of using a more inclusive behavior change theory in the development of sleep education programs with a particular need for theories that incorporate the multiple biological, environmental and social impacts on children’s sleep. Bronfenbrenner’s Bioecological model is presented to illustrate how one such inclusive behavior change theory could significantly improve the success of sleep education programs and ultimately support the healthy development of children.

  8. Genetic diversity of pacu and piapara broodstocks in restocking programs in the rivers Paraná and Paranapanema (Brazil

    Directory of Open Access Journals (Sweden)

    Nelson Mauricio Lopera-Barrero

    2016-09-01

    Full Text Available The genetic diversity of Piaractus mesopotamicus (pacu and Leporinus elongatus (piapara broodstocks used in restocking programs in the rivers Paraná and Paranapanema is analyzed. One hundred and twenty specimens (two broodstocks of each species from fish ponds in Palotina PR Brazil and in Salto Grande SP Brazil were assessed. Ten primers produced 96 fragments, comprising 68 (70.83% and 94 (97.92% polymorphic fragments for P. mesopotamicus and L. elongatus broodstocks, respectively. Differences (p < 0.05 in the frequency of 15 and 27 fragments were detected for each species, without exclusive fragments. Shannon Index (0.347 - 0.572 and the percentage of polymorphic fragments (57.3% - 94.8% revealed high intra-population genetic variability for all broodstocks. Results of molecular variance analyses (AMOVA showed that most variations do not lie between the broodstocks but within each broodstock (89%. Genetic (0.088 and 0.142 and identity (0.916 and 0.868 distance rates demonstrated similarity between the broodstocks of each species, corroborated by Fst (0.1023 and 010.27 and Nm (4.18 and 4.33 rates, with a slight genetic difference due to genic flux. High intrapopulation genetic variability and similarity between the broodstocks of each species was also detected, proving a common ancestry.

  9. Genetic parameters for oocyte number and embryo production within a bovine ovum pick-up-in vitro production embryo-production program.

    Science.gov (United States)

    Merton, J S; Ask, B; Onkundi, D C; Mullaart, E; Colenbrander, B; Nielen, M

    2009-10-15

    Genetic factors influencing the outcome of bovine ovum pick-up-in vitro production (OPU-IVP) and its relation to female fertility were investigated. For the first time, genetic parameters were estimated for the number of cumulus-oocyte complexes (Ncoc), quality of cumulus-oocyte complexes (Qcoc), number and proportion of cleaved embryos at Day 4 (Ncleav(D4), Pcleav(D4)), and number and proportion of total and transferable embryos at Day 7 of culture (Nemb(D7), Pemb(D7) and NTemb(D7), PTemb(D7), respectively). Data were recorded by CRV (formally Holland Genetics) from the OPU-IVP program from January 1995 to March 2006. Data were collected from 1508 Holstein female donors, both cows and pregnant virgin heifers, with a total of 18,702 OPU sessions. Data were analyzed with repeated-measure sire models with permanent environment effect using ASREML (Holstein Friesian). Estimates of heritability were 0.25 for Ncoc, 0.09 for Qcoc, 0.19 for Ncleav(D4), 0.21 for Nemb(D7), 0.16 for NTemb(D7), 0.07 for Pcleav(D4), 0.12 for Pemb(D7), and 0.10 for PTemb(D7). Genetic correlation between Ncoc and Qcoc was close to zero, whereas genetic correlations between Ncoc and the number of embryos were positive and moderate to high for Nemb(D7) (0.47), NTemb(D7) (0.52), and Ncleav(D4) (0.85). Genetic correlations between Ncoc and percentages of embryos (Pcleav(D4), Pemb(D7), and PTemb(D7)) were all close to zero. Phenotypic correlations were in line with genetic correlations. Genetic and phenotypic correlations between Qcoc and all other traits were not significant except for the phenotypic correlations between Qcoc and number of embryos, which were negative and low to moderate for Nemb(D7) (-0.20), NTemb(D7) (-0.24), and Ncleav(D4) (-0.43). Results suggest that cumulus-oocyte complex (COC) quality, based on cumulus investment, is independent from the total number of COCs collected via OPU and that in general, a higher number of COCs will lead to a higher number of embryos produced. The

  10. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  11. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  12. Swarm, genetic and evolutionary programming algorithms applied to multiuser detection

    Directory of Open Access Journals (Sweden)

    Paul Jean Etienne Jeszensky

    2005-02-01

    Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.

  13. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    Science.gov (United States)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  14. Information transmission in genetic regulatory networks: a review

    International Nuclear Information System (INIS)

    Tkacik, Gasper; Walczak, Aleksandra M

    2011-01-01

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'. (topical review)

  15. Can Research on the Genetics of Intelligence Be "Socially Neutral"?

    Science.gov (United States)

    Roberts, Dorothy

    2015-01-01

    The history of research on the genetics of intelligence is fraught with social bias. During the eugenics era, the hereditary theory of intelligence justified policies that encouraged the proliferation of favored races and coercively stemmed procreation by disfavored ones. In the 1970s, Berkeley psychologist Arthur Jensen argued that black students' innate cognitive inferiority limited the efficacy of federal education programs. The 1994 controversial bestseller The Bell Curve, by Richard J. Herrnstein and Charles Murray, rehashed the claim that race and class disparities stem from immutable differences in inherited intelligence, which could not be eliminated through social interventions. Today most scientists studying the genetics of intelligence distance themselves from this history of social bias by arguing that their research need not investigate intellectual differences between social groups. Rather, they argue, examining the heritability of intelligence can be socially neutral and may even help to reduce social inequities. I argue, however, that research on the genetics of intelligence cannot be socially neutral. Even if we divorce the heritability of intelligence from a eugenicist mission, measuring intelligence remains useful only as a gage of individuals' appropriate positions in society. Research into the genetics of intelligence ultimately helps to determine individuals' inherited capacity for particular social positions, even when researchers aim to modify the effects of inheritance. © 2015 The Hastings Center.

  16. Bourbaki's structure theory in the problem of complex systems simulation models synthesis and model-oriented programming

    Science.gov (United States)

    Brodsky, Yu. I.

    2015-01-01

    The work is devoted to the application of Bourbaki's structure theory to substantiate the synthesis of simulation models of complex multicomponent systems, where every component may be a complex system itself. An application of the Bourbaki's structure theory offers a new approach to the design and computer implementation of simulation models of complex multicomponent systems—model synthesis and model-oriented programming. It differs from the traditional object-oriented approach. The central concept of this new approach and at the same time, the basic building block for the construction of more complex structures is the concept of models-components. A model-component endowed with a more complicated structure than, for example, the object in the object-oriented analysis. This structure provides to the model-component an independent behavior-the ability of standard responds to standard requests of its internal and external environment. At the same time, the computer implementation of model-component's behavior is invariant under the integration of models-components into complexes. This fact allows one firstly to construct fractal models of any complexity, and secondly to implement a computational process of such constructions uniformly-by a single universal program. In addition, the proposed paradigm allows one to exclude imperative programming and to generate computer code with a high degree of parallelism.

  17. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    Science.gov (United States)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  18. CDPOP: A spatially explicit cost distance population genetics program

    Science.gov (United States)

    Erin L. Landguth; S. A. Cushman

    2010-01-01

    Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...

  19. Introduction to graph theory

    CERN Document Server

    Wilson, Robin J

    1985-01-01

    Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.

  20. Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming

    Science.gov (United States)

    Ahmed, Soha; Zhang, Mengjie; Peng, Lifeng

    2014-07-01

    Feature selection on mass spectrometry (MS) data is essential for improving classification performance and biomarker discovery. The number of MS samples is typically very small compared with the high dimensionality of the samples, which makes the problem of biomarker discovery very hard. In this paper, we propose the use of genetic programming for biomarker detection and classification of MS data. The proposed approach is composed of two phases: in the first phase, feature selection and ranking are performed. In the second phase, classification is performed. The results show that the proposed method can achieve better classification performance and biomarker detection rate than the information gain- (IG) based and the RELIEF feature selection methods. Meanwhile, four classifiers, Naive Bayes, J48 decision tree, random forest and support vector machines, are also used to further test the performance of the top ranked features. The results show that the four classifiers using the top ranked features from the proposed method achieve better performance than the IG and the RELIEF methods. Furthermore, GP also outperforms a genetic algorithm approach on most of the used data sets.

  1. Development of a Food Safety and Nutrition Education Program for Adolescents by Applying Social Cognitive Theory.

    Science.gov (United States)

    Lee, Jounghee; Jeong, Soyeon; Ko, Gyeongah; Park, Hyunshin; Ko, Youngsook

    2016-08-01

    The purpose of this study was to develop an educational model regarding food safety and nutrition. In particular, we aimed to develop educational materials, such as middle- and high-school textbooks, a teacher's guidebook, and school posters, by applying social cognitive theory. To develop a food safety and nutrition education program, we took into account diverse factors influencing an individual's behavior, such as personal, behavioral, and environmental factors, based on social cognitive theory. We also conducted a pilot study of the educational materials targeting middle-school students (n = 26), high-school students (n = 24), and dietitians (n = 13) regarding comprehension level, content, design, and quality by employing the 5-point Likert scale in May 2016. The food safety and nutrition education program covered six themes: (1) caffeine; (2) food additives; (3) foodborne illness; (4) nutrition and meal planning; (5) obesity and eating disorders; and (6) nutrition labeling. Each class activity was created to improve self-efficacy by setting one's own goal and to increase self-control by monitoring one's dietary intake. We also considered environmental factors by creating school posters and leaflets to educate teachers and parents. The overall evaluation score for the textbook was 4.0 points among middle- and high-school students, and 4.5 points among dietitians. This study provides a useful program model that could serve as a guide to develop educational materials for nutrition-related subjects in the curriculum. This program model was created to increase awareness of nutrition problems and self-efficacy. This program also helped to improve nutrition management skills and to promote a healthy eating environment in middle- and high-school students.

  2. Nurses' knowledge and educational needs regarding genetics.

    Science.gov (United States)

    Seven, Memnun; Akyüz, Aygül; Elbüken, Burcu; Skirton, Heather; Öztürk, Hatice

    2015-03-01

    Nurses now require a basic knowledge of genetics to provide patient care in a range of settings. To determine Turkish registered nurses' current knowledge and educational needs in relation to genetics. A descriptive, cross-sectional study. Turkish registered nurses working in a university hospital in Turkey were recruited. All registered nurses were invited to participate and 175 completed the study. The survey instrument, basic knowledge of health genetics, confidence in knowledge and the nurses' need for genetics education were used to collect data. The majority (81.1%, n=142) of participants indicated that genetics was not taught during their degree program, although 53.1% to 96% of respondents felt confident in defining different genetic concepts. The average genetics knowledge score was 6.89±1.99 of a possible 11 (range 0-11). The majority (70.3%) expressed a strong wish to attend a continuing nursing education program in genetics. The study shows that although Turkish nurses are not sufficiently knowledgeable to apply genetics in practice, they are willing to have more education to support their care of patients. Nurses need to have more education related to genetics in accordance with advances in human genetics to optimize health care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    Science.gov (United States)

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  4. Multiscale System Theory

    Science.gov (United States)

    1990-02-21

    LIDS-P-1953 Multiscale System Theory Albert Benveniste IRISA-INRIA, Campus de Beaulieu 35042 RENNES CEDEX, FRANCE Ramine Nikoukhah INRIA...TITLE AND SUBTITLE Multiscale System Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the development of a corresponding system theory and a theory of stochastic processes and their estimation. The research presented in this and several

  5. Quantum field theory and the linguistic Minimalist Program: a remarkable isomorphism

    Science.gov (United States)

    Piattelli-Palmarini, M.; Vitiello, G.

    2017-08-01

    By resorting to recent results, we show that an isomorphism exist between linguistic features of the Minimalist Program and the quantum field theory formalism of condensed matter physics. Specific linguistic features which admit a representation in terms of the many-body algebraic formalism are the unconstrained nature of recursive Merge, the operation of the Labeling Algorithm, the difference between pronounced and un-pronounced copies of elements in a sentence and the build-up of the Fibonacci sequence in the syntactic derivation of sentence structures. The collective dynamical nature of the formation process of Logical Forms leading to the individuation of the manifold of concepts and the computational self-consistency of languages are also discussed.

  6. Applying genetic algorithms for programming manufactoring cell tasks

    Directory of Open Access Journals (Sweden)

    Efredy Delgado

    2005-05-01

    Full Text Available This work was aimed for developing computational intelligence for scheduling a manufacturing cell's tasks, based manily on genetic algorithms. The manufacturing cell was modelled as beign a production-line; the makespan was calculated by using heuristics adapted from several libraries for genetic algorithms computed in C++ builder. Several problems dealing with small, medium and large list of jobs and machinery were resolved. The results were compared with other heuristics. The approach developed here would seem to be promising for future research concerning scheduling manufacturing cell tasks involving mixed batches.

  7. Feline genetics: clinical applications and genetic testing.

    Science.gov (United States)

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Cancer Genetics and Signaling | Center for Cancer Research

    Science.gov (United States)

    The Cancer, Genetics, and Signaling (CGS) Group at the National Cancer Institute at Frederick  offers a competitive postdoctoral training and mentoring program focusing on molecular and genetic aspects of cancer. The CGS Fellows Program is designed to attract and train exceptional postdoctoral fellows interested in pursuing independent research career tracks. CGS Fellows participate in a structured mentoring program designed for scientific and career development and transition to independent positions.

  9. The genetics of music accomplishment: evidence for gene-environment correlation and interaction.

    Science.gov (United States)

    Hambrick, David Z; Tucker-Drob, Elliot M

    2015-02-01

    Theories of skilled performance that emphasize training history, such as K. Anders Ericsson and colleagues' deliberate-practice theory, have received a great deal of recent attention in both the scientific literature and the popular press. Twin studies, however, have demonstrated evidence for moderate-to-strong genetic influences on skilled performance. Focusing on musical accomplishment in a sample of over 800 pairs of twins, we found evidence for gene-environment correlation, in the form of a genetic effect on music practice. However, only about one quarter of the genetic effect on music accomplishment was explained by this genetic effect on music practice, suggesting that genetically influenced factors other than practice contribute to individual differences in music accomplishment. We also found evidence for gene-environment interaction, such that genetic effects on music accomplishment were most pronounced among those engaging in music practice, suggesting that genetic potentials for skilled performance are most fully expressed and fostered by practice.

  10. A Theory Based Introductory Programming Course

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Kristensen, Jens Thyge; Rischel, Hans

    1999-01-01

    This paper presents an introductory programming course designed to teach programming as an intellectual activity. The course emphasizes understandable concepts which can be useful in designing programs, while the oddities of today's technology are considered of secondary importance. An important...... goal is to fight the trial-and-error approach to programming which is a result of the students battles with horribly designed and documented systems and languages prior to their studies at university. Instead, the authors strive for giving the students a good experience of programming as a systematic......, intellectual activity where the solution of a programming problem can be described in an understandable way. The approach is illustrated by an example which is a commented solution of a problem posed to the students in the course....

  11. The faster-X effect: integrating theory and data.

    Science.gov (United States)

    Meisel, Richard P; Connallon, Tim

    2013-09-01

    Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Public health genetic counselors: activities, skills, and sources of learning.

    Science.gov (United States)

    McWalter, Kirsty M; Sdano, Mallory R; Dave, Gaurav; Powell, Karen P; Callanan, Nancy

    2015-06-01

    Specialization within genetic counseling is apparent, with 29 primary specialties listed in the National Society of Genetic Counselors' 2012 Professional Status Survey (PSS). PSS results show a steady proportion of genetic counselors primarily involved in public health, yet do not identify all those performing public health activities. Little is known about the skills needed to perform activities outside of "traditional" genetic counselor roles and the expertise needed to execute those skills. This study aimed to identify genetic counselors engaging in public health activities, the skills used, and the most influential sources of learning for those skills. Participants (N = 155) reported involvement in several public health categories: (a) Education of Public and/or Health Care Providers (n = 80, 52 %), (b) Population-Based Screening Programs (n = 70, 45 %), (c) Lobbying/Public Policy (n = 62, 40 %), (d) Public Health Related Research (n = 47, 30 %), and (e) State Chronic Disease Programs (n = 12, 8 %). Regardless of category, "on the job" was the most common primary source of learning. Genetic counseling training program was the most common secondary source of learning. Results indicate that the number of genetic counselors performing public health activities is likely higher than PSS reports, and that those who may not consider themselves "public health genetic counselors" do participate in public health activities. Genetic counselors learn a diverse skill set in their training programs; some skills are directly applicable to public health genetics, while other public health skills require additional training and/or knowledge.

  13. Genetic algorithms: Theory and applications in the safety domain

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zio, E.

    2001-01-01

    This work illustrates the fundamentals underlying optimization by genetic algorithms. All the steps of the procedure are sketched in details for both the traditional breeding algorithm as well as for more sophisticated breeding procedures. The necessity of affine transforming the fitness function, object of the optimization, is discussed in detail, together with the transformation itself. Procedures for the inducement of species and niches are also presented. The theoretical aspects of the work are corroborated by a demonstration of the potential of genetic algorithm optimization procedures on three different case studies. The first case study deals with the design of the pressure stages of a natural gas pipeline system; the second one treats a reliability allocation problem in system configuration design; the last case regards the selection of maintenance and repair strategies for the logistic management of a risky plant. (author)

  14. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    NARCIS (Netherlands)

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can

  15. [United theory of aging].

    Science.gov (United States)

    Trubitsyn, A G

    2012-01-01

    In attempts to develop a means of life prolongation the humankind has created more than three hundred theories of the aging; each of them offers the original cause of aging. However, none of them has given practical result by now. The majority of the theories have now only historical interest. There are several different theories that are mainly under consideration currently. They are based on reliable, proven evidence: the free radical theory, the protein error theory, the replicative senescence theory, the theory of reparation weakening, the immunological theory, several versions of neuroendocrinal theories, and programmed aging theory. The theory presented here is based on conception that the life as the phenomenon represents many of the interconnected physical and chemical processes propelled by energy of the mitochondrial bioenergetical machine. Gradual degradation of all vital processes is caused by the programmed decrease in level of bioenergetics. This theory unites all existing theories of aging constructed on authentic facts: it is shown, that such fundamental phenomena accompanying aging process as the increase in level of reactive oxygen species (ROS), the decrease in the general level of protein synthesis, the limitation of cellular dividing (Haiflick limit), decrease in efficiency of reparation mechanisms are caused by bioenergetics attenuation. Each of these phenomena in turn generates a number of harmful secondary processes. Any of the theories bases on one of these destructive phenomena or their combination. Hence, each of them describes one of sides of process of the aging initially caused by programmed decrease of level of bioenergetics. This united theory gives the chance to understand the nature of aging clock and explains a phenomenon of increase in longevity at the condition of food restriction. Failures of attempts to develop means from aging are explained by that the manipulations with the separate secondary phenomena of attenuation of

  16. An Arbitrary First Order Theory Can Be Represented by a Program: A Theorem

    Science.gov (United States)

    Hosheleva, Olga

    1997-01-01

    How can we represent knowledge inside a computer? For formalized knowledge, classical logic seems to be the most adequate tool. Classical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence. There is only one serious problem with classical logic: due to the famous Godel's theorem, classical logic is algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements, it is very difficult to check whether, based on this statement, a given query is true or not. To make knowledge representations more algorithmic, a special field of logic programming was invented. An important portion of logic programming is algorithmically decidable. To cover knowledge that cannot be represented in this portion, several extensions of the decidable fragments have been proposed. In the spirit of logic programming, these extensions are usually introduced in such a way that even if a general algorithm is not available, good heuristic methods exist. It is important to check whether the already proposed extensions are sufficient, or further extensions is necessary. In the present paper, we show that one particular extension, namely, logic programming with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable sense) an arbitrary first order logical theory.

  17. Toward a Better Understanding of Population Genetics: Pop!World--A Virtual, Inquiry-Based Tool for Teaching Population Genetics

    Science.gov (United States)

    Poulin, Jessica; Ramamurthy, Bina; Dittmar, Katharina

    2013-01-01

    Population genetics is fundamental to understanding evolutionary theory, and is taught in most introductory biology/evolution courses. Many students are unaware that understanding this topic requires pertinent knowledge

  18. Human genetics of infectious diseases: a unified theory

    OpenAIRE

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predispos...

  19. What is "the patient perspective" in patient engagement programs? Implicit logics and parallels to feminist theories.

    Science.gov (United States)

    Rowland, Paula; McMillan, Sarah; McGillicuddy, Patti; Richards, Joy

    2017-01-01

    Public and patient involvement (PPI) in health care may refer to many different processes, ranging from participating in decision-making about one's own care to participating in health services research, health policy development, or organizational reforms. Across these many forms of public and patient involvement, the conceptual and theoretical underpinnings remain poorly articulated. Instead, most public and patient involvement programs rely on policy initiatives as their conceptual frameworks. This lack of conceptual clarity participates in dilemmas of program design, implementation, and evaluation. This study contributes to the development of theoretical understandings of public and patient involvement. In particular, we focus on the deployment of patient engagement programs within health service organizations. To develop a deeper understanding of the conceptual underpinnings of these programs, we examined the concept of "the patient perspective" as used by patient engagement practitioners and participants. Specifically, we focused on the way this phrase was used in the singular: "the" patient perspective or "the" patient voice. From qualitative analysis of interviews with 20 patient advisers and 6 staff members within a large urban health network in Canada, we argue that "the patient perspective" is referred to as a particular kind of situated knowledge, specifically an embodied knowledge of vulnerability. We draw parallels between this logic of patient perspective and the logic of early feminist theory, including the concepts of standpoint theory and strong objectivity. We suggest that champions of patient engagement may learn much from the way feminist theorists have constructed their arguments and addressed critique.

  20. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming.

    Science.gov (United States)

    Nunkesser, Robin; Bernholt, Thorsten; Schwender, Holger; Ickstadt, Katja; Wegener, Ingo

    2007-12-15

    Not individual single nucleotide polymorphisms (SNPs), but high-order interactions of SNPs are assumed to be responsible for complex diseases such as cancer. Therefore, one of the major goals of genetic association studies concerned with such genotype data is the identification of these high-order interactions. This search is additionally impeded by the fact that these interactions often are only explanatory for a relatively small subgroup of patients. Most of the feature selection methods proposed in the literature, unfortunately, fail at this task, since they can either only identify individual variables or interactions of a low order, or try to find rules that are explanatory for a high percentage of the observations. In this article, we present a procedure based on genetic programming and multi-valued logic that enables the identification of high-order interactions of categorical variables such as SNPs. This method called GPAS cannot only be used for feature selection, but can also be employed for discrimination. In an application to the genotype data from the GENICA study, an association study concerned with sporadic breast cancer, GPAS is able to identify high-order interactions of SNPs leading to a considerably increased breast cancer risk for different subsets of patients that are not found by other feature selection methods. As an application to a subset of the HapMap data shows, GPAS is not restricted to association studies comprising several 10 SNPs, but can also be employed to analyze whole-genome data. Software can be downloaded from http://ls2-www.cs.uni-dortmund.de/~nunkesser/#Software

  1. Program package for multicanonical simulations of U(1) lattice gauge theory-Second version

    Science.gov (United States)

    Bazavov, Alexei; Berg, Bernd A.

    2013-03-01

    A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl

  2. Gender differences in consumers' acceptance of genetically modified foods

    NARCIS (Netherlands)

    Moerbeek, H.; Casimir, G.

    2005-01-01

    Research has shown that women are less accepting of genetically engineered products than men. We expect two mechanisms to be at work here. First, in consumer behaviour theory, more knowledge is assumed to lead to more acceptance. We assumed that for genetically engineered foods, this general

  3. Quantum Genetics in terms of Quantum Reversible Automata and Quantum Computation of Genetic Codes and Reverse Transcription

    CERN Document Server

    Baianu,I C

    2004-01-01

    The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...

  4. Community Genetics: a new discipline and its application in Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Sérgio Ramalho

    Full Text Available Community genetics is a new discipline which aims to provide genetic services to the community as a whole. As a science, community genetics encompasses all research needed to develop and evaluate its application. There is no question that the development of community genetics is necessary in Brazil. The implementation of such programs in our country, especially for hemoglobinopathies, has been recommended by the World Health Organization and other international organizations. Apart from the need for and appeal of community genetics programs, some aspects require serious review. This article discusses various cultural, social, psychological, and economic factors that can make genetic screening an invasion of individual privacy

  5. Community Genetics: a new discipline and its application in Brazil

    Directory of Open Access Journals (Sweden)

    Ramalho Antonio Sérgio

    2000-01-01

    Full Text Available Community genetics is a new discipline which aims to provide genetic services to the community as a whole. As a science, community genetics encompasses all research needed to develop and evaluate its application. There is no question that the development of community genetics is necessary in Brazil. The implementation of such programs in our country, especially for hemoglobinopathies, has been recommended by the World Health Organization and other international organizations. Apart from the need for and appeal of community genetics programs, some aspects require serious review. This article discusses various cultural, social, psychological, and economic factors that can make genetic screening an invasion of individual privacy

  6. A Program to Reduce Disruptive Behavior in a School Based Upon a Practical Application of the Adlerian Theory of Psychology.

    Science.gov (United States)

    Crawford, Carl G.

    This practicum report describes a program to aid in reducing the incidence of disruptive behavior of students through the use of the Adlerian Theory of Psychology. The report contains a general definition of the problem, which was the reduction of the disruptive student behavior, and the objectives to be achieved from the program. There is a…

  7. Flow discharge prediction in compound channels using linear genetic programming

    Science.gov (United States)

    Azamathulla, H. Md.; Zahiri, A.

    2012-08-01

    SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.

  8. Semantic theory for logic programming

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F M

    1981-01-01

    The author axiomatizes a number of meta theoretic concepts which have been used in logic programming, including: meaning, logical truth, nonentailment, assertion and erasure, thus showing that these concepts are logical in nature and need not be defined as they have previously been defined in terms of the operations of any particular interpreter for logic programs. 10 references.

  9. Analysis of genetic diversity in a close population of Zandi sheep ...

    Indian Academy of Sciences (India)

    of the effective population size (Ne) for extending popula- tion genetics theory developed ..... animal genetic resources management plans: management of small populations at risk. Food and Agriculture Organization,. Rome, Italy. Fisher R. A. ...

  10. gPGA: GPU Accelerated Population Genetics Analyses.

    Directory of Open Access Journals (Sweden)

    Chunbao Zhou

    Full Text Available The isolation with migration (IM model is important for studies in population genetics and phylogeography. IM program applies the IM model to genetic data drawn from a pair of closely related populations or species based on Markov chain Monte Carlo (MCMC simulations of gene genealogies. But computational burden of IM program has placed limits on its application.With strong computational power, Graphics Processing Unit (GPU has been widely used in many fields. In this article, we present an effective implementation of IM program on one GPU based on Compute Unified Device Architecture (CUDA, which we call gPGA.Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly for research on divergence population genetics. The software is freely available with source code at https://github.com/chunbaozhou/gPGA.

  11. The Irie Classroom Toolbox: developing a violence prevention, preschool teacher training program using evidence, theory, and practice.

    Science.gov (United States)

    Baker-Henningham, Helen

    2018-05-01

    In this paper, I describe the development of the Irie Classroom Toolbox, a school-based violence prevention, teacher training program for use with children aged 3-6 years. In-depth interviews were conducted with Jamaican preschool teachers, who had participated in a trial of a classroom behavior management program, at posttest (n = 35) and 5 years later (n = 20). An on-going process evaluation was also conducted. Teachers' preferred behavior management strategies and training methods were documented, and enablers and barriers to implementation were identified. Teachers were most likely to adopt strategies that they liked, found easy to use, and were effective. These included paying attention to positive behavior and explicitly teaching children the expected behavior. Teachers preferred active, hands-on training strategies based on social-cognitive theories. Enablers to intervention implementation included positive teacher-facilitator relationships, choice, collaborative problem solving, teachers recognizing benefits of the intervention, group support, and provision of materials. Barriers to intervention implementation were also identified. These data were integrated with behavior change theory (i.e., the behavior change wheel and theoretical domains framework) to develop an intervention grounded in common core elements of evidence-based programs while also utilizing teachers' perspectives. The resulting program is a low cost, adaptable intervention that should be suitable for training preschool teachers in other low-resource settings. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.

  12. Theory-Based Stakeholder Evaluation – applied. Competing Stakeholder Theories in the Quality Management of Primary Education

    DEFF Research Database (Denmark)

    Hansen, Morten Balle; Heilesen, J. B.

    In the broader context of evaluation design, this paper examines and compares pros and cons of a theory-based approach to evaluation (TBE) with the Theory-Based Stakeholder evaluation (TSE) model, introduced by Morten Balle Hansen and Evert Vedung (Hansen and Vedung 2010). While most approaches...... to TBE construct one unitary theory of the program (Coryn et al. 2011), the TSE-model emphasizes the importance of keeping theories of diverse stakeholders apart. This paper applies the TSE-model to an evaluation study conducted by the Danish Evaluation Institute (EVA) of the Danish system of quality......-model, as an alternative to traditional program theory evaluation....

  13. Human genetic issues from scientific and Islamic perspectives | Alwi ...

    African Journals Online (AJOL)

    This paper aims at revealing the Human Genome Project (HGP) and human genetic issues arising from science and Islamic perspectives such as Darwin's evolutionary theory, human cloning and eugenics. Finally, issues arising from the applications of human genetic technology need to be addressed to the best possible ...

  14. Mathematical fundamentals for the noise immunity of the genetic code.

    Science.gov (United States)

    Fimmel, Elena; Strüngmann, Lutz

    2018-02-01

    Symmetry is one of the essential and most visible patterns that can be seen in nature. Starting from the left-right symmetry of the human body, all types of symmetry can be found in crystals, plants, animals and nature as a whole. Similarly, principals of symmetry are also some of the fundamental and most useful tools in modern mathematical natural science that play a major role in theory and applications. As a consequence, it is not surprising that the desire to understand the origin of life, based on the genetic code, forces us to involve symmetry as a mathematical concept. The genetic code can be seen as a key to biological self-organisation. All living organisms have the same molecular bases - an alphabet consisting of four letters (nitrogenous bases): adenine, cytosine, guanine, and thymine. Linearly ordered sequences of these bases contain the genetic information for synthesis of proteins in all forms of life. Thus, one of the most fascinating riddles of nature is to explain why the genetic code is as it is. Genetic coding possesses noise immunity which is the fundamental feature that allows to pass on the genetic information from parents to their descendants. Hence, since the time of the discovery of the genetic code, scientists have tried to explain the noise immunity of the genetic information. In this chapter we will discuss recent results in mathematical modelling of the genetic code with respect to noise immunity, in particular error-detection and error-correction. We will focus on two central properties: Degeneracy and frameshift correction. Different amino acids are encoded by different quantities of codons and a connection between this degeneracy and the noise immunity of genetic information is a long standing hypothesis. Biological implications of the degeneracy have been intensively studied and whether the natural code is a frozen accident or a highly optimised product of evolution is still controversially discussed. Symmetries in the structure of

  15. Genetic Sample Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database archives genetic tissue samples from marine mammals collected primarily from the U.S. east coast. The collection includes samples from field programs,...

  16. A synthetic axiomatization of Map Theory

    DEFF Research Database (Denmark)

    Berline, Chantal; Grue, Klaus Ebbe

    2016-01-01

    of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert's epsilon operator from Map Theory then one is left with a computer programming language. Map Theory fulfills Church's original aim of lambda calculus. Map Theory is suited for reasoning about...... classical mathematics as well as computer programs. Furthermore, Map Theory is suited for eliminating the barrier between classical mathematics and computer science rather than just supporting the two fields side by side. Map Theory axiomatizes a universe of “maps”, some of which are “wellfounded......”. The class of wellfounded maps in Map Theory corresponds to the universe of sets in ZFC. The first axiomatization MT 0 of Map Theory had axioms which populated the class of wellfounded maps, much like the power set axiom along with others populate the universe of ZFC. The new axiomatization MT of Map Theory...

  17. Lessons to be learned from a contentious challenge to mainstream radiobiological science (the linear no-threshold theory of genetic mutations).

    Science.gov (United States)

    Beyea, Jan

    2017-04-01

    There are both statistically valid and invalid reasons why scientists with differing default hypotheses can disagree in high-profile situations. Examples can be found in recent correspondence in this journal, which may offer lessons for resolving challenges to mainstream science, particularly when adherents of a minority view attempt to elevate the status of outlier studies and/or claim that self-interest explains the acceptance of the dominant theory. Edward J. Calabrese and I have been debating the historical origins of the linear no-threshold theory (LNT) of carcinogenesis and its use in the regulation of ionizing radiation. Professor Calabrese, a supporter of hormesis, has charged a committee of scientists with misconduct in their preparation of a 1956 report on the genetic effects of atomic radiation. Specifically he argues that the report mischaracterized the LNT research record and suppressed calculations of some committee members. After reviewing the available scientific literature, I found that the contemporaneous evidence overwhelmingly favored a (genetics) LNT and that no calculations were suppressed. Calabrese's claims about the scientific record do not hold up primarily because of lack of attention to statistical analysis. Ironically, outlier studies were more likely to favor supra-linearity, not sub-linearity. Finally, the claim of investigator bias, which underlies Calabrese's accusations about key studies, is based on misreading of text. Attention to ethics charges, early on, may help seed a counter narrative explaining the community's adoption of a default hypothesis and may help focus attention on valid evidence and any real weaknesses in the dominant paradigm. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Theory of computation

    CERN Document Server

    Tourlakis, George

    2012-01-01

    Learn the skills and acquire the intuition to assess the theoretical limitations of computer programming Offering an accessible approach to the topic, Theory of Computation focuses on the metatheory of computing and the theoretical boundaries between what various computational models can do and not do—from the most general model, the URM (Unbounded Register Machines), to the finite automaton. A wealth of programming-like examples and easy-to-follow explanations build the general theory gradually, which guides readers through the modeling and mathematical analysis of computational pheno

  19. Genetic architecture of sex determination in fish: Applications to sex ratio control in aquaculture

    Directory of Open Access Journals (Sweden)

    Paulino eMartínez

    2014-09-01

    Full Text Available Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD, a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two

  20. Gene cuisine or Frankenfood? The theory of reasoned action as an audience segmentation strategy for messages about genetically modified foods.

    Science.gov (United States)

    Silk, Kami J; Weiner, Judith; Parrott, Roxanne L

    2005-12-01

    Genetically modified (GM) foods are currently a controversial topic about which the lay public in the United States knows little. Formative research has demonstrated that the lay public is uncertain and concerned about GM foods. This study (N = 858) extends focus group research by using the Theory of Reasoned Action (TRA) to examine attitudes and subjective norms related to GM foods as a theoretical strategy for audience segmentation. A hierarchical cluster analysis revealed four unique audiences based on their attitude and subjective norm toward GM foods (ambivalent-biotech, antibiotech, biotech-normer, and biotech individual). Results are discussed in terms of the theoretical and practical significance for audience segmentation.

  1. The effect of an interventional program based on the Theory of Ethology on infant breastfeeding competence

    Directory of Open Access Journals (Sweden)

    aghdas karimi

    2014-08-01

    Full Text Available Introduction: according to the ethology theory mother infant separation immediately after birth can interfere with the infants innate behaviors for the initiation of breastfeeding. The aim of this study was to the effect of an interventional program based on the Theory of Ethology on infant breast feeding competence Materials and Methods: 114 primiparous, Iranian, healthy, full term mothers between 18-35 years with normal vaginal delivery who intended to breastfeed their babies. They were put in direct skin to skin contact with their infants immediately after birth for two hours. Then, rates of infant breastfeeding competence were compared with a control group receiving routine hospital cares. Results: Rates of infant breastfeeding competence were higher in the skin to skin contact group compared to routine care group (p=0.0001. Conclusion: mother- infant early skin to skin contact promotes infants natural feeding behaviors leading to higher rates of infant breastfeeding competence. These findings confirm the Theory of Ethology.

  2. The effect of an interventional program based on the Theory of Ethology on infant breastfeeding competence

    Directory of Open Access Journals (Sweden)

    aghdas karimi

    2014-12-01

    Full Text Available Introduction: according to the ethology theory mother infant separation immediately after birth can interfere with the infants innate behaviors for the initiation of breastfeeding. The aim of this study was to the effect of an interventional program based on the Theory of Ethology on infant breast feeding competence Materials and Methods: 114 primiparous, Iranian, healthy, full term mothers between 18-35 years with normal vaginal delivery who intended to breastfeed their babies. They were put in direct skin to skin contact with their infants immediately after birth for two hours. Then, rates of infant breastfeeding competence were compared with a control group receiving routine hospital cares. Results: Rates of infant breastfeeding competence were higher in the skin to skin contact group compared to routine care group (p=0.0001. Conclusion: mother- infant early skin to skin contact promotes infants natural feeding behaviors leading to higher rates of infant breastfeeding competence. These findings confirm the Theory of Ethology.

  3. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    Science.gov (United States)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  4. Surrogate-Assisted Genetic Programming With Simplified Models for Automated Design of Dispatching Rules.

    Science.gov (United States)

    Nguyen, Su; Zhang, Mengjie; Tan, Kay Chen

    2017-09-01

    Automated design of dispatching rules for production systems has been an interesting research topic over the last several years. Machine learning, especially genetic programming (GP), has been a powerful approach to dealing with this design problem. However, intensive computational requirements, accuracy and interpretability are still its limitations. This paper aims at developing a new surrogate assisted GP to help improving the quality of the evolved rules without significant computational costs. The experiments have verified the effectiveness and efficiency of the proposed algorithms as compared to those in the literature. Furthermore, new simplification and visualisation approaches have also been developed to improve the interpretability of the evolved rules. These approaches have shown great potentials and proved to be a critical part of the automated design system.

  5. Modelling the effect of structural QSAR parameters on skin penetration using genetic programming

    International Nuclear Information System (INIS)

    Chung, K K; Do, D Q

    2010-01-01

    In order to model relationships between chemical structures and biological effects in quantitative structure–activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data

  6. A Formative Evaluation of Healthy Heroes: A Photo Comic Book-Social Cognitive Theory Based Obesity Prevention Program

    Science.gov (United States)

    Branscum, Paul; Housley, Alexandra; Bhochhibhoya, Amir; Hayes, Logan

    2016-01-01

    Purpose: Low consumption of fruits and vegetables is often associated with poor diet quality, and childhood obesity. The purpose of this study was to assess the feasibility, and conduct a formative evaluation, of Healthy Heroes, an innovative, social cognitive theory-based program that uses child created photo-comic books to promote fruit and…

  7. Research program in elementary particle theory: Outstanding Junior Investigator Program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1990-01-01

    This report discusses the following topics: aspects of string theory; nonlinear sigma models and high-T c superconductivity; axionic black holes; topological mass generation; and quantum gravity in 2 + 1 dimensions

  8. The genetics of radiation-induced and sporadic osteosarcoma: a unifying theory?

    International Nuclear Information System (INIS)

    Rosemann, Michael; Kuosaite, Virginija; Nathrath, Michaela; Atkinson, Michael J.

    2002-01-01

    Cancer is a disease of the genome, with the neoplastic phenotype being passed from one cell generation to the other. Radiation-induced cancer has often been considered to represent a unique entity amongst neoplasia, with the energy deposition being held responsible for both direct (gene mutations) and indirect (bystander effects, induced instability etc) alterations to the cellular genome. However, radiogenic tumours in man and experimental animals appear to be physiologically and genetically indistinguishable from their sporadic counterparts, suggesting that the aetiologies of these two tumour types are in fact closely related. We have conducted a general screen of the genetic alterations in radiation-induced mouse osteosarcoma, a tumour that is histopathologically indistinguishable from human sporadic osteosarcoma. Comparison of the two tumour types indicates the existence of a common set of genetic changes, providing additional evidence to support the concept that the molecular pathology of radiation-induced malignancy is no different to that of sporadic cancers. (author)

  9. Introduction to homotopy theory

    CERN Document Server

    Selick, Paul

    2008-01-01

    This text is based on a one-semester graduate course taught by the author at The Fields Institute in fall 1995 as part of the homotopy theory program which constituted the Institute's major program that year. The intent of the course was to bring graduate students who had completed a first course in algebraic topology to the point where they could understand research lectures in homotopy theory and to prepare them for the other, more specialized graduate courses being held in conjunction with the program. The notes are divided into two parts: prerequisites and the course proper. Part I, the pr

  10. Designing and evaluating an effective theory-based continuing interprofessional education program to improve sepsis care by enhancing healthcare team collaboration.

    Science.gov (United States)

    Owen, John A; Brashers, Valentina L; Littlewood, Keith E; Wright, Elisabeth; Childress, Reba Moyer; Thomas, Shannon

    2014-05-01

    Continuing interprofessional education (CIPE) differs from traditional continuing education (CE) in both the learning process and content, especially when it occurs in the workplace. Applying theories to underpin the development, implementation, and evaluation of CIPE activities informs educational design, encourages reflection, and enhances our understanding of CIPE and collaborative practice. The purpose of this article is to describe a process of design, implementation, and evaluation of CIPE through the application of explicit theories related to CIPE and workplace learning. A description of an effective theory-based program delivered to faculty and clinicians to enhance healthcare team collaboration is provided. Results demonstrated that positive changes in provider perceptions of and commitment to team-based care were achieved using this theory-based approach. Following this program, participants demonstrated a greater appreciation for the roles of other team members by indicating that more responsibility for implementing the Surviving Sepsis guideline should be given to nurses and respiratory therapists and less to physicians. Furthermore, a majority (86%) of the participants made commitments to demonstrate specific collaborative behaviors in their own practice. The article concludes with a discussion of our enhanced understanding of CIPE and a reinterpretation of the learning process which has implications for future CIPE workplace learning activities.

  11. Research program in elementary particle theory: Outstanding junior investigator program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1989-01-01

    This report briefly discusses the following topics: high-temperature strings; axionic black holes and wormholes; equations of motion for massless modes as vanishing curvature; vertex algebras and string theory; and massive axions

  12. Knowledge of Genetics and Attitudes toward Genetic Testing among College Students in Saudi Arabia.

    Science.gov (United States)

    Olwi, Duaa; Merdad, Leena; Ramadan, Eman

    2016-01-01

    Genetic testing has been gradually permeating the practice of medicine. Health-care providers may be confronted with new genetic approaches that require genetically informed decisions which will be influenced by patients' knowledge of genetics and their attitudes toward genetic testing. This study assesses the knowledge of genetics and attitudes toward genetic testing among college students. A cross-sectional study was conducted using a multistage stratified sample of 920 senior college students enrolled at King Abdulaziz University, Saudi Arabia. Information regarding knowledge of genetics, attitudes toward genetic testing, and sociodemographic data were collected using a self-administered questionnaire. In general, students had a good knowledge of genetics but lacked some fundamentals of genetics. The majority of students showed positive attitudes toward genetic testing, but some students showed negative attitudes toward certain aspects of genetic testing such as resorting to abortion in the case of an untreatable major genetic defect in an unborn fetus. The main significant predictors of knowledge were faculty, gender, academic year, and some prior awareness of 'genetic testing'. The main significant predictors of attitudes were gender, academic year, grade point average, and some prior awareness of 'genetic testing'. The knowledge of genetics among college students was higher than has been reported in other studies, and the attitudes toward genetic testing were fairly positive. Genetics educational programs that target youths may improve knowledge of genetics and create a public perception that further supports genetic testing. © 2016 S. Karger AG, Basel.

  13. Automatic Generation of English-Japanese Translation Pattern Utilizing Genetic Programming Technique

    Science.gov (United States)

    Matsumura, Koki; Tamekuni, Yuji; Kimura, Shuhei

    There are a lot of constructional differences in an English-Japanese phrase template, and that often makes the act of translation difficult. Moreover, there exist various and tremendous phrase templates and sentence to be refered to. It is not easy to prepare the corpus that covers the all. Therefore, it is very significant to generate the translation pattern of the sentence pattern automatically from a viewpoint of the translation success rate and the capacity of the pattern dictionary. Then, for the purpose of realizing the automatic generation of the translation pattern, this paper proposed the new method for the generation of the translation pattern by using the genetic programming technique (GP). The technique tries to generate the translation pattern of various sentences which are not registered in the phrase template dictionary automatically by giving the genetic operation to the parsing tree of a basic pattern. The tree consists of the pair of the English-Japanese sentence generated as the first stage population. The analysis tree data base with 50,100,150,200 pairs was prepared as the first stage population. And this system was applied and executed for an English input of 1,555 sentences. As a result, the analysis tree increases from 200 to 517, and the accuracy rate of the translation pattern has improved from 42.57% to 70.10%. And, 86.71% of the generated translations was successfully done, whose meanings are enough acceptable and understandable. It seemed that this proposal technique became a clue to raise the translation success rate, and to find the possibility of the reduction of the analysis tree data base.

  14. Genetic parameters in a Swine Population

    Directory of Open Access Journals (Sweden)

    Dana Popa

    2010-05-01

    Full Text Available The estimation of the variance-covariance components is a very important step in animal breeding because these components are necessary for: estimation of the genetic parameters, prediction of the breeding value and design of animal breeding programs. The estimation of genetic parameters is the first step in the development of a swine breeding program, using artificial insemination. Various procedures exist for estimation of heritability. There are three major procedures used for estimating heritability: analysis of variance (ANOVA, parents-offspring regression and restricted maximum likelihood (REML. By using ANOVA methodology or regression method it is possible to obtain aberrant values of genetic parameters (negative or over unit value of heritability coefficient, for example which can not be interpreting because is out of biological limits.

  15. [An oral function improvement program utilizing health behavior theories ameliorates oral functions and oral hygienic conditions of pre-frail elderly persons].

    Science.gov (United States)

    Sakaguchi, Hideo

    2014-06-01

    Oral function improvement programs utilizing health behavior theories are considered to be effective in preventing the need for long-term social care. In the present study, an oral function improvement program based upon health behavior theories was designed, and its utility was assessed in 102 pre-frail elderly persons (33 males, 69 females, mean age: 76.9 +/- 5.7) considered to be in potential need of long-term social care and attending a long-term care prevention class in Sayama City, Saitama Prefecture, Japan. The degree of improvement in oral functions (7 items) and oral hygienic conditions (3 items) was assessed by comparing oral health before and after participation in the program. The results showed statistically significant improvements in the following oral functions: (1) lip functions (oral diadochokinesis, measured by the regularity of the repetition of the syllable "Pa"), (2) tongue functions, (3) tongue root motor skills (oral diadochokinesis, measured by the regularity of the repetition of the syllables "Ta" and "Ka"), (4) tongue extension/retraction, (5) side-to-side tongue movement functions, (6) cheek motor skills, and (7) repetitive saliva swallowing test (RSST). The following measures of oral hygiene also showed a statistically significant improvement: (1) debris on dentures or teeth, (2) coated tongue, and (3) frequency of oral cleaning. These findings demonstrated that an improvement program informed by health behavior theories is useful in improving oral functions and oral hygiene conditions.

  16. Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming

    Science.gov (United States)

    Yeh, K.; Wei, H.; Chen, L.; Liu, G.

    2010-12-01

    Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming Keh-Chia Yeha, Hsiao-Ping Weia,d, Li Chenb, and Gin-Rong Liuc a Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, R.O.C. b Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan, 300, R.O.C. c Center for Space and Remote Sensing Research, National Central University, Tao-Yuan, Taiwan, 320, R.O.C. d National Science and Technology Center for Disaster Reduction, Taipei County, Taiwan, 231, R.O.C. Abstract This paper proposes an improved multi-run genetic programming (GP) and applies it to predict the rainfall using meteorological satellite data. GP is a well-known evolutionary programming and data mining method, used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize appropriate types of function and their associated coefficients simultaneously. This study makes an improvement to enhance escape ability from local optimums during the optimization procedure. The GP continuously runs several times by replacing the terminal nodes at the next run with the best solution at the current run. The current novel model improves GP, obtaining a highly nonlinear mathematical equation to estimate the rainfall. In the case study, this improved GP described above combining with SSM/I satellite data is employed to establish a suitable method for estimating rainfall at sea surface during typhoon periods. These estimated rainfalls are then verified with the data from four rainfall stations located at Peng-Jia-Yu, Don-Gji-Dao, Lan-Yu, and Green Island, which are four small islands around Taiwan. From the results, the improved GP can generate sophisticated and accurate nonlinear mathematical equation through two-run learning procedures which outperforms the traditional multiple linear regression, empirical equations and back-propagated network

  17. What Froze the Genetic Code?

    Directory of Open Access Journals (Sweden)

    Lluís Ribas de Pouplana

    2017-04-01

    Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  18. What Froze the Genetic Code?

    Science.gov (United States)

    Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert

    2017-04-05

    The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  19. Boolean Queries Optimization by Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  20. Genetic diversity of Colletotrichum gloeosporioides in Nigeria using ...

    African Journals Online (AJOL)

    fmodupe

    2012-04-24

    Apr 24, 2012 ... gloeosporioides isolates and was effective in establishing genetic relationships ... Key words: Anthracnose disease, pathotypes, genetic diversity, amplified ..... isolates to use in an anthracnose resistance screening program.

  1. Genetics and ecology of colonization and mass rearing of Hawaiian fruit flies (Diptera: Tephritidae) for use in sterile insect control programs

    International Nuclear Information System (INIS)

    Saul, S.H.; McCombs, S.D.

    1995-01-01

    It is critical to maintain the genetic, physiological and behavioral competence of colonized populations of insect species, such as fruit flies, which are reared for release in sterile insect and other genetic control programs. Selective pressures associated with the mass rearing process affect this competence, but the underlying mechanisms of genetic change arc largely unknown. However, competence is often an operational goal achieved by manipulating environmental factors without possessing precise genetic knowledge of alleles and their marginal effects on the desired traits. One goal of this paper is to show that the precise genetic and statistical analysis of components that determine competence in a broad sense or fitness in the narrower ecological sense, is extremely difficult. We can gel contradictory results from the different methods for estimating genetic variation in tephritid populations. We observe low levels of allozyme variation, but high levels of recessive mutants in inbred populations. We propose that genetic variability may be maintained in colonized and mass reared laboratory populations by balanced lethal systems and that the introduction of fresh genetic material may reduce, not increase, fitness. We require rigorous and precise models of directional selection in the laboratory and selective forces in the natural environment to aid our understanding of dynamic changes in courtship and mating behavior under artificial conditions. We have chosen to examine the lek model as an example of an idea whose usefulness has yet to be determined by test ing and validation. The inclusion of lek forming ability in genetic models will be depen dent on rigorously establishing the validity of the lek model for each tephritid species

  2. Genetics of oil pumpkin, Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2011-01-01

    Full Text Available Oil pumpkin (Cucurbita pepo L. belongs to alternative crops grown for seeds and high quality seed oil. One of the basic prerequisites of successful production of oil pumpkin is the proper choice of cultivar. The genetics of different traits of oil pumpkin represents the basis for breeding of new cultivars of oil pumpkin. Of special interest for oil pumpkin breeding are the genetics of seed- coat, plant growth type, resistance to diseases and genetic basis of male sterility. For practical breeding of oil pumpkin the theory of monogenic inheritance of seed coat is quite satisfactory. In light of the theory of developmental reversal of dominance, it may be concluded for C. pepo that the bush type of growth is almost completely dominant over the vine habit at the beginning of plant growth, be- coming incompletely dominant in the second part of the season. In C. moshata several resistance genes of interest in oil pumpkin breeding for virus resistance were discovered. Male sterility, which was transferred to different genotypes of naked seeded oil pumpkin has potential for production of F1 hybrid seed. In addition to traits mention above, other genes of interest for genetics and breeding of oil pumpkin are also mentioned in this paper.

  3. Intra-Day Trading System Design Based on the Integrated Model of Wavelet De-Noise and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Hongguang Liu

    2016-12-01

    Full Text Available Technical analysis has been proved to be capable of exploiting short-term fluctuations in financial markets. Recent results indicate that the market timing approach beats many traditional buy-and-hold approaches in most of the short-term trading periods. Genetic programming (GP was used to generate short-term trade rules on the stock markets during the last few decades. However, few of the related studies on the analysis of financial time series with genetic programming considered the non-stationary and noisy characteristics of the time series. In this paper, to de-noise the original financial time series and to search profitable trading rules, an integrated method is proposed based on the Wavelet Threshold (WT method and GP. Since relevant information that affects the movement of the time series is assumed to be fully digested during the market closed periods, to avoid the jumping points of the daily or monthly data, in this paper, intra-day high-frequency time series are used to fully exploit the short-term forecasting advantage of technical analysis. To validate the proposed integrated approach, an empirical study is conducted based on the China Securities Index (CSI 300 futures in the emerging China Financial Futures Exchange (CFFEX market. The analysis outcomes show that the wavelet de-noise approach outperforms many comparative models.

  4. Developmental system at the crossroads of system theory, computer science, and genetic engineering

    CERN Document Server

    Węgrzyn, Stefan; Vidal, Pierre

    1990-01-01

    Many facts were at the origin of the present monograph. The ftrst is the beauty of maple leaves in Quebec forests in Fall. It raised the question: how does nature create and reproduce such beautiful patterns? The second was the reading of A. Lindenmayer's works on L systems. Finally came the discovery of "the secrets of DNA" together with many stimulating ex­ changes with biologists. Looking at such facts from the viewpoint of recursive numerical systems led to devise a simple model based on six elementary operations organized in a generating word, the analog of the program of a computer and of the genetic code of DNA in the cells of a living organism. It turned out that such a model, despite its simplicity, can account for a great number of properties of living organisms, e.g. their hierarchical structure, their ability to regenerate after a trauma, the possibility of cloning, their sensitivity to mutation, their growth, decay and reproduction. The model lends itself to analysis: the knowledge of the genera...

  5. Biocultural Theory

    DEFF Research Database (Denmark)

    Carroll, Joseph; Clasen, Mathias; Jonsson, Emelie

    2017-01-01

    Biocultural theory is an integrative research program designed to investigate the causal interactions between biological adaptations and cultural constructions. From the biocultural perspective, cultural processes are rooted in the biological necessities of the human life cycle: specifically human...... of research as contributions to a coherent, collective research program. This article argues that a mature biocultural paradigm needs to be informed by at least 7 major research clusters: (a) gene-culture coevolution; (b) human life history theory; (c) evolutionary social psychology; (d) anthropological...... forms of birth, growth, survival, mating, parenting, and sociality. Conversely, from the biocultural perspective, human biological processes are constrained, organized, and developed by culture, which includes technology, culturally specific socioeconomic and political structures, religious...

  6. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  7. Property and Human Genetic Information

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul; Kongsholm, Nana Cecilie Halmsted; Schovsbo, Jens Hemmingsen

    2018-01-01

    Do donors (of samples from which genetic information is derived) have some sort of pre-legal (moral) or legal property right tothat information? In this paper, we address this question from both a moral philosophical and a legal point of view. We argue thatphilosophical theories about property do...

  8. Estimation and interpretation of genetic effects with epistasis using the NOIA model.

    Science.gov (United States)

    Alvarez-Castro, José M; Carlborg, Orjan; Rönnegård, Lars

    2012-01-01

    We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.

  9. Genetic risks and healthy choices: creating citizen-consumers of genetic services through empowerment and facilitation.

    Science.gov (United States)

    Harvey, Alison

    2010-03-01

    Genetic testing to identify susceptibility to a variety of common complex diseases is increasingly becoming available. In this article, focusing on the development of genetic susceptibility testing for diet-related disease, I examine the emergence of direct-to-the-consumer genetic testing services and the (re)configuration of healthcare provision, both within and outside the specialist genetics service, in the UK. I identify two key techniques within these practices: empowerment and facilitation. Using Foucauldian social theory, I show that empowerment and facilitation are being positioned as tools for the creation of citizen-consumers who will make appropriate dietary choices, based on the results of their genetic analysis. Through these techniques, individuals are transformed into properly entrepreneurial citizens who will, through judicious choices, act to maximise their 'vital capital' (their health) and the capital of the social body. I argue that the user of these services is not purely an economic figure, making rational choices as a consumer, but that her configuration as a citizen-consumer who avails herself of genetic information and services in a proper manner ensures that she is fit to contribute to the economic life of our present.

  10. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    Science.gov (United States)

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our

  11. Development of a VVER-1000 core loading pattern optimization program based on perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2012-01-01

    Highlights: ► We use perturbation theory to find an optimum fuel loading pattern in a VVER-1000. ► We provide a software for in-core fuel management optimization. ► We consider two objectives for our method (perturbation theory). ► We show that perturbation theory method is very fast and accurate for optimization. - Abstract: In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. Two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain the fuel integrity. Because of the numerous possible patterns of fuel assemblies in the reactor core, finding the best configuration is so important and challenging. Different techniques for optimization of fuel loading pattern in the reactor core have been introduced by now. In this study, a software is programmed in C language to find an order of the fuel loading pattern of a VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process launches by considering an initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. The results on a typical VVER-1000 reactor reveal that the method could reach to a pattern with an allowed radial power peaking factor and increases the cycle length 1.1 days, as well.

  12. High genetic diversity of Jatropha curcas assessed by ISSR.

    Science.gov (United States)

    Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A

    2017-05-31

    Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.

  13. Population Genetic Aspects of Pollinator Decline

    Directory of Open Access Journals (Sweden)

    Laurence Packer

    2001-06-01

    Full Text Available We reviewed the theory of conservation genetics, with special emphasis on the influence of haplodiploidy and other aspects of bee biology upon conservation genetic parameters. We then investigated the possibility that pollinator decline can be addressed in this way, using two meta-analytical approaches on genetic data from the Hymenoptera and the Lepidoptera. First, we compared levels of heterozygosity between the orders. As has been found previously, the haplodiploid Hymenoptera had markedly lower levels of genetic variation than the Lepidoptera. Bees had even lower levels, and bumble bees, in particular, often seemed almost monomorphic genetically. However, the statistically confounding effects of phylogeny render detailed interpretation of such data difficult. Second, we investigated patterns of gene flow among populations of these insects. Hymenoptera were far more likely to show genetic effects of population fragmentation than are Lepidoptera, even at similar geographic distances between populations. The reduced effective population sizes resulting from haplodiploidy probably contributed to this result. The proportion of species with low levels of gene flow did not vary among the different taxonomic groups within the Hymenoptera.

  14. Institute for Nuclear Theory

    International Nuclear Information System (INIS)

    Haxton, W.; Bertsch, G.; Henley, E.M.

    1993-01-01

    This report briefly discussion the following programs of the Institute for Nuclear Theory: fundamental interactions in nuclei; strangeness in hadrons and nuclei; microscopic nuclear structure theory; nuclear physics in atoms and molecules; phenomenology and lattice QCD; and large amplitude collective motion

  15. The effectiveness of program developed from cognitive-experiential self-theory and life skills technique on adolescent coping with stress.

    Science.gov (United States)

    Monkong, L; Pongpanich, S; Viwatwongkasem, C; Chantavanich, S; Wongpiromsarn, Y; Katz, L S

    2009-12-01

    Many methodologies to decrease stress in adolescents have been introduced and implemented. However, it seems that the problems in their physical, mental, emotional, and learning conditions still exist, especially for long-term. The proposed program with some booster was used to solve the long run problems. To examine the effectiveness of program developed from cognitive-experiential self-theory and life skills technique on adolescent coping with stress. A quasi-experimental research in two groups is used to modify theoretical concepts of cognitive-experiential self-theory and life skills technique on adolescent coping with stress. The students of secondary schools in Nakhon Sawan Province Thailand were the target population. Two schools were randomly chosen, one for control and the other for experiment. The sample size of 84 students was randomly selected and requested to be volunteers and 44 volunteers were trained on concept of thinking, strategies to resolve the problem and control emotion for 5 days and booster in school for 9 months in every fortnight and was measured 5 times, before and after interventions at 3rd, 6th and 9th months. We used independent t-test, paired t-test, analysis of variance and covariance for data analysis. There were no difference in the mean of summation of knowledge, attitude and practice of pre-test score between treatment and control group (P = 0.124). After the training program, the volunteers showed significant improvement of knowledge, attitude and practice (P cognitive-experiential self-theory and life skills technique on adolescent enabled the participants to improve knowledge, attitude and practice in coping with stress.

  16. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    International Nuclear Information System (INIS)

    Sadegheih, A.; Drake, P.R.

    2008-01-01

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used

  17. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  18. Reducing cyberbullying: A theory of reasoned action-based video prevention program for college students.

    Science.gov (United States)

    Doane, Ashley N; Kelley, Michelle L; Pearson, Matthew R

    2016-01-01

    Few studies have evaluated the effectiveness of cyberbullying prevention/intervention programs. The goals of the present study were to develop a Theory of Reasoned Action (TRA)-based video program to increase cyberbullying knowledge (1) and empathy toward cyberbullying victims (2), reduce favorable attitudes toward cyberbullying (3), decrease positive injunctive (4) and descriptive norms about cyberbullying (5), and reduce cyberbullying intentions (6) and cyberbullying behavior (7). One hundred sixty-seven college students were randomly assigned to an online video cyberbullying prevention program or an assessment-only control group. Immediately following the program, attitudes and injunctive norms for all four types of cyberbullying behavior (i.e., unwanted contact, malice, deception, and public humiliation), descriptive norms for malice and public humiliation, empathy toward victims of malice and deception, and cyberbullying knowledge significantly improved in the experimental group. At one-month follow-up, malice and public humiliation behavior, favorable attitudes toward unwanted contact, deception, and public humiliation, and injunctive norms for public humiliation were significantly lower in the experimental than the control group. Cyberbullying knowledge was significantly higher in the experimental than the control group. These findings demonstrate a brief cyberbullying video is capable of improving, at one-month follow-up, cyberbullying knowledge, cyberbullying perpetration behavior, and TRA constructs known to predict cyberbullying perpetration. Considering the low cost and ease with which a video-based prevention/intervention program can be delivered, this type of approach should be considered to reduce cyberbullying. © 2015 Wiley Periodicals, Inc.

  19. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  20. An investigation of genetic algorithms

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1995-04-01

    Genetic algorithms mimic biological evolution by natural selection in their search for better individuals within a changing population. they can be used as efficient optimizers. This report discusses the developing field of genetic algorithms. It gives a simple example of the search process and introduces the concept of schema. It also discusses modifications to the basic genetic algorithm that result in species and niche formation, in machine learning and artificial evolution of computer programs, and in the streamlining of human-computer interaction. (author). 3 refs., 1 tab., 2 figs

  1. Learning Theory Foundations of Simulation-Based Mastery Learning.

    Science.gov (United States)

    McGaghie, William C; Harris, Ilene B

    2018-06-01

    Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.

  2. Determination of the genetic structure of remnant Morus boninensis Koidz. trees to establish a conservation program on the Bonin Islands, Japan

    Directory of Open Access Journals (Sweden)

    Nobushima Fuyuo

    2006-10-01

    Full Text Available Abstract Background Morus boninensis, is an endemic plant of the Bonin (Ogasawara Islands of Japan and is categorized as "critically endangered" in the Japanese red data book. However, little information is available about its ecological, evolutionary and genetic status, despite the urgent need for guidelines for the conservation of the species. Therefore, we adopted Moritz's MU concept, based on the species' current genetic structure, to define management units and to select mother tree candidates for seed orchards. Results Nearly all individuals of the species were genotyped on the basis of seven microsatellite markers. Genetic diversity levels in putative natural populations were higher than in putative man-made populations with the exception of those on Otouto-jima Island. This is because a limited number of maternal trees are likely to have been used for seed collection to establish the man-made populations. A model-based clustering analysis clearly distinguished individuals into nine clusters, with a large difference in genetic composition between the population on Otouto-jima Island, the putative natural populations and the putative man-made populations. The Otouto-jima population appeared to be genetically differentiated from the others; a finding that was also supported by pairwise FST and RST analysis. Although multiple clusters were detected in the putative man-made populations, the pattern of genetic diversity was monotonous in comparison to the natural populations. Conclusion The genotyping by microsatellite markers revealed strong genetic structures. Typically, artificial propagation of this species has ignored the genetic structure, relying only on seeds from Otouto-jima for replanting on other islands, because of a problem with inter-specific hybridization on Chichi-jima and Haha-jima Islands. However, this study demonstrates that we should be taking into consideration the genetic structure of the species when designing a

  3. Determination of the genetic structure of remnant Morus boninensis Koidz. trees to establish a conservation program on the Bonin Islands, Japan.

    Science.gov (United States)

    Tani, Naoki; Yoshimaru, Hiroshi; Kawahara, Takayuki; Hoshi, Yoshio; Nobushima, Fuyuo; Yasui, Takaya

    2006-10-11

    Morus boninensis, is an endemic plant of the Bonin (Ogasawara) Islands of Japan and is categorized as "critically endangered" in the Japanese red data book. However, little information is available about its ecological, evolutionary and genetic status, despite the urgent need for guidelines for the conservation of the species. Therefore, we adopted Moritz's MU concept, based on the species' current genetic structure, to define management units and to select mother tree candidates for seed orchards. Nearly all individuals of the species were genotyped on the basis of seven microsatellite markers. Genetic diversity levels in putative natural populations were higher than in putative man-made populations with the exception of those on Otouto-jima Island. This is because a limited number of maternal trees are likely to have been used for seed collection to establish the man-made populations. A model-based clustering analysis clearly distinguished individuals into nine clusters, with a large difference in genetic composition between the population on Otouto-jima Island, the putative natural populations and the putative man-made populations. The Otouto-jima population appeared to be genetically differentiated from the others; a finding that was also supported by pairwise FST and RST analysis. Although multiple clusters were detected in the putative man-made populations, the pattern of genetic diversity was monotonous in comparison to the natural populations. The genotyping by microsatellite markers revealed strong genetic structures. Typically, artificial propagation of this species has ignored the genetic structure, relying only on seeds from Otouto-jima for replanting on other islands, because of a problem with inter-specific hybridization on Chichi-jima and Haha-jima Islands. However, this study demonstrates that we should be taking into consideration the genetic structure of the species when designing a propagation program for the conservation of this species.

  4. A Program Based on the Pragmatic Theory to Develop Grammatical Structure Comprehension Skills for Foreign Learners of Arabic

    Science.gov (United States)

    Elsamman, Marwan

    2014-01-01

    This study aimed at designing a program based on the Pragmatic theory to develop grammatical structure comprehension skills for foreign learners of Arabic and examining its effectiveness. Hence, the problem of the study has been summarized in the weakness of grammatical structure comprehension skills for foreign learners of Arabic and in the need…

  5. Assessment of the genetic diversity and pattern of relationship of ...

    African Journals Online (AJOL)

    An understanding of the extent, distribution and patterns of genetic variation is useful for estimation of any possible loss of genetic diversity and assessment of genetic variability and its potential use in breeding programs, including establishment of heterotic groups. This study assessed patterns of genetic diversity and ...

  6. Testing of chemicals for genetic activity with Saccharomyces cerevisiae: a report of the U. S. Environmental Protection Agency Gene-Tox Program

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.K.; von Borstel, R.C.; von Halle, E.S.; Parry, J.M.; Siebert, D.; Zetterberg, G.; Barale, R.; Loprieno, N.

    1984-01-01

    This review article with over 200 references summarizes the results of mutation screening tests with 492 chemicals using saccharomyces cerevisiae as the test organism. In addition, an extensive description of S. cerevisiae as a test organism is given. Yeast can be used to study genetic effects both in mitotic and in meiotic cells because it can be cultured as a stable haploid or a stable diploid. The most commonly used genetic endpoint has been mitotic recombination either as mitotic crossing-over or mitotic gene conversion. Data were available on tests with 492 chemicals, of which 249 were positive, as reported in 173 articles or reports. The genetic test/carcinogenicity accuracy was 0.74, based on the carcinogen listing established in the gene-tox program. The yeast tests supplement the bacterial tests for detecting agents that act via radical formation, antibacterial drugs, and other chemicals interfering with chromosome segregation and recombination processes.

  7. Challenges of implementating a doctoral program in an international exchange in Cuba through the lens of Kanter's empowerment theory.

    Science.gov (United States)

    Scanlan, Judith M; Abdul Hernandéz, C

    2014-08-01

    The literature in international education focuses primarily on the experiences of western students in developing countries, international students in western universities, the development of an educational program in a developing country, or internationalization of curricula in western universities. There is little in the literature that addresses the challenges students and participating faculty face when implementing a graduate program in a developing country. The purpose of this paper is to describe and analyze the challenges of implementing a doctoral program in an international exchange through the lens of Kanter's theory of empowerment. Recommendations to address these challenges will be made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  9. Genetic size and growth in goats

    NARCIS (Netherlands)

    Ogink, N.W.M.

    1993-01-01

    Since the last century, many biologists have studied the effects of size differences between species on the rate of their metabolic processes. in 1980, Taylor published the genetic size-scaling theory which incorporated the existing knowledge on size effects, and introduced two formal

  10. Integer programming

    CERN Document Server

    Conforti, Michele; Zambelli, Giacomo

    2014-01-01

    This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

  11. Genetic algorithms applied to nuclear reactor design optimization

    International Nuclear Information System (INIS)

    Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.

    2000-01-01

    A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)

  12. Uncertainty theory

    CERN Document Server

    Liu, Baoding

    2015-01-01

    When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...

  13. Population genetics of commercial and feral honey bees in Western Australia.

    Science.gov (United States)

    Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P

    2008-04-01

    Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.

  14. Analysis of a Moodle-Based Training Program about the Pedagogical Content Knowledge of Evolution Theory and Natural Selection

    Science.gov (United States)

    Stasinakis, Panagiotis K.; Kalogiannnakis, Michail

    2017-01-01

    In this study we aim to find out whether a training program for secondary school science teachers which was organized based on the model of Pedagogical Content Knowledge (PCK), could improve their individual PCK for a specific scientific issue. The Evolution Theory (ET) and the Natural Selection (NS) were chosen as the scientific issues of…

  15. Combining Diffusion Models and Macroeconomic Indicators with a Modified Genetic Programming Method: Implementation in Forecasting the Number of Mobile Telecommunications Subscribers in OECD Countries

    Directory of Open Access Journals (Sweden)

    Konstantinos Salpasaranis

    2014-01-01

    Full Text Available This paper proposes a modified Genetic Programming method for forecasting the mobile telecommunications subscribers’ population. The method constitutes an expansion of the hybrid Genetic Programming (hGP method improved by the introduction of diffusion models for technological forecasting purposes in the initial population, such as the Logistic, Gompertz, and Bass, as well as the Bi-Logistic and LogInLog. In addition, the aforementioned functions and models expand the function set of hGP. The application of the method in combination with macroeconomic indicators such as Gross Domestic Product per Capita (GDPpC and Consumer Prices Index (CPI leads to the creation of forecasting models and scenarios for medium- and long-term level of predictability. The forecasting module of the program has also been improved with the multi-levelled use of the statistical indices as fitness functions and model selection indices. The implementation of the modified-hGP in the datasets of mobile subscribers in the Organisation for Economic Cooperation and Development (OECD countries shows very satisfactory forecasting performance.

  16. Algebras in genetics

    CERN Document Server

    Wörz-Busekros, Angelika

    1980-01-01

    The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par­ ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...

  17. Genetic privacy in sports: clearing the hurdles.

    Science.gov (United States)

    Callier, Shawneequa

    2012-12-01

    As genomic medicine continues to advance and inform clinical care, knowledge gained is likely to influence sports medicine and training practices. Susceptibility to injury, sudden cardiac failure, and other serious conditions may one day be tackled on a subclinical level through genetic testing programs. In addition, athletes may increasingly consider using genetic testing services to maximize their performance potential. This paper assesses the role of privacy and genetic discrimination laws that would apply to athletes who engage in genetic testing and the limits of these protections.

  18. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming.

    Science.gov (United States)

    Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G

    2018-02-01

    In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).

  19. Theory, Method, and Triangulation in the Study of Street Children.

    Science.gov (United States)

    Lucchini, Riccardo

    1996-01-01

    Describes how a comparative study of street children in Montevideo (Uruguay), Rio de Janeiro, and Mexico City contributes to a synergism between theory and method. Notes how theoretical approaches of symbolic interactionism, genetic structuralism, and habitus theory complement interview, participant observation, and content analysis methods;…

  20. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun; Li, Fangting; Li, Xianggang; Lu, Cheng

    2016-01-01

    theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also

  1. An Evolutionary Genetic Perspective of Eating Disorders.

    Science.gov (United States)

    Mayhew, Alexandra J; Pigeyre, Marie; Couturier, Jennifer; Meyre, David

    2018-01-01

    Eating disorders (ED) including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) affect up to 5% of the population in Western countries. Risk factors for developing an ED include personality traits, family environment, gender, age, ethnicity, and culture. Despite being moderately to highly heritable with estimates ranging from 28 to 83%, no genetic risk factors have been conclusively identified. Our objective was to explore evolutionary theories of EDs to provide a new perspective on research into novel biological mechanisms and genetic causes of EDs. We developed a framework that explains the possible interactions between genetic risk and cultural influences in the development of ED. The framework includes three genetic predisposition categories (people with mainly AN restrictive gene variants, people with mainly BED variants, and people with gene variants predisposing to both diseases) and a binary variable of either the presence or absence of pressure to be thin. We propose novel theories to explain the overlapping characteristics of the subtypes of AN (binge/purge and restrictive), BN, and BED. For instance, mutations/structural gene variants in the same gene causing opposite effects or mutations in nearby genes resulting in partial disequilibrium for the genes causing AN (restrictive) and BED may explain the overlap of phenotypes seen in AN (binge/purge). © 2017 S. Karger AG, Basel.

  2. Analysis of genetic structure and relationship among nine ...

    Indian Academy of Sciences (India)

    These results indicated that the clustering analysis using the Structure program might provide an ..... of the current genetic relations among the breeds, and con- tribute to ... sis of the genetic structure of the Canary goat populations using.

  3. The behavior-genetics debate in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Yesley, M.S.

    1993-12-31

    This paper, submitted to the Third Bioethics Seminar in Fukai, Japan, presents information on program activities and discusses primary topics concerning genetic factors in behavior. Proponents and critics views on genetic explanations of antisocial behavior are discussed.

  4. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  5. Genetic Parameters of Common Wheat in Nepal

    OpenAIRE

    Bal Krishna Joshi; Dhruba Bahadur Thapa; Madan Raj Bhatta

    2015-01-01

    Knowledge on variation within traits and their genetics are prerequisites in crop improvement program. Thus, in present paper we aimed to estimate genetic and environmental indices of common wheat genotypes. For the purpose, eight quantitative traits were measured from 30 wheat genotypes, which were in randomized complete block design with 3 replicates. Components of variance and covariance were estimated along with heritability, genetic gain, realized heritability, coheritability and correla...

  6. Genetic parameters and estimated genetic gains in young rubber tree progenies

    Directory of Open Access Journals (Sweden)

    Cecília Khusala Verardi

    2013-04-01

    Full Text Available The objective of this work was to assess the genetic parameters and to estimate genetic gains in young rubber tree progenies. The experiments were carried out during three years, in a randomized block design, with six replicates and ten plants per plot, in three representative Hevea crop regions of the state of São Paulo, Brazil. Twenty-two progenies were evaluated, from three to five years old, for rubber yield and annual girth growth. Genetic gain was estimated with the multi-effect index (MEI. Selection by progenies means provided greater estimated genetic gain than selection based on individuals, since heritability values of progeny means were greater than the ones of individual heritability, for both evaluated variables, in all the assessment years. The selection of the three best progenies for rubber yield provided a selection gain of 1.28 g per plant. The genetic gains estimated with MEI using data from early assessments (from 3 to 5-year-old were generally high for annual girth growth and rubber yield. The high genetic gains for annual girth growth in the first year of assessment indicate that progenies can be selected at the beginning of the breeding program. Population effective size was consistent with the three progenies selected, showing that they were not related and that the population genetic variability is ensured. Early selection with the genetic gains estimated by MEI can be made on rubber tree progenies.

  7. Interpretation in reproductive genetic counseling: a methodological framework.

    Science.gov (United States)

    Tóth, Adél; Szeverényi, Péter

    2007-09-01

    In case of genetic risk, parents are often faced with reproductive decisions affecting their life essentially, so it is advisable to pursue careful deliberation. For this reason, the genetic counselor is expected to help the counselee make well-informed and well-considered decisions, which requires the understanding of the patient as an individual. To reach emphatic understanding, physicians can use the results of the Gadamerian theory of interpretation that contains the idea -- as it has been summarized by V. Arnason -- that four aspects of openness are necessary to fully understand the other, such as openness to oneself, to the other, to the subject matter and to tradition. In our paper, we are applying the four-openness model of interpretation to genetic consultation, and we argue that during counseling double interpretation takes place: the physician interprets the patient, and the patient interprets the physician. Double interpretation leads to the clarification of those factors which influence the patient's decision-making: the counselor's attitude and prejudices, the counselee's values and needs, the medical, social, and moral implications of the genetic disease, and the social expectations. By adopting the theory of interpretation, counselors can also advance the provision of emotional support patients need in hard situations.

  8. Treatise on intuitionistic type theory

    CERN Document Server

    Granström, Johan Georg

    2011-01-01

    Intuitionistic type theory can be described, somewhat boldly, as a fulfillment of the dream of a universal language for science.  In particular, intuitionistic type theory is a foundation for mathematics and a programming language.

  9. The evolution of RNA viruses: A population genetics view

    Science.gov (United States)

    Moya, Andrés; Elena, Santiago F.; Bracho, Alma; Miralles, Rosario; Barrio, Eladio

    2000-01-01

    RNA viruses are excellent experimental models for studying evolution under the theoretical framework of population genetics. For a proper justification of this thesis we have introduced some properties of RNA viruses that are relevant for studying evolution. On the other hand, population genetics is a reductionistic theory of evolution. It does not consider or make simplistic assumptions on the transformation laws within and between genotypic and phenotypic spaces. However, such laws are minimized in the case of RNA viruses because the phenotypic space maps onto the genotypic space in a much more linear way than on higher DNA-based organisms. Under experimental conditions, we have tested the role of deleterious and beneficial mutations in the degree of adaptation of vesicular stomatitis virus (VSV), a nonsegmented virus of negative strand. We also have studied how effective population size, initial genetic variability in populations, and environmental heterogeneity shapes the impact of mutations in the evolution of vesicular stomatitis virus. Finally, in an integrative attempt, we discuss pros and cons of the quasispecies theory compared with classic population genetics models for haploid organisms to explain the evolution of RNA viruses. PMID:10860958

  10. Genetic modulation of lipid profiles following lifestyle modification or metformin treatment: the Diabetes Prevention Program.

    Directory of Open Access Journals (Sweden)

    Toni I Pollin

    Full Text Available Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04-1 × 10(-17. Except for total HDL particles (r = -0.03, P = 0.26, all components of the lipid profile correlated with the GRS (partial |r| = 0.07-0.17, P = 5 × 10(-5-1 10(-19. The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE ± 0.22 mg/dl/allele, P = 8 × 10(-5, P(interaction = 0.02 in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE ± 0.22 mg/dl/allele, P = 0.35 or metformin (β = -0.03, SEE ± 0.22 mg/dl/allele, P = 0.90; P(interaction = 0.64 groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE ± 0.012 ln nmol/L/allele, P = 0.01, P(interaction = 0.01 but not in the placebo (β = -0.002, SEE ± 0.008 ln nmol/L/allele, P = 0.74 or metformin (β = +0.013, SEE ± 0.008 nmol/L/allele, P = 0.12; P(interaction = 0.24 groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.

  11. Minimalism and Optimality Theory

    NARCIS (Netherlands)

    Broekhuis, H.; Woolford, E.; den Dikken, M.

    2013-01-01

    This article discusses the relation between the minimalist program (MP) and optimality theory (OT) and will show that, contrary to popular belief, MP and OT are not inherently incompatible or competing frameworks/theories. Instead, we will show (i) that the two can well be seen as complementary

  12. Genetic divergence of roundup ready (RR) soybean cultivars ...

    African Journals Online (AJOL)

    The aim of this study was to estimate the genetic diversity in 74 RR soybean cultivars from different Brazilian breeding programs. ... chosen SSR markers were effective in assessing the genetic diversity among genotypes, besides proving to be ...

  13. Population prevalence of hereditary breast cancer phenotypes and implementation of a genetic cancer risk assessment program in southern Brazil

    Science.gov (United States)

    2009-01-01

    In 2004, a population-based cohort (the Núcleo Mama Porto Alegre - NMPOA Cohort) was started in Porto Alegre, southern Brazil and within that cohort, a hereditary breast cancer study was initiated, aiming to determine the prevalence of hereditary breast cancer phenotypes and evaluate acceptance of a genetic cancer risk assessment (GCRA) program. Women from that cohort who reported a positive family history of cancer were referred to GCRA. Of the 9218 women enrolled, 1286 (13.9%) reported a family history of cancer. Of the 902 women who attended GCRA, 55 (8%) had an estimated lifetime risk of breast cancer ≥ 20% and 214 (23.7%) had pedigrees suggestive of a breast cancer predisposition syndrome; an unexpectedly high number of these fulfilled criteria for Li-Fraumeni-like syndrome (122 families, 66.7%). The overall prevalence of a hereditary breast cancer phenotype was 6.2% (95%CI: 5.67-6.65). These findings identified a problem of significant magnitude in the region and indicate that genetic cancer risk evaluation should be undertaken in a considerable proportion of the women from this community. The large proportion of women who attended GCRA (72.3%) indicates that the program was well-accepted by the community, regardless of the potential cultural, economic and social barriers. PMID:21637504

  14. Project selection problem under uncertainty: An application of utility theory and chance constrained programming to a real case

    Directory of Open Access Journals (Sweden)

    Reza Hosnavi Atashgah

    2013-06-01

    Full Text Available Selecting from a pool of interdependent projects under certainty, when faced with resource constraints, has been studied well in the literature of project selection problem. After briefly reviewing and discussing popular modeling approaches for dealing with uncertainty, this paper proposes an approach based on chance constrained programming and utility theory for a certain range of problems and under some practical assumptions. Expected Utility Programming, as the proposed modeling approach, will be compared with other well-known methods and its meaningfulness and usefulness will be illustrated via two numerical examples and one real case.

  15. Denotational semantics for guarded dependent type theory

    DEFF Research Database (Denmark)

    Bizjak, Aleš; Møgelberg, Rasmus Ejlers

    2018-01-01

    We present a new model of Guarded Dependent Type Theory (GDTT), a type theory with guarded recursion and multiple clocks in which one can program with, and reason about coinductive types. Productivity of recursively defined coinductive programs and proofs is encoded in types using guarded recursion......, crucial for programming with coinductive types, types must be interpreted as presheaves orthogonal to the object of clocks. In the case of dependent types, this translates to a unique lifting condition similar to the one found in homotopy theoretic models of type theory. Since the universes defined...... by inclusions of clock variable contexts commute on the nose with type operations on the universes....

  16. Application of medical cases in general genetics teaching in universities.

    Science.gov (United States)

    He, Zhumei; Bie, Linsai; Li, Wei

    2018-01-20

    General genetics is a core course in life sciences, medicine, agriculture and other related fields. As one of the most fast-developing disciplines of life sciences in the 21th century, the influence of the genetics knowledge on daily life is expanding, especially on human health and reproduction. In order to make it easier for students to understand the profound principles of genetics and to better apply the theories to daily life, we have introduced appropriate medical cases in general genetics teaching and further extended them combined with theoretical basis of genetics. This approach will be beneficial to enhance students' abilities of genetic analysis and promote their enthusiasm to learn and master practical skills. In this paper, we enumerate medical cases related to the modern genetics teaching system to provide a reference for genetics teaching in general and normal universities.

  17. Mining Context-Aware Association Rules Using Grammar-Based Genetic Programming.

    Science.gov (United States)

    Luna, Jose Maria; Pechenizkiy, Mykola; Del Jesus, Maria Jose; Ventura, Sebastian

    2017-09-25

    Real-world data usually comprise features whose interpretation depends on some contextual information. Such contextual-sensitive features and patterns are of high interest to be discovered and analyzed in order to obtain the right meaning. This paper formulates the problem of mining context-aware association rules, which refers to the search for associations between itemsets such that the strength of their implication depends on a contextual feature. For the discovery of this type of associations, a model that restricts the search space and includes syntax constraints by means of a grammar-based genetic programming methodology is proposed. Grammars can be considered as a useful way of introducing subjective knowledge to the pattern mining process as they are highly related to the background knowledge of the user. The performance and usefulness of the proposed approach is examined by considering synthetically generated datasets. A posteriori analysis on different domains is also carried out to demonstrate the utility of this kind of associations. For example, in educational domains, it is essential to identify and understand contextual and context-sensitive factors that affect overall and individual student behavior and performance. The results of the experiments suggest that the approach is feasible and it automatically identifies interesting context-aware associations from real-world datasets.

  18. Engaging primary care practitioners in quality improvement: making explicit the program theory of an interprofessional education intervention.

    Science.gov (United States)

    Vachon, Brigitte; Désorcy, Bruno; Camirand, Michel; Rodrigue, Jean; Quesnel, Louise; Guimond, Claude; Labelle, Martin; Fournier, Johanne; Grimshaw, Jeremy

    2013-03-20

    The scientific literature continues to advocate interprofessional collaboration (IPC) as a key component of primary care. It is recommended that primary care groups be created and configured to meet the healthcare needs of the patient population, as defined by patient demographics and other data analyses related to the health of the population being served. It is further recommended that the improvement of primary care services be supported by the delivery of feedback and performance measurements. This paper describes the theory underlying an interprofessional educational intervention developed in Quebec's Montérégie region (Canada) for the purpose of improving chronic disease management in primary care. The objectives of this study were to explain explicitly the theory underlying this intervention, to describe its components in detail and to assess the intervention's feasibility and acceptability. A program impact theory-driven evaluation approach was used. Multiple sources of information were examined to make explicit the theory underlying the education intervention: 1) a literature review and a review of documents describing the program's development; 2) regular attendance at the project's committee meetings; 3) direct observation of the workshops; 4) interviews of workshop participants; and 5) focus groups with workshop facilitators. Qualitative data collected were analysed using thematic analysis. The theoretical basis of the interprofessional education intervention was found to be work motivation theory and reflective learning. Five themes describing the workshop objectives emerged from the qualitative analysis of the interviews conducted with the workshop participants. These five themes were the importance of: 1) adopting a regional perspective, 2) reflecting, 3) recognizing gaps between practice and guidelines, 4) collaborating, and 5) identifying possible practice improvements. The team experienced few challenges implementing the intervention. However

  19. Understanding groundwater - students' pre-conceptions and conceptual change by a theory-guided multimedia learning program

    Science.gov (United States)

    Unterbruner, U.; Hilberg, S.; Schiffl, I.

    2015-11-01

    Groundwater is a crucial topic in education for sustainable development. Nevertheless, international studies with students of different ages have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Building upon international research a multimedia learning program ("Between the raincloud and the tap") was developed. Insights from the fields of conceptual change research, multimedia research, and the Model of Educational Reconstruction were specifically implemented. Two studies were conducted with Austrian pupils (7th grade) and teacher training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge regarding groundwater were determined in a pre- and post-test. The pupils and students greatly profited from independently working through the learning software. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results speak for the fact that theory-guided multimedia learning programs can play an important role in the transfer of research results into the classroom, particularly in science education.

  20. Genetic algorithm to solve the problems of lectures and practicums scheduling

    Science.gov (United States)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  1. Potential Theory

    CERN Document Server

    Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří

    1988-01-01

    Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in­ cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal...

  2. The Influence of Choice Theory Anger Management Program (CTAMP) on the Ability of Prospective Psychological Counselors for Anger Management

    Science.gov (United States)

    Gündogdu, Rezzan

    2018-01-01

    This research is a quasi-experimental study with pretest-posttest-fallow up test and experiment-control group to investigate the influence of Choice Theory-based Anger Management Psychoeducation Program (CTAMP) on the ability of students of Department of Psychological Counseling and Guidance (PCG) for anger management. The Trait Anger-Anger Style…

  3. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    Science.gov (United States)

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  4. Unified description of structure and reactions: implementing the nuclear field theory program

    International Nuclear Information System (INIS)

    Broglia, R A; Bortignon, P F; Barranco, F; Vigezzi, E; Idini, A; Potel, G

    2016-01-01

    The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen–Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions. (invited comment)

  5. Complexity theory and genetics: The computational power of crossing over

    Czech Academy of Sciences Publication Activity Database

    Pudlák, Pavel

    2001-01-01

    Roč. 171, č. 1 (2001), s. 201-223 ISSN 0890-5401 R&D Projects: GA AV ČR IAA1019901 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : complexity * genetics * croning over Subject RIV: BA - General Mathematics Impact factor: 0.571, year: 2001

  6. Genetics of healthy aging in Europe: the EU-integrated project GEHA (GEnetics of Healthy Aging)

    DEFF Research Database (Denmark)

    Franceschi, Claudio; Bezrukov, Vladyslav; Blanché, Hélène

    2007-01-01

    The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old......DNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology...... age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians...

  7. Mapping public policy on genetics.

    Science.gov (United States)

    Weisfeld, N E

    2002-06-01

    The mapping of the human genome and related advances in genetics are stimulating the development of public policies on genetics. Certain notions that currently prevail in public policy development overall--including the importance of protecting privacy of information, an interest in cost-effectiveness, and the power of the anecdote--will help determine the future of public policy on genetics. Information areas affected include discrimination by insurers and employers, confidentiality, genetic databanks, genetic testing in law enforcement, and court-ordered genetic testing in civil cases. Service issues address clinical standards, insurance benefits, allocation of resources, and screening of populations at risk. Supply issues encompass funding of research and clinical positions. Likely government actions include, among others: (1) Requiring individual consent for the disclosure of personal information, except when such consent would impose inordinate costs; (2) licensing genetic databases; (3) allowing courts to use personal information in cases where a refusal to use such information would offend the public; (4) mandating health insurers to pay for cost-effective genetic services; (5) funding pharmaceutical research to develop tailored products to prevent or treat diseases; and (6) funding training programs.

  8. Theory and practice in professional education

    DEFF Research Database (Denmark)

    Nielsen, Trine Kløveager

    the relationship between theory and practice in teacher, nurse, social work and engineering education, and to contribute with knowledge about how to bridge the gap between theory and practice in these educations. Aim: The aim of the present study is to identify the most promising strategies for improving......, nursing, engineering and social work and in other professional bachelor education programs regarding health, teaching and technology, and how?”. The systematic review consists of a research mapping which will identify and characterize the empirical research concerning the review question and a synthesis......Background: A fundamental component in professional education is the link between theory and practice. However, many students in professional education programs experience a lack of coherence between theory and practice which is often described as the theory practice gap. This PhD-project is part...

  9. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1992-01-01

    In this paper we give a brief account of the work of the group during the past year. The topics covered here include (1) Effective Lagrangians and Solitons; (2) Chern-Simons and Conformal Field Theories; (3) Spin and Statistics; (4) The Standard Model and Beyond; (5) Non-Abelian Monopoles; (6) The Inflationary Universe; (7) The Hubbard Model, and (8) Miscellaneous

  10. Report from the Committee of Visitors on its Review of the Processes and Procedures used to Manage the Theory and Computations Program, Fusion Energy Sciences Advisory Committee

    International Nuclear Information System (INIS)

    2004-01-01

    A Committee of Visitors (COV) was formed to review the procedures used by the Office of Fusion Energy Sciences to manage its Theory and Computations program. The COV was pleased to conclude that the research portfolio supported by the OFES Theory and Computations Program was of very high quality. The Program supports research programs at universities, research industries, and national laboratories that are well regarded internationally and address questions of high relevance to the DOE. A major change in the management of the Theory and Computations program over the past few years has been the introduction of a system of comparative peer review to guide the OFES Theory Team in selecting proposals for funding. The COV was impressed with the success of OFES in its implementation of comparative peer review and with the quality of the reviewers chosen by the OFES Theory Team. The COV concluded that the competitive peer review process has improved steadily over the three years that it has been in effect and that it has improved both the fairness and accountability of the proposal review process. While the COV commends OFES in its implementation of comparative review, the COV offers the following recommendations in the hope that they will further improve the comparative peer review process: The OFES should improve the consistency of peer reviews. We recommend adoption of a results-oriented scoring system in their guidelines to referees (see Appendix II), a greater use of review panels, and a standard format for proposals; The OFES should further improve the procedures and documentation for proposal handling. We recommend that the folders documenting funding decisions contain all the input from all of the reviewers, that OFES document their rationale for funding decisions which are at variance with the recommendation of the peer reviewers, and that OFES provide a Summary Sheet within each folder; The OFES should better communicate the procedures used to determine funding

  11. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  12. Social Communication and Theory of Mind in Boys with Autism and Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Molly eLosh

    2012-08-01

    Full Text Available Impairments in the social use of language, or pragmatics, constitute a core characteristic of autism. Problems with pragmatic language have also been documented in fragile X syndrome, a monogenic condition that is the most common known genetic cause of autism. Evidence suggests that social cognitive ability, or theory of mind, may also be impaired in both conditions, and in autism, may importantly relate to pragmatic language ability. Given the substantial overlap observed in autism and FXS, this study aimed to better define those social-communicative phenotypes that overlap in these two conditions by comparing pragmatic language ability and theory of mind in children with idiopathic autism and children with FXS, with and without autism, as well as children with Down syndrome and typically developing controls. We further examined correlations between these cognitive-behavioral phenotypes and molecular genetic variation related to FMR1 in the FXS group. Results indicated that children with idiopathic autism and those with FXS and autism performed comparably on direct-assessment measures of pragmatic language and theory of mind, whereas those with FXS only did not differ from controls. Theory of mind was related to pragmatic language ability in all groups. Pragmatic language and theory of mind also correlated with genetic variation at the FMR1 locus (CGG repeats and percent methylation. These results point towards substantial overlap in the social and language phenotypes in autism and FXS and suggest a molecular genetic basis to these phenotypic profiles.

  13. Beliefs in genetic determinism and attitudes towards psychiatric genetic research: psychometric scale properties, construct associations, demographic correlates, and cross-cultural comparisons.

    Science.gov (United States)

    Voracek, Martin; Swami, Viren; Loibl, Lisa Mariella; Furnham, Adrian

    2007-12-01

    Using two new scales, this study examined beliefs in genetic determinism and attitudes towards psychiatric genetic research in student samples from Austria, Malaysia, Romania, and the United Kingdom. For both constructs, effects of culture were detectable, whereas those related to key demographics were either small and inconsistent across samples (political orientation and religiosity) or zero (sex and age). Judged from factorial dimensionality and internal consistency, the psychometric properties of both scales were satisfactory. Belief in genetic determinism had lower prevalence and corresponded only modestly to positive attitudes towards psychiatric genetic research which had higher prevalence. The correlations of both constructs with a preference of inequality among social groups (social dominance orientation) were modest and inconsistent across samples. Both scales appear appropriate for cross-cultural applications, in particular for research into lay theories and public perceptions regarding genetic vs environmental effects on human behavior, mental disorders, and behavioral and psychiatric genetic research related to these.

  14. Programming languages for circuit design.

    Science.gov (United States)

    Pedersen, Michael; Yordanov, Boyan

    2015-01-01

    This chapter provides an overview of a programming language for Genetic Engineering of Cells (GEC). A GEC program specifies a genetic circuit at a high level of abstraction through constraints on otherwise unspecified DNA parts. The GEC compiler then selects parts which satisfy the constraints from a given parts database. GEC further provides more conventional programming language constructs for abstraction, e.g., through modularity. The GEC language and compiler is available through a Web tool which also provides functionality, e.g., for simulation of designed circuits.

  15. Linear Programming (LP)

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig

  16. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  17. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    Science.gov (United States)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  18. Genetic diversity of sweet potatoes collection from Northeastern Brazil

    African Journals Online (AJOL)

    Ana Veruska Cruz da Silva Muniz

    2014-02-24

    Feb 24, 2014 ... RAPD was efficient for the analysis of genetic diversity to identify groups and measure the genetic distance between ..... management program. We recommend ... The author(s) have not declared any conflict of interests.

  19. Effect of self-care educational program based on Orem’s Theory on hope in patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Dahmardeh H

    2015-08-01

    Full Text Available Background and Objective: Multiple sclerosis (MS as one of the major causes of disability in the world, can create a sense of hopelessness in patient. Thus the application of self-care methods is very important for these patients. The current study was conducted to determine the effect of self-care educational program based on Orem’s Theory on hope in patients with Multiple sclerosis. Materials and Method: In this clinical trial study, 88 patients with multiple sclerosis who were registered in MS Association of Zahedan, were selected through convenience sampling and then randomly allocated into two intervention and control groups of 44 people in 2014-2015. Then, nine educational sessions were designed and conducted according to patients’ needs based on Orem’s Theory. The rate of implementing the program by patients was measured through a self-report checklist. The hope of patients was measured by Snyder Hope Scale before and 3 months after the intervention. Data were analyzed by SPSS 16 using independent T-test, paired t-test and Chi-square. Results: The mean of total hope score, aspects of pathway thinking and agency thinking didn’t show significant difference between two groups before and after the intervention, but the mean of change score of total hope and aspects of pathway thinking and agency thinking in intervention group was increased significantly after the educational program in compare with control group (p<0.001. Conclusion: According to the results, implementation of Orem’s self-care program can increase the hope in patients with MS. Given the limitations of the present study, further studies is recommended.

  20. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun

    2016-01-07

    The construction of energy landscape for bio-dynamics is attracting more and more attention recent years. In this talk, I will introduce the strategy to construct the landscape from the connection to rare events, which relies on the large deviation theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also discussed. We demonstrate different diffusive limits arise when considering different regimes for genetic translation and switching processes.