WorldWideScience

Sample records for genetic population structure

  1. Population genetic structure and ecotoxicology.

    OpenAIRE

    Guttman, S I

    1994-01-01

    Electrophoretic analyses of population genetic structure, both in the laboratory and in the field, have documented significant shifts in allozyme genotype frequencies in a variety of aquatic taxa as a result of environmental impacts. Studies are documented which indicate that contaminants may select for individuals with tolerant allozyme genotypes, causing the potential loss of individuals with sensitive genotypes. This may diminish the genetic variability and fitness of affected populations ...

  2. Genetic structure of chimpanzee populations.

    Directory of Open Access Journals (Sweden)

    Celine Becquet

    2007-04-01

    Full Text Available Little is known about the history and population structure of our closest living relatives, the chimpanzees, in part because of an extremely poor fossil record. To address this, we report the largest genetic study of the chimpanzees to date, examining 310 microsatellites in 84 common chimpanzees and bonobos. We infer three common chimpanzee populations, which correspond to the previously defined labels of "western," "central," and "eastern," and find little evidence of gene flow between them. There is tentative evidence for structure within western chimpanzees, but we do not detect distinct additional populations. The data also provide historical insights, demonstrating that the western chimpanzee population diverged first, and that the eastern and central populations are more closely related in time.

  3. (Genetic structure of natural populations)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs.

  4. Ocean currents help explain population genetic structure

    Science.gov (United States)

    White, Crow; Selkoe, Kimberly A.; Watson, James; Siegel, David A.; Zacherl, Danielle C.; Toonen, Robert J.

    2010-01-01

    Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management. PMID:20133354

  5. Genetic Structure of the Spanish Population

    Directory of Open Access Journals (Sweden)

    Gutiérrez Marta

    2010-05-01

    Full Text Available Abstract Background Genetic admixture is a common caveat for genetic association analysis. Therefore, it is important to characterize the genetic structure of the population under study to control for this kind of potential bias. Results In this study we have sampled over 800 unrelated individuals from the population of Spain, and have genotyped them with a genome-wide coverage. We have carried out linkage disequilibrium, haplotype, population structure and copy-number variation (CNV analyses, and have compared these estimates of the Spanish population with existing data from similar efforts. Conclusions In general, the Spanish population is similar to the Western and Northern Europeans, but has a more diverse haplotypic structure. Moreover, the Spanish population is also largely homogeneous within itself, although patterns of micro-structure may be able to predict locations of origin from distant regions. Finally, we also present the first characterization of a CNV map of the Spanish population. These results and original data are made available to the scientific community.

  6. The genetic structure of the Swedish population.

    Directory of Open Access Journals (Sweden)

    Keith Humphreys

    Full Text Available Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to

  7. Genetic structure of nine horse populations

    Directory of Open Access Journals (Sweden)

    Monika Burócziová

    2008-01-01

    Full Text Available In the present study was estimate the genetic diversity and relationships among nine horses breeds in Czech and Slovak Republic.In conclusion, the main objective of study was to show the level of genetic distance among the horse breeds with different history of breeding of each country. Furthermore, it should be clarified whether these populations and subpopulations are distinct enough from each other to justify defining separate breeds. This research concerns the variability of microsatellite markers in genotypes of horse. We compared the genetic diversity and distance among nine horse breeds Czech and Slovak Warmblood both of Czech origin, Slovak Warmblood of Slovak origin, Hucul, Hafling, Furioso, Noriker, Silesian Noriker and Bohemian-Moravian Belgian Horse.In total, 932 animals were genotyped for 17 microsatellites markers (AHT4, AHT5, ASB2, HMS3, HMS6, HMS7, HTG4, HTG10, VHL20, HTG6, HMS2, HTG7, ASB17, ASB23, CA425, HMS1, LEX3 recommended by the International Society of Animal Genetics.In the different population size, the allele frequencies, observed and expected heterozygosity, test for deviations from Hardy-Weinberg equilibrium and Polymorphism information content have been calculated for each breed. We analyzed genetic distance and diversity among them on the base of the dataset of highly polymorphic set of microsatellites representing all autozomes using set of PowerMar­ker v3.25 analysis tools and Structure 2.2. programme for results comparison.

  8. Genetic diversity and population structure in Meconopsis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... including the populations distributed in same location together in every group. ... Key words: Meconopsis quintuplinervia Regel, genetic diversity, random amplified ..... in its original center, and Banma population located in ...

  9. Genetic population structure of the Japanese mitten crab Eriocheir ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... However, few studies have focused on the population genetic structures of ... There are two main demographic strategies for benthic estuarine macro- .... differentiation existed in the two populations of Okinawa. Pairwise FST ...

  10. Population genetic structure of Aedes albopictus in Penang, Malaysia.

    Science.gov (United States)

    Zawani, M K N; Abu, H A; Sazaly, A B; Zary, S Y; Darlina, M N

    2014-10-07

    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.

  11. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    pc

    2016-11-02

    Nov 2, 2016 ... diversity and genetic structure of 35 maize accessions using 10 microsatellite markers. These accessions ... In addition, they provide new sources of resistance to ..... http://taylor0.biology.ucla.edu/structureHarvester/.The .... environment and in other areas. ..... Molecular population genetics and evolution. In:.

  12. Implications of population structure and ancestry on asthma genetic studies.

    Science.gov (United States)

    Ortega, Victor E; Meyers, Deborah A

    2014-10-01

    The frequency and severity of asthma differ between different racial and ethnic groups. An understanding of the genetic basis for these differences could constitute future genetic biomarker panels for predicting asthma risk and progression in individuals from different ethnic groups. The recent mixing of different ancestries during the European colonization of the Americas and the African slave trade has resulted in the complex population structures identified in different ethnic groups. These population structures represent varying degrees of genetic diversity which impacts the allele frequency of individual variants and, thus, how the gene variation is utilized in genetic association studies. In this review, we will discuss the basis for the complex population structures of modern human genomes and the impact of genetic diversity on genetic studies in different ethnic groups. We will also highlight the potential for admixture and rare variant-based genetic studies to identify novel genetic loci for asthma susceptibility and severity. The ability to account for the consequences of genetic diversity in different racial and ethnic groups will be critical in developing genetic profiles for personalized or precision medicine approaches tailored to asthmatic patients from different ethnic groups.

  13. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  14. Genetic variation and population structure in native Americans.

    Directory of Open Access Journals (Sweden)

    Sijia Wang

    2007-11-01

    Full Text Available We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1 a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2 a relative lack of differentiation between Mesoamerican and Andean populations, (3 a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4 a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.

  15. Population Genetic Structure of Aedes fluviatilis (Diptera: Culicidae)

    Science.gov (United States)

    Multini, Laura Cristina; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2016-01-01

    Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environments, its biology, epidemiological potential and genetic characteristics are poorly understood. Climate change and urbanization processes that result in environmental modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly increasing their abundance in urban areas. To gain a better understanding of whether urbanization processes modulate the genetic structure of this species in the city of São Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations collected in nine urban parks in the city of São Paulo. Our results show that there is high gene flow among the populations of this species, heterozygosity deficiency and low genetic structure and that the species may have undergone a recent population expansion. There are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have undergone a population expansion as a result of urbanization; and (ii) as urbanization of the city of São Paulo occurred recently and was quite intense, the structuring of these populations cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks, where the first signs of structuring have appeared. We believe that the expansion found in Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city of São Paulo, which transformed green areas into urbanized areas, as well as the increasing population density in the city. PMID:27598889

  16. Host genetics and population structure effects on parasitic disease.

    Science.gov (United States)

    Williams-Blangero, Sarah; Criscione, Charles D; VandeBerg, John L; Correa-Oliveira, Rodrigo; Williams, Kimberly D; Subedi, Janardan; Kent, Jack W; Williams, Jeff; Kumar, Satish; Blangero, John

    2012-03-19

    Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found.

  17. The genetic structure of a relict population of wood frogs

    Science.gov (United States)

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  18. Genetic diversity and population structure of cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Jing Lv

    Full Text Available Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.

  19. Population structure and genetic diversity of Sudanese native chickens

    African Journals Online (AJOL)

    User

    2013-11-06

    Nov 6, 2013 ... origin of breeding populations, molecular marker informa-. *Corresponding .... on the phenotypic characteristics of each local breed (Desai, 1962). ..... Development of a genetic map of the chicken with markers of ... variation and population structure of Italian native sheep breeds ... evolutionary studies. Mol.

  20. Genetic structure in four West African population groups.

    Science.gov (United States)

    Adeyemo, Adebowale A; Chen, Guanjie; Chen, Yuanxiu; Rotimi, Charles

    2005-06-24

    Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. The presences of genetic sub-structure, if not properly accounted for, have been reported to lead to spurious association between a putative risk allele and a disease. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes). There was no significant population genetic structure in the overall sample. The smallest probability is associated with an inferred cluster of 1 and little of the posterior probability is associated with a higher number of inferred clusters. The distribution of members of the sample to inferred clusters is consistent with this finding; roughly the same proportion of individuals from each group is assigned to each cluster with little variation between the ethnic groups. Analysis of molecular variance (AMOVA) showed that the between-population component of genetic variance is less than 0.1% in contrast to 99.91% for the within population component. Pair-wise genetic distances between the four ethnic groups were also very similar. Nonetheless, the small between-population genetic variance was sufficient to distinguish the two Ghanaian groups from the two Nigerian groups. There was little evidence for significant population substructure in the four major West African ethnic groups represented in the AADM study sample. Ethnicity

  1. Genetic structure of fragmented November moth (Lepidoptera: Geometridae) populations in farmland

    DEFF Research Database (Denmark)

    Wynne, Ian Robert; Loxdale, Hugh D.; Brookes, Cliff P.

    2003-01-01

    allozymes, conservation genetics, Epirrita dilutata, Epirrita christyi, molecular markers, habitat fragmentation, population genetic structure......allozymes, conservation genetics, Epirrita dilutata, Epirrita christyi, molecular markers, habitat fragmentation, population genetic structure...

  2. Population genetic structure of a colonising, triploid weed, Hieracium lepidulum.

    Science.gov (United States)

    Chapman, H; Robson, B; Pearson, M L

    2004-03-01

    Understanding the breeding system and population genetic structure of invasive weed species is important for biocontrol, and contributes to our understanding of the evolutionary processes associated with invasions. Hieracium lepidulum is an invasive weed in New Zealand, colonising a diverse range of habitats including native Nothofagus forest, pine plantations, scrubland and tussock grassland. It is competing with native subalpine and alpine grassland and herbfield vegetation. H. lepidulum is a triploid, diplosporous apomict, so theoretically all seed is clonal, and there is limited potential for the creation of variation through recombination. We used intersimple sequence repeats (ISSRs) to determine the population genetic structure of New Zealand populations of H. lepidulum. ISSR analysis of five populations from two regions in the South Island demonstrated high intrapopulation genotypic diversity, and high interpopulation genetic structuring; PhiST = 0.54 over all five populations. No private alleles were found in any of the five populations, and allelic differentiation was correlated to geographic distance. Cladistic compatibility analysis indicated that both recombination and mutation were important in the creation of genotypic diversity. Our data will contribute to any biocontrol program developed for H. lepidulum. It will also be a baseline data set for future comparisons of genetic structure during the course of H. lepidulum invasions.

  3. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV)

    DEFF Research Database (Denmark)

    Snow, M.; Bain, N.; Black, J.

    2004-01-01

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the m......The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders...

  4. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers...... eight populations into four groups including Yorkshire, two wild populations, Mong Cai population and a group of four other indigenous populations. The Bayesian clustering with the admixture model implemented in Structure 2.1 indicated seven possible homogenous clusters among eight populations. From 79......% (Ha Lang) to 98% (Mong Cai). individuals in indigenous pigs were assigned to their own populations. The results confirmed high level of genetic diversity and shed a new light on genetic structure of Vietnam indigenous pig populations....

  5. Genetic structure and phylogeography of European catfish (Silurus glanis) populations.

    Science.gov (United States)

    Triantafyllidis, A; Krieg, F; Cottin, C; Abatzopoulos, T J; Triantaphyllidis, C; Guyomard, R

    2002-06-01

    The genetic structure of Silurus glanis (Europe's largest freshwater fish species) across most of its natural distribution was investigated using 10 microsatellite loci. The revealed levels of genetic diversity were much higher than previous allozyme and restriction fragment length polymorphism mitochondrial DNA analyses had shown; relative levels of variability among populations were however, in good agreement with the previous studies. Populations from large basins (Volga and Danube rivers) were the most polymorphic, while samples from the smaller Greek rivers, which are more prone to genetic bottleneck, exhibited the lowest levels of genetic diversity. Microsatellite multilocus genotyping permitted the assignment of individual fish to their population of origin with a score as high as 98.3%. Despite the great genetic differentiation of S. glanis populations, no consistent pattern of geographical structuring was revealed, in contrast to previous studies of European freshwater fish species. A model of isolation by distance seems more probable and a hypothesis of recent dispersion from only one glacial refugium is proposed. The discovery of the highest levels of microsatellite and mitochondrial diversity in the Volga sample and the presence of river connections, during the Pleistocene, between this area and all major areas of the present catfish distribution, place this refugium around the Ponto-Caspian region. Combining these data with those from previous studies, a number of markers are now available to monitor wild and hatchery populations even at the individual level.

  6. Population structure and genetic diversity of moose in Alaska.

    Science.gov (United States)

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P moose in Alaska with population expansion from interior Alaska westward toward the coast.

  7. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  8. Community structure and population genetics of Eastern Mediterranean polychaetes

    Directory of Open Access Journals (Sweden)

    Giorgos eChatzigeorgiou

    2014-10-01

    Full Text Available Species and genetic diversity are often found to co-vary since they are influenced by external factors in similar ways. In this paper, we analyse the genetic differences of the abundant polychaete Hermodice carunculata (Pallas, 1776 during two successive years at two locations in northern Crete (Aegean Sea and compare them to other populations in the Mediterranean Sea and the Atlantic Ocean. The genetic analysis is combined with an analysis of ecological divergence of the total polychaete community structure (beta diversity at these locations. The phylogenetic analysis of all included H. carunculata populations revealed two main clades, one exclusively found in the Mediterranean and a second occurring in both the Mediterranean and the Atlantic. Genetic diversity indices reveal unexpectedly high differences between the two Cretan populations, despite the absence of apparent oceanographic barriers. A similarly high divergence, represented by a high beta diversity index, was observed between the polychaete communities at the two locations. This comparatively high divergence of the genetic structure of a dominant species and the total polychaete community might be explained by the strong influence of local environmental factors as well as inter-specific interactions between the dominance of a single species and the members of the community.

  9. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus

    DEFF Research Database (Denmark)

    Mayoral, Elsa Garcia; Olsen, M.; Hedeholm, R.

    2016-01-01

    In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow for identifica......In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow...... for identification of origin of C. lumpus in Greenlandic waters, genetic assignment analysis was performed for 86 C. lumpus sampled on a feeding migration. Significant structuring with isolation by distance was observed in the West Greenland samples and two major subpopulations, north and south, were suggested...

  10. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  11. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available AIMS: We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China. METHODS: We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China. IMPORTANT FINDINGS: We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  12. Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar

    NARCIS (Netherlands)

    Goedbloed, D.J.; Hooft, van W.F.; Megens, H.J.W.C.; Langenbeck, K.; Lutz, W.; Crooijmans, R.P.M.A.; Wieren, van S.E.; Ydenberg, R.C.; Prins, H.H.T.

    2013-01-01

    Background: Population genetic studies focus on natural dispersal and isolation by landscape barriers as the main drivers of genetic population structure. However, anthropogenic factors such as reintroductions, translocations and wild x domestic hybridization may also have strong effects on genetic

  13. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  14. Population genetic structure in the Holstein breed in Brazil.

    Science.gov (United States)

    Magalhães Araújo da Silva, Mário Henrique; Malhado, Carlos Henrique Mendes; Costa, José Lauro; Cobuci, Jaime Araujo; Costa, Claudio Napolis; Carneiro, Paulo Luiz Souza

    2016-02-01

    We evaluated the population genetic structure of the Holstein breed in Brazil through pedigree analysis with the aim of supporting genetic management of extant herds. We used data from genealogical records of 204,511 animals in farms from south and southeast Brazil. Pedigree records between 1943 and 2005 were divided into seven periods of 8 years to estimate the effective population size (N e ). N e varied during the study periods, ranging from 0.19 to 3016.25. There was an increase in the percentage of inbred animals over time, from 0.18 to 5.0 %. However, this figure may be an underestimate due to the low completeness of pedigree, primarily related to paternal pedigree. The effective number of founders (fe) was 473 animals and ancestors (fa) was 471. The genetic contribution of 260 ancestors (founders or not) accounted for 50 % of the genetic variability in the population. The average relatedness coefficient (AR) and inbreeding coefficient indicate that the Holstein breed in Brazil is being effectively managed, despite a moderate founder effect and the low number of animals that are responsible for the population variance.

  15. Genetic population structure of Anopheles gambiae in Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Caccone Adalgisa

    2007-10-01

    Full Text Available Abstract Background Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and Annobón, and from continental Equatorial Guinea (EG and Gabon. Methods Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobón and three mainland samples (two in EG and one in Gabon. Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. Results High levels of genetic differentiation were found between the more geographically remote island of Annobón and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. Conclusion The observed patterns of population structure seem to be governed by the presence of both physical (the ocean and biological (the M-S form discontinuity barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed.

  16. Population genetic structure in the paddyfield warbler (Acrocephalus agricola Jerd.

    Directory of Open Access Journals (Sweden)

    Pavel ZEHTINDJIEV, Mihaela ILIEVA, Bengt HANSSON, Olga OPARINA,Mihail OPARIN, Staffan BENSCH

    2011-02-01

    Full Text Available Population genetic structure was studied in paddyfield warblers Acrocephalus agricola breeding in NE Bulgaria, SE Russia and S Kazakhstan. We were particularly interested in the degree of genetic differentiation and gene flow of the Bulgarian population due to its geographical isolation, recent origin and unique migratory strategy. Analyses of mitochondrial DNA (mtDNA showed that there was no divergence between Bulgarian and Russian populations (FST = 0.007, whereas those in Kazakhstan differed significantly from the European breeding populations (Russia: FST = 0.058; Bulgaria: FST = 0.114. The degree of differentiation between populations at nuclear markers (five microsatellite loci; FST ≈ 0 was weaker than for mtDNA. We suggest that this relatively weak differentiation over the range of this species reflects a recent postglacial expansion, and results from mismatch distribution analyses and Fu’s FS tests are in agreement. Preservation of small and geographically isolated populations which may contain individuals with unique adaptive traits, such as the studied Bulgarian population of paddyfield warbler, is valuable for the long-term conservation of expanding migratory bird species [Current Zoology 57 (1: 63–71, 2011].

  17. Identification of genetic and epigenetic marks involved in population structure.

    Directory of Open Access Journals (Sweden)

    Jingyu Liu

    Full Text Available Population structure is well known as a prevalent and important factor in genetic studies, but its relevance in epigenetics is unclear. Very little is known about the affected epigenetic markers and their connections with genetics. In this study we assessed the impact of population diversity on genome wide single nucleotide polymorphisms (SNPs and DNA methylation levels in 196 participants from five ethnic groups, using principle and independent component analyses. Three population stratification factors (PSFs were identified in the genomic SNP dataset, accounting for a relatively large portion of total variance (6%. In contrast, only one PSF was identified in genomic methylation dataset accounting for 0.2% of total variance. This methylation PSF, however, was significantly correlated with the largest SNP PSF (r = 0.72, p<1E-23. We then investigated the top contributing markers in these two linked PSFs. The SNP PSF predominantly consists of 8 SNPs from three genes, SLC45A2, HERC2 and CTNNA2, known to encode skin/hair/eye color. The methylation PSF includes 48 methylated sites in 44 genes coding for basic molecular functions, including transcription regulation, DNA binding, cytokine, and transferase activity. Among them, 8 sites are either hypo- or hyper-methylated correlating to minor alleles of SNPs in the SNP PSF. We found that the genes in SNP and methylation PSFs share common biological processes including sexual/multicellular organism reproduction, cell-cell signaling and cytoskeleton organization. We further investigated the transcription regulatory network operating at these genes and identified that most of genes closely interact with ID2, which encodes for a helix-loop-helix inhibitor of DNA binding. Overall, our results show a significant correlation between genetic and epigenetic population stratification, and suggest that the interrelationship between genetic and epigenetic population structure is mediated via complex multiple

  18. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  19. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  20. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit;

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India...... had the highest genetic diversity while provenances from Laos showed the lowest. In the eastern part of the natural distribution area, comprising Myanmar, Thailand and Laos, there was a strong clinal decrease in genetic diversity the further east the provenance was located. Overall, the pattern...... of the findings for conservation and use of genetic resources of the species are discussed....

  1. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    Science.gov (United States)

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  2. Genetic structure and diversity within and among six populations of ...

    African Journals Online (AJOL)

    Yomi

    2010-04-24

    Apr 24, 2010 ... positive correlation between molecular genetic variation and actual population size. ... Key words: Capparis decidua, Tandhab, Assos, Population size, RAPD markers, Genetic diversity. .... polymorphism in some population, and were monomorphic ... highly informative and produced 152 bands with an ...

  3. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations.

    Science.gov (United States)

    Khanshour, Anas; Conant, Eleanore; Juras, Rytis; Cothran, Ernest Gus

    2013-01-01

    The Arabian horse ignites imagination throughout the world. Populations of this breed exist in many countries, and recent genetic work has examined the diversity and ancestry of a few of these populations in isolation. Here, we explore 7 different populations of Arabians represented by 682 horses. Three of these are Middle Eastern populations from near the historical origin of the breed, including Syrian, Persian, and Saudi Arabian. The remaining Western populations are found in Europe (the Shagya Arabian and Polish Arabian) and in America (American Arabian). Analysis of genetic structure was carried out using 15 microsatellite loci. Genetic distances, analysis of molecular variance, factorial correspondence analysis, and a Bayesian method were applied. The results consistently show higher level of diversity within the Middle Eastern populations than the Western populations. The Western Arabian populations were the main source among population variation. Genetic differentiation was not strong among all Middle Eastern populations, but all American Arabians showed differentiation from Middle Eastern populations and were somewhat uniform among themselves. Here, we explore the diversities of many different populations of Arabian horses and find that populations not from the Middle East have noticeably lower levels of diversity, which may adversely affect the health of these populations.

  4. Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites

    DEFF Research Database (Denmark)

    Pham, Lan Doan; Do, Duy Ngoc; Binh, Nguyen Trong;

    2013-01-01

    geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels...... of genetic diversity and distinct genetic structures. Based on these results, we recommend that for conservation homogenous populations (Nghe An, Thanh Hoa and Phu Yen) can be grouped to reduce costs and U Dau Riu, Lang Son and Ha Giang populations should be conserved separately to avoid loss of genetic...

  5. Population genetic structure in the paddyfield warbler (Acrocephalus agricola Jerd.)

    Institute of Scientific and Technical Information of China (English)

    Pavel ZEHTINDJIEV; Mihaela ILIEVA; Bengt HANSSON; Olga OPARINA; Mihail OPARIN; Staffan BENSCH

    2011-01-01

    Population genefc structure was studied in paddyfield warblers Acrocephalus agricola breeding in NE Bulgaria, SE Russia and S Kazakhstan. We were particularly interested in the degree of genetic differentiation and gene flow of the Bulgarian population due to its geographical isolation, recent origin and unique migratory strategy. Analyses of mitochondrial DNA (mtDNA) showed that there was no divergence between Bulgarian and Russian populations (FST = 0.007), whereas those in Kazakhstan differed significantly from the European breeding populations (Russia: FST = 0.058; Bulgaria: Fsr = 0.114). The degree of differentiation between populations at nuclear markers (five microsatellite loci; FsT ≈ 0) was weaker than for mtDNA. We suggest that this relatively weak differentiation over the range of this species reflects a recent postglacial expansion, and results from mismatch distribution analyses and Fu's Fs tests are in agreement. Preservation of small and geographically isolated populations which may contain individuals with unique adaptive traits, such as the studied Bulgarian population of paddyfield warbler,is valuable for the long-term conservation of expanding migratory bird species.

  6. Population structure and genetic diversity in natural populations of Theobroma speciosum Willd. Ex Spreng (Malvaceae).

    Science.gov (United States)

    Giustina, L D; Luz, L N; Vieira, F S; Rossi, F S; Soares-Lopes, C R A; Pereira, T N S; Rossi, A A B

    2014-02-14

    The genus Theobroma found in the Amazon region is composed of 22 species, including Theobroma speciosum, better known as cacauí. These species are constantly threatened by forest fragmentation caused by human activities and require conservation strategies and management aimed at preserving them in their natural environments. The main objective of this study was to analyze the population structure and genetic diversity within and between natural populations of T. speciosum by using ISSR molecular markers to understand the population structure of the species. Four natural populations belonging to the Amazon rainforest (BAC, CRO, FLA, and PNA), located in the State of Mato Grosso, were selected. Amplification reactions were performed using 15 ISSR primers. A total of 101 loci were found, of which 54.46% were polymorphic at the species level. The BAC population showed higher genetic diversity (H=0.095 and I=0.144) and higher percentage of polymorphism (28.71%). The populations showed an FST value of 0.604, indicating marked genetic differentiation. The highest genetic variation was found between populations. Gene flow was low between populations, indicating genetic isolation between populations.

  7. GENETIC CONSEQUENCES OF SEED DISPERSAL IN THREE SYMPATRIC FOREST HERBS. I. HIERARCHICAL POPULATION-GENETIC STRUCTURE.

    Science.gov (United States)

    Williams, Charles F; Guries, Raymond P

    1994-06-01

    To examine the effects of seed dispersal on spatial genetic structure, we compare three sympatric species of forest herbs in the family Apiaceae whose fruits differ widely in morphological adaptations for animal-attached dispersal. Cryptotaenia canadensis has smooth fruits that are gravity dispersed, whereas Osmorhiza claytonii and Sanicula odorata fruits have appendages that facilitate their attachment to animals. The relative seed-dispersal ability among species, measured as their ability to remain attached to mammal fur, is ranked Sanicula > Osmorhiza > Cryptotaenia. We use a nested hierarchical sampling design to analyze genetic structure at spatial scales ranging from a few meters to hundreds of kilometers. Genetic differentiation among population subdivisions, estimated by average genetic distance and hierarchical F-statistics, has an inverse relationship with dispersal ability such that Cryptotaenia > Osmorhiza > Sanicula. In each species, genetic differentiation increases with distance among population subdivisions. Stochastic variation in gene flow, arising from seed dispersal by attachment to animals, may partly explain the weak relationship between pairwise spatial and genetic distance among populations and heterogeneity in estimates of single locus F-statistics. A hierarchical island model of gene flow is invoked to describe the effects of seed dispersal on population genetic structure. Seed dispersal is the predominant factor affecting variation in gene flow among these ecologically similar, taxonomically related species. © 1994 The Society for the Study of Evolution.

  8. Local genetic structure in a white-bearded manakin population.

    Science.gov (United States)

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present.

  9. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    Science.gov (United States)

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  10. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history.

    Science.gov (United States)

    Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C

    2014-01-01

    Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations

  11. Genetic diversity and population structure of long-tailed macaque (Macaca fascicularis) populations in Peninsular Malaysia.

    Science.gov (United States)

    Nikzad, Sonia; Tan, Soon Guan; Yong Seok Yien, Christina; Ng, Jillian; Alitheen, Noorjahan Banu; Khan, Razib; Rovie-Ryan, Jeffrine J; Valdiani, Alireza; Khajeaian, Parastoo; Kanthaswamy, Sree

    2014-12-01

    The genetic diversity and structure of long-tailed macaques (Macaca fascicularis) in Peninsular Malaysia, a widely used non-human primate species in biomedical research, have not been thoroughly characterized. Thirteen sites of wild populations of long-tailed macaques representing six states were sampled and analyzed with 18 STR markers. The Sunggala and Penang Island populations showed the highest genetic diversity estimates, while the Jerejak Island population was the most genetically discrete due to isolation from the mainland shelf. Concordant with pairwise F(st) estimates, STRUCTURE analyses of the seven PCA-correlated clusters revealed low to moderate differentiation among the sampling sites. No association between geographic and genetic distances exists, suggesting that the study sites, including island study sites, are genetically if not geographically contiguous. The status of the genetic structure and composition of long-tailed macaque populations require further scrutiny to develop this species as an important animal model in biomedical research. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The genetic population structure of northern Sweden and its implications for mapping genetic diseases.

    Science.gov (United States)

    Einarsdottir, Elisabet; Egerbladh, Inez; Beckman, Lars; Holmberg, Dan; Escher, Stefan A

    2007-11-01

    The northern Swedish population has a history of admixture of three ethnic groups and a dramatic population growth from a relatively small founder population. This has resulted in founder effects that together with unique resources for genealogical analyses provide excellent conditions for genetic mapping of monogenic diseases. Several recent examples of successful mapping of genetic factors underlying susceptibility to complex diseases have suggested that the population of northern Sweden may also be an important tool for efficient mapping of more complex phenotypes. A potential factor contributing to these effects may be population sub-isolates within the large river valleys, constituting a central geographic characteristic of this region. We here provide evidence that marriage patterns as well as the distribution of gene frequencies in a set of marker loci are compatible with this notion. The possible implications of this population structure on linkage- and association based strategies for identifying genes contributing risk to complex diseases are discussed.

  13. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    Science.gov (United States)

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity.

  14. Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation

    Directory of Open Access Journals (Sweden)

    Shaoqing Hu

    2014-01-01

    Full Text Available Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites, once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity.

  15. Turkish population structure and genetic ancestry reveal relatedness among Eurasian populations.

    Science.gov (United States)

    Hodoğlugil, Uğur; Mahley, Robert W

    2012-03-01

    Turkey has experienced major population movements. Population structure and genetic relatedness of samples from three regions of Turkey, using over 500,000 SNP genotypes, were compared together with Human Genome Diversity Panel (HGDP) data. To obtain a more representative sampling from Central Asia, Kyrgyz samples (Bishkek, Kyrgyzstan) were genotyped and analysed. Principal component (PC) analysis reveals a significant overlap between Turks and Middle Easterners and a relationship with Europeans and South and Central Asians; however, the Turkish genetic structure is unique. FRAPPE, STRUCTURE, and phylogenetic analyses support the PC analysis depending upon the number of parental ancestry components chosen. For example, supervised STRUCTURE (K=3) illustrates a genetic ancestry for the Turks of 45% Middle Eastern (95% CI, 42-49), 40% European (95% CI, 36-44) and 15% Central Asian (95% CI, 13-16), whereas at K=4 the genetic ancestry of the Turks was 38% European (95% CI, 35-42), 35% Middle Eastern (95% CI, 33-38), 18% South Asian (95% CI, 16-19) and 9% Central Asian (95% CI, 7-11). PC analysis and FRAPPE/STRUCTURE results from three regions in Turkey (Aydin, Istanbul and Kayseri) were superimposed, without clear subpopulation structure, suggesting sample homogeneity. Thus, this study demonstrates admixture of Turkish people reflecting the population migration patterns. © 2012 The Authors Annals of Human Genetics © 2012 Blackwell Publishing Ltd/University College London.

  16. Analysis of genetic structure and relationship among nine indigenous Chinese chicken populations by the Structure program

    Indian Academy of Sciences (India)

    H. F. Li; W. Han; Y. F. Zhu; J. T. Shu; X. Y. Zhang; K. W. Chen

    2009-08-01

    The multi-locus model-based clustering method Structure program was used to infer the genetic structure of nine indigenous Chinese chicken (Gallus gallus) populations based on 16 microsatellite markers. Twenty runs were carried out at each chosen value of predefined cluster numbers $(K)$ under admixture model. The Structure program properly inferred the presence of genetic structure with 0.999 probabilities. The genetic structure not only indicated that the nine kinds of chicken populations were defined actually by their locations, phenotypes or culture, but also reflected the underlying genetic variations. At $K = 2$, nine chicken populations were divided into two main clusters, one light-body type, including Chahua chicken (CHA), Tibet chicken (TIB), Xianju chicken (XIA), Gushi chicken (GUS) and Baier chicken (BAI); and the other heavy-body type, including Beijing You chicken (YOU), Xiaoshan chicken (XIA), Luyuan chicken (LUY) and Dagu chicken (DAG). GUS and DAG were divided into independent clusters respectively when equaled 4, 5, or 6. XIA and BIA chicken, XIA and LUY chicken, TIB and CHA chicken still clustered together when equaled 6, 7, and 8, respectively. These clustering results were consistent with the breeding directions of the nine chicken populations. The Structure program also identified migrants or admixed individuals. The admixed individuals were distributed in all the nine chicken populations, while migrants were only distributed in TIB, XIA and LUY populations. These results indicated that the clustering analysis using the Structure program might provide an accurate representation of the genetic relationship among the breeds.

  17. Population genetic structure of Venezuelan chiropterophilous columnar cacti (Cactaceae).

    Science.gov (United States)

    Nassar, Jafet M; Hamrick, J L; Fleming, Theodore H

    2003-11-01

    We conducted allozyme surveys of three Venezuelan self-incompatible chiropterophilous columnar cacti: two diploid species, Stenocereus griseus and Cereus repandus, and one tetraploid, Pilosocereus lanuginosus. The three cacti are pollinated by bats, and both bats and birds disperse seeds. Population sampling comprised two spatial scales: all Venezuelan arid zones (macrogeographic) and two arid regions in northwestern Venezuela (regional). Ten to 15 populations and 17-23 loci were analyzed per species. Estimates of genetic diversity were compared with those of other allozyme surveys in the Cactaceae to examine how bat-mediated gene dispersal affects the population genetic attributes of the three cacti. Genetic diversity was high for both diploid (P(s) = 94.1-100, P(p) = 56.7-72.3, H(s) = 0.182-0.242, H(p) = 0.161-0.205) and tetraploid (P(s) = 93.1, P(p) = 76.1, H(s) = 0.274, H(p) = 0.253) species. Within-population heterozygote deficit was detected in the three cacti at macrogeographic (F(IS) = 0.145-0.182) and regional (F(IS) = 0.057-0.174) levels. Low genetic differentiation was detected at both macrogeographic (G(ST) = 0.043-0.126) and regional (G(ST) = 0.009-0.061) levels for the three species, suggesting substantial gene flow among populations. Gene exchange among populations seems to be regulated by distance among populations. Our results support the hypothesis that bat-mediated gene dispersal confers high levels of genetic exchange among populations of the three columnar cacti, a process that enhances levels of genetic diversity within their populations.

  18. Genetic structure of autochthonous populations of Meso-America: Mexico.

    Science.gov (United States)

    Lisker, R; Ramírez, E; Babinsky, V

    1996-06-01

    We analyze the possible effect of gene flow on the genetic structure of present-day Mexicans. For this purpose we reviewed previous admixture estimates for various Indian and Mestizo groups. Several facts seem clear: (1) There are no pure Indian groups in Mexico, because all Indian groups show variable degrees of admixture, mostly with whites (range, 0.088 in the Huichol to 0.373 in the Huasteco); (2) the main ancestral contribution to the noncoastal lower middle class Mestizo populations is Indian (above 50%) so that from a genetic standpoint Indians and lower middle class Mestizos are not much different; and (3) black ancestry is quite high on the coasts, ranging from 0.127 to 0.405 on the east coast, and is present in other Mestizos, ranging in large urban centers from 0.027 in Oaxaca to 0.107 in Puebla and in smaller cities from 0.08 in Tlaxcala to 0.181 in Cuanalán.

  19. Population structure and genetic analysis of narrow-clawed crayfish (Astacus leptodactylus) populations in Turkey.

    Science.gov (United States)

    Akhan, Suleyman; Bektas, Yusuf; Berber, Selcuk; Kalayci, Gokhan

    2014-10-01

    The genetic differentiation among Turkish populations of the narrow-clawed crayfish was investigated using a partial sequence of cytochrome oxidase subunit I gene (585 bp) of 183 specimens from 17 different crayfish populations. Median joining network and all phylogenetic analyses disclosed a strong haplotype structure with three prominent clades diverged by a range between 20 and 50 mutations and substantial inter-group pairwise sequence divergence (5.19-6.95 %), suggesting the presence of three distinct clades within the Anatolian populations of Astacus leptodactylus. The divergence times among the three clades of Turkish A. leptodactylus are estimated to be 4.96-3.70 Mya using a molecular clock of 1.4 % sequence divergence per million years, pointing to a lower Pliocene separation. The high level of genetic variability (H d = 95.8 %, π = 4.17 %) and numerous private haplotypes suggest the presence of refugial populations in Anatolia unaffected by Pleistocene habitat restrictions. The pattern of genetic variation among Turkish A. leptodactylus populations, therefore, suggests that the unrevealed intraspecific genetic structure is independent of geographic tendency and congruent with the previously reported geographic distribution and number of subspecies (A. l. leptodactylus and A. l. salinus) of A. leptodactylus.

  20. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  1. Detecting populations in the 'ambiguous' zone : kinship-based estimation of population structure at low genetic divergence

    NARCIS (Netherlands)

    Palsboll, Per J.; Peery, M. Zachariah; Berube, Martine

    2010-01-01

    Identifying population structure is one of the most common and important objectives of spatial analyses using population genetic data. Population structure is detected either by rejecting the null hypothesis of a homogenous distribution of genetic variation, or by estimating low migration rates. Iss

  2. Detecting populations in the 'ambiguous' zone : kinship-based estimation of population structure at low genetic divergence

    NARCIS (Netherlands)

    Palsboll, Per J.; Peery, M. Zachariah; Berube, Martine

    2010-01-01

    Identifying population structure is one of the most common and important objectives of spatial analyses using population genetic data. Population structure is detected either by rejecting the null hypothesis of a homogenous distribution of genetic variation, or by estimating low migration rates. Iss

  3. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation.

    Science.gov (United States)

    Holmes, Christopher J; Pantel, Jelena H; Schulz, Kimberly L; Cáceres, Carla E

    2016-07-01

    When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large-scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination ('high' clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher-quality and lower-quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with 'high' clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.

  4. Analysis of genetic structure in Melia volkensii (Gurke.) populations ...

    African Journals Online (AJOL)

    Administrator

    between populations in the eastern and the coastal regions with 21.1%, (P < 0.0002) of the total variation attributed to differences ... especially in the highly settled areas. ... to rapidly estimate the patterns and distribution of genetic variation for ... Altitude (m) Region .... application to human mitochondrial DNA restriction data.

  5. The impact of clonality on parasite population genetic structure

    Directory of Open Access Journals (Sweden)

    Prugnolle F.

    2008-09-01

    Full Text Available In this paper, we briefly review the consequences of clonal reproduction on the apportionment of genetic diversity in parasite populations. We distinguish three kinds of parasite life-cycle where clonal reproduction occurs. The consequences of this mode of reproduction for the different kinds of parasite life-cycles are described. We here particularly focus on clonal diploids.

  6. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.

    Directory of Open Access Journals (Sweden)

    Wolfram Möbius

    2015-12-01

    Full Text Available As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the

  7. Demography and genetic structure of a recovering grizzly bear population

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  8. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    Science.gov (United States)

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.

  9. Genetic population structuring and demographic history of red ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... In order to estimate the demographic history and genetic structure of. Epinephelus ... using DNA sequence data from the 5' end of the control region. ... on the aquaculture and biology of E. akaara, and Deng ... evolutionary history of the species. .... at low frequency are more likely to be new, θл is a useful.

  10. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    NARCIS (Netherlands)

    Lv, J.; Qi, J.; Shi, Q.; Shen, D.; Zhang, S.; Shao, G.; Li, H.; Sun, Z.; Weng, Y.; Shang, Y.; Gu, X.; Li, X.; Zhu, X.; Zhang, J.; Treuren, van R.; Dooijeweert, van W.; Zhang, Z.; Huang, S.

    2012-01-01

    Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also incl

  11. Comparison of genetic population structure of the large blue butterflies Maculinea nausithous and M. teleius

    DEFF Research Database (Denmark)

    Figurny-Puchalska, Edyta; Gadeberg, Rebekka M.E.; Boomsma, Jacobus Jan

    2000-01-01

    We investigated the genetic population structure of two rare myrmecophilous lycaenid butterflies, Maculinea nausithous and M. teleius, which often live sympatrically and have similar biology. In Europe, both species occur in highly fragmented populations and are vulnerable to local extinction...

  12. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    Science.gov (United States)

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  13. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    Science.gov (United States)

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.

    2014-02-01

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  14. Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae

    Directory of Open Access Journals (Sweden)

    Nitz Barbara

    2010-03-01

    Full Text Available Abstract Background Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from in-situ divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (Coregonus albula complex, examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of C. albula while the remaining two lakes had C. albula as well as a sympatric species (C. lucinensis or C. fontanae. Results AFLP demonstrated a significant population structure (Bayesian θB = 0.22. Lower differentiation between allopatric (θB = 0.028 than sympatric (0.063-0.083 populations contradicts the hypothesis of a sympatric origin of taxa, and there was little evidence for stocking or ongoing hybridization. Genome scans found only three loci that appeared to be under selection in both sympatric population pairs, suggesting a low probability of similar mechanisms of ecological segregation. However, removal of all non-neutral loci decreased the genetic distance between sympatric pairs, suggesting recent adaptive divergence at a few loci. Sympatric pairs in the two lakes were genetically distinct from the six other C. albula populations, suggesting introgression from another lineage may have influenced these two lakes. This was supported by an analysis of isolation-by-distance, where the drift-gene flow equilibrium observed among allopatric populations was disrupted when the sympatric pairs were included. Conclusions While the population genetic data alone can not unambiguously uncover the mode of speciation, our data indicate that multiple lineages may be responsible for the complex patterns typically observed in Coregonus. Relative differences within and among lakes raises

  15. A population on the edge: genetic diversity and population structure of the world's northernmost harbour seals (Phoca vitulina)

    DEFF Research Database (Denmark)

    Andersen, Liselotte Wesley; Lydersen, Christian; Frie, Anne Kirstine

    2011-01-01

      It is crucial to examine the genetic diversity and structure of small, isolated populations, especially those at the edge of their distribution range, because they are vulnerable to stochastic processes if genetic diversity is low and isolation level high, and because such populations provide...... microsatellites and variation in the D-loop. Each of the four locations was a genetically distinct population. The Svalbard population was highly genetically distinct, had reduced genetic diversity, received limited gene flow, had a rather low effective population size and showed an indication of having...... experienced a bottleneck resulting from a recent population decline. The significant heterozygote excess observed in the Svalbard sample might be attributed to the low effective population size, which could initiate future population inbreeding effects. This phenomenon has not been reported earlier from other...

  16. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa

    Directory of Open Access Journals (Sweden)

    Khulekhani Sedwell Khanyile

    2015-02-01

    Full Text Available Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterised and utilized. Surveys that can reveal a population’s genetic structure and provide an insight into its demographic history will give valuable information to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n =146, Malawi (n =30 and Zimbabwe (n =136 were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29-0.36, was observed between SNP markers that were less than 10kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK and 0.24 (VD at SNP marker interval of 500kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective population

  17. Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    1987-06-01

    Full Text Available Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11 og heterozygositeten var tilsvarende høy med en

  18. Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California

    Science.gov (United States)

    Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.

    2012-01-01

    Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.

  19. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  20. Genetic diversity of microsatellite loci in hierarchically structured populations.

    Science.gov (United States)

    Song, Seongho; Dey, Dipak K; Holsinger, Kent E

    2011-08-01

    Microsatellite loci are widely used for investigating patterns of genetic variation within and among populations. Those patterns are in turn determined by population sizes, migration rates, and mutation rates. We provide exact expressions for the first two moments of the allele frequency distribution in a stochastic model appropriate for studying microsatellite evolution with migration, mutation, and drift under the assumption that the range of allele sizes is bounded. Using these results, we study the behavior of several measures related to Wright's F(ST), including Slatkin's R(ST). Our analytical approximations for F(ST) and R(ST) show that familiar relationships between N(e)m and F(ST) or R(ST) hold when the migration and mutation rates are small. Using the exact expressions for F(ST) and R(ST), our numerical results show that, when the migration and mutation rates are large, these relationships no longer hold. Our numerical results also show that the diversity measures most closely related to F(ST) depend on mutation rates, mutational models (stepwise versus two-phase), migration rates, and population sizes. Surprisingly, R(ST) is relatively insensitive to the mutation rates and mutational models. The differing behaviors of R(ST) and F(ST) suggest that properties of the among-population distribution of allele frequencies may allow the roles of mutation and migration in producing patterns of diversity to be distinguished, a topic of continuing investigation.

  1. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    Science.gov (United States)

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.

  2. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): Implications for Pest Management.

    Science.gov (United States)

    Silva-Brandão, Karina L; Santos, Thiago V; Cônsoli, Fernando L; Omoto, Celso

    2015-02-01

    The sugarcane borer, Diatraea saccharalis (F.), is the main pest of sugarcane in Brazil. Genetic variability and gene flow among 13 Brazilian populations of the species were evaluated based on mitochondrial DNA sequences to estimate the exchange of genetic information within and among populations. We found high genetic structure among sampled localities (ΦST=0.50923), and pairwise genetic distances were significantly correlated to geographic distances. Demographic analysis and genealogical network of mitochondrial sequences indicate population growth and admixture of D. saccharalis populations, events likely related to the sequential expansion of the corn and sugarcane crops in Brazil. The implications of these findings for pest management are discussed.

  3. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    Science.gov (United States)

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  4. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers.

    Science.gov (United States)

    Matsumoto, Asako; Uchida, Kohji; Taguchi, Yuriko; Tani, Naoki; Tsumura, Yoshihiko

    2010-09-01

    The genetic diversity and population structure of hinoki (Chamaecyparis obtusa) in Japan were investigated by examining the distribution of alleles at 13 microsatellite loci in 25 natural populations from Iwaki in northern Japan to Yakushima Island in southern Japan. On average, 26.9 alleles per locus were identified across all populations and 4.0% of the genetic variation was retained among populations (G(ST) = 0.040). According to linkage disequilibrium analysis, estimates of effective population size and detected evidence of bottleneck events, the genetic diversity of some populations may have declined as a result of fragmentation and/or over-exploitation. The central populations located in the Chubu district appear to have relatively large effective population sizes, while marginal populations, such as the Yakushima, Kobayashi and Iwaki populations, have smaller effective population sizes and are isolated from the other populations. Microsatellite analysis revealed the genetic uniqueness of the Yakushima population. Although genetic differentiation between populations was low, we detected a gradual cline in the genetic structure and found that locus Cos2619 may be non-neutral with respect to natural selection.

  5. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  6. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean

    Science.gov (United States)

    Bedoya, Claudia A.; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M.; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L.

    2017-01-01

    This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes. PMID:28403177

  7. Genetic variability and population structure of endangered Panax ginseng in the Russian Primorye

    Directory of Open Access Journals (Sweden)

    Muzarok Tamara I

    2010-06-01

    Full Text Available Abstract Background The natural habitat of wild P. ginseng is currently found only in the Russian Primorye and the populations are extremely exhausted and require restoration. Analysis of the genetic diversity and population structure of an endangered species is a prerequisite for conservation. The present study aims to investigate the patterns and levels of genetic polymorphism and population structures of wild P. ginseng with the AFLP method to (1 estimate the level of genetic diversity in the P. ginseng populations in the Russian Primorsky Krai, (2 calculate the distribution of variability within a population and among populations and (3 examine the genetic relationship between the populations. Methods Genetic variability and population structure of ten P. ginseng populations were investigated with Amplified Fragment Length Polymorphism (AFLP markers. The genetic relationships among P. ginseng plants and populations were delineated. Results The mean genetic variability within populations was high. The mean level of polymorphisms was 55.68% at the population level and 99.65% at the species level. The Shannon's index ranged between 0.1602 and 0.3222 with an average of 0.2626 at the population level and 0.3967 at the species level. The analysis of molecular variances (AMOVA showed a significant population structure in P. ginseng. The partition of genetic diversity with AMOVA suggested that the majority of the genetic variation (64.5% was within populations of P. ginseng. The inter-population variability was approximately 36% of the total variability. The genetic relationships among P. ginseng plants and populations were reconstructed by Minimum Spanning tree (MS-tree on the basis of Euclidean distances with ARLEQUIN and NTSYS, respectively. The MS-trees suggest that the southern Uss, Part and Nad populations may have promoted P. ginseng distribution throughout the Russian Primorye. Conclusion The P. ginseng populations in the Russian Primorye

  8. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  9. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  10. Agroecosystems shape population genetic structure of the greenhouse whitefly in Northern and Southern Europe.

    Science.gov (United States)

    Ovčarenko, Irina; Kapantaidaki, Despoina Evripidis; Lindström, Leena; Gauthier, Nathalie; Tsagkarakou, Anastasia; Knott, Karelyn Emily; Vänninen, Irene

    2014-07-29

    To predict further invasions of pests it is important to understand what factors contribute to the genetic structure of their populations. Cosmopolitan pest species are ideal for studying how different agroecosystems affect population genetic structure within a species at different climatic extremes. We undertook the first population genetic study of the greenhouse whitefly (Trialeurodes vaporariorum), a cosmopolitan invasive herbivore, and examined the genetic structure of this species in Northern and Southern Europe. In Finland, cold temperatures limit whiteflies to greenhouses and prevent them from overwintering in nature, and in Greece, milder temperatures allow whiteflies to inhabit both fields and greenhouses year round, providing a greater potential for connectivity among populations. Using nine microsatellite markers, we genotyped 1274 T. vaporariorum females collected from 18 greenhouses in Finland and eight greenhouses as well as eight fields in Greece. Populations from Finland were less diverse than those from Greece, suggesting that Greek populations are larger and subjected to fewer bottlenecks. Moreover, there was significant population genetic structure in both countries that was explained by different factors. Habitat (field vs. greenhouse) together with longitude explained genetic structure in Greece, whereas in Finland, genetic structure was explained by host plant species. Furthermore, there was no temporal genetic structure among populations in Finland, suggesting that year-round populations are able to persist in greenhouses. Taken together our results show that greenhouse agroecosystems can limit gene flow among populations in both climate zones. Fragmented populations in greenhouses could allow for efficient pest management. However, pest persistence in both climate zones, coupled with increasing opportunities for naturalization in temperate latitudes due to climate change, highlight challenges for the management of cosmopolitan pests in

  11. Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history.

    Science.gov (United States)

    Parker, K C; Hamrick, J L; Parker, A J; Nason, J D

    2001-07-01

    Spatial autocorrelation analyses of 12 allozyme loci were used to compare genetic structure within populations of two varieties of Pinus clausa. P. clausa var. immuginata populations tend to be uneven-aged, with continuous recruitment in small gaps created by wind damage, whereas P. clausa var. clausa populations are more even-aged, with recruitment postdating periodic canopy fires. Three var. immuginata populations and three matched pairs of var. clausa populations, including both a mature and a nearby recently burned population, were examined. Aggregation of multilocus genotypes at small distances was evident in all young var. clausa populations. Little inbreeding was apparent among juveniles or adults in these populations; their genetic structure is likely to have resulted from limited seed dispersal. Genotypes were not significantly spatially structured in nearby matched mature populations. Genetic structure was less evident in var. immuginata populations. Aggregated genotypes were only apparent in the population where patches included juveniles of similar ages; dense juvenile clumps in the other two var. immuginata populations comprised a variety of ages. Interannual variability in allele frequencies of surviving seedlings may account for the absence of genetic structure in these populations.

  12. Genetic structure in dwarf bamboo (Bashania fangiana clonal populations with different genet ages.

    Directory of Open Access Journals (Sweden)

    Qing-qing Ma

    Full Text Available Amplified fragment length polymorphism (AFLP fingerprints were used to reveal genotypic diversity of dwarf bamboo (Bashania fangiana clonal populations with two different genet ages (≤30 years versus >70 years at Wolong National Natural Reserve, Sichuan province, China. We generated AFLP fingerprints for 96 leaf samples, collected at 30 m intervals in the two populations, using ten selective primer pairs. A total of 92 genotypes were identified from the both populations. The mean proportion of distinguishable genotypes (G/N was 0.9583 (0.9375 to 0.9792 and Simpson's index of diversity (D was 0.9982 (0.9973 to 0.9991. So, two B. fangiana populations were multiclonal and highly diverse. The largest single clone may occur over a distance of about 30 m. Our results demonstrated that the genotypic diversity and genet density of B. fangiana clonal population did not change significantly (47 versus 45 with genet aging and low partitioned genetic differentiation was between the two populations (Gst = 0.0571. The analysis of molecular variance consistently showed that a large proportion of the genetic variation (87.79% existed among the individuals within populations, whereas only 12.21% were found among populations. In addition, the high level of genotypic diversity in the two populations implies that the further works were needed to investigate the reasons for the poor seed set in B. fangiana after flowering.

  13. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa.

    Science.gov (United States)

    Khanyile, Khulekani S; Dzomba, Edgar F; Muchadeyi, Farai C

    2015-01-01

    Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterized and utilized. Surveys that can reveal a population's genetic structure and provide an insight into its demographic history will give valuable information that can be used to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n = 146), Malawi (n = 30) and Zimbabwe (n = 136) were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29 to 0.36, was observed between SNP markers that were less than 10 kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK) and 0.24 (VD) at SNP marker interval of 500 kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective

  14. Genetic structure of Rajaka caste and affinities with other caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Parvatheesam, C; Babu, B V; Babu, M C

    1997-01-01

    The present study gives an account of the genetic structure in terms of distribution of a few genetic markers, viz., A1A2B0, Rh(D), G6PD deficiency and haemoglobin among the Rajaka caste population of Andhra Pradesh, India. The genetic relationships of the Rajaka caste with other Andhra caste populations were investigated in terms of genetic distance, i.e., Sq B (mn) of Balakrishnan and Sanghvi. Relatively lesser distance was established between the Rajaka and two Panchama castes. Also, the pattern of genetic distance corroborates the hierarchical order of the Hindu varna system.

  15. Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China

    Science.gov (United States)

    Zhang, Jie; Wang, Xiuliang; Yao, Jianting; Li, Qiuying; Liu, Fuli; Yotsukura, Norishige; Krupnova, Tatiana N.; Duan, Delin

    2017-01-01

    Saccharina japonica is a commercially and ecologically important seaweed and is an excellent system for understanding the effects of domestication on marine crops. In this study, we used 19 selected simple sequence repeat (SSR) markers to investigate the influence of domestication on the genetic diversity and structure of S. japonica populations. Wild kelp populations exhibited higher genetic diversity than cultivated populations based on total NA, HE, HO, NP and AR. Discriminant analysis of principal components (DAPC), a neighbour-joining (NJ) tree and STRUCTURE analyses indicated that S. japonica populations could be divided into two groups (a cultivated/introduced group and a wild indigenous group) with significant genetic differentiation (P < 0.0001). Divergent selection, continuous inbreeding and inter-specific hybridization have caused the divergence of these two genetically separate gene pools. The significant genetic differentiation between northern and southern cultivated populations appears to be due to inter-specific hybridization and wild germplasm introduction during the domestication process. In addition, the cultivation of S. japonica has not resulted in any serious genetic disturbance of wild introduced S. japonica populations. An understanding of the genetic diversity and genetic structure of domesticated S. japonica will be necessary for further genetic improvement and effective use of germplasm. PMID:28176848

  16. Structure analysis of the La Guajira-Colombia population: a genetic, demographic and genealogical overview.

    Science.gov (United States)

    Rojas, M Y; Alonso, L A; Sarmiento, V A; Eljach, L Y; Usaquén, W

    2013-03-01

    This study examined whether cultural factors, as compared to geographical distance, have produced a population sub-structure among different groups from the La Guajira population (Amerindian Wayúu and other resident groups) that co-exist within the same region. The aims of this study were to analyse this population to discover whether cultural barriers result in the sub-structure, to evaluate whether there is a genetic drift effect and to describe migration dynamics using a genetic, genealogical and demographic approach. This study examined a sample of 290 individuals who were grouped based on a genealogical criterion to distinguish between native individuals and migrants. Using demographic information, the age and gender structure of the population and genetic drift estimators were analysed. Using 15 autosomal microsatellites, heterozygosity, Hardy-Weinberg equilibrium (HWE), inbreeding, sub-structure, recent migration rate and genetic relationships were also evaluated using a Principal Component analysis (PCA) using reference populations. La Guajira is a young population that is growing and exposed to a moderate effect of genetic drift (Neme 11.903). The Wayúu are highly diverse (Ho 0.727) and different from other groups, with the exception of Wayúu-Guajiro. This trend was also observed in other Amerindian populations. This study found a high level of admixture and gene flow within the Wayúu population despite cultural differences. Thus, although the Wayúu population differs from other population groups, it is not an isolated population.

  17. Characterisation of genetic structure of the Mayan population in Guatemala by autosomal STR analysis.

    Science.gov (United States)

    Martinez-Gonzalez, L J; Alvarez-Cubero, M J; Saiz, M; Alvarez, J C; Martinez-Labarga, C; Lorente, J A

    2016-09-01

    Currently, the Guatemalan population comprises genetically isolated groups due to geographic, linguistic and cultural factors. For example, Mayan groups within the Guatemala population have preserved their own language, culture and religion. These practices have limited genetic admixture and have maintained the genetic identity of Mayan populations. This study is designed to define the genetic structure of the Mayan-Guatemalan groups Kaqchiquel, K'iche', Mam and Q'eqchi' through autosomal short tandem repeat (STR) polymorphisms and to analyse the genetic relationships between them and with other Mayan groups. Fifteen STR polymorphisms were analysed in 200 unrelated donors belonging to the Kaqchiquel (n = 50), K'iche' (n = 50), Mam (n = 50) and Q'eqchi' (n = 50) groups living in Guatemala. Genetic distance, non-metric MDS and AMOVA were used to analyse the genetic relationships between population groups. Within the Mayan population, the STRs D18S51 and FGA were the most informative markers and TH01 was the least informative. AMOVA and genetic distance analyses showed that the Guatemalan-Native American populations are highly similar to Mayan populations living in Mexico. The Mayan populations from Guatemala and other Native American groups display high genetic homogeneity. Genetic relationships between these groups are more affected by cultural and linguistic factors than geographical and local flow. This study represents one of the first steps in understanding Mayan-Guatemalan populations, the associations between their sub-populations and differences in gene diversity with other populations. This article also demonstrates that the Mestizo population shares most of its ancestral genetic components with the Guatemala Mayan populations.

  18. Genetic structure of Indian populations based on fifteen autosomal microsatellite loci

    Directory of Open Access Journals (Sweden)

    Bindu G Hima

    2006-05-01

    Full Text Available Abstract Background Indian populations endowed with unparalleled genetic complexity have received a great deal of attention from scientists world over. However, the fundamental question over their ancestry, whether they are all genetically similar or do exhibit differences attributable to ethnicity, language, geography or socio-cultural affiliation is still unresolved. In order to decipher their underlying genetic structure, we undertook a study on 3522 individuals belonging to 54 endogamous Indian populations representing all major ethnic, linguistic and geographic groups and assessed the genetic variation using autosomal microsatellite markers. Results The distribution of the most frequent allele was uniform across populations, revealing an underlying genetic similarity. Patterns of allele distribution suggestive of ethnic or geographic propinquity were discernible only in a few of the populations and was not applicable to the entire dataset while a number of the populations exhibited distinct identities evident from the occurrence of unique alleles in them. Genetic substructuring was detected among populations originating from northeastern and southern India reflective of their migrational histories and genetic isolation respectively. Conclusion Our analyses based on autosomal microsatellite markers detected no evidence of general clustering of population groups based on ethnic, linguistic, geographic or socio-cultural affiliations. The existence of substructuring in populations from northeastern and southern India has notable implications for population genetic studies and forensic databases where broad grouping of populations based on such affiliations are frequently employed.

  19. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis.

    Science.gov (United States)

    Rodríguez-Ramilo, Silvia T; Wang, Jinliang

    2012-09-01

    The inference of population genetic structures is essential in many research areas in population genetics, conservation biology and evolutionary biology. Recently, unsupervised Bayesian clustering algorithms have been developed to detect a hidden population structure from genotypic data, assuming among others that individuals taken from the population are unrelated. Under this assumption, markers in a sample taken from a subpopulation can be considered to be in Hardy-Weinberg and linkage equilibrium. However, close relatives might be sampled from the same subpopulation, and consequently, might cause Hardy-Weinberg and linkage disequilibrium and thus bias a population genetic structure analysis. In this study, we used simulated and real data to investigate the impact of close relatives in a sample on Bayesian population structure analysis. We also showed that, when close relatives were identified by a pedigree reconstruction approach and removed, the accuracy of a population genetic structure analysis can be greatly improved. The results indicate that unsupervised Bayesian clustering algorithms cannot be used blindly to detect genetic structure in a sample with closely related individuals. Rather, when closely related individuals are suspected to be frequent in a sample, these individuals should be first identified and removed before conducting a population structure analysis.

  20. [Molecular genetic analysis of wild soybean (Glycine soja Sieb. & Zucc.) population structure in anthropogenic and natural landscapes of Primorskii krai].

    Science.gov (United States)

    Nedoluzhko, A V; Tikhonov, A V; Dorokhov, D B

    2008-08-01

    The data are presented on genetic population structure of wild soybean growing in natural and anthropogenically disturbed landscapes of Primorskii krai of the Russian Federation. Comparative analysis showed that wild soybean populations exposed to anthropogenic influence exhibited lower genetic diversity than natural populations. Recommendations on conservation of the wild plant gene pools using comparative data on population genetic structures are made.

  1. Genetic variation and population structure of willowy flounder ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... Key words: Tanakius kitaharai, mitochondrial DNA control region, genetic variability, genetic .... geneity among sites and nucleotide sequence evolution models ..... Application to human mitochondrial DNA restriction data.

  2. Genetic structure of Leptopilina boulardi populations from different climatic zones of Iran

    NARCIS (Netherlands)

    Seyahooei, M.A.; van Alphen, J.J.M.; Kraaijeveld, K.

    2011-01-01

    Background The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in Leptopilina boulardi, a parasitoid of Drosophila of African origin and widely distributed over temperate and (sub) tropical climates.

  3. Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina

    National Research Council Canada - National Science Library

    Kochzius, M; Seidel, C; Hauschild, J; Kirchhoff, S; Mester, P; Meyer-Wachsmuth, I; Nuryanto, A; Timm, J

    2009-01-01

    ... lead to congruent patterns. We studied the comparative genetic population structure based on partial sequences of the mitochondrial cytochrome oxidase I gene of the blue starfish Linckia laevigata and its gastropod ectoparasite...

  4. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  5. The genetics along the Silk Road: structure and evolutionary history of the populations

    OpenAIRE

    Mezzavilla, Massimo

    2015-01-01

    The understanding of the genetic structure of a population is important to describe its population history, as well as designing studies of complex biomedical traits, including disease susceptibility. The Marco Polo expedition gave us the possibilities to explore several different populations in the Caucasus and Central Asia from Georgia to Kazakhstan, obtain information on taste, and smell perception and several other phenotypes in order to identify the genetic variants implicated. Consideri...

  6. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    Science.gov (United States)

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.

  7. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India ...

  8. Genetic Structure of Native Sheep Populations in East and South Asia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Variations of structural loci among 4 sheep populations in China were examined by the method of multiloci electrophoresis, and similar data from 11 sheep populations were taken as basic references to analyze the genetic structure of the native sheep populations in East and South Asia. The results showed that the average heterozygosity and effective number of alleles among 15 populations were 0.2746 and 1.559, respectively. Mongolian sheep possessed the largest average heterozygosity and effective number of alleles. Genetic diversity of sheep populations in Mongolia, China, Vietnam,Bangladesh and Nepal was reduced in this order. The coefficients of genetic differentiation were between 0.0126 and 0.3083, with the average of 0.148, demonstrating that genetic variations lay mainly in populations with 85.2% of the total variations. There exists no correlation between geographical distances and genetic distances. Gene flow was smooth among most populations, which led to inconsistency between geographical distances and genetic distances. The 15 native sheep populations in East and South Asia could be divided into two groups: One group included part populations of China and Mongolia, and the other included Yunnan populations of China, and part populations of Nepal and Bangladesh.Other populations did not cluster together and divide into the above-mentioned two groups. This study indicated genetic differentiation of the 15 native sheep populations in East and South Asia was relatively low, geographical isolation was not the main reason affecting genetic differentiation, and the fifteen sheep populations could be divided into two groups according to phylogenetic relationships.

  9. Subpopulation genetic structure of a plant panmictic population of Castanea sequinii as revealed by microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; KANG Ming; HUANG Hongwen

    2007-01-01

    Castanea squinii Dode,an endemic tree widely distributed in China,plays an important role both in chestnut breeding and forest ecosystem function.The spatial genetic structure within and among populations is an important part of the evolutionary and ecological genetic dynamics of natural populations,and can provide insights into effective conservation of genetic resources.In the present study,the spatial genetic structure of a panmictic natural population of C.sequinii in the Dabie Mountain region was investigated using microsatellite markers.Nine prescreened microsatellite loci generated 29-33 alleles each,and were used for spatial autocorrelation analysis.Based on Moran's I coefficient,a panmictic population of C.sequinii in the Dabie Mountain region was found to be lacking a spatial genetic structure.These results suggest that a high pollen-mediated gene flow among subpopulations counteract genetic drift and/or genetic differentiation and plays an important role in maintaining a random and panmictic population structure in C.sequinii populations.Further,a spatial genetic structure was detected in each subpopulation's scale (0.228 km),with all three subpopulations showing significant fine-scale structure.The genetic variation was found to be nonrandomly distributed within 61 m in each subpopulation (Moran's I positive values).Although Moran's I values varied among the different subpopulations,Moran's I in all the three subpopulations reached the expected values with an increase in distances,suggesting a generally patchy distribution in the subpopulations.The fine-scale structure seems to reflect restricted seed dispersal and microenvironment selection in C.sequinii.These results have important implications for understanding the evolutionary history and ecological process of the natural population of C.sequinii and provide baseline data for formulating a conservation strategy of Castanea species.

  10. Genetic structure of colline and montane populations of an endangered plant species.

    Science.gov (United States)

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-08-12

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations.

  11. Genetic structure of colline and montane populations of an endangered plant species

    Science.gov (United States)

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  12. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    Directory of Open Access Journals (Sweden)

    Rocío Pineda-Martos

    2014-01-01

    Full Text Available Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms.

  13. Population genetic structure of an endangered Utah endemic, Astragalus ampullarioides (Fabaceae).

    Science.gov (United States)

    Breinholt, Jesse W; Van Buren, Renee; Kopp, Olga R; Stephen, Catherine L

    2009-03-01

    The endangered Shivwits milkvetch, Astragalus ampullarioides, is a perennial, herbaceous plant. This Utah endemic was federally listed as endangered in 2001 because of its high habitat specificity and low numbers of individuals and populations. All habitat currently occupied by A. ampullarioides was designated as critical by the U.S. Fish and Wildlife Service in 2006 as a result of conservation litigation. We used AFLP markers to assess genetic differentiation among the seven extant populations and quantified genetic diversity in each. Six different AFLP markers resulted in 217 unambiguous polymorphic loci. We used multiple methods to examine any changes in population genetic structure in this species over time. Results indicate that A. ampullarioides had much higher gene flow among populations in the past, but has since fragmented into regional genetic units. These regions further fragmented genetically, and extant populations have differentiated through genetic drift. Populations had low levels of gene flow, even between geographically close populations. Rapid urban development reduces gene flow among regions and encroaches on populations of A. ampullarioides and remaining patches of unoccupied habitat. The genetic makeup of each of the extant populations should be carefully considered in management decisions such as population establishment or augmentation.

  14. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci

    Science.gov (United States)

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-01

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China. PMID:28112227

  15. Genetic population structure of local populations of the endangered saltmarsh sesarmid crab Clistocoeloma sinense in Japan.

    Science.gov (United States)

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species.

  16. Genetic structure of Leptopilina boulardi populations from different climatic zones of Iran

    Directory of Open Access Journals (Sweden)

    van Alphen Jacques JM

    2011-01-01

    Full Text Available Abstract Background The genetic structure of populations can be influenced by geographic isolation (including physical distance and ecology. We examined these effects in Leptopilina boulardi, a parasitoid of Drosophila of African origin and widely distributed over temperate and (sub tropical climates. Results We sampled 11 populations of L. boulardi from five climatic zones in Iran and measured genetic differentiation at nuclear (Amplified Fragment Length Polymorphism; AFLP and mitochondrial (Cytochrome Oxidase I; COI loci. An Analysis of Molecular Variance (AMOVA for the AFLP data revealed that 67.45% of variation resided between populations. No significant variation was observed between climatic zones. However, a significant difference was detected between populations from the central (dry regions and those from the wetter north, which are separated by desert. A similarly clear cut genetic differentiation between populations from the central part of Iran and those from the north was observed by UPGMA cluster analysis and Principal Coordinates Analysis (PCO. Both UPGMA and PCO further separated two populations from the very humid western Caspian Sea coast (zone 3 from other northern populations from the temperate Caspian Sea coastal plain (zone 2, which are connected by forest. One population (Nour was genetically intermediate between these two zones, indicating some gene flow between these two groups of populations. In all analyses a mountain population, Sorkhabad was found to be genetically identical to those from the nearby coastal plain (zone 2, which indicates high gene flow between these populations over a short geographical distance. One population from the Caspian coast (Astaneh was genetically highly diverged from all other populations. A partial Mantel test showed a highly significant positive correlation between genetic and geographic distances, as well as separation by the deserts of central Iran. The COI sequences were highly

  17. Genetic structure of Leptopilina boulardi populations from different climatic zones of Iran.

    Science.gov (United States)

    Seyahooei, Majeed Askari; van Alphen, Jacques J M; Kraaijeveld, Ken

    2011-01-27

    The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in Leptopilina boulardi, a parasitoid of Drosophila of African origin and widely distributed over temperate and (sub) tropical climates. We sampled 11 populations of L. boulardi from five climatic zones in Iran and measured genetic differentiation at nuclear (Amplified Fragment Length Polymorphism; AFLP) and mitochondrial (Cytochrome Oxidase I; COI) loci. An Analysis of Molecular Variance (AMOVA) for the AFLP data revealed that 67.45% of variation resided between populations. No significant variation was observed between climatic zones. However, a significant difference was detected between populations from the central (dry) regions and those from the wetter north, which are separated by desert. A similarly clear cut genetic differentiation between populations from the central part of Iran and those from the north was observed by UPGMA cluster analysis and Principal Coordinates Analysis (PCO). Both UPGMA and PCO further separated two populations from the very humid western Caspian Sea coast (zone 3) from other northern populations from the temperate Caspian Sea coastal plain (zone 2), which are connected by forest. One population (Nour) was genetically intermediate between these two zones, indicating some gene flow between these two groups of populations. In all analyses a mountain population, Sorkhabad was found to be genetically identical to those from the nearby coastal plain (zone 2), which indicates high gene flow between these populations over a short geographical distance. One population from the Caspian coast (Astaneh) was genetically highly diverged from all other populations. A partial Mantel test showed a highly significant positive correlation between genetic and geographic distances, as well as separation by the deserts of central Iran. The COI sequences were highly conserved among all populations. The

  18. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country

    Directory of Open Access Journals (Sweden)

    Sitthi-amorn Chitr

    2009-07-01

    Full Text Available Abstract Background The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites. Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. Methods The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. Results A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 ± 0.17, where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai

  19. Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites

    Science.gov (United States)

    Bichet, Coraline; Moodley, Yoshan; Penn, Dustin J; Sorci, Gabriele; Garnier, Stéphane

    2015-01-01

    Small and isolated populations usually exhibit low levels of genetic variability, and thus, they are expected to have a lower capacity to adapt to changes in environmental conditions, such as exposure to pathogens and parasites. Comparing the genetic variability of selectively neutral versus functional loci allows one to assess the evolutionary history of populations and their future evolutionary potential. The genes of the major histocompatibility complex (MHC) control immune recognition of parasites, and their unusually high diversity is genes which is likely driven by parasite-mediated balancing selection. Here, we examined diversity and differentiation of neutral microsatellite loci and functional MHC class I genes in house sparrows (Passer domesticus), living in six insular and six mainland populations, and we aimed to determine whether their diversity or differentiation correlates with the diversity and the prevalence of infection of hemosporidian parasites. We found that island bird populations tended to have lower neutral genetic variability, whereas MHC variability gene was similar between island and mainland populations. Similarly, island populations tended to show greater genetic differentiation than mainland populations, especially at microsatellite markers. The maintenance of MHC genetic diversity and its less marked structure in the island populations could be attributed to balancing-selection. The greater MHC differentiation among populations was negatively correlated with similarity in blood parasites (prevalence and diversity of parasite strains) between populations. Even at low prevalence and small geographical scale, haemosporidian parasites might contribute to structure the variability of immune genes among populations of hosts. PMID:25937907

  20. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers.

    Science.gov (United States)

    Edea, Zewdu; Dadi, Hailu; Kim, Sang-Wook; Dessie, Tadelle; Lee, Taeheon; Kim, Heebal; Kim, Jong-Joo; Kim, Kwan-Suk

    2013-01-01

    In total, 166 individuals from five indigenous Ethiopian cattle populations - Ambo (n = 27), Borana (n = 35), Arsi (n = 30), Horro (n = 36), and Danakil (n = 38) - were genotyped for 8773 single nucleotide polymorphism (SNP) markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40) were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs) ≥0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ≥0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (F ST; 1%) in Ethiopian cattle revealed that within individual variation accounted for approximately 99% of the total genetic variation. As expected, F ST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine) and Ethiopian cattle populations. The low estimate of genetic differentiation (F ST) among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, principal component analysis, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed.

  1. Genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    fire7-

    2016-12-28

    Dec 28, 2016 ... markers to assess the genetic diversity within and between common bean landraces, classifying them based on ... since the 1980's from continuous introduction of new ... control genotypes for the Andean and Mesoamerican gene pools, ... http://biology.anu.edu.au/GenAlEx/) was used to calculate genetic.

  2. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    Science.gov (United States)

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  3. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation

    Indian Academy of Sciences (India)

    Pradeep Singh; Akshay Nag; Rajni Parmar; Sneha Ghosh; Brijmohan Singh Bhau; Ram Kumar Sharma

    2015-12-01

    The endangered Aquilaria malaccensis, is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (m : 3.37), low genetic differentiation (ST : 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  4. The population genetic structure of vectors and our understanding of disease epidemiology

    Directory of Open Access Journals (Sweden)

    McCoy K.D.

    2008-09-01

    Full Text Available Understanding and predicting disease epidemiology relies on clear knowledge about the basic biology of the organisms involved. Despite the key role that arthropod vectors play in disease dynamics and detailed mechanistic work on the vectorpathogen interface, little information is often available about how these populations function under natural conditions. Population genetic studies can help fill this void by providing information about the taxonomic status of species, the spatial limits of populations, and the nature of gene flow among populations. Here, I briefly review different types of population genetic structure and some recent examples of where this information has provided key elements for understanding pathogen transmission in tick-borne systems.

  5. Genetic population structure analysis in New Hampshire reveals Eastern European ancestry.

    Science.gov (United States)

    Sloan, Chantel D; Andrew, Angeline D; Duell, Eric J; Williams, Scott M; Karagas, Margaret R; Moore, Jason H

    2009-09-07

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population.

  6. Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population

    NARCIS (Netherlands)

    Charpentier, M J E; Fontaine, M C; Cherel, E; Renoult, J P; Jenkins, T; Benoit, L; Barthès, N; Alberts, S C; Tung, J

    2012-01-01

    Behaviour and genetic structure are intimately related: mating patterns and patterns of movement between groups or populations influence the movement of genetic variation across the landscape and from one generation to the next. In hybrid zones, the behaviour of the hybridizing taxa can also impact

  7. Genetic diversity and population structure of locally adapted South African chicken lines: Implications for conservation.

    NARCIS (Netherlands)

    Marle-Koster, van E.; Hefer, C.A.; Nel, L.H.; Groenen, M.A.M.

    2008-01-01

    In this study microsatellite markers were applied to investigate the genetic diversity and population structure of the six local chicken lines kept in the “Fowls for Africa” program, for better clarification of parameters for breed differentiation and genetic conservation of this valuable resource.

  8. Genetic structure of the threatened Dipterocarpus costatus populations in lowland tropical rainforests of southern Vietnam.

    Science.gov (United States)

    Duc, N M; Duy, V D; Xuan, B T T; Thang, B V; Ha, N T H; Tam, N M

    2016-10-24

    Dipterocarpus costatus is an endangered species restricted to the lowland forests of southern Vietnam. Habitat loss and over-exploitation of D. costatus wood are the major threats to this species. We investigated the level of genetic variability within and among populations of D. costatus in order to provide guidelines for the conservation, management, and restoration of this species to the Forest Protection Department, Vietnam. Nine microsatellite markers were used to analyze 114 samples from four populations representing the natural range of D. costatus in southeast Vietnam. We indicated the low allelic diversity (NA = 2.3) and low genetic diversities with an average observed and expected heterozygosity of 0.130 and 0.151, respectively, in the lowland forests of southeast Vietnam. The low genetic diversity might be a consequence of inbreeding within the small and isolated populations of D. costatus owing to its habitat loss and over-exploitation. All populations deviated from Hardy-Weinberg equilibrium showing reduced heterozygosity. Alleles were lost from the populations by genetic drift. Genetic differentiation among populations was high (average pairwise FST = 0.405), indicating low gene flow (<1) and isolated populations due to its destructed habitat and large geographical distances (P < 0.05) among populations. Heterozygosity excess tests (except of Bu Gia Map only under infinite allele model) were negative. The high genetic variation (62.7%) was found within populations. The STRUCTURE and neighbor joining tree results suggest strong differentiation among D. costatus populations, with the three genetic clusters, Phu Quoc, Tan Phu and Bu Gia Map, and Lo Go-Xa Mat due to habitat fragmentation and isolation. The threatened status of D. costatus was related to a lack of genetic diversity, with all its populations isolated in small forest patches. We recommend the establishment of an ex situ conservation site for D. costatus with a new big population comprising

  9. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Hanwoo breeds using SNP markers

    Directory of Open Access Journals (Sweden)

    Zewdu eEdea

    2013-03-01

    Full Text Available In total, 166 individuals from 5 indigenous Ethiopian cattle populations—Ambo (n = 27, Borana (n = 35, Arsi (n = 30, Horro (n = 36, and Danakil (n = 38—were genotyped for 8773 single nucleotide polymorphism (SNP markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40 were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs ≥ 0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ≥ 0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (FST (1% in Ethiopian cattle revealed that within-individual variation accounted for approximately 99% of the total genetic variation. As expected, FST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine and Ethiopian cattle populations. The low estimate of genetic differentiation (FST among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, PCA, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed

  10. Diversity and genetic structure of Ornithogalum L. (Hyacinthaceae populations as revealed by RAPD-PCR markers

    Directory of Open Access Journals (Sweden)

    Andrić Andrijana

    2015-01-01

    Full Text Available Random amplified polymorphic DNA (RAPD PCR method was used to assess the level of diversity and genetic structure in Ornithogalum L. populations from Serbia and Hungary with the main goal of improving the knowledge of this genus in the given region. The material was collected from 19 populations and identified as two morphologically similar and phylogenetically close taxa: O. umbellatum L. 1753 and O. divergens Boreau 1887. All ten RAPD primers used for the analysis gave PCR products, with length between 3000bp and 300bp. There were 101 amplified fragments in total; number of polymorphic bands per primer varied between seven and 13. Percentage of polymorphic loci was 96% in total and 12% in average in each population. Genetic variation statistics for all loci also showed that genetic diversity for all populations was 0.29 and Shannon index 0.45, while mean values for these parameters calculated for each population were 0.04 and 0.06, respectively. Analysis of molecular variance demonstrated high population genetic differentiation; however Mantel test showed no significant correlation between geographic distances of populations and genetic distances expressed through population pairwise FST. UPGMA dendrogram based on Jaccard genetic similarity coefficients showed subclustering and principal coordinate analysis based on Nei and Li coefficients of genetic distances indicated grouping. Analysis of populations genetic structure was in accordance with these results and clearly separated populations of O. umbellatum from O. divergens. RAPDs proved to be a reliable and rapid method suitable for distinguishing genetic differentiation in Ornithogalum, thus could be applied as a useful additional tool in resolving taxonomic problems. [Projekat Ministarstva nauke Republike Srbije, br. 173002

  11. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  12. Genetic structure analysis of Eufriesea violacea (Hymenoptera, Apidae populations from southern Brazilian Atlantic rainforest remnants

    Directory of Open Access Journals (Sweden)

    Silvia H. Sofia

    2005-09-01

    Full Text Available Random amplified polymorphic DNA (RAPD markers were used to analyze the genetic structure of Eufriesea violacea populations in three fragments (85.47, 832.58 and 2800 ha of Atlantic rainforest located in the north of the Brazilian state of Paraná. A total of twelve primers produced 206 loci, of which 129 were polymorphic (95% criterion. The proportions of polymorphic loci in each population ranged from 57.28% to 59.2%, revealing very similar levels of genetic variability in the groups of bees from each fragment. Unbiased genetic distances between groups ranged from 0.0171 to 0.0284, the smallest genetic distance occurring between bees from the two larger fragments. These results suggest that the E. violacea populations from the three fragments have maintained themselves genetically similar to native populations of this species originally present in northern Paraná.

  13. Genetic Identification and Population Structure of Juvenile Mullet ...

    African Journals Online (AJOL)

    then genetically identified using direct sequencing of the CO1 gene with cross- referencing to a recent ..... probabilities were lacking modal distribution, so the optimum number of .... different scenarios with no correspondence between them.

  14. Genetic diversity and population structure of Clavibacter michiganensis subsp. nebraskensis.

    Science.gov (United States)

    Agarkova, I V; Lambrecht, P A; Vidaver, A K

    2011-05-01

    Clavibacter michiganensis subsp. nebraskensis (CMN) is a gram-positive bacterium and an incitant of Goss's bacterial wilt and leaf blight or "leaf freckles" in corn. A population structure of a wide temporal and geographic collection of CMN strains (n = 131), originating between 1969 and 2009, was determined using amplified fragment length polymorphism (AFLP) analysis and repetitive DNA sequence-based BOX-PCR. Analysis of the composite data set of AFLP and BOX-PCR fingerprints revealed two groups with a 60% cutoff similarity: a major group A (n = 118 strains) and a minor group B (n = 13 strains). The clustering in both groups was not correlated with strain pathogenicity. Group A contained two clusters, A1 (n = 78) and A2 (n = 40), with a linkage of 75%. Group A strains did not show any correlation with historical, geographical, morphological, or physiological properties of the strains. Group B was very heterogeneous and eight out of nine clusters were represented by a single strain. The mean similarity between clusters in group B varied from 13% to 63%. All strains in group B were isolated after 1999. The percentage of group B strains among all strains isolated after 1999 (n = 69) was 18.8%. Implications of the findings are discussed.

  15. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  16. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    Science.gov (United States)

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago.

  17. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany

    Directory of Open Access Journals (Sweden)

    Reim Stefanie

    2016-06-01

    Full Text Available In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR and chloroplast single nucleotide polymorphism (cpSNP. In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA. The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.

  18. Mitochondrial DNA analysis of Tunisians reveals a mosaic genetic structure with recent population expansion.

    Science.gov (United States)

    Frigi, S; Mota-Vieira, L; Cherni, L; van Oven, M; Pires, R; Boussetta, S; El-Gaaied, A Ben Ammar

    2017-05-19

    Tunisia is a country of great interest for human population genetics due to its strategic geographic position and rich human settlement history. These factors significantly contributed to the genetic makeup of present-day Tunisians harbouring components of diverse geographic origins. Here, we investigated the genetic structure of Tunisians by performing a mitochondrial DNA (mtDNA) comparison of 15 Tunisian population groups, in order to explore their complex genetic landscape. All Tunisian data were also analysed against 40 worldwide populations. Statistical results (Tajima's D and Fu's FS tests) suggested recent population expansion for the majority of studied populations, as well as showed (AMOVA test) that all populations were significantly different from each other, which is evidence of population structure even if it is not guided by geographic and ethnic effects. Gene flow analysis revealed the assignment of Tunisians to multiple ancestries, which agrees with their genetic heterogeneity. The resulting picture for the mtDNA pool confirms the evidence of a recent expansion of the Tunisian population and is in accordance with a mosaic structure, composed by North African, Middle Easterner, European and Sub-Saharan lineages, resulting from a complex settlement history. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    Directory of Open Access Journals (Sweden)

    Wan Isa Hatin

    Full Text Available Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis. To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  20. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    Science.gov (United States)

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-04-05

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  1. Polygyny and strong genetic structuring within an isolated population of the wood ant Formica rufa

    Directory of Open Access Journals (Sweden)

    Wouter Dekoninck

    2014-12-01

    Full Text Available Social structuring of populations within some Formica species exhibits considerable variation going from monodomous and monogynous populations to polydomous, polygynous populations. The wood ant species Formica rufa appears to be mainly monodomous and monogynous throughout most of its distribution area in central and northern Europe. Only occasionally it was mentioned that F. rufa can have both polygynous and monogynous colonies in the same geographical region. We studied an isolated polydomous F. rufa population in a deciduous mixed forest in the north-west of Belgium. The level of polydomy within the colonies varied from monodomous to 11 nests per colony. Our genetic analysis of eight variable microsatellites suggest an oligo- to polygynous structure for at least the major part of the sampled nests. Relatedness amongst nest mate workers varies considerable within the population and colonies but confirms in general a polygynous structure. Additionally high genetic diversity (e.g. up to 8 out of 11 alleles per nest for the most variable locus and high within nest genetic variance (93% indicate that multiple queens contribute to the gene pool of workers of the same nest. Moreover significant genetic structuring among colonies indicates that gene flow between colonies is restricted and that exchange of workers between colonies is very limited. Finally we explain how possible factors as budding and the absence of Serviformica can explain the differences in genetic structure within this polygynous F. rufa population.

  2. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Melissa D Conrad

    Full Text Available Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2 differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  3. Local Climate Heterogeneity Shapes Population Genetic Structure of Two Undifferentiated Insular Scutellaria Species

    Science.gov (United States)

    Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun

    2017-01-01

    Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis, which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of “early divergence with secondary contact” and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level. PMID:28239386

  4. Population genetic structure of moose (Alces Alces) of South-central Alaska.

    Science.gov (United States)

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins areoften thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  5. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  6. The genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... variation and, hence, restricting the amount of adapted genetic diversity ... the phenotypic diversity of common bean in Uganda. The selection ... The place of collection/origin was also consi- dered in ..... Bean Research and Development Programs at NaCRRI and CIAT .... Evolution 92:1101-1104. Kami JA ...

  7. Genetic diversity and population structure of begomoviruses infecting sweet potato

    Science.gov (United States)

    Begomoviruses infecting sweet potatoes (Ipomoea batatas) exhibit high genetic diversity, and approximately eight species including Sweet potato leaf curl virus (SPLCV) have been described from different regions around the world. In this study, the complete genomic sequences of 17 geographically dist...

  8. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  9. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Science.gov (United States)

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  10. Population genetic structure and phylogeography of the mud-flat ...

    African Journals Online (AJOL)

    Yomi

    2012-01-27

    Jan 27, 2012 ... Both mismatch distribution and neutrality tests indicate population .... Genomic DNA was extracted from the muscle tissue of walking legs or claws using a ... sequences were retrieved with both alignment and manual check.

  11. Genetic structure and variability within and among populations of the ...

    African Journals Online (AJOL)

    Lalouta

    2014-01-01

    Jan 1, 2014 ... populations of the fat-tailed Barbarine sheep breed ... 3Zoological Institute, Christian-Albrechts-University, Kiel, Olshausenstraße 40, 24118 Kiel, Germany. Accepted 17 December .... herds of the Office of Public Lands (OTD).

  12. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications.

    Science.gov (United States)

    Maisano Delser, Pierpaolo; Fuselli, Silvia

    2013-05-01

    Understanding the role of inheritance in individual variation in drug response is the focus of pharmacogenetics (PGx). A key part of this understanding is quantifying the role of genetic ancestry in this phenotypic outcome. To provide insight into the relationship between ethnicity and drug response, this study first infers the global distribution of PGx variation and defines its structure. Second, the study evaluates if geographic population structure stems from all PGx loci in general, or if structure is caused by specific genes. Lastly, we identify the genetic variants contributing the greatest proportion of such structure. Our study describes the global genetic structure of PGx loci across the 52 populations of the Human Genome Diversity Cell-Line Panel, the most inclusive set of human populations freely available for studies on human genetic variation. By analysing genetic variation at 1,001 single nucleotide polymorphisms (SNPs) involved in biotransformation of exogenous substances, we describe the between-populations PGx variation, as well geographical groupings of diversity. In addition, with discriminant analysis of principal component (DAPC), we infer how many and which groups of populations are supported by PGx variation, and identify which SNPs actually contribute to the PGx structure between such groups. Our results show that intergenic, synonymous and non-synonymous SNPs show similar levels of genetic variation across the globe. Conversely, loci coding for Cytochrome P450s (mainly metabolizing exogenous substances) show significantly higher levels of genetic diversity between populations than the other gene categories. Overall, genetic variation at PGx loci correlates with geographic distances between populations, and the apportionment of genetic variation is similar to that observed for the rest of the genome. In other words, the pattern of PGx variation has been mainly shaped by the demographic history of our species, as in the case of most of our

  13. Genetic variation and population structure of interleukin genes among seven ethnic populations from Karnataka, India

    Indian Academy of Sciences (India)

    Srilakshmi M. Raj; Diddahally R. Govindaraju; Ranajit Chakraborty

    2007-12-01

    The extent of genetic variation and the degree of genetic differentiation among seven ethnic populations from Karnataka, India (Bunt, Havyak, Iyengar, Lingayath, Smartha, Vaishya, Vokkaliga), was investigated using four single nucleotide polymorphisms (SNPs: IL-1A 4845, IL-1B 3954, IL-1B 511 and IL-1RA 2018) of the interleukin gene cluster. Allele frequencies varied by threefold among these populations, which also differed for gene diversity and heterozygosity levels. The average degree of population subdivision among these castes was low ($F_{ST} = 0.02$). However, pair-wise interpopulation differentiation ranged from 0–7%, indicating no detectable differentiation to moderate differentiation between specific populations. The results of phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data on these ethnic groups. Variation in the allele frequencies, as well as differentiation, may be attributed to differential selection and demographic factors including consanguinity among the ethnic groups. Information on the distribution of functionally relevant polymorphisms among ethnic populations may be important towards developing community medicine and public health policies.

  14. Hundred years of genetic structure in a sediment revived diatom population

    DEFF Research Database (Denmark)

    Haernstroem, Karolina; Ellegaard, Marianne; Andersen, Thorbjørn Joest

    2011-01-01

    This paper presents research on the genetic structure and diversity of populations of a common marine protist and their changes over time. The bloom-forming diatom Skeletonema marinoi was used as a model organism. Strains were revived from anoxic discrete layers of a 210Pb-dated sediment core...... accumulated over more than 100 y, corresponding to >40,000 diatom mitotic generations. The sediment core was sampled from the highly eutrophic Mariager Fjord in Denmark. The genetic structure of S. marinoi was examined using microsatellite markers, enabling exploration of changes through time...... and of the effect of environmental fluctuations. The results showed a stable population structure among and within the examined sediment layers, and a similar genetic structure has been maintained over thousands of generations. However, established populations from inside the fjord were highly differentiated from...

  15. Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.

    Science.gov (United States)

    Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

    2013-02-01

    Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution.

  16. Emergent patterns of population genetic structure for a coral reef community.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Bowen, Brian W; Toonen, Robert J

    2014-06-01

    What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2=0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2=0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species-specific abundance and migration patterns and/or seascape and historical factors.

  17. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy

    DEFF Research Database (Denmark)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert

    2014-01-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population...... structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild...... populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops...

  18. Inbreeding rate and genetic structure of cat populations in Poland.

    Science.gov (United States)

    Mucha, S; Wolc, A; Gradowska, A; Szwaczkowski, T

    2011-02-01

    The objective of the study was to analyze effective population size and inbreeding level in populations of cat breeds registered in the Polish Studbook. The Association of Purebred Cat Breeders in Poland provided access to pedigrees of 26725 cats from seven breeds. The most frequent breed was Persian, however increasing tendency in numbers of registered animals from other breeds was recorded in later years. Although the percentage of inbred individuals was increasing over time, mating of close relatives was avoided by most of the breeders, and the average inbreeding coefficient exceeded 5% only for Siberian and Russian breeds. Current analysis suggests that the Polish pedigree cat populations are not threatened by negative effects of inbreeding.

  19. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations

    Directory of Open Access Journals (Sweden)

    Balloux François

    2010-10-01

    Full Text Available Abstract Background The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering the organization of natural populations in space and time. However, the size of the datasets generated also poses some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently available multivariate methods still lack some essential features needed to study the genetic structure of natural populations. Results We introduce the Discriminant Analysis of Principal Components (DAPC, a multivariate method designed to identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information from genetic data, providing assignment of individuals to groups, a visual assessment of between-population differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and hemagglutinin gene sequence variation in seasonal influenza. Conclusions Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and graphical representation of between-group structures allow to unravel complex population structures. Our approach is also faster than

  20. Range-wide population genetic structure of the Caribbean sea fan coral, Gorgonia ventalina.

    Science.gov (United States)

    Andras, Jason P; Rypien, Krystal L; Harvell, Catherine D

    2013-01-01

    The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences. Here, we describe the range-wide population genetic structure of an ecologically important Caribbean octocoral, Gorgonia ventalina. Genetic differentiation was positively correlated with geographic distance and negatively correlated with oceanographically modelled dispersal probability throughout the range. Although we observed admixture across hundreds of kilometres, estimated dispersal was low, and populations were differentiated across distances <2 km. These results suggest that populations of G. ventalina may be evolutionarily coupled via gene flow but are largely demographically independent. Observed patterns of differentiation corroborate biogeographic breaks found in other taxa (e.g. an east/west divide near Puerto Rico), and also identify population divides not discussed in previous studies (e.g. the Yucatan Channel). High genotypic diversity and absence of clonemates indicate that sex is the primary reproductive mode for G. ventalina. A comparative analysis of the population structure of G. ventalina and its dinoflagellate symbiont, Symbiodinium, indicates that the dispersal of these symbiotic partners is not coupled, and symbiont transmission occurs horizontally.

  1. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    Science.gov (United States)

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; pmalaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright

  2. Cyanobacteria Affect Fitness and Genetic Structure of Experimental Daphnia Populations.

    Science.gov (United States)

    Drugă, Bogdan; Turko, Patrick; Spaak, Piet; Pomati, Francesco

    2016-04-05

    Zooplankton communities can be strongly affected by cyanobacterial blooms, especially species of genus Daphnia, which are key-species in lake ecosystems. Here, we explored the effect of microcystin/nonmicrocystin (MC/non-MC) producing cyanobacteria in the diet of experimental Daphnia galeata populations composed of eight genotypes. We used D. galeata clones hatched from ephippia 10 to 60 years old, which were first tested in monocultures, and then exposed for 10 weeks as mixed populations to three food treatments consisting of green algae combined with cyanobacteria able/unable of producing MC. We measured the expression of nine genes potentially involved in Daphnia acclimation to cyanobacteria: six protease genes, one ubiquitin-conjugating enzyme gene, and two rRNA genes, and then we tracked the dynamics of the genotypes in mixed populations. The expression pattern of one protease and the ubiquitin-conjugating enzyme genes was positively correlated with the increased fitness of competing clones in the presence of cyanobacteria, suggesting physiological plasticity. The genotype dynamics in mixed populations was only partially related to the growth rates of clones in monocultures and varied strongly with the food. Our results revealed strong intraspecific differences in the tolerance of D. galeata clones to MC/non-MC-producing cyanobacteria in their diet, suggesting microevolutionary effects.

  3. [Genetic structure, subdivision, and population differentiation in Stankewiczii pine Pinus stankewiczii (Sukacz.) Fomin from Mountain Crimea].

    Science.gov (United States)

    Korshikov, I I; Gorlova, E M

    2006-06-01

    In order to analyze the genetic structure, subdivision and differentiation within and between two small isolated populations of the Crimea relict endemic, Pinus stankewiczii (Sukacz.) Fomin, electrophoretic analysis of the isozyme variation at nine enzymatic systems was carried out using 183 oldest trees. It was demonstrated that in populations of P. stankewiczii, 80% of the genes were in polymorphic state. Each tree was heterozygous at 19.1% loci, and at 21.6% loci in artificial 50-year-old plantation. The genetic structure of two populations was less differentiated (DN = 0.006), compared to their individual localities (DN = 0.008-0.009). Within-population subdivision of the diffusely dispersed populations was higher (FST-GST = 1.8-2.0%) than that of the populations themselves (0.8%).

  4. Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus.

    Directory of Open Access Journals (Sweden)

    Natalia Rosetti

    Full Text Available Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD and partial sequences of the cytochrome oxydase 1 (COI mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the

  5. Genetic Diversity and Population Structure in Native Chicken Populations from Myanmar, Thailand and Laos by Using 102 Indels Markers

    Directory of Open Access Journals (Sweden)

    A. A. Maw

    2015-01-01

    Full Text Available The genetic diversity of native chicken populations from Myanmar, Thailand, and Laos was examined by using 102 insertion and/or deletion (indels markers. Most of the indels loci were polymorphic (71% to 96%, and the genetic variability was similar in all populations. The average observed heterozygosities (HO and expected heterozygosities (HE ranged from 0.205 to 0.263 and 0.239 to 0.381, respectively. The coefficients of genetic differentiation (Gst for all cumulated populations was 0.125, and the Thai native chickens showed higher Gst (0.088 than Myanmar (0.041 and Laotian (0.024 populations. The pairwise Fst distances ranged from 0.144 to 0.308 among populations. A neighbor-joining (NJ tree, using Nei’s genetic distance, revealed that Thai and Laotian native chicken populations were genetically close, while Myanmar native chickens were distant from the others. The native chickens from these three countries were thought to be descended from three different origins (K = 3 from STRUCTURE analysis. Genetic admixture was observed in Thai and Laotian native chickens, while admixture was absent in Myanmar native chickens.

  6. Microsatellite markers to determine population genetic structure in the golden anchovy, Coilia dussumieri.

    Science.gov (United States)

    Kathirvelpandian, A; Gopalakrishnan, A; Lakra, W S; Krishna, Gopal; Sharma, Rupam; Musammilu, K K; Basheer, V S; Jena, J K

    2014-06-01

    Coilia dussumieri (Valenciennes, 1848) commonly called as golden anchovy, constitutes a considerable fishery in the northern part of both the west and east coasts of India. Despite its clear-cut geographic isolation, the species is treated as a unit stock for fishery management purposes. We evaluated 32 microsatellite primer pairs from three closely related species (resource species) belonging to the family Engraulidae through cross-species amplification in C. dussumieri. Successful cross-priming was obtained with 10 loci, which were sequenced for confirmation of repeats. Loci were tested for delineating the genetic stock structure of four populations of C. dussumieri from both the coasts of India. The number of alleles per locus ranged from 8 to 18, with a mean of 12.3. Results of pairwise F ST indicated genetic stock structuring between the east and west coast populations of India and also validated the utilization of identified microsatellite markers in population genetic structure analysis.

  7. SHIPS: Spectral Hierarchical clustering for the Inference of Population Structure in genetic studies.

    Science.gov (United States)

    Bouaziz, Matthieu; Paccard, Caroline; Guedj, Mickael; Ambroise, Christophe

    2012-01-01

    Inferring the structure of populations has many applications for genetic research. In addition to providing information for evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study. SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost and its ease of use make this method a promising

  8. Founder effects and genetic population structure of brown trout (Salmo trutta) in a Danish river system

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    1996-01-01

    The influence of founder effects on the genetic population structure of brown trout (Salmo trutta) was studied in a small Danish river system. Samples of trout from seven locations were analysed by allozyme electrophoresis and mitochondrial DNA restriction fragment length polymorphism analysis....... For comparison, allozyme data from other Danish trout populations and mtDNA data from two hatchery strains were included. Genetic differentiation among populations was found to be small but significant. Pairwise tests for homogeneity of allele and haplotype frequencies between samples showed that significance...... was predominantly due to a single population. In two of the locations studied, extinction-recolonization events had taken place. In one of the populations, founding had not resulted in divergence, while the other founded population was the one that had diverged significantly from the remaining populations. Computer...

  9. Genetic structure of natural and restored shoalgrass Halodule wrightii populations in the NW Gulf of Mexico

    Science.gov (United States)

    Travis, S.E.; Sheridan, P.

    2006-01-01

    The decline of seagrass communities worldwide has sparked an urgent need for effective restoration strategies, which require a working knowledge of population genetic structure. Halodule wrighti is a common seagrass of the Caribbean region that is being restored to areas of the Gulf of Mexico, yet little is known of its population genetics. This study provides an assessment of individual, clonal and population effects on the genetic structure of 4 natural H. wrightii populations occupying 170 km of coastline in and around Galveston Bay, Texas, for comparison with 7 restored populations ranging in age from 2 to 7 yr. By using molecular markers, in the form of amplified fragment length polymorphisms (AFLPs), we found considerable variation in clonal richness at the population scale (from 0.54 to 0.82), with the restored populations occupying an intermediate to high position within this range. Replicate sampling within individual seagrass beds of 3 to 5m diameter generally revealed higher levels of clonal richness, elevated by 4 to 22% over that at the population scale, suggesting that seed recruitment is more important at the local scale than at distances of >10 m. Genetic diversity was 2 to 3 times less than that expected for a widespread, outcrossing species like H. wrightii, although a 170% increase in the frequency of variable markers relative to the mean for all other populations was noted for a volunteer population that had recruited from a mixture of donor materials planted at a nearby restoration site. Within the spatial extent of this study, natural populations adhered to a model of isolation-by-distance, whereas donor materials from these same natural populations were undergoing a rapid genetic convergence within a restored site where they had been planted together. ?? Inter-Research 2006.

  10. Comparison of algorithms to infer genetic population structure from unlinked molecular markers.

    Science.gov (United States)

    Peña-Malavera, Andrea; Bruno, Cecilia; Fernandez, Elmer; Balzarini, Monica

    2014-08-01

    Identifying population genetic structure (PGS) is crucial for breeding and conservation. Several clustering algorithms are available to identify the underlying PGS to be used with genetic data of maize genotypes. In this work, six methods to identify PGS from unlinked molecular marker data were compared using simulated and experimental data consisting of multilocus-biallelic genotypes. Datasets were delineated under different biological scenarios characterized by three levels of genetic divergence among populations (low, medium, and high FST) and two numbers of sub-populations (K=3 and K=5). The relative performance of hierarchical and non-hierarchical clustering, as well as model-based clustering (STRUCTURE) and clustering from neural networks (SOM-RP-Q). We use the clustering error rate of genotypes into discrete sub-populations as comparison criterion. In scenarios with great level of divergence among genotype groups all methods performed well. With moderate level of genetic divergence (FST=0.2), the algorithms SOM-RP-Q and STRUCTURE performed better than hierarchical and non-hierarchical clustering. In all simulated scenarios with low genetic divergence and in the experimental SNP maize panel (largely unlinked), SOM-RP-Q achieved the lowest clustering error rate. The SOM algorithm used here is more effective than other evaluated methods for sparse unlinked genetic data.

  11. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Matzen, Hans

    2008-01-01

    protein-coding genes GmFOX2 and GmTOR2 were used as co-dominant genetic markers together with the large subunit (LSU) rDNA. The gene diversity and genetic structure of Glomus mosseae, Glomus geosporum and Glomus caledonium were compared within and between the fields. •  Spores of G. caledonium and G...... be attributed to variation between plots rather than subplots, suggesting that the lack of soil cultivation resulted in more heterogeneous population genetic structures. Analyses of haplotype networks of the fungi suggested a subdivision of G. mosseae haplotypes between the two fields, whereas no such division...

  12. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    Science.gov (United States)

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites.

  13. Microsatellite based genetic structure of regional transboundary Istrian sheep breed populations in Croatia and Slovenia

    Directory of Open Access Journals (Sweden)

    Beatriz Gutierrez-Gil

    2015-02-01

    Full Text Available Istrian dairy sheep is a local breed essential for the identity and development of the Northern- Adriatic karstic region through high-quality products, primarily the hard sheep artisanal cheese. Border changes fragmented the initial Istrian dairy sheep population in three genetically isolated sub-populations in Italy (1000 animals, Slovenia (1150 animals and Croatia (2500 animals. Due to the drastic reduction of their population sizes and fragmentation, the populations in Croatia and Slovenia are included in governmentally supported conservation programs. The initial subpopulation in Italy was restored after near extinction with stock from Slovenia, and is used today in meat production. The aim of this study was to provide an initial understanding of the current genetic structure and distribution of the genetic variability that exists in Istrian sheep by analysing individuals sampled in two regional groups of Istrian sheep from Croatia and Slovenia. Cres island sheep and Lika pramenka sheep were used as out-groups for comparison. Genetic differentiation was analysed using factorial correspondence analysis and structure clustering over 26 microsatellite loci for a total of 104 sheep belonging to three breeds from Croatia and Slovenia. Factorial correspondence analysis and clustering-based structure analysis both showed three distinct populations: Lika pramenka sheep, Cres island sheep and Istrian sheep. We did not find a marked genetic divergence of the regional groups of Istrian sheep. Istrian sheep regional group from Slovenia showed lower genetic variability compared to the one from Croatia. Variability and structure information obtained in this study considered alongside with socio-cultural-contexts and economic goals for the Istrian sheep reared in Croatia and Slovenia indicate that the cross-border exchange of genetic material of animals carrying private alleles among populations would maintain these alleles at low frequencies and minimize

  14. Genetic structure among greater white-fronted goose populations of the Pacific Flyway

    Science.gov (United States)

    Ely, Craig R.; Wilson, Robert E.; Talbot, Sandra

    2017-01-01

    An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

  15. Fine-scale population genetic structure in a fission-fusion society.

    Science.gov (United States)

    Archie, Elizabeth A; Maldonado, Jésus E; Hollister-Smith, Julie A; Poole, Joyce H; Moss, Cynthia J; Fleischer, Robert C; Alberts, Susan C

    2008-06-01

    Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations - especially of social mammals - with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants (Loxodonta africana), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (Phi(ST) = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.

  16. Genetic variability and population structure of Salvia lachnostachys: implications for breeding and conservation programs.

    Science.gov (United States)

    Erbano, Marianna; Schühli, Guilherme Schnell E; Santos, Élide Pereira Dos

    2015-04-08

    The genetic diversity and population structure of Salvia lachnostachys Benth were assessed. Inter Simple Sequence Repeat (ISSR) molecular markers were used to investigate the restricted distribution of S. lachnostachys in Parana State, Brazil. Leaves of 73 individuals representing three populations were collected. DNA was extracted and submitted to PCR-ISSR amplification with nine tested primers. Genetic diversity parameters were evaluated. Our analysis indicated 95.6% polymorphic loci (stress value 0.02) with a 0.79 average Simpson's index. The Nei-Li distance dendrogram and principal component analysis largely recovered the geographical origin of each sample. Four major clusters were recognized representing each collected population. Nei's gene diversity and Shannon's information index were 0.25 and 0.40 respectively. As is typical for outcrossing herbs, the majority of genetic variation occurred at the population level (81.76%). A high gene flow (Nm = 2.48) was observed with a correspondingly low fixation index. These values were generally similar to previous studies on congeneric species. The results of principal coordinate analysis (PCA) and of arithmetic average (UPGMA) were consistent and all three populations appear distinct as in STRUCTURE analysis. In addition, this analysis indicated a majority intrapopulation genetic variation. Despite the human pressure on natural populations our study found high levels of genetic diversity for S. lachnostachys. This was the first molecular assessment for this endemic species with medicinal proprieties and the results can guide for subsequent bioprospection, breeding programs or conservation actions.

  17. The role of river drainages in shaping the genetic structure of capybara populations.

    Science.gov (United States)

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  18. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species.

    Science.gov (United States)

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-06-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.

  19. Genetic differentiation and population structure of five ethnic groups of Punjab (North-West India).

    Science.gov (United States)

    Singh, Gagandeep; Talwar, Indu; Sharma, Rubina; Matharoo, Kawaljit; Bhanwer, A J S

    2016-12-01

    The state of Punjab in the North-West part of India has acted as the main passage for all the major human invasions into the Indian subcontinent. It has resulted in the mixing of foreign gene pool into the local populations, which led to an extensive range of genetic diversity and has influenced the genetic structure of populations in Punjab, North-West India. The present study was conducted to examine the genetic structure, relationships, and extent of genetic differentiation in five Indo-European speaking ethnic groups of Punjab. A total of 1021 unrelated samples belonging to Banias, Brahmins, Jat Sikhs, Khatris, and Scheduled castes were analyzed for four human-specific Ins/Del polymorphic loci (ACE, APO, PLAT, and D1) and three restriction fragment length polymorphisms ESR (PvuII), LPL (PvuII), and T2 (MspI) using Polymerase chain reaction (PCR). All the loci were found to be polymorphic among the studied populations. The frequency of the Alu insertion at APO locus was observed to exhibit the highest value (82.6-96.3 %), whereas D1 exhibited the lowest (26.5-45.6 %) among all the ethnic groups. The average heterozygosity among the studied populations ranged from 0.3816 in Banias to 0.4163 in Khatris. The FST values ranged from 0.0418 to 0.0033 for the PLAT and LPL loci, respectively, with an average value being 0.0166. Phylogenetic analysis revealed that Banias and Khatris are genetically closest to each other. The Jat Sikhs are genetically close to Brahmins and are distant from the Banias. The Jat Sikhs, Banias, Brahmins, and Khatris are genetically very distant from the Scheduled castes. Overall, Uniform allele frequency distribution patterns, high average heterozygosity values, and a small degree of genetic differentiation in this study suggest a genetic proximity among the selected populations. A low level of genetic differentiation was observed in the studied population groups indicating that genetic drift might have been small or negligible in shaping

  20. Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa.

    Science.gov (United States)

    Ndo, Cyrille; Antonio-Nkondjio, Christophe; Cohuet, Anna; Ayala, Diego; Kengne, Pierre; Morlais, Isabelle; Awono-Ambene, Parfait H; Couret, Daniel; Ngassam, Pierre; Fontenille, Didier; Simard, Frédéric

    2010-06-12

    Anopheles nili is a widespread efficient vector of human malaria parasites in the humid savannas and forested areas of sub-Saharan Africa. Understanding An. nili population structure and gene flow patterns could be useful for the development of locally-adapted vector control measures. Polymorphism at eleven recently developed microsatelitte markers, and sequence variation in four genes within the 28s rDNA subunit (ITS2 and D3) and mtDNA (COII and ND4) were assessed to explore the level of genetic variability and differentiation among nine populations of An. nili from Senegal, Ivory Coast, Burkina Faso, Nigeria, Cameroon and the Democratic Republic of Congo (DRC). All microsatellite loci successfully amplified in all populations, showing high and very similar levels of genetic diversity in populations from West Africa and Cameroon (mean Rs = 8.10-8.88, mean He = 0.805-0.849) and much lower diversity in the Kenge population from DRC (mean Rs = 5.43, mean He = 0.594). Bayesian clustering analysis of microsatellite allelic frequencies revealed two main genetic clusters in the dataset. The first one included only the Kenge population and the second grouped together all other populations. High Fst estimates based on microsatellites (Fst > 0.118, P populations. By contrast, low Fst estimates (Fst populations within the second cluster. The correlation between genetic and geographic distances was weak and possibly obscured by demographic instability. Sequence variation in mtDNA genes matched these results, whereas low polymorphism in rDNA genes prevented detection of any population substructure at this geographical scale. Overall, high genetic homogeneity of the An. nili gene pool was found across its distribution range in West and Central Africa, although demographic events probably resulted in a higher level of genetic isolation in the marginal population of Kenge (DRC). The role of the equatorial forest block as a barrier to gene flow and the implication of such findings

  1. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a

  2. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    Science.gov (United States)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed.

  3. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini.

    Science.gov (United States)

    Baird, Helena Phoenix; Miller, Karen Joy; Stark, Jonathan Sean

    2012-01-01

    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1-10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F(ST) = 0.086, R(ST) = 0.139, pbenthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos.

  4. Unexpectedly low rangewide population genetic structure of the imperiled eastern box turtle Terrapene c. carolina.

    Directory of Open Access Journals (Sweden)

    Steven J A Kimble

    Full Text Available Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799 individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756. Evidence of isolation by distance was detected in this species at a spatial scale of 300-500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived.

  5. Hierarchical spatial structure of genetically variable nucleopolyhedroviruses infecting cyclic populations of western tent caterpillars.

    Science.gov (United States)

    Cooper, Dawn; Cory, Jenny S; Myers, Judith H

    2003-04-01

    The cyclic population dynamics of western tent caterpillars, Malacosoma californicum pluviale, are associated with epizootics of a nucleopolyhedrovirus, McplNPV. Given the dynamic fluctuations in host abundance and levels of viral infection, host resistance and virus virulence might be expected to change during different phases of the cycle. As a first step in determining if McplNPV virulence and population structure change with host density, we used restriction fragment length polymorphism (RFLP) analysis to examine the genetic diversity of McplNPV infecting western tent caterpillar populations at different spatial scales. Thirteen dominant genetic variants were identified in 39 virus isolates (individual larvae) collected from field populations during one year of low host density, and another distinct variant was discovered among nine additional isolates in two subsequent years of declining host density. The distribution of these genetic variants was not random and indicated that the McplNPV population was structured at several spatial levels. A high proportion of the variation could be explained by family grouping, which suggested that isolates collected within a family were more likely to be the same than isolates compared among populations. Additionally, virus variants from within populations (sites) were more likely to be the same than isolates collected from tent caterpillar populations on different islands. This may indicate that there is limited mixing of virus among tent caterpillar families and populations when host population density is low. Thus there is potential for the virus to become locally adapted to western tent caterpillar populations in different sites. However, no dominant genotype was observed at any site. Whether and how selection acts on the genetically diverse nucleopolyhedrovirus populations as host density changes will be investigated over the next cycle of tent caterpillar populations.

  6. Detecting a hierarchical genetic population structure via Multi-InDel markers on the X chromosome

    Science.gov (United States)

    Fan, Guang Yao; Ye, Yi; Hou, Yi Ping

    2016-01-01

    Detecting population structure and estimating individual biogeographical ancestry are very important in population genetics studies, biomedical research and forensics. Single-nucleotide polymorphism (SNP) has long been considered to be a primary ancestry-informative marker (AIM), but it is constrained by complex and time-consuming genotyping protocols. Following up on our previous study, we propose that a multi-insertion-deletion polymorphism (Multi-InDel) with multiple haplotypes can be useful in ancestry inference and hierarchical genetic population structures. A validation study for the X chromosome Multi-InDel marker (X-Multi-InDel) as a novel AIM was conducted. Genetic polymorphisms and genetic distances among three Chinese populations and 14 worldwide populations obtained from the 1000 Genomes database were analyzed. A Bayesian clustering method (STRUCTURE) was used to discern the continental origins of Europe, East Asia, and Africa. A minimal panel of ten X-Multi-InDels was verified to be sufficient to distinguish human ancestries from three major continental regions with nearly the same efficiency of the earlier panel with 21 insertion-deletion AIMs. Along with the development of more X-Multi-InDels, an approach using this novel marker has the potential for broad applicability as a cost-effective tool toward more accurate determinations of individual biogeographical ancestry and population stratification. PMID:27535707

  7. Genetic structure of populations and conservation issues relating to an endangered catfish, Clarias batrachus, in India.

    Science.gov (United States)

    Khedkar, Gulab D; Tiknaik, Anita; Kalyankar, Amol D; A, Chandra Sekhar Reddy; Khedkar, Chandraprakash D; Ron, Tetsuzan Benny; Haymer, David

    2016-01-01

    The Asian catfish, Clarias batrachus (Linnaeus, 1758), is a highly valued species endemic to India that is currently in drastic decline in most of its natural habitat. The present study was undertaken to document the genetic structure of populations of this species using mitochondrial DNA markers, specifically from the cytochrome B and D-loop regions. Specimens from eight wild populations were collected and analyzed from different regions in India. The genetic variation within and among populations was evaluated using a range of descriptive statistics. The analysis described here provides a broad and consistent view of population structure and demographic history of populations of C. batrachus. Although there was some genetic structuring consistent with regional differences, all eight populations examined here showed relatively low levels of genetic variation in terms of both haplotype and nucleotide diversities in the different analyses used. However, a number of private haplotypes were discovered, and this may provide valuable information for future selective breeding program and conservation management. The results may aid in the design and implementation of strategies for the future management of this endangered catfish C. batrachus in India.

  8. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria?

    Directory of Open Access Journals (Sweden)

    Patrick P. Lenhardt

    2017-07-01

    Full Text Available Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria populations in Southern Palatinate (Germany. We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance. Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat

  9. Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm.

    Directory of Open Access Journals (Sweden)

    Rachel P Naegele

    Full Text Available Eggplant (Solanum melongena L. is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo, landraces and heirloom cultivars from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784 was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs. The polymorphism information content (PIC for the population was moderate (0.49 in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance.

  10. Population genetic structuring in Opisthorchis viverrini over various spatial scales in Thailand and Lao PDR.

    Science.gov (United States)

    Laoprom, Nonglak; Sithithaworn, Paiboon; Andrews, Ross H; Ando, Katsuhiko; Laha, Thewarach; Klinbunga, Sirawut; Webster, Joanne P; Petney, Trevor N

    2012-01-01

    Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai), indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy-Weinberg equilibrium of 0.44-0.56. Assessment of population structure by pairwise F(ST) analysis showed inter-population differentiation (Pviverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini.

  11. Molecular genetic variability, population structure and mating system in tropical forages

    Directory of Open Access Journals (Sweden)

    Melissa Garcia

    2013-09-01

    Full Text Available Microsatellite (SSR markers were developed for the following tropical forage species, using accessions available from the plant genetic resources (PGR collections held by EMBRAPA (Brazilian Agricultural Research Corporation: Brachiaria brizantha, B. humidicola, Panicum maximum, Paspalum spp., Stylosanthes capitata, S. guianensis, S. macrocephala, Calopogonium mucunoides and Centrosema spp. The markers were used to analyze population structure and genetic diversity, evolution and origin of the genetic variability in the center of origin, mating systems and genetic resources in EMBRAPA’s germplasm bank. The results shed light on the amount of genetic variation within and between populations, revealed the need in some cases for further plant collection to adequately represent the species in PGR collections, allowed us to assemble core collections (subsets of the total collections that should contain most of the available diversity and (in the case of the legumes showed the need to avoid unwanted outcrossing when regenerating conserved material. The data will allow plant breeders to better select accessions for hybrid production, discriminate between genotypes and use marker-assisted selection in breeding programs. Our results will also underpin the construction of genetic maps, mapping of genes of agronomic interest and numerous other studies on genetic variability, population structure, gene flow and reproductive systems for the tropical forage species studied in this work.

  12. Population genetic structure of malaria vector Anopheles stephensi Liston (Diptera: Culicidae).

    Science.gov (United States)

    Gakhar, S K; Sharma, Richa; Sharma, Arvind

    2013-04-01

    Malaria is a complex disease that afflicts human today. Malaria epidemiology is associated with drug resistance in parasite and differential distribution and insecticide resistance in vector. Efforts are being made to eradicate malaria but burden of malaria is still increasing. Vector control is essential for malaria prevention strategies. Knowledge of population genetic structure is pre-requisite for determining prevention strategies particularly using transgenic mosquitoes. Population genetic study can predict level of gene flow between different populations. Anopheles stephensi Liston is urban vector of malaria in Indo-Pakistan subcontinent. About 12% of malaria cases of malaria in India are contributed by A. stephensi. Studies conducted on population genetics of A. stephensi using various markers in different parts of the world are discussed in this communication.

  13. Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale).

    Science.gov (United States)

    Keane, Brian; Collier, Matthew H; Rogstad, Steven H

    2005-06-01

    Assessing the genetic structure of natural populations differentially impacted by anthropogenic contaminants can be a useful tool for evaluating the population genetic consequences of exposure to pollution. In this study, measures of genetic diversity at variable-number-tandem-repeat loci in six dandelion populations (3 urban and 3 rural) showed patterns that may have been influenced by exposure to environmental contaminants. Mean genetic similarity among individuals within a population was significantly and positively correlated with increasing levels of airborne particulate matter (< or = 10 microm, PM10) and soil concentrations of four metals (Cd, Fe, Ni and Pb). In addition, mean genetic similarity was always significantly higher at the urban sites compared to rural sites. There was a significant negative correlation between the number of genotypes at a site and increasing amounts of PM10, concentrations of five soil metals (Cd, Cu, Fe, Ni and Pb), leaf tissue levels of Fe and a significant positive correlation between the extent of clonality at a site and levels of PM10 and soil concentrations of five metals (Cd, Cu, Fe, Ni and Pb). Although, this study does not directly establish a causal link between the specific contaminants detected at the study sites and differences in genetic diversity, our data are consistent with the hypothesis that pollution-induced selection has contributed in some fashion to the lower genetic diversity found at the urban sites.

  14. Inferring recruitment history from spatial genetic structure within populations of the colonizing tree Albizia julibrissin (Fabaceae).

    Science.gov (United States)

    Pardini, E A; Hamrick, J L

    2008-06-01

    Comparative analyses of spatial genetic structure (SGS) among species, populations, or cohorts give insight into the genetic consequences of seed dispersal in plants. We analysed SGS of a weedy tree in populations with known and unknown recruitment histories to first establish patterns in populations with single vs. multiple founders, and then to infer possible recruitment scenarios in populations with unknown histories. We analysed SGS in six populations of the colonizing tree Albizia julibrissin Durazz. (Fabaceae) in Athens, Georgia. Study sites included two large populations with multiple, known founders, two small populations with a single, known founder, and two large populations with unknown recruitment histories. Eleven allozyme loci were used to genotype 1385 individuals. Insights about the effects of colonization history from the SGS analyses were obtained from correlograms and Sp statistics. Distinct differences in patterns of SGS were identified between populations with multiple founders vs. a single founder. We observed significant, positive SGS, which decayed with increasing distance in the populations with multiple colonists, but little to no SGS in populations founded by one colonist. Because relatedness among individuals is estimated relative to a local reference population, which usually consists of those individuals sampled in the study population, SGS in populations with high background relatedness, such as those with a single founder, may be obscured. We performed additional analyses using a regional reference population and, in populations with a single founder, detected significant, positive SGS at all distances, indicating that these populations consist of highly related descendants and receive little seed immigration. Subsequent analyses of SGS in size cohorts in the four large study populations showed significant SGS in both juveniles and adults, probably because of a relative lack of intraspecific demographic thinning. SGS in populations

  15. Population genetic structure of Melampsora larici-epitea, a willow leaf rust fungus

    Energy Technology Data Exchange (ETDEWEB)

    Samils, B. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Plant Biology

    2001-07-01

    The genetic structure of a pathogen population reflects the pathogen's evolutionary history and its potential to evolve. Such information can contribute both to resistance breeding efforts and to development of disease-control strategies. In this thesis, the population-genetic structure of one of the most damaging parasites for short-rotation coppice willow (Salix spp.), the leaf rust fungus Melampsora larici-epitea, was analysed using AFLP markers. Analysis of molecular variance (AMOVA) and F-statistics indicated large amounts of genetic variation within Swedish M. larici-epitea populations, and little geographic differentiation, probably reflecting frequent sexual reproduction (recombination) and substantial spore migration. The proximity of European larch (Larix), which is the alternate host and the place for sexual reproduction of M. larici-epitea, had no apparent effect on the genetic structure of Swedish populations in that genotypic diversity was high both with and without adjacent larches. However, disease epidemics might start earlier where larch and willow grow in proximity. A leaf rust fungus with markedly different AFLP fingerprints was found on S. viminalis in southern Sweden. Although morphologically similar, this rust was genetically distant from M. larici-epitea, as well as from the stem-infecting form of Melampsora on willow, based on this study. Analysing also the genetic composition of M. larici-epitea populations in a host-mixture trial in Northern Ireland, the high clonality of these populations, and loci in nonrandom association, as is typical for populations with predominant asexual reproduction, was in contrast with Swedish populations. Possible causes include seasonal population bottlenecks (connected with the sexual phase on larch) and the persistence of clonal lineages across years. Differences in genetic composition between M. larici-epitea populations on two S. viminalis clones were detected in monoculture and in mixed stands. A

  16. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, caviidae in Colombia

    Directory of Open Access Journals (Sweden)

    William Burgos-Paz

    2011-01-01

    Full Text Available The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05, genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the populations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogical and production records in order to reduce the inbreeding values in the populations.

  17. Population Genetic Structure of the Endangered Kaiser's Mountain Newt, Neurergus kaiseri (Amphibia: Salamandridae.

    Directory of Open Access Journals (Sweden)

    Hossein Farasat

    Full Text Available Species often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in an endemic and critically endangered stream breeding mountain newt, Neurergus kaiseri, within its entire range in southwestern Iran. We identified two geographic regions based on phylogenetic relationships using Bayesian inference and maximum likelihood of 779 bp mtDNA (D-loop in 111 individuals from ten of twelve known breeding populations. This analysis revealed a clear divergence between northern populations, located in more humid habitats at higher elevation, and southern populations, from drier habitats at lower elevations regions. From seven haplotypes found in these populations none was shared between the two regions. Analysis of molecular variance (AMOVA of N. kaiseri indicates that 94.03% of sequence variation is distributed among newt populations and 5.97% within them. Moreover, a high degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.94, P = 0.002. The positive and significant correlation between geographic and genetic distances (r = 0.61, P = 0.002 following controlling for environmental distance suggests an important influence of geographic divergence of the sites in shaping the genetic variation and may provide tools for a possible conservation based prioritization policy for the endangered species.

  18. Microsatellite analysis of genetic diversity and population structure of Chinese mitten crab (Eriocheir sinensis)

    Institute of Scientific and Technical Information of China (English)

    Yumei Chang; Liqun Liang; Haitao Ma; Jianguo He; Xiaowen Sun

    2008-01-01

    Chinese mitten crab (Eriocheir sinensis) has higher commercial value as food source than any other species of Eriocheir in China.To evaluate the germplasm resources and characterize the genetic diversity and population structure of the crabs in different water systems,two stocks and two farming populations were assessed with 25 polymorphic microsallite loci available in public GenBank.Basic statistics showed that the average observed heterozygosity (Ho) amongst populations ranged from 0.5789 to 0.6824.However,a remarkable presence of inbreeding and heterozygote deficiencies were observed.To analyze population structure,pairwise FST coefficients explained only ~10.3% variability from the subdivision of mitten crab populations,the remaining variability stems from the subdivision within subpopulations.Although the four populations had slight differentiation,different allelic frequencies resulted in distinct population structures.Two stocks and one farming population were clustered together to the phylogenetic branch of Yangtze crab,with an approximate membership of 95%.Whereas,another fanning population was clustered singly to the phylogenetic branch of the Liaohe crab,with a membership of 97.1%.The tests for individual admixture showed that Yangtze crab had probably been contaminated with individuals from other water systems.Genetic relationships between populations also supported the conclusion that Yangtze crab and Liaohe crab had different gene pools in spite of the origins of the same species.

  19. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management

    Science.gov (United States)

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  20. The subtle role of climate change on population genetic structure in Canada lynx.

    Science.gov (United States)

    Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L

    2014-07-01

    Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.

  1. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850).

    Science.gov (United States)

    Sanches, A; Galetti Jr, P M

    2007-12-01

    Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil). Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil) were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  2. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850

    Directory of Open Access Journals (Sweden)

    A Sanches

    Full Text Available Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil. Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  3. Population structure and genetic diversity of the parasite Trichomonas vaginalis in Bristol, UK.

    Science.gov (United States)

    Hawksworth, Joseph; Levy, Max; Smale, Chloe; Cheung, Dean; Whittle, Alice; Longhurst, Denise; Muir, Peter; Gibson, Wendy

    2015-08-01

    The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, an extremely common, but non-life-threatening, sexually-transmitted disease throughout the world. Recent population genetics studies of T. vaginalis have detected high genetic diversity and revealed a two-type population structure, associated with phenotypic differences in sensitivity to metronidazole, the drug commonly used for treatment, and presence of T. vaginalis virus. There is currently a lack of data on UK isolates; most isolates examined to date are from the US. Here we used a recently described system for multilocus sequence typing (MLST) of T. vaginalis to study diversity of clinical isolates from Bristol, UK. We used MLST to characterise 23 clinical isolates of T. vaginalis collected from female patients during 2013. Seven housekeeping genes were PCR-amplified for each isolate and sequenced. The concatenated sequences were then compared with data from other MLST-characterised isolates available from http://tvaginalis.mlst.net/ to analyse the population structure and construct phylogenetic trees. Among the 23 isolates from the Bristol population of T. vaginalis, we found 23 polymorphic nucleotide sites, 25 different alleles and 19 sequence types (genotypes). Most isolates had a unique genotype, in agreement with the high levels of heterogeneity observed elsewhere in the world. A two-type population structure was evident from population genetic analysis and phylogenetic reconstruction split the isolates into two major clades. Tests for recombination in the Bristol population of T. vaginalis gave conflicting results, suggesting overall a clonal pattern of reproduction. We conclude that the Bristol population of T. vaginalis parasites conforms to the two-type population structure found in most other regions of the world. We found the MLST scheme to be an efficient genotyping method. The online MLST database provides a useful repository and resource that will prove

  4. Genetic variation and population structure of Sudanese populations as indicated by 15 Identifiler sequence-tagged repeat (STR loci

    Directory of Open Access Journals (Sweden)

    Babiker Hiba MA

    2011-05-01

    Full Text Available Abstract Background There is substantial ethnic, cultural and linguistic diversity among the people living in east Africa, Sudan and the Nile Valley. The region around the Nile Valley has a long history of succession of different groups, coupled with demographic and migration events, potentially leading to genetic structure among humans in the region. Result We report the genotypes of the 15 Identifiler microsatellite markers for 498 individuals from 18 Sudanese populations representing different ethnic and linguistic groups. The combined power of exclusion (PE was 0.9999981, and the combined match probability was 1 in 7.4 × 1017. The genotype data from the Sudanese populations was combined with previously published genotype data from Egypt, Somalia and the Karamoja population from Uganda. The Somali population was found to be genetically distinct from the other northeast African populations. Individuals from northern Sudan clustered together with those from Egypt, and individuals from southern Sudan clustered with those from the Karamoja population. The similarity of the Nubian and Egyptian populations suggest that migration, potentially bidirectional, occurred along the Nile river Valley, which is consistent with the historical evidence for long-term interactions between Egypt and Nubia. Conclusion We show that despite the levels of population structure in Sudan, standard forensic summary statistics are robust tools for personal identification and parentage analysis in Sudan. Although some patterns of population structure can be revealed with 15 microsatellites, a much larger set of genetic markers is needed to detect fine-scale population structure in east Africa and the Nile Valley.

  5. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Directory of Open Access Journals (Sweden)

    Jurado Juan J

    2009-09-01

    Full Text Available Abstract Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008 consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08 mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will

  6. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Science.gov (United States)

    Serrano, Magdalena; Calvo, Jorge H; Martínez, Marta; Marcos-Carcavilla, Ane; Cuevas, Javier; González, Carmen; Jurado, Juan J; de Tejada, Paloma Díez

    2009-01-01

    Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the

  7. Status of the genetic diversity and population structure of the Pêga donkey.

    Science.gov (United States)

    Santana, Mário Luiz; Bignardi, Annaiza Braga

    2015-12-01

    Pedigree analysis was extended to the Pêga donkey population in order to evaluate the status of genetic diversity and population structure. All parameters were computed for three reference populations of animals born between 2004 and 2014: all animals, animals with mouse gray coat color, and animals with roan coat color. Although the average inbreeding coefficient observed was low (about 3 %), highly inbred animals are present in the current population. The effective population size based on the individual inbreeding rate was 35, while the effective population size based on the individual coancestry rate was about three times higher. The number of equivalent subpopulations was at around three, indicating that the Pêga donkey population is highly structured. There is no evidence of differentiation between subpopulations based on the coat color of the animals (Nei's minimum distance 0.10 %). The breeding policy of Pêga donkeys is predominantly intra-herd. The loss of genetic diversity since the founder generations can be considered small in Pêga donkeys (1.25 %). The excessive contribution of few ancestors to the gene pool may lead to narrower bottlenecks in the pedigree of this population in the future. The long generation interval in Pêga donkeys (10.7 years) may be considered an advantage to reduce the increase in inbreeding and to maintain the genetic diversity of these animals.

  8. Population genetic structure and secondary endosymbionts of Q Bemisia tabaci (Hemiptera: Aleyrodidae) from Greece.

    Science.gov (United States)

    Tsagkarakou, A; Mouton, L; Kristoffersen, J B; Dokianakis, E; Grispou, M; Bourtzis, K

    2012-06-01

    We investigated the molecular diversity of the major agricultural pest Bemisia tabaci and of its associated secondary endosymbionts in Greece. Analyzing mitochondrial DNA, we found that the Q1 (=Q west) is predominant. We used eight microsatellite polymorphic markers to study the genetic structure of 37 populations from mainland and insular Greece, collected on different host species from outdoor and protected crops as well as from non-cultivated plants. In some cases, gene flow was found to be low even between populations separated by just a few kilometres. Bayesian analysis identified two main genetic groups, the first encompassing populations from south Crete and the second composed of populations from north Crete, two other Aegean islands and mainland Greece. Genetic differentiation was not correlated with different host plant species or habitat, or greenhouse versus open environment populations. Gene flow significantly decreased with geographic distance, but no isolation by distance existed when only the samples from mainland Greece or only the samples from Crete were considered. The secondary symbionts Wolbachia and Hamiltonella were present at high frequencies while Arsenophonus, Cardinium and Rickettsia were absent from Greek populations. Multilocus sequence typing of Wolbachia identified two Wolbachia strains. These two strains were found together in most of the populations studied but never in the same host individual. Their role on the observed population structure is discussed.

  9. Population genetic structure of two columnar cacti with a patchy distribution in eastern Brazil.

    Science.gov (United States)

    Moraes, Evandro M; Abreu, Aluana G; Andrade, Sónia C S; Sene, Fabio M; Solferini, Vera N

    2005-11-01

    The genetic variability and population genetic structure of six populations of Praecereus euchlorus and Pilosocereus machrisii were investigated. The genetic variability in single populations of Pilosocereus vilaboensis, Pilosocereus aureispinus, and Facheiroa squamosa was also examined. All of these cacti species have a patchy geographic distribution in which they are restricted to small areas of xeric habitats in eastern Brazil. An analysis of genetic structure was used to gain insights into the historical mechanisms responsible for the patchy distribution of P. euchlorus and P. machrisii. High genetic variability was found at the populational level in all species (P=58.9-92.8%, A(p)=2.34-3.33, H(e)=0.266-0.401), and did not support our expectations of low variability based on the small population size. Substantial inbreeding was detected within populations (F(IS)=0.370-0.623). In agreement with their insular distribution patterns, P. euchlorus and P. machrisii had a high genetic differentiation (F(ST)=0.484 and F(ST)=0.281, respectively), with no evidence of isolation by distance. Accordingly, estimates of gene flow (N(m)) calculated from F(ST) and private alleles were below the level of N(m)=1 in P. machrisii and P. euchlorus. These results favored historical fragmentation as the mechanism responsible for the patchy distribution of these two species. The genetic distance between P. machrisii and P. vilaboensis was not compatible with their taxonomic distinction, indicating a possible local speciation event in this genus, or the occurrence of introgression events.

  10. Biophysical connectivity explains population genetic structure in a highly dispersive marine species

    Science.gov (United States)

    Truelove, Nathan K.; Kough, Andrew S.; Behringer, Donald C.; Paris, Claire B.; Box, Stephen J.; Preziosi, Richard F.; Butler, Mark J.

    2017-03-01

    Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster ( Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 ( P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus ( P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation ( P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  11. High genetic diversity and population structure in the endangered Canarian endemic Ruta oreojasme (Rutaceae).

    Science.gov (United States)

    Meloni, Marilena; Reid, Andrea; Caujapé-Castells, Juli; Soto, Moisés; Fernández-Palacios, José María; Conti, Elena

    2015-10-01

    Insular species are expected to have low genetic diversity, for their populations are often small and isolated, and characterized by restricted gene flow and increased incidence of inbreeding. However, empirical results do not always match this expectation. For example, population genetic analyses of several Canarian endemics, based mainly on allozymes, show levels of genetic diversity exceptionally high for insular species. To investigate whether genetic variation in rare species endemic to Canary Islands is low, as predicted by theoretical expectations, or high, as documented in some previous studies, we analysed genetic diversity of the endangered Ruta oreojasme, a rare endemic of the island of Gran Canaria, using microsatellite markers, which are more variable than allozymes. Our analyses identified very high levels of genetic diversity (A = 7.625, P = 0.984, H o = 0.558, H e = 0.687) for R. oreojasme. Even though the distribution of the species is restricted to the South of Gran Canaria, only one population shows low genetic diversity, isolation and signs of a recent bottleneck/founder event. Some intrinsic characteristics of R. oreojasme (hermaphroditism, proterandry and polyploidy), the relative climatic stability of the Canarian archipelago during Quaternary glacials/interglacials, the size of most populations (thousands of individuals), its age, and the relative proximity of the archipelago to the mainland might have contributed to the high diversity that characterises this endemic. As expected, given the marked topographic complexity of Gran Canaria, we found marked genetic structure in R. oreojasme populations. Our results support the observation that Canarian endemics are characterised by unexpectedly high genetic diversity and provides important insights for potential applications to the conservation of R. oreojasme.

  12. [Genetic Structure of Urban Population of the Common Hamster (Cricetus cricetus)].

    Science.gov (United States)

    Feoktistova, N Yu; Meschersky, I G; Surov, A V; Bogomolov, P L; Tovpinetz, N N; Poplavskaya, N S

    2016-02-01

    Over the past half-century, the common hamster (Cricetus cricetus), along with range-wide decline of natural populations, has actively populated the cities. The study of the genetic structure of urban populations of common hamster may shed light on features of the habitation of this species in urban landscapes. This article is focused on the genetic structure of common hamster populations in Simferopol (Crimea), one of the largest known urban populations of this species. On the basis of the analysis of nucleotide sequences of the cytochrome b gene and mtDNA control region, and the allelic composition of ten microsatellite loci of nDNA, we revealed that, despite the fact that some individuals can move throughout the city at considerable distances, the entire population of the city is represented by separate demes confined to different areas. These demes are characterized by a high degree of the genetic isolation and reduced genetic diversity compared to that found for the city as a whole.

  13. Genetic population structure in an equatorial sparrow: roles for culture and geography.

    Science.gov (United States)

    Danner, J E; Fleischer, R C; Danner, R M; Moore, I T

    2017-06-01

    Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous-collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. Genetic structure and demographic history of brown trout ( Salmo trutta ) populations from the southern Balkans

    DEFF Research Database (Denmark)

    Apostolidis, A.P.; Madeira, M.J.; Hansen, Michael Møller

    2008-01-01

    1. The present study was designed to characterize the genetic structure of brown trout (Salmo trutta) populations from the southern Balkans and to assess the spread of non-native strains and their introgression into native trout gene pools. We analysed polymorphism at nine microsatellite loci in ...

  15. Founder effects and genetic population structure of brown trout (Salmo trutta) in a Danish river system

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    1996-01-01

    The influence of founder effects on the genetic population structure of brown trout (Salmo trutta) was studied in a small Danish river system. Samples of trout from seven locations were analysed by allozyme electrophoresis and mitochondrial DNA restriction fragment length polymorphism analysis...

  16. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis

    NARCIS (Netherlands)

    Pang, W.; Li, X.; Choi, S.R.; Dhandapani, V.; Im, S.; Park, M.Y.; Jang, C.S.; Yang, M.S.; Ham, I.K.; Lee, E.M.; Kim, W.; Lee, S.S.; Bonnema, A.B.; Park, S.; Piao, Z.; Lim, Y.P.

    2015-01-01

    Brassica rapa is an economically important crop with a wide range of morphologies. Developing a set of fixed lines and understanding their diversity has been challenging, but facilitates resource conservation. We investigated the genetic diversity and population structure of 238 fixed lines of leafy

  17. Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.

    Science.gov (United States)

    Cullingham, Catherine I; Moehrenschlager, Axel

    2013-12-01

    Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos.

  18. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    Science.gov (United States)

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  19. Characterization of Genetic Variability and Population Structure of the Tick Amblyomma aureolatum (Acari: Ixodidae).

    Science.gov (United States)

    Ogrzewalska, Maria; Schwarcz, Kaiser; Bajay, Miklos M; Bajay, Stephanie K; Pinheiro, José B; Zucchi, Maria I; Pinter, Adriano; Labruna, Marcelo B

    2016-07-01

    The hard tick Amblyomma aureolatum (Pallas) is a vector of the bacterium Rickettsia rickettsii, the etiologic agent of Brazilian spotted fever (BSF) in parts of Brazil. Despite its wide distribution in southeastern South America and its public health importance, there is no information about genetic variation of this species that might help to understand the epidemiology of BSF. Using data from eight microsatellite markers and ticks from six localities, we used a population genetics approach to test the hypothesis that tick populations from areas with the presence of R. rickettsii are genetically different from ticks from areas without R. rickettsii Contrary to expectations, we found low genetic structure between studied regions. Thus, the presence of R. rickettsii in the specific area is more likely correlated with ecological and the environmental conditions or due to unknown gene coding regions of A. aureolatum genome that would be related to R. rickettsii infection resistance.

  20. Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes.

    Science.gov (United States)

    Kamler, Jan F; Gray, Melissa M; Oh, Annie; Macdonald, David W

    2013-09-01

    We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyads in the low-density population. Home-range overlap of neighboring female dyads was significantly greater in the high compared to low-density population, whereas overlap within other dyads was similar between populations. Amount of home-range overlap between neighbors was positively correlated with genetic relatedness for all dyad-site combinations, except for female and male dyads in the low-density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high-density population, and overall exhibited a male-biased dispersal pattern. Our results indicated that genetic structure within populations of bat-eared foxes was sex-biased, and was interrelated to density and group sizes, as well as sex-biases in philopatry and dispersal distances. We conclude that a combination of male-biased dispersal rates, adult dispersals, and sex-biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae.

  1. Genetic structure of a unique admixed population: implications for medical research.

    Science.gov (United States)

    Patterson, Nick; Petersen, Desiree C; van der Ross, Richard E; Sudoyo, Herawati; Glashoff, Richard H; Marzuki, Sangkot; Reich, David; Hayes, Vanessa M

    2010-02-01

    STATEMENT: In naming population groups, we think a chief aim is to use terms that the group members use themselves, or find familiar and comfortable. The terms used in this manuscript to describe populations are as historically correct as possible and are chosen so as not to offend any population group. Two of the authors (DCP and REvdR) belong to the Coloured population, with one of the authors (REvdR) having contributed extensively to current literature on the history of the Coloured people of South Africa and served as Vice-President of the South African Institute of Race Relations. According to the 2001 South African census (http://www.statssa.gov.za/census01/HTML/CInBrief/CIB2001.pdf), "Statistics South Africa continues to classify people by population group, in order to monitor progress in moving away from the apartheid-based discrimination of the past. However, membership of a population group is now based on self-perception and self-classification, not on a legal definition. Five options were provided on the questionnaire, Black African, Coloured, Indian or Asian, White and Other. Responses in the category 'Other' were very few and were therefore imputed". We have elected to use the term Bushmen rather than San to refer to the hunter-gatherer people of Southern Africa. Although they have no collective name for themselves, this decision was based on the term Bushmen (or Bossiesman) being the more familiar to the communities themselves, while the term San is the more accepted academic classification. Understanding human genetic structure has fundamental implications for understanding the evolution and impact of human diseases. In this study, we describe the complex genetic substructure of a unique and recently admixed population arising approximately 350 years ago as a direct result of European settlement in South Africa. Analysis was performed using over 900 000 genome-wide single nucleotide polymorphisms in 20 unrelated ancestry-informative marker selected

  2. Analysis of genetic diversity and population structure of Chinese yak breeds (Bos grunniens) using microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    Guixiang Zhang; Weisheng Chen; Ming Xue; Zhigang Wang; Hong Chang; Xu Han; Xinjun Liao; Donglei Wang

    2008-01-01

    Nine Chinese yak breeds (Maiwa,Tianzhu White,Qinghai Plateau,Sibu,Zhongdian,Pall,Tibetan High Mountain,Jiulong,and Xin-jiang) and Gayal were analyzed by means of 16 microsatellite markers to determine the level of genetic variation within populations,genetic relationship between populations,and population structure for each breed.A total of 206 microsatellite alleles were observed.Mean F-statistics (0.056) for 9 yak breeds indicated that 94.4% of the genetic variation was observed within yak breeds and 5.6% of the genetic variation existed amongst breeds.The Neighbor-Joining phylogenetic free was constructed based on Nei's standard genetic dis-tances and two clusters were obtained.The Gayal separated from the yaks far away and formed one cluster and 9 yak breeds were grouped together.The analysis of population structure for 9 yak breeds and the Gayal showed that they resulted in four clusters; one clus-ter includes yaks from Tibet Autonomous Region and Qinghai Province,one cluster combines Zhongdian,Maiwa,and Tianzhu White,and Jiulong and Xinjiang come into the third cluster.Pali was mainly in the first cluster (90%),Jiulong was mainly in the second cluster (87.1%),Zhongdian was primarily in the third cluster (83%),and the other yak breeds were distributed in two to three clusters.The Gayal was positively left in the fourth cluster (99.3%).

  3. Population genetic structure of a three-host tick, Amblyomma dissimile, in eastern Venezuela.

    Science.gov (United States)

    Lampo, M; Rangel, Y; Mata, A

    1998-12-01

    Patterns of genetic variation for the tick Amblyomma dissimile were analyzed from a total of 200 ticks collected on 12 toads (Bufo marinus), 14 snakes (Boa constrictor), and 8 lizards (Iguana iguana) at 11 localities. The analyses were performed on electrophoretic data from 8 isozyme loci. Mean heterozygosity per locus was 6% (+/-3.1) per population. Differences in allelic frequencies among ticks from different individual hosts were the major source of genetic variability in this study. Host species was a smaller source of genetic variation. Genetic distances between localities varied according to which host species was present in each locality, and these appeared to be related to the extent of habitat overlap between host species. The smallest genetic distances between samples from different host species were recorded for I. iguana and B. constrictor. In contrast, the genetic distances between tick samples from B. marinus and either of the reptile species were significantly larger than between tick samples from this amphibian species. Ecological variables or the geographic distance did not explain the local patterns of differentiation observed in A. dissimile. Major genetic differences between island and mainland sites (0.03702) suggested an association between genetic distances and geographic isolation. The consistency between patterns of genetic variation and those of host home range overlap suggests that host dispersion is the main force structuring the genetic variation within this tick species.

  4. Physiological vagility: correlations with dispersal and population genetic structure of amphibians.

    Science.gov (United States)

    Hillman, Stanley S; Drewes, Robert C; Hedrick, Michael S; Hancock, Thomas V

    2014-01-01

    Physiological vagility represents the capacity to move sustainably and is central to fully explaining the processes involved in creating fine-scale genetic structure of amphibian populations, because movement (vagility) and the duration of movement determine the dispersal distance individuals can move to interbreed. The tendency for amphibians to maintain genetic differentiation over relatively short distances (isolation by distance) has been attributed to their limited dispersal capacity (low vagility) compared with other vertebrates. Earlier studies analyzing genetic isolation and population differentiation with distance treat all amphibians as equally vagile and attempt to explain genetic differentiation only in terms of physical environmental characteristics. We introduce a new quantitative metric for vagility that incorporates aerobic capacity, body size, body temperature, and the cost of transport and is independent of the physical characteristics of the environment. We test our metric for vagility with data for dispersal distance and body mass in amphibians and correlate vagility with data for genetic differentiation (F'(ST)). Both dispersal distance and vagility increase with body size. Differentiation (F'(ST)) of neutral microsatellite markers with distance was inversely and significantly (R2=0.61) related to ln vagility. Genetic differentiation with distance was not significantly related to body mass alone. Generalized observations are validated with several specific amphibian studies. These results suggest that interspecific differences in physiological capacity for movement (vagility) can contribute to genetic differentiation and metapopulation structure in amphibians.

  5. Phylogeny, genetic relationships and population structure of five Italian local chicken breeds

    Directory of Open Access Journals (Sweden)

    Simone Ceccobelli

    2013-09-01

    Full Text Available Number and population size of local chicken breeds in Italy is considered to be critical. Molecular data can be used to provide reliable insight into the diversity of chicken breeds. The first aim of this study was to investigate the maternal genetic origin of five Italian local chicken breeds (Ancona, Livorno, Modenese, Romagnola and Valdarnese bianca based on mitochondrial DNA (mtDNA information. Secondly, the extent of the genetic diversity, population structure and the genetic relationships among these chicken populations, by using 27 microsatellite markers, were assessed. To achieve these targets, a 506 bp fragment of the D-loop region was sequenced in 50 chickens of the five breeds. Eighteen variable sites were observed which defined 12 haplotypes. They were assigned to three clades and two maternal lineages. Results indicated that 90% of the haplotypes are related to clade E, which has been described to originate from the Indian subcontinent. For the microsatellite analysis, 137 individual blood samples from the five Italian breeds were included. A total of 147 alleles were detected at 27 microsatellite loci. The five Italian breeds showed a slightly higher degree of inbreeding (FIS=0.08 than the commercial populations that served as reference. Structure analysis showed a separation of the Italian breeds from the reference populations. A further sub-clustering allowed discriminating among the five different Italian breeds. This research provides insight into population structure, relatedness and variability of the five studied breeds.

  6. Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in West Africa

    Directory of Open Access Journals (Sweden)

    Mobegi Victor A

    2012-07-01

    Full Text Available Abstract Background Malaria parasite population genetic structure varies among areas of differing endemicity, but this has not been systematically studied across Plasmodium falciparum populations in Africa where most infections occur. Methods Ten polymorphic P. falciparum microsatellite loci were genotyped in 268 infections from eight locations in four West African countries (Republic of Guinea, Guinea Bissau, The Gambia and Senegal, spanning a highly endemic forested region in the south to a low endemic Sahelian region in the north. Analysis was performed on proportions of mixed genotype infections, genotypic diversity among isolates, multilocus standardized index of association, and inter-population differentiation. Results Each location had similar levels of pairwise genotypic diversity among isolates, although there were many more mixed parasite genotype infections in the south. Apart from a few isolates that were virtually identical, the multilocus index of association was not significant in any population. Genetic differentiation between populations was low (most pairwise FST values  Conclusions Although proportions of mixed genotype infections varied with endemicity as expected, population genetic structure was similar across the diverse sites. Very substantial reduction in transmission would be needed to cause fragmented or epidemic sub-structure in this region.

  7. Predicting brain structure in population-based samples with biologically informed genetic scores for schizophrenia.

    Science.gov (United States)

    Van der Auwera, Sandra; Wittfeld, Katharina; Shumskaya, Elena; Bralten, Janita; Zwiers, Marcel P; Onnink, A Marten H; Usberti, Niccolo; Hertel, Johannes; Völzke, Henry; Völker, Uwe; Hosten, Norbert; Franke, Barbara; Grabe, Hans J

    2017-04-01

    Schizophrenia is associated with brain structural abnormalities including gray and white matter volume reductions. Whether these alterations are caused by genetic risk variants for schizophrenia is unclear. Previous attempts to detect associations between polygenic factors for schizophrenia and structural brain phenotypes in healthy subjects have been negative or remain non-replicated. In this study, we used genetic risk scores that were based on the accumulated effect of selected risk variants for schizophrenia belonging to specific biological systems like synaptic function, neurodevelopment, calcium signaling, and glutamatergic neurotransmission. We hypothesized that this "biologically informed" approach would provide the missing link between genetic risk for schizophrenia and brain structural phenotypes. We applied whole-brain voxel-based morphometry (VBM) analyses in two population-based target samples and subsequent regions of interest (ROIs) analyses in an independent replication sample (total N = 2725). No consistent association between the genetic scores and brain volumes were observed in the investigated samples. These results suggest that in healthy subjects with a higher genetic risk for schizophrenia additional factors apart from common genetic variants (e.g., infection, trauma, rare genetic variants, or gene-gene interactions) are required to induce structural abnormalities of the brain. Further studies are recommended to test for possible gene-gene or gene-environment effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Genetic structure of seven Mexican indigenous populations based on five polymarker loci.

    Science.gov (United States)

    Buentello-Malo, Leonora; Peñaloza-Espinosa, Rosenda I; Loeza, Francisco; Salamanca-Gomez, Fabio; Cerda-Flores, Ricardo M

    2003-01-01

    This descriptive study investigates the genetic structure of seven Mexican indigenous populations (Mixteca Alta, Mixteca Baja, Otomies, Purepecha, Nahuas-Guerrero, Nahuas-Xochimilco, and Tzeltales) on the basis of five PCR-based polymorphic DNA loci: LDLR, GYPA, HBGG, D7S8, and GC. Genetic distance and diversity analyses indicate that these Mexican indigenous are similar and that more than 96% of the total gene diversity (H(T)) can be attributed to individual variation within populations. Mixteca-Alta, Mixteca-Baja, and Nahuas-Xochimilco show indications of higher admixture with European-derived persons. The demonstration of a relative genetic homogeneity of Mexican Indians for the markers studied suggests that this population is suitable for studying disease-marker associations in the search for candidate genes of complex diseases.

  9. Population genetic structuring in Opisthorchis viverrini over various spatial scales in Thailand and Lao PDR.

    Directory of Open Access Journals (Sweden)

    Nonglak Laoprom

    Full Text Available Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai, indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy-Weinberg equilibrium of 0.44-0.56. Assessment of population structure by pairwise F(ST analysis showed inter-population differentiation (P<0.05 which indicates population substructuring between these localities. Unique alleles were found in three of four localities with the highest number observed per locality being three. Our results highlight the existence of genetic diversity and population substructuring in O. viverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini.

  10. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    KAUST Repository

    Pailles, Yveline

    2017-02-15

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance.

  11. Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations

    Science.gov (United States)

    Montinaro, Francesco; Busby, George B. J.; Gonzalez-Santos, Miguel; Oosthuitzen, Ockie; Oosthuitzen, Erika; Anagnostou, Paolo; Destro-Bisol, Giovanni; Pascali, Vincenzo L.; Capelli, Cristian

    2017-01-01

    The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries. PMID:27838627

  12. Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations.

    Science.gov (United States)

    Montinaro, Francesco; Busby, George B J; Gonzalez-Santos, Miguel; Oosthuitzen, Ockie; Oosthuitzen, Erika; Anagnostou, Paolo; Destro-Bisol, Giovanni; Pascali, Vincenzo L; Capelli, Cristian

    2017-01-01

    The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries. Copyright © 2017 Montinaro et al.

  13. Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome.

    Science.gov (United States)

    Rangel-Villalobos, H; Muñoz-Valle, J F; González-Martín, A; Gorostiza, A; Magaña, M T; Páez-Riberos, L A

    2008-04-01

    Y-linked markers are suitable loci to analyze genetic diversity of human populations, offering knowledge of medical, forensic, and anthropological interest. In a population sample of 206 Mestizo males from western Mexico, we analyzed two binary loci (M3 and YAP) and six Y-STRs, adding to the analysis data of Mexican Mestizos and Amerindians, and relevant worldwide populations. The paternal ancestry estimated in western Mexican-Mestizos was mainly European (60-64%), followed by Amerindian (25-21%), and African ( approximately 15%). Significant genetic heterogeneity was established between Mestizos from western (Jalisco State) and northern Mexico (Chihuahua State) compared with Mexicans from the center of the Mexican Republic (Mexico City), this attributable to higher European ancestry in western and northern than in central and southeast populations, where higher Amerindian ancestry was inferred. This genetic structure has important implications for medical and forensic purposes. Two different Pre-Hispanic evolutionary processes were evident. In Mesoamerican region, populations presented higher migration rate (N(m) = 24.76), promoting genetic homogeneity. Conversely, isolated groups from the mountains and canyons of the Western and Northern Sierra Madre (Huichols and Tarahumaras, respectively) presented a lower migration rate (N(m) = 10.27) and stronger genetic differentiation processes (founder effect and/or genetic drift), constituting a Pre-Hispanic population substructure. Additionally, Tarahumaras presented a higher frequency of Y-chromosomes without Q3 that was explained by paternal European admixture (15%) and, more interestingly, by a distinctive Native-American ancestry. In Purepechas, a special admixture process involving preferential integration of non-Purepecha women in their communities could explain contrary genetic evidences (autosomal vs. Y-chromosome) for this tribe.

  14. Genetic structure and linkage disequilibrium in landrace populations of barley in Sardinia.

    Science.gov (United States)

    Rodriguez, Monica; Rau, Domenico; O'Sullivan, Donal; Brown, Anthony H D; Papa, Roberto; Attene, Giovanna

    2012-06-01

    Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F(ST) = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13% of locus pairs, with P landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.

  15. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Salem, Khaled F M; Sallam, Ahmed

    2016-01-01

    Understanding the population structure and genetic diversity is a very important goal to improve the economic value of crops. In rice, a loss of genetic diversity in the last few centuries is observed. To address this challenge, a set of 22 lines from three different regions - India (two), and Philippines (six), and Egypt (14) - were used to assess the genetic diversity and the features of population structure. These genotypes were analyzed using 106 SSR alleles that showed a clear polymorphism among the lines. Genetic diversity was estimated based on the number of different alleles, polymorphism information content (PIC), and gene diversity. A total of 106 SSR alleles was identified from the 23 SSR loci and used to study the population structure and carry out a cluster analysis. All SSR loci showed a wide range of the number of different alleles extended from two (one loci) to seven alleles (three loci). Five and eight loci showed high PIC and gene diversity (≥0.70), respectively. The results of population structure are in agreement with cluster analysis results. Both analyses revealed two different subpopulations (G1 and G2) with different genetic properties in number of private alleles, number of different alleles (Na), number of effective alleles (Ne), expected heterozygosity (He), and Shannon's Information Index (SII). Our findings indicate that five SSR loci (RM 111, RM 307, RM 22, RM 19, and RM 271) could be used in breeding programs to enhance the marker-assisted selection through QTL mapping and association studies. A high genetic diversity found between genotypes which can be exploited to improve and produce rice cultivars for important traits (e.g. high agronomic features and tolerance to biotic or/and abiotic stresses).

  16. Lack of Population Genetic Structuring in Ocelots (Leopardus pardalis in a Fragmented Landscape

    Directory of Open Access Journals (Sweden)

    Marina G. Figueiredo

    2015-07-01

    Full Text Available Habitat fragmentation can promote patches of small and isolated populations, gene flow disruption between those populations, and reduction of local and total genetic variation. As a consequence, these small populations may go extinct in the long-term. The ocelot (Leopardus pardalis, originally distributed from Texas to southern Brazil and northern Argentina, has been impacted by habitat fragmentation throughout much of its range. To test whether habitat fragmentation has already induced genetic differentiation in an area where this process has been documented for a larger felid (jaguars, we analyzed molecular variation in ocelots inhabiting two Atlantic Forest fragments, Morro do Diabo (MD and Iguaçu Region (IR. Analyses using nine microsatellites revealed mean observed and expected heterozygosity of 0.68 and 0.70, respectively. The MD sampled population showed evidence of a genetic bottleneck under two mutational models (TPM = 0.03711 and SMM = 0.04883. Estimates of genetic structure (FST = 0.027; best fit of k = 1 with STRUCTURE revealed no meaningful differentiation between these populations. Thus, our results indicate that the ocelot populations sampled in these fragments are still not significantly different genetically, a pattern that strongly contrasts with that previously observed in jaguars for the same comparisons. This observation is likely due to a combination of two factors: (i larger effective population size of ocelots (relative to jaguars in each fragment, implying a slower effect of drift-induced differentiation; and (ii potentially some remaining permeability of the anthropogenic matrix for ocelots, as opposed to the observed lack of permeability for jaguars. The persistence of ocelot gene flow between these areas must be prioritized in long-term conservation planning on behalf of these felids.

  17. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae in Florida.

    Directory of Open Access Journals (Sweden)

    Nathan Fedrizzi

    Full Text Available The dwarf seahorse (Hippocampus zosterae is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1 to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  18. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida.

    Science.gov (United States)

    Fedrizzi, Nathan; Stiassny, Melanie L J; Boehm, J T; Dougherty, Eric R; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  19. Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers.

    Science.gov (United States)

    Peleg, Zvi; Fahima, Tzion; Abbo, Shahal; Krugman, Tamar; Saranga, Yehoshua

    2008-03-01

    Simple sequence repeat (SSR) markers have become a major tool in population genetic analyses. The anonymous genomic SSRs (gSSRs) have been recently supplemented with expressed sequence tag (EST) derived SSRs (eSSRs), which represent the transcribed regions of the genome. In the present study, we used 8 populations of wild emmer wheat (Triticum turgidum subsp. dicoccoides) to compare the usefulness of the two types of SSR markers in assessing allelic diversity and population structure. gSSRs revealed significantly higher diversity than eSSRs in terms of average number of alleles (14.92 vs. 7.4, respectively), polymorphic information content (0.87 vs. 0.68, respectively), and gene diversity (He; 0.55 vs. 0.38, respectively). Despite the overall differences in the level of diversity, Mantel tests for correlations between eSSR and gSSR pairwise genetic distances were found to be significant for each population as well as for all accessions jointly (RM=0.54, p=0.01). Various genetic structure analyses (AMOVA, PCoA, STRUCTURE, unrooted UPGMA tree) revealed a better capacity of eSSRs to distinguish between populations, while gSSRs showed a higher proportion of intrapopulation (among accessions) diversity. We conclude that eSSR and gSSR markers should be employed in conjunction to obtain a high inter- and intra-specific (or inter- and intra-varietal) distinctness.

  20. Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Carlos; Castillo, Pablo; Cantalapiedra-Navarrete, Carolina; Landa, Blanca B; Derycke, Sofie; Palomares-Rius, Juan E

    2011-10-01

    The dagger nematodes Xiphinema pachtaicum and X. index are two of the most widespread and frequently occurring Xiphinema spp. co-infesting vineyards and other crops and natural habitats worldwide. Sexual reproduction is rare in these species. The primary objective of this study was to determine the genetic structure of X. pachtaicum and X. index populations using eight and seven populations, respectively, from different "wine of denomination of origin (D.O.) zones" in Spain and Sardinia (Italy), by studying mitochondrial (cytochrome oxidase c subunit 1 or COI) and nuclear (D2-D3 expansion segments of 28S rDNA) markers. Both Xiphinema spp. showed low intraspecific divergence among COI sequences, ranging from 0.2% (1 base substitution) to 2.3% (10 substitutions) in X. pachtaicum and from 0.2% (1 base substitution) to 0.4% (2 substitutions) in X. index. Population genetic structure was strong for both species. Nevertheless, molecular differences among grapevine-growing areas were not significant, and intrapopulation diversity was very low. It is hypothesized that this genetic homogeneity in the nematode populations reflects their predominant parthenogenetic reproduction mode and low dispersal abilities. Our results also show that X. pachtaicum populations in Spain have possibly been established from two different populations of origin. Results also demonstrated that the two DNA regions studied are suitable diagnostic markers for X. index and X. pachtaicum.

  1. Population genetic structure and colonisation history of the tool-using New Caledonian crow.

    Science.gov (United States)

    Abdelkrim, Jawad; Hunt, Gavin R; Gray, Russell D; Gemmell, Neil J

    2012-01-01

    New Caledonian crows exhibit considerable variation in tool making between populations. Here, we present the first study of the species' genetic structure over its geographical distribution. We collected feathers from crows on mainland Grande Terre, the inshore island of Toupéti, and the nearby island of Maré where it is believed birds were introduced after European colonisation. We used nine microsatellite markers to establish the genotypes of 136 crows from these islands and classical population genetic tools as well as Approximate Bayesian Computations to explore the distribution of genetic diversity. We found that New Caledonian crows most likely separate into three main distinct clusters: Grande Terre, Toupéti and Maré. Furthermore, Toupéti and Maré crows represent a subset of the genetic diversity observed on Grande Terre, confirming their mainland origin. The genetic data are compatible with a colonisation of Maré taking place after European colonisation around 1900. Importantly, we observed (1) moderate, but significant, genetic differentiation across Grande Terre, and (2) that the degree of differentiation between populations on the mainland increases with geographic distance. These data indicate that despite individual crows' potential ability to disperse over large distances, most gene flow occurs over short distances. The temporal and spatial patterns described provide a basis for further hypothesis testing and investigation of the geographical variation observed in the tool skills of these crows.

  2. Population genetic structure and colonisation history of the tool-using New Caledonian crow.

    Directory of Open Access Journals (Sweden)

    Jawad Abdelkrim

    Full Text Available New Caledonian crows exhibit considerable variation in tool making between populations. Here, we present the first study of the species' genetic structure over its geographical distribution. We collected feathers from crows on mainland Grande Terre, the inshore island of Toupéti, and the nearby island of Maré where it is believed birds were introduced after European colonisation. We used nine microsatellite markers to establish the genotypes of 136 crows from these islands and classical population genetic tools as well as Approximate Bayesian Computations to explore the distribution of genetic diversity. We found that New Caledonian crows most likely separate into three main distinct clusters: Grande Terre, Toupéti and Maré. Furthermore, Toupéti and Maré crows represent a subset of the genetic diversity observed on Grande Terre, confirming their mainland origin. The genetic data are compatible with a colonisation of Maré taking place after European colonisation around 1900. Importantly, we observed (1 moderate, but significant, genetic differentiation across Grande Terre, and (2 that the degree of differentiation between populations on the mainland increases with geographic distance. These data indicate that despite individual crows' potential ability to disperse over large distances, most gene flow occurs over short distances. The temporal and spatial patterns described provide a basis for further hypothesis testing and investigation of the geographical variation observed in the tool skills of these crows.

  3. Genetic structure in two northern muriqui populations (Brachyteles hypoxanthus, Primates, Atelidae as inferred from fecal DNA

    Directory of Open Access Journals (Sweden)

    Valéria Fagundes

    2008-01-01

    Full Text Available We assessed the genetic diversity of two northern muriqui (Brachyteles hypoxanthus Primata, Atelidae populations, the Feliciano Miguel Abdala population (FMA, n = 108 in the Brazilian state of Minas Gerais (19°44' S, 41°49' W and the Santa Maria de Jetibá population (SMJ, n = 18 in the Brazilian state of Espírito Santo (20°01' S, 40°44' W. Fecal DNA was isolated and PCR-RFLP analysis used to analyze 2160 bp of mitochondrial DNA, made up of an 820 bp segment of the gene cytochrome c oxidase subunit 2 (cox2, EC 1.9.3.1, an 880 bp segment of the gene cytochrome b (cytb, EC 1.10.2.2 and 460 bp of the hypervariable segment of the mtDNA control region (HVRI. The cox2 and cytb sequences were monomorphic within and between populations whereas the HVRI revealed three different population exclusive haplotypes, one unique to the SMJ population and two, present at similar frequencies, in the FMA population. Overall haplotype diversity (h = 0.609 and nucleotide diversity (pi = 0.181 were high but reduced within populations. The populations were genetically structured with a high fixation index (F ST = 0.725, possibly due to historical subdivision. These findings have conservation implications because they seem to indicate that the populations are distinct management units.

  4. Competitive advantage and higher fitness in native populations of genetically structured planktonic diatoms.

    Science.gov (United States)

    Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna

    2016-12-01

    It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic

  6. Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Awono-Ambene Parfait H

    2010-06-01

    Full Text Available Abstract Background Anopheles nili is a widespread efficient vector of human malaria parasites in the humid savannas and forested areas of sub-Saharan Africa. Understanding An. nili population structure and gene flow patterns could be useful for the development of locally-adapted vector control measures. Methods Polymorphism at eleven recently developed microsatelitte markers, and sequence variation in four genes within the 28s rDNA subunit (ITS2 and D3 and mtDNA (COII and ND4 were assessed to explore the level of genetic variability and differentiation among nine populations of An. nili from Senegal, Ivory Coast, Burkina Faso, Nigeria, Cameroon and the Democratic Republic of Congo (DRC. Results All microsatellite loci successfully amplified in all populations, showing high and very similar levels of genetic diversity in populations from West Africa and Cameroon (mean Rs = 8.10-8.88, mean He = 0.805-0.849 and much lower diversity in the Kenge population from DRC (mean Rs = 5.43, mean He = 0.594. Bayesian clustering analysis of microsatellite allelic frequencies revealed two main genetic clusters in the dataset. The first one included only the Kenge population and the second grouped together all other populations. High Fst estimates based on microsatellites (Fst > 0.118, P Conclusion Overall, high genetic homogeneity of the An. nili gene pool was found across its distribution range in West and Central Africa, although demographic events probably resulted in a higher level of genetic isolation in the marginal population of Kenge (DRC. The role of the equatorial forest block as a barrier to gene flow and the implication of such findings for vector control are discussed.

  7. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  8. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum)

    Indian Academy of Sciences (India)

    Ashok Badigannavar; Gerald O. Myers

    2015-03-01

    Cottonseed contains 16% seed oil and 23% seed protein by weight. High levels of palmitic acid provides a degree of stability to the oil, while the presence of bound gossypol in proteins considerably changes their properties, including their biological value. This study uses genetic principles to identify genomic regions associated with seed oil, protein and fibre content in upland cotton cultivars. Cotton association mapping panel representing the US germplasm were genotyped using amplified fragment length polymorphism markers, yielding 234 polymorphic DNA fragments. Phenotypic analysis showed high genetic variability for the seed traits, seed oil range from 6.47–25.16%, protein from 1.85–28.45% and fibre content from 15.88–37.12%. There were negative correlations between seed oil and protein content. With reference to genetic diversity, the average estimate of ST was 8.852 indicating a low level of genetic differentiation among subpopulations. The AMOVA test revealed that variation was 94% within and 6% among subpopulations. Bayesian population structure identified five subpopulations and was in agreement with their geographical distribution. Among the mixed models analysed, mixed linear model (MLM) identified 21 quantitative trait loci for lint percentage and seed quality traits, such as seed protein and oil. Establishing genetic diversity, population structure and marker trait associations for the seed quality traits could be valuable in understanding the genetic relationships and their utilization in breeding programmes.

  9. Molecular markers reveal limited population genetic structure in a North American corvid, Clark's nutcracker (Nucifraga columbiana).

    Science.gov (United States)

    Dohms, Kimberly M; Burg, Theresa M

    2013-01-01

    The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark's nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker's encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark's nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark's nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark's nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges) do not appear to restrict gene flow in Clark's nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.

  10. Molecular markers reveal limited population genetic structure in a North American corvid, Clark's nutcracker (Nucifraga columbiana.

    Directory of Open Access Journals (Sweden)

    Kimberly M Dohms

    Full Text Available The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark's nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker's encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark's nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark's nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark's nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges do not appear to restrict gene flow in Clark's nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.

  11. Population genetic structure of the biological control agent Macrolophus pygmaeus in Mediterranean agroecosystems.

    Science.gov (United States)

    Streito, Jean-Claude; Clouet, Cécile; Hamdi, Faten; Gauthier, Nathalie

    2017-10-01

    Biological control of agricultural pests relies on knowledge of agroecosystem functionality, particularly when affected by the use of mass-produced biological agents. Incorporating pre- and/or post-release information such as genetic diversity and structure on these agents using molecular-based approaches could advance our knowledge of how they perform in agroecosystems. We evaluated the population genetics of Macrolophus pygmaeus, the most widely used predatory mirid against many arthropod pests of greenhouse crops in the Mediterranean region, using the mitochondrial Cytb sequence and microsatellite data, and population genetics and phylogeny approaches. We investigated commercially mass-produced insects (i.e., commercial insects either mass-reared in the laboratory for many generations, or purchased by farmers and released in the greenhouses) and "wild" insects (i.e., that occur naturally outside or are collected in nature for release in the greenhouses). The mirids were mainly collected in agroecosystems in which solanaceous plants are grown in northern Spain, southern France and Greece. Both molecular markers and approaches distinguished 2 genetically differentiated populations. The less genetically diverse population, hereafter named the "commercial" strain included all individuals from laboratory mass-rearings and most releases of commercially bred individuals. The most genetically diverse population mainly comprised individuals originating from noncultivated environments, or from releases of "wild" individuals. Rare examples of hybridization between M. pygmaeus from the 2 populations were observed and asymmetric gene flow was revealed. These findings provide new insights into what happens to M. pygmaeus released in the agroecosystems we studied, and show that it is possible to monitor some commercial strains. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  12. Genetic Variability and Population Structure of Salvia lachnostachys: Implications for Breeding and Conservation Programs

    Directory of Open Access Journals (Sweden)

    Marianna Erbano

    2015-04-01

    Full Text Available The genetic diversity and population structure of Salvia lachnostachys Benth were assessed. Inter Simple Sequence Repeat (ISSR molecular markers were used to investigate the restricted distribution of S. lachnostachys in Parana State, Brazil. Leaves of 73 individuals representing three populations were collected. DNA was extracted and submitted to PCR-ISSR amplification with nine tested primers. Genetic diversity parameters were evaluated. Our analysis indicated 95.6% polymorphic loci (stress value 0.02 with a 0.79 average Simpson’s index. The Nei-Li distance dendrogram and principal component analysis largely recovered the geographical origin of each sample. Four major clusters were recognized representing each collected population. Nei’s gene diversity and Shannon’s information index were 0.25 and 0.40 respectively. As is typical for outcrossing herbs, the majority of genetic variation occurred at the population level (81.76%. A high gene flow (Nm = 2.48 was observed with a correspondingly low fixation index. These values were generally similar to previous studies on congeneric species. The results of principal coordinate analysis (PCA and of arithmetic average (UPGMA were consistent and all three populations appear distinct as in STRUCTURE analysis. In addition, this analysis indicated a majority intrapopulation genetic variation. Despite the human pressure on natural populations our study found high levels of genetic diversity for S. lachnostachys. This was the first molecular assessment for this endemic species with medicinal proprieties and the results can guide for subsequent bioprospection, breeding programs or conservation actions.

  13. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics

    Science.gov (United States)

    Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying

    2016-01-01

    Background Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. Results We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Conclusions Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been

  14. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics.

    Science.gov (United States)

    Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying

    2016-01-01

    Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat

  15. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).

    Science.gov (United States)

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research.

  16. [Population genetic structure of northern Dolly Varden char Salvelinus malma malma in Asia and North America].

    Science.gov (United States)

    Oleĭnik, A G; Skurikhina, L A; Brykov, Vl A

    2011-12-01

    The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplotype and nucleotide diversity were 0.5261 +/- 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise phi(ST) values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Nested analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.

  17. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    NARCIS (Netherlands)

    Piotti, A.; Leonardi, S.; Heuertz, M.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G.

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which

  18. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    NARCIS (Netherlands)

    Piotti, A.; Leonardi, S.; Heuertz, M.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G.

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which

  19. Genetic diversity and population structure of 20 North European cattle breeds

    DEFF Research Database (Denmark)

    kantanen, J; Olsaker, Ingrid; Holm, Lars-Erik

    2000-01-01

    , allelic diversity has been reduced in several breeds, which was explained by limited effective population sizes over the course of man-directed breed development and demographic bottlenecks of indigenous breeds. A tree showing genetic relationships between breeds was constructed from a matrix of random......Blood samples were collected from 743 animals from 15 indigenous, 2 old imported, and 3 commercial North European cattle breeds. The samples were analyzed for 11 erythrocyte antigen systems, 8 proteins, and 10 microsatellites, and used to assess inter- and intrabreed genetic variation and genetic...... population structures. The microsatellites BoLA-DRBP1 and CSSM66 were nonneutral markers according to the Ewens-Watterson test, suggesting some kind of selection imposed on these loci. North European cattle breeds displayed generally similar levels of multilocus heterozygosity and allelic diversity. However...

  20. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius).

    Science.gov (United States)

    Milano, Ilaria; Babbucci, Massimiliano; Cariani, Alessia; Atanassova, Miroslava; Bekkevold, Dorte; Carvalho, Gary R; Espiñeira, Montserrat; Fiorentino, Fabio; Garofalo, Germana; Geffen, Audrey J; Hansen, Jakob H; Helyar, Sarah J; Nielsen, Einar E; Ogden, Rob; Patarnello, Tomaso; Stagioni, Marco; Tinti, Fausto; Bargelloni, Luca

    2014-01-01

    Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.

  1. Accurate inference of subtle population structure (and other genetic discontinuities using principal coordinates.

    Directory of Open Access Journals (Sweden)

    Patrick A Reeves

    Full Text Available BACKGROUND: Accurate inference of genetic discontinuities between populations is an essential component of intraspecific biodiversity and evolution studies, as well as associative genetics. The most widely-used methods to infer population structure are model-based, Bayesian MCMC procedures that minimize Hardy-Weinberg and linkage disequilibrium within subpopulations. These methods are useful, but suffer from large computational requirements and a dependence on modeling assumptions that may not be met in real data sets. Here we describe the development of a new approach, PCO-MC, which couples principal coordinate analysis to a clustering procedure for the inference of population structure from multilocus genotype data. METHODOLOGY/PRINCIPAL FINDINGS: PCO-MC uses data from all principal coordinate axes simultaneously to calculate a multidimensional "density landscape", from which the number of subpopulations, and the membership within subpopulations, is determined using a valley-seeking algorithm. Using extensive simulations, we show that this approach outperforms a Bayesian MCMC procedure when many loci (e.g. 100 are sampled, but that the Bayesian procedure is marginally superior with few loci (e.g. 10. When presented with sufficient data, PCO-MC accurately delineated subpopulations with population F(st values as low as 0.03 (G'(st>0.2, whereas the limit of resolution of the Bayesian approach was F(st = 0.05 (G'(st>0.35. CONCLUSIONS/SIGNIFICANCE: We draw a distinction between population structure inference for describing biodiversity as opposed to Type I error control in associative genetics. We suggest that discrete assignments, like those produced by PCO-MC, are appropriate for circumscribing units of biodiversity whereas expression of population structure as a continuous variable is more useful for case-control correction in structured association studies.

  2. Genetic analysis reveals population structuring and a bottleneck in the black-faced lion tamarin (Leontopithecus caissara).

    Science.gov (United States)

    Martins, M M; Nascimento, A T A; Nali, C; Velastin, G O; Mangini, P B; Valladares-Padua, C B; Galetti, P M

    2011-01-01

    The ability of a population to evolve in a changing environment may be compromised by human-imposed barriers to gene flow. We investigated the population structure and the possible occurrence of a genetic bottleneck in two isolated populations of the black-faced lion tamarin (Leontopithecus caissara), a species with very reduced numbers (less than 400) in a very restricted range in the Atlantic Forest of southeast Brazil. We determined the genotypes of 52 individuals across 9 microsatellite loci. We found genetic divergence between the populations, each exhibiting low genetic diversity. Analysis revealed broad- and fine-scale population structuring. Both populations have evidently experienced population reduction and a genetic bottleneck without presenting any apparent detrimental effect. Anyway, measures should be taken to effectively protect the forests where L. caissara occurs in order to allow its populations to increase and counteract the eventual effects of genetic impoverishment. Copyright © 2012 S. Karger AG, Basel.

  3. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  4. Octopus vulgaris (Cuvier, 1797 in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Directory of Open Access Journals (Sweden)

    Daniele De Luca

    Full Text Available The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  5. Population Genetic Structure of Golden Jackal, Canis aureus in Gujarat, India

    Directory of Open Access Journals (Sweden)

    Tripti Negi

    2015-06-01

    Full Text Available Genetic diversity of Golden Jackal, Canis aureus was estimated to understand the role of Rann of Kachchh in their movement between Kachchh region and the mainland of Gujarat, a western state in India. A total of 30 samples were collected and genotyped with 10 polymorphic microsatellite loci. The analysis was done within and between the Golden Jackal populations in Bhal and Kachchh region of the state. Altogether, 78 distinct alleles were found with mean allelic number of 8.8 (±2.33. Out of 10 microsatellite loci used, 9 loci showed PIC value higher than 0.5 and considered informative for population genetic studies. Mean observed heterozygosity (Ho was found to be 0.812 (±0.233 while mean expected heterozygosity (He was 0.815 (±0.083. No evidence of linkage disequilibrium was observed among pair of loci. Mean Fis value approaching zero (0.018±0.235 was found for this population. Pairwise Fst-Rst values of 0.0182-0.026 indicate little genetic differentiation between Golden Jackal populations. Further, the structure showed only one cluster of Golden Jackal population. The study revealed that Rann of Kachchh is not a barrier for the movement of Golden Jackal and the population across the region of Kachchh and the mainland of Gujarat is continuous.

  6. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

    Science.gov (United States)

    Kuroda, Y; Kaga, A; Tomooka, N; Vaughan, D A

    2006-04-01

    The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size ( 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.

  7. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea.

    Science.gov (United States)

    Nanninga, Gerrit B; Saenz-Agudelo, Pablo; Manica, Andrea; Berumen, Michael L

    2014-02-01

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R(2) = 0.52) and isolation by environment (IBE, R(2) = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R(2) = 0.71, MMRR: R(2) = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure.

  8. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.

    2014-01-20

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  9. Diversity and genetic structure analysis of three Amazonian Amerindian populations of Colombia.

    Science.gov (United States)

    Braga, Yamid; Arias B, Leonardo; Barreto, Guillermo

    2012-04-01

    In the departments of the Vaupés and Guaviare, in southeastern Colombia, in a transitional area between Amazonia and the eastern plains, inhabit indigenous groups belonging to the Tukanoan (East) and Guahiban linguistic families. Although some studies have dealt with the culture and the cosmology description of these groups, little research has been done on the biological diversity and genetic relationships of such groups. To estimate the diversity, the structure, and the genetic relationships of one Guahiban and two Tukanoan groups of the Colombian Amazonian region. Samples were collected (n = 106) from unrelated individuals belonging to the Vaupés native indigenous communities. The DNA was extracted and nine autosomal microsatellites were typed. Several measures of diversity, FST, pairwise FST, and population differentiation between groups were calculated. Finally, it was estimated the genetic distances of the groups studied in relation with other Amazonian, Andean and Central American indigenous people. 1. The genetic diversity found stands within the range of other Amazonian populations, whereas compared to the mestizo and afro-descendant Colombian populations, such diversity showed to be lower. 2. The structure and population differentiation tests showed two clusters; one consisting of the Vaupés Tukanoan and Guaviare Tukanoan groups, and a second one formed by the Guayabero. 3. Tukanoan groups are found to be closer related to the Brazilian Amazonian populations than to the Guayabero. The results of this study suggest that the Guayabero group from Guaviare, are genetically differentiated from those Tukanoan groups of the Vaupés and Guaviare.

  10. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini.

    Directory of Open Access Journals (Sweden)

    Helena Phoenix Baird

    Full Text Available Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903. Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres, locations (1-10 kilometres and regions (1000 s of kilometres sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F(ST = 0.086, R(ST = 0.139, p<0.001 consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with N(em≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos.

  11. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia.

    Directory of Open Access Journals (Sweden)

    Paola Pollegioni

    Full Text Available Common walnut (Juglans regia L is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan, where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history.

  12. Population genetic structure of savannah elephants in Kenya: conservation and management implications

    DEFF Research Database (Denmark)

    Okello, John B A; Masembe, Charles; Rasmussen, Henrik B

    2008-01-01

    We investigated population genetic structure and regional differentiation among African savannah elephants in Kenya using mitochondrial and microsatellite markers. We observed mitochondrial DNA (mtDNA) nucleotide diversity of 1.68% and microsatellite variation in terms of average number of alleles...... through male-mediated gene flow. Our results depicting 3 broad regional mtDNA groups and the observed population genetic differentiation as well as connectivity patterns should be incorporated in the planning of future management activities such as translocations......., expected and observed heterozygosities in the total study population of 10.20, 0.75, and 0.69, respectively. Hierarchical analysis of molecular variance of mtDNA variation revealed significant differentiation among the 3 geographical regions studied (F(CT) = 0.264; P

  13. [Genetic demographic processes in Ukrainian population in 1990. The marriage structure of the Donetsk population].

    Science.gov (United States)

    Atramentova, L A; Mukhin, V N; Filiptsova, O V

    2000-01-01

    Analysis of records of the marriages that were contracted in the city of Donetsk revealed that, between 1960 and 1992, the marriage rate in the city decreased from 14.8 to 4.7 per 1000 people, the migration rate (m) decreased from 0.71 to 0.34, and the endogamy index increased from 0.123 to 0.458. Between 1960 and 1985, outbreeding in the Donetsk population increased, which was expressed in an increase in the frequency of interethnic marriages, migration range, and the average marital distance, as well as a decrease in the proportion of the indigenous ethnic group (Ukrainians). By 1992, outbreeding decreased: the population became more homogeneous ethnically (93% Slavic), the proportion of Ukrainians and the frequency of monoethnic marriages increased, and the average marital distance decreased. In 1960 and 1992, the coefficients of marriage contingency (K) with respect to ethnicity were 0.34 and 0.22, respectively. Regarding birthplaces, the population became almost panmictic (in 1960 and 1992, the K values were 0.15 and 0.10, respectively). Marriage structure with respect to occupation remained almost unchanged (the K values were 0.22 and 0.23, respectively). Throughout the entire period studied, the most pronounced population subdivision was that with respect to the education level (the K values were 0.36 and 0.39, respectively).

  14. Genetic diversity and population structure of indigenous chicken breeds in South China

    Directory of Open Access Journals (Sweden)

    Xunhe HUANG,Jinfeng ZHANG,Danlin HE,Xiquan ZHANG,Fusheng ZHONG,Weina LI,Qingmei ZHENG,Jiebo CHEN,Bingwang DU

    2016-06-01

    Full Text Available A total of 587 individuals from 12 indigenous chicken breeds from South China and two commercial breeds were genotyped for 26 microsatellites to investigate the genetic diversity and population structure. All microsatellites were found to be polymorphic. The number of alleles per locus ranged from 5 to 36, with an average of 12.10 ± 7.00 (SE. All breeds, except White Recessive Rock, had high allelic polymorphism (>0.5. Higher genetic diversity was revealed in the indigenous chicken breeds rather than in the commercial breeds. Potential introgression from the commercial breeds into the indigenous chickens was also detected. The population structure of these indigenous chicken breeds could be explained by their geographical distribution, which suggested the presence of independent history of breed formation. Data generated in this study will provide valuable information to the conservation for indigenous chicken breeds in future.

  15. Hierarchical population genetic structure in a direct developing antarctic marine invertebrate.

    Directory of Open Access Journals (Sweden)

    Joseph I Hoffman

    Full Text Available Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive F st values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales.

  16. Moroccan Leishmania infantum: genetic diversity and population structure as revealed by multi-locus microsatellite typing.

    Directory of Open Access Journals (Sweden)

    Ahmad Amro

    Full Text Available Leishmania infantum causes Visceral and cutaneous leishmaniasis in northern Morocco. It predominantly affects children under 5 years with incidence of 150 cases/year. Genetic variability and population structure have been investigated for 33 strains isolated from infected dogs and humans in Morocco. A multilocus microsatellite typing (MLMT approach was used in which a MLMtype based on size variation in 14 independent microsatellite markers was compiled for each strain. MLMT profiles of 10 Tunisian, 10 Algerian and 21 European strains which belonged to zymodeme MON-1 and non-MON-1 according to multilocus enzyme electrophoresis (MLEE were included for comparison. A Bayesian model-based approach and phylogenetic analysis inferred two L.infantum sub-populations; Sub-population A consists of 13 Moroccan strains grouped with all European strains of MON-1 type; and sub-population B consists of 15 Moroccan strains grouped with the Tunisian and Algerian MON-1 strains. Theses sub-populations were significantly different from each other and from the Tunisian, Algerian and European non MON-1 strains which constructed one separate population. The presence of these two sub-populations co-existing in Moroccan endemics suggests multiple introduction of L. infantum from/to Morocco; (1 Introduction from/to the neighboring North African countries, (2 Introduction from/to the Europe. These scenarios are supported by the presence of sub-population B and sub-population A respectively. Gene flow was noticed between sub-populations A and B. Five strains showed mixed A/B genotypes indicating possible recombination between the two populations. MLMT has proven to be a powerful tool for eco-epidemiological and population genetic investigations of Leishmania.

  17. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  18. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  19. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication.

    Science.gov (United States)

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-10-03

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19-30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73-35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene

  20. Microsatellite Analysis of the Population Genetic Structure of Anolis carolinensis Introduced to the Ogasawara Islands.

    Science.gov (United States)

    Sugawara, Hirotaka; Takahashi, Hiroo; Hayashi, Fumio

    2015-01-01

    DNA analysis can reveal the origins and dispersal patterns of invasive species. The green anole Anolis carolinensis is one such alien animal, which has been dispersed widely by humans from its native North America to many Pacific Ocean islands. In the Ogasawara (Bonin) Islands, this anole was recorded from Chichi-jima at the end of the 1960s, and then from Haha-jima in the early 1980s. These two islands are inhabited. In 2013, it was also found on the uninhabited Ani-jima, close to Chichi-jima. Humans are thought to have introduced the anole to Haha-jima, while the mode of introduction to Ani-jima is unknown. To clarify its dispersal patterns within and among these three islands, we assessed the fine-scale population genetic structure using five microsatellite loci. The results show a homogeneous genetic structure within islands, but different genetic structures among islands, suggesting that limited gene flow occurs between islands. The recently established Ani-jima population may have originated from several individuals simultaneously, or by repeated immigration from Chichi-jima. We must consider frequent incursions among these islands to control these invasive lizard populations and prevent their negative impact on native biodiversity.

  1. Farming termites determine the genetic population structure of Termitomyces fungal symbionts.

    Science.gov (United States)

    Nobre, Tânia; Fernandes, Cecília; Boomsma, Jacobus J; Korb, Judith; Aanen, Duur K

    2011-05-01

    Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several fungal symbionts. However, even in the few termite lineages that secondarily adopted vertical symbiont transmission, the fungal symbionts are not monophyletic. We addressed this paradox by studying differential transmission of fungal symbionts by alate male and female reproductives, and the genetic population structure of Termitomyces fungus gardens across 74 colonies of Macrotermes bellicosus in four west and central African countries. We confirm earlier, more limited, studies showing that the Termitomyces symbionts of M. bellicosus are normally transmitted vertically and clonally by dispersing males. We also document that the symbionts associated with this termite species belong to three main lineages that do not constitute a monophyletic group. The most common lineage occurs over the entire geographical region that we studied, including west, central and southern Africa, where it is also associated with the alternative termite hosts Macrotermes subhyalinus and Macrotermes natalensis. While Termitomyces associated with these alternative hosts are horizontally transmitted and recombine freely, the genetic population structure of the same Termitomyces associated with M. bellicosus is consistent with predominantly clonal reproduction and only occasional recombination. This implies that the genetic population structure of Termitomyces is controlled by the termite host and not by the Termitomyces symbiont.

  2. Spatial genetic structure and restricted gene flow in bed bugs (Cimex lectularius) populations in France.

    Science.gov (United States)

    Akhoundi, Mohammad; Kengne, Pierre; Cannet, Arnaud; Brengues, Cécile; Berenger, Jean-Michel; Izri, Arezki; Marty, Pierre; Simard, Frederic; Fontenille, Didier; Delaunay, Pascal

    2015-08-01

    Bed bugs (Cimex lectularius) are resurgent blood-sucking ectoparasites that are currently increasing at a rapid rate, particularly in industrialized countries, such as France. Despite the rapid spread of bed bugs, there is a lack of knowledge concerning the population structure and gene flow among C. lectularius populations in France. To fill this gap, a genetic study was conducted using 183 C. lectularius from 14 populations of bed bugs collected in a hotel and in individual apartments in the French Riviera and in the Saint Ouen suburb of Paris. The samples were genotyped using an isolated set of six polymorphic microsatellite loci, including five new loci which were newly isolated and chosen based on prior successful amplification, and one previously described loci (bb15b). The low genetic diversity observed in the samples (of one to five alleles) suggested that most of prospected populations were established by only a few individuals, possibly from a single mated female. The overall genetic differentiation was high and statistically significant (FST=0.556, plectularius populations in France; however, the available information should be expanded in further studies.

  3. Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer

    DEFF Research Database (Denmark)

    Goetze, Erica

    2005-01-01

    Although theory dictates that limited gene flow between populations is a necessary precursor to speciation under allopatric and parapatric models, it is currently unclear how genetic differentiation between conspecific populations can arise in open-ocean plankton species. I examined two recently ...... is an important factor determining the historical and contemporary patterns of dispersal of the two species. I suggest that species-specific ecological differences are likely to be a primary determinant of population genetic structure of open-ocean plankton......Although theory dictates that limited gene flow between populations is a necessary precursor to speciation under allopatric and parapatric models, it is currently unclear how genetic differentiation between conspecific populations can arise in open-ocean plankton species. I examined two recently...... experiencing extensive gene flow within features of the large-scale ocean circulation. Mitochondrial DNA analyses of 450 and 383 individuals of E. hyalinus and E. spinifer, respectively, revealed that habitat discontinuities at the boundaries of subtropical gyres in the North and South Pacific, as well...

  4. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping.

    Science.gov (United States)

    Jin, Liang; Lu, Yan; Xiao, Peng; Sun, Mei; Corke, Harold; Bao, Jinsong

    2010-08-01

    Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25-50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker-trait association mapping. This new association population has the potential to identify

  5. Pulses of movement across the sea ice: population connectivity and temporal genetic structure in the arctic fox.

    Science.gov (United States)

    Norén, Karin; Carmichael, Lindsey; Fuglei, Eva; Eide, Nina E; Hersteinsson, Pall; Angerbjörn, Anders

    2011-08-01

    Lemmings are involved in several important functions in the Arctic ecosystem. The Arctic fox (Vulpes lagopus) can be divided into two discrete ecotypes: "lemming foxes" and "coastal foxes". Crashes in lemming abundance can result in pulses of "lemming fox" movement across the Arctic sea ice and immigration into coastal habitats in search for food. These pulses can influence the genetic structure of the receiving population. We have tested the impact of immigration on the genetic structure of the "coastal fox" population in Svalbard by recording microsatellite variation in seven loci for 162 Arctic foxes sampled during the summer and winter over a 5-year period. Genetic heterogeneity and temporal genetic shifts, as inferred by STRUCTURE simulations and deviations from Hardy-Weinberg proportions, respectively, were recorded. Maximum likelihood estimates of movement as well as STRUCTURE simulations suggested that both immigration and genetic mixture are higher in Svalbard than in the neighbouring "lemming fox" populations. The STRUCTURE simulations and AMOVA revealed there are differences in genetic composition of the population between summer and winter seasons, indicating that immigrants are not present in the reproductive portion of the Svalbard population. Based on these results, we conclude that Arctic fox population structure varies with time and is influenced by immigration from neighbouring populations. The lemming cycle is likely an important factor shaping Arctic fox movement across sea ice and the subsequent population genetic structure, but is also likely to influence local adaptation to the coastal habitat and the prevalence of diseases.

  6. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.;

    2014-01-01

    of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining......Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur...

  7. A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina

    Directory of Open Access Journals (Sweden)

    Mariana Inés Pocovi

    2015-06-01

    Full Text Available Understanding the population structure and genetic diversity in sugarcane (Saccharum officinarum L. accessions from INTA germplasm bank (Argentina will be of great importance for germplasm collection and breeding improvement as it will identify diverse parental combinations to create segregating progenies with maximum genetic variability for further selection. A Bayesian approach, ordination methods (PCoA, Principal Coordinate Analysis and clustering analysis (UPGMA, Unweighted Pair Group Method with Arithmetic Mean were applied to this purpose. Sixty three INTA sugarcane hybrids were genotyped for 107 Simple Sequence Repeat (SSR and 136 Amplified Fragment Length Polymorphism (AFLP loci. Given the low probability values found with AFLP for individual assignment (4.7%, microsatellites seemed to perform better (54% for STRUCTURE analysis that revealed the germplasm to exist in five optimum groups with partly corresponding to their origin. However clusters shown high degree of admixture, F ST values confirmed the existence of differences among groups. Dissimilarity coefficients ranged from 0.079 to 0.651. PCoA separated sugarcane in groups that did not agree with those identified by STRUCTURE. The clustering including all genotypes neither showed resemblance to populations find by STRUCTURE, but clustering performed considering only individuals displaying a proportional membership > 0.6 in their primary population obtained with STRUCTURE showed close similarities. The Bayesian method indubitably brought more information on cultivar origins than classical PCoA and hierarchical clustering method.

  8. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    Science.gov (United States)

    Pailles, Yveline; Ho, Shwen; Pires, Inês S.; Tester, Mark; Negrão, Sónia; Schmöckel, Sandra M.

    2017-01-01

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance. PMID:28261227

  9. Genetic structure and admixture between Bayash Roma from northwestern Croatia and general Croatian population: evidence from Bayesian clustering analysis.

    Science.gov (United States)

    Novokmet, Natalija; Galov, Ana; Marjanović, Damir; Škaro, Vedrana; Projić, Petar; Lauc, Gordan; Primorac, Dragan; Rudan, Pavao

    2015-01-01

    The European Roma represent a transnational mosaic of minority population groups with different migration histories and contrasting experiences in their interactions with majority populations across the European continent. Although historical genetic contributions of European lineages to the Roma pool were investigated before, the extent of contemporary genetic admixture between Bayash Roma and non-Romani majority population remains elusive. The aim of this study was to assess the genetic structure of the Bayash Roma population from northwestern Croatia and the general Croatian population and to investigate the extent of admixture between them. A set of genetic data from two original studies (100 Bayash Roma from northwestern Croatia and 195 individuals from the general Croatian population) was analyzed by Bayesian clustering implemented in STRUCTURE software. By re-analyzing published data we intended to focus for the first time on genetic differentiation and structure and in doing so we clearly pointed to the importance of considering social phenomena in understanding genetic structuring. Our results demonstrated that two population clusters best explain the genetic structure, which is consistent with social exclusion of Roma and the demographic history of Bayash Roma who have settled in NW Croatia only about 150 years ago and mostly applied rules of endogamy. The presence of admixture was revealed, while the percentage of non-Croatian individuals in general Croatian population was approximately twofold higher than the percentage of non-Romani individuals in Roma population corroborating the presence of ethnomimicry in Roma.

  10. Levels and Patterns of Genetic Diversity and Population Structure in Domestic Rabbits.

    Directory of Open Access Journals (Sweden)

    Joel M Alves

    Full Text Available Over thousands of years humans changed the genetic and phenotypic composition of several organisms and in the process transformed wild species into domesticated forms. From this close association, domestic animals emerged as important models in biomedical and fundamental research, in addition to their intrinsic economical and cultural value. The domestic rabbit is no exception but few studies have investigated the impact of domestication on its genetic variability. In order to study patterns of genetic structure in domestic rabbits and to quantify the genetic diversity lost with the domestication process, we genotyped 45 microsatellites for 471 individuals belonging to 16 breeds and 13 wild localities. We found that both the initial domestication and the subsequent process of breed formation, when averaged across breeds, culminated in losses of ~20% of genetic diversity present in the ancestral wild population and domestic rabbits as a whole, respectively. Despite the short time elapsed since breed diversification we uncovered a well-defined structure in domestic rabbits where the FST between breeds was 22%. However, we failed to detect deeper levels of structure, probably consequence of a recent and single geographic origin of domestication together with a non-bifurcating process of breed formation, which were often derived from crosses between two or more breeds. Finally, we found evidence for intrabreed stratification that is associated with demographic and selective causes such as formation of strains, colour morphs within the same breed, or country/breeder of origin. These additional layers of population structure within breeds should be taken into account in future mapping studies.

  11. Genetic Structure of the Wild Boar (Sus scrofa L. Population in Portugal

    Directory of Open Access Journals (Sweden)

    Fonseca, C.

    2006-06-01

    Full Text Available The main objective of this study was the assessment of the genetic structure and level of variability in the Portuguese wild boar population. A total of 65 wild boar blood samples were collected all over the continental territory, during 2002/03 and 2003/04 hunting seasons. A set of six microsatellite markers, developed for domestic pig, was used. Loci SW986 and SW828 presented a small number of alleles for the Portuguese population, whereas other l o c i, like SW1701 and SW1517, presented a high degree of polymorphism. From the six analysed l o c i, four presented significant deviation from Hardy-We i n b e rg equilibrium conditions, suggesting the existence of genetic structure in the population. Samples were divided into North, Centre and South groups according to the position of wild boar capture location in relation to rivers Douro and Tejo. All the FST estimates were statistically significant and the highest FST value was 0.08 (P<0.001, referring to the distance between Northern and Central groups. FCA analysis was also performed. The resulting bi-dimensional diagram suggests structuring of the Portuguese wild boar population.

  12. Genetic diversity and population structure of different varieties of Morada Nova hair sheep from Brazil.

    Science.gov (United States)

    Ferreira, J S B; Paiva, S R; Silva, E C; McManus, C M; Caetano, A R; Façanha, D A E; de Sousa, M A N

    2014-01-01

    The aim of this study was to analyze genetic diversity and population structure among varieties of White (N = 40), Red (N = 32), and Black (N = 31) Morada Nova hair sheep from flocks in the northeastern Brazilian semiarid region. Fifteen nuclear microsatellite markers and two regions of mitochondrial DNA were used. The intra-population analysis demonstrated that the White variety had higher diversity, while the Red variety had the lowest values. The Bayesian analysis to assess the genetic population structure allowed differentiation between White, Red, and Black varieties, and revealed a tendency towards sub-structuring in the White variety flocks from the States of Ceará and Paraíba. The results of analyses of molecular variance showed that the greatest genetic structure was found when comparing flocks rather than varieties (8.59 vs 6.64% of the total variation, P Dtl, both the dendrogram analysis and the principal coordinate analysis showed the formation of two main groups: one composed of White and another of Black and Red individuals. Five and two haplotypes were found for the D-loop region and the ND5 gene, respectively. A haplotype unique to the Red variety was found in the D-loop region and a variety haplotype unique to the Black variety was found in the ND5 gene; however, these frequencies were low and therefore require further validation. These results support the existence of substantial differences between the Red and White varieties and should be used as separate genetic resources and to improve conservation programs.

  13. Population genetic structure of Anopheles arabiensis (Diptera: Culicidae) in a rice growing area of central Kenya.

    Science.gov (United States)

    Muturi, Ephantus J; Kim, Chang-Hyun; Baliraine, Frederick N; Musani, Solomon; Jacob, Benjamin; Githure, John; Novak, Robert J

    2010-03-01

    Studies were conducted to examine the population genetic structure of Anopheles arabiensis (Patton) in Mwea Rice Irrigation Scheme and surrounding areas in Central Kenya, under different agricultural systems. This study was motivated by observed differences in malaria transmission indices of An. arabiensis within the scheme compared with adjacent nonirrigated areas. Agricultural practices can modify local microclimate and influence the number and diversity of larval habitats and in so doing may occasion subpopulation differentiation. Thirty samples from each of the three study sites were genotyped at eight microsatellite loci. Seven microsatellite loci showed high polymorphism but revealed no genetic differentiation (FST = 0.006, P = 0.312) and high gene flow (Nm = 29-101) among the three populations. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. There was high frequency of rare alleles, suggesting that An. arabiensis in the study area has a high potential of responding to selective pressures from environmental changes and vector control efforts. These findings imply that An. arabiensis in the study area occurs as a single, continuous panmictic population with great ability to adapt to human-imposed selective pressures.

  14. Population genetic structure of Attalea vitrivir Zona (Arecaceae) in fragmented areas of southeast Brazil.

    Science.gov (United States)

    Santos, R R M; Cavallari, M M; Pimenta, M A S; Abreu, A G; Costa, M R; Guedes, M L

    2015-06-11

    Attalea vitrivir Zona (synonym Orbignya oleifera) is one of the six species of Arecaceae known as "babassu". This species is used to make cosmetics, food, and detergents due to the high concentration of oil in the seeds. It is found only in fragmented areas of southern Bahia State and northern Minas Gerais State, southeast Brazil, and this fragmentation has affected both its ecological and genetic characteristics. We evaluated the genetic diversity and population genetic structure of A. vitrivir in six areas of two different regions at the extremes of its geographical range, in order to gain a better understanding of the factors that affect the distribution and partitioning of its diversity. Nine inter simple sequence repeat (ISSR) markers amplified 74 polymorphic bands, resulting in large diversity values (Shannon diversity index, 0.37-0.47; intrapopulation genetic diversity, 0.25-0.34). Analysis of molecular variance (AMOVA) revealed considerable differentiation between sampling sites (30.03%) and regions (12.08%), although most of the diversity was observed within sampling sites (69%). Further differentiation between sampling sites was noted more in the northern region than in the southern region, highlighting the genetic connectivity between the sampling sites within Rio Pandeiros Environmental Protection Area (southern region). The identification of two distinct genetic clusters (K = 2) corresponded to the northern and southern regions, and corroborated the AMOVA results. We suggest that the northern area, outside Rio Pandeiros Environmental Protection Area, must be included in future management plans for this species.

  15. Significant demographic and fine-scale genetic structure in expanding and senescing populations of the terrestrial orchid Cymbidium goeringii (Orchidaceae).

    Science.gov (United States)

    Chung, Mi Yoon; Nason, John D; Chung, Myong Gi

    2011-12-01

    Fine-scale genetic structure (FSGS) in plants is influenced by variation in spatial and temporal demographic processes. To determine how demographic structure and FSGS change with stages of population succession, we studied replicate expanding and senescing populations of the Asian terrestrial orchid Cymbidium goeringii. We used spatial autocorrelation methods (O-ring and kinship statistics) to quantify spatial demographic structure and FSGS in two expanding and two senescing populations, also measuring genetic diversity and inbreeding in each. All populations exhibited significant aggregation of individuals and FSGS at short spatial scales. In expanding populations, this finding was associated with high recruitment rates, suggesting restricted seed dispersal. In senescing populations, recruitment was minimal, suggesting alternative mechanisms of aggregation, perhaps including spatial associations with mycorrhizal fungi. All populations had significant evidence of genetic bottlenecks, and inbreeding levels were consistently high. Our results indicate that different successional stages can generate similar patterns of spatial demographic and genetic structure, but as a consequence of different processes. These results contrast with the only other study of senescence effects on population genetic structure in an herbaceous perennial, which found little to no FSGS in senescing populations. With the exception of populations subject to mass collection by orchid sellers, significant FSGS is characteristic of the 16 terrestrial orchid species examined to date. From a conservation perspective, this result suggests that inference of orchid population history will benefit from analyses of both FSGS and demographic structure in combination with other ecological field data.

  16. Population genetic structure of Ascaridia galli re-emerging in non-caged laying hens

    Directory of Open Access Journals (Sweden)

    Höglund Johan

    2012-05-01

    Full Text Available Abstract Background The poultry roundworm Ascaridia galli has reappeared in hens kept for egg production in Sweden after having been almost absent a decade ago. Today this is a frequent intestinal nematode parasite in non-caged laying hens. The aim of this study was to investigate the genetic diversity (Fst in A. galli collected from different poultry production sites in southern Sweden, to identify possible common routes of colonization. Methods Adult parasites (n = 153 from 10 farms, including both broiler breeder parents and laying hens, were investigated by amplified restriction fragment length polymorphism analysis (AFLP. Worms from a Danish laying hen farm were also included for comparison. Most of the farms were represented by worms from a single host, but on two farms multiple samples from different hosts were assessed in order to study flock variation. Results A total of 97 fragments (loci were amplified among which 81% were variable alleles. The average genetic diversity was 0.13 (range = 0.09-0.38, which is comparable to other AFLP studies on nematodes of human and veterinary importance. Within-farm variation showed that worms harboured by a single hen in a flock covered most of the A. galli genetic variation within the same flock (Fst = 0.01 and 0.03 for two farms. Between-farm analysis showed a moderate population genetic structure (Fst = 0.13, along with a low mutational rate but high gene flow between different farms, and absence of strong genetic selection. Network analysis showed repeated genetic patterns among the farms, with most worms on each farm clustering together as supported by high re-allocation rates. Conclusions The investigated A. galli populations were not strongly differentiated, indicating that they have undergone a genetic bottlenecking and subsequent drift. This supports the view that the investigated farms have been recently colonized, and that new flocks are reinfected upon arrival with a

  17. Genetic Population Structure of Macridiscus multifarius (Mollusca: Bivalvia) on the Basis of Mitochondrial Markers: Strong Population Structure in a Species with a Short Planktonic Larval Stage.

    Science.gov (United States)

    Ye, Ying Ying; Wu, Chang Wen; Li, Ji Ji

    2015-01-01

    The clam Macridiscus multifarius with a planktonic larval stage of about 10 days is an ecologically and economically important species in the coastal regions of China. In this study, 3 mt-DNA markers (COI, 12S rRNA, and ND1) were used to investigate the population structure and demography of wild M. multifarius populations in 3 coastal localities of the East China Sea (ZS and ZP populations) and Beibu Gulf in the South China Sea (BH population). Sequences of 685 bp in COI, 350 bp in 12S rRNA, and 496 bp in ND1 were determined. High level and significant FST values were obtained among the different localities on the basis of either COI (FST = 0.100-0.444, p < 0.05) or 12S rRNA (FST = 0.199-0.742, p < 0.05) gene, indicating a high degree of genetic differentiation among the populations. FST values were significant but weak for the ND1 gene because it is highly conservative. The median-joining network suggested an obvious genetic differentiation between ZS and BH populations, and the finding is consistent with the results of our demographic analyses using the unweighted pair group method with arithmetic mean. Our study unraveled the extant population genetic structure of M. multifarius and explained the strong population structure of a species with a short planktonic larval stage species; this information could be useful for fishery management measures, including artificial breeding and conservation.

  18. Genetic Population Structure of Macridiscus multifarius (Mollusca: Bivalvia) on the Basis of Mitochondrial Markers: Strong Population Structure in a Species with a Short Planktonic Larval Stage

    Science.gov (United States)

    Ye, Ying Ying; Wu, Chang Wen; Li, Ji Ji

    2015-01-01

    The clam Macridiscus multifarius with a planktonic larval stage of about 10 days is an ecologically and economically important species in the coastal regions of China. In this study, 3 mt-DNA markers (COI, 12S rRNA, and ND1) were used to investigate the population structure and demography of wild M. multifarius populations in 3 coastal localities of the East China Sea (ZS and ZP populations) and Beibu Gulf in the South China Sea (BH population). Sequences of 685 bp in COI, 350 bp in 12S rRNA, and 496 bp in ND1 were determined. High level and significant FST values were obtained among the different localities on the basis of either COI (FST = 0.100–0.444, p < 0.05) or 12S rRNA (FST = 0.199–0.742, p < 0.05) gene, indicating a high degree of genetic differentiation among the populations. FST values were significant but weak for the ND1 gene because it is highly conservative. The median-joining network suggested an obvious genetic differentiation between ZS and BH populations, and the finding is consistent with the results of our demographic analyses using the unweighted pair group method with arithmetic mean. Our study unraveled the extant population genetic structure of M. multifarius and explained the strong population structure of a species with a short planktonic larval stage species; this information could be useful for fishery management measures, including artificial breeding and conservation. PMID:26720602

  19. Genetic structure is determined by stochastic factors in a natural population of Drosophila buzzatii in Argentina.

    Science.gov (United States)

    Vilardi, J C; Hasson, E; Rodriguez, C; Fanara, J J

    1994-01-01

    D. buzzatii is a cactophilic species associated with several cactaceae in Argentina. This particular ecological niche implies that this species is faced with a non-uniform environment constituted by discrete and ephemeral breeding sites, which are colonized by a finite number of inseminated females. The genetic consequences of this population structure upon the second chromosome polymorphism were investigated by means of F-statistics in a natural endemic population of Argentina. The present study suggests that differentiation of inversion frequencies in third instar larvae among breeding sites has taken place mainly at random and selection is not operating to determine the structure of this population. The average number of parents breeding on a single pad seems to be similar to the number colonizing Opuntia ficus indica rotting cladodes in Carboneras, a derived population from Spain. There is no significant excess of heterokaryotypes within pads or in the population as a whole. The results obtained in the present study suggest that the potential role of selective versus stochastic factors relative to the among pad heterogeneity in the population here studied is different from that of the Spanish population previously reported. Potential mechanisms responsible for these differences are discussed.

  20. Population genetic structure, gene flow and sex-biased dispersal in frillneck lizards (Chlamydosaurus kingii).

    Science.gov (United States)

    Ujvari, Beata; Dowton, Mark; Madsen, Thomas

    2008-08-01

    By using both mitochondrial and nuclear multiloci markers, we explored population genetic structure, gene flow and sex-specific dispersal of frillneck lizards (Chlamydosaurus kingii) sampled at three locations, separated by 10 to 50 km, in a homogenous savannah woodland in tropical Australia. Apart from a recombinant lizard, the mitochondrial analyses revealed two nonoverlapping haplotypes/populations, while the nuclear markers showed that the frillneck lizards represented three separate clusters/populations. Due to the small population size of the mtDNA, fixation may occur via founder effects and/or drift. We therefore suggest that either of these two processes, or a combination of the two, are the most likely causes of the discordant results obtained from the mitochondrial and the nuclear markers. In contrast to the nonoverlapping mitochondrial haplotypes, in 12 out of 74 lizards, mixed nuclear genotypes were observed, hence revealing a limited nuclear gene flow. Although gene flow should ultimately result in a blending of the populations, we propose that the distinct nuclear population structure is maintained by frequent fires resulting in local bottlenecks, and concomitant spatial separation of the frillneck lizard populations. Limited mark-recapture data and the difference in distribution of the mitochondrial and nuclear markers suggest that the mixed nuclear genotypes were caused by juvenile male-biased dispersal.

  1. Genetic Structure of Acetobacter diazotrophicus Populations and Identification of a New Genetically Distant Group

    OpenAIRE

    Caballero-Mellado, J.; Fuentes-Ramirez, L. E.; Reis, V. M.; Martinez-Romero, E.

    1995-01-01

    A total of 55 isolates of Acetobacter diazotrophicus recovered from diverse sucrose-rich host plants and from mealybugs associated with sugarcane plants were characterized by the electrophoretic mobilities of 12 metabolic enzymes. We identified seven different electrophoretic types (ETs), six of which are closely related within a genetic distance of 0.195 and exhibit high DNA-DNA homology. The seventh ET was largely divergent, separated at a genetic distance of 0.53, and had only 54% DNA homo...

  2. Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago

    Science.gov (United States)

    Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Nagata, Tomofumi; Uyeno, Daisuke; Sakai, Kazuhiko; Mitarai, Satoshi

    2017-06-01

    The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064-0.116 (all P = 0.001), pairwise G''ST = 0.107-0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.

  3. Fine-scale population genetic structure in Alaskan Pacific halibut (Hippoglossus stenolepis)

    Science.gov (United States)

    2010-01-01

    Pacific halibut collected in the Aleutian Islands, Bering Sea and Gulf of Alaska were used to test the hypothesis of genetic panmixia for this species in Alaskan marine waters. Nine microsatellite loci and sequence data from the mitochondrial (mtDNA) control region were analyzed. Eighteen unique mtDNA haplotypes were found with no evidence of geographic population structure. Using nine microsatellite loci, significant heterogeneity was detected between Aleutian Island Pacific halibut and fish from the other two regions (FST range = 0.007–0.008). Significant FST values represent the first genetic evidence of divergent groups of halibut in the central and western Aleutian Archipelago. No significant genetic differences were found between Pacific halibut in the Gulf of Alaska and the Bering Sea leading to questions about factors contributing to separation of Aleutian halibut. Previous studies have reported Aleutian oceanographic conditions at deep inter-island passes leading to ecological discontinuity and unique community structure east and west of Aleutian passes. Aleutian Pacific halibut genetic structure may result from oceanographic transport mechanisms acting as partial barriers to gene flow with fish from other Alaskan waters.

  4. [The use of RAPD and ITE molecular markers to study genetical structure of the Crimean population of Triticum boeoticum Boiss].

    Science.gov (United States)

    Mallabaeva, D Sh; Ignatov, A N; Sheĭko, I A; Isikov, V P; Geliuta, V P; Boĭko, N G; Seriapin, A A; Dorokhov, D B

    2007-01-01

    Wild wheat Triticum boeoticum Boiss. is the rare species are included in the Red Book of Ukraine. This species are reducing the magnitude of population and the area of distribution under anthropogenic activity. We studied genetic structure of two populations of T. boeoticum, located on Sapun Mountain and in Baidar Valley in Crimea. According RAPD and ITE molecular analysis we have estimated that the population of T. boeoticum on Sapun Mountain is genetically more impoverished than a population from the Baidar Valley. For preservation of maximal natural genetic polymorphism of the rare species it is recommended to direct efforts to preservations of a population of T. boeoticum from the Baidar Valley.

  5. Molecular Population Genetics

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  6. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  7. Genetic structure of Mount Huang honey bee (Apis cerana) populations: evidence from microsatellite polymorphism.

    Science.gov (United States)

    Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong

    2016-01-01

    The Mount Huang eastern honey bees (Apis cerana) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees (A. cerana) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.

  8. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder ( Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Grønkjær, P.

    2007-01-01

    A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective...... population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples...... with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic...

  9. Genetic structure of Mediterranean chukar ( Alectoris chukar, Galliformes) populations: conservation and management implications

    Science.gov (United States)

    Barbanera, Filippo; Marchi, Chiara; Guerrini, Monica; Panayides, Panicos; Sokos, Christos; Hadjigerou, Pantelis

    2009-10-01

    The chukar ( Alectoris chukar, Galliformes) is a species hunted throughout its native range from the East Mediterranean to Manchuria and in the USA, which hosts the world’s largest introduced population. This study aims to investigate the genetic structure of Mediterranean chukar populations to aid management decisions. We genotyped 143 specimens at two regions of the mitochondrial DNA (mtDNA: cytochrome b, control region) and eight loci of the microsatellite DNA. Samples were collected in northern (Limnos, Lesvos, Chios) and southern (Crete) Aegean islands (Greece) and Cyprus. We also carried out mtDNA-based comparison with chukars ( n = 124) from Asia (16 countries) and the USA (five states). We propose six management units for Mediterranean populations. Given their genetic integrity, Limnos and Cyprus, which host different subspecies, proved to be of primary conservation interest. We found exotic A. chukar mtDNA lineages in Lesvos, Chios and Crete and produced definitive genetic evidence for the Asian origin of the US chukars.

  10. Population genetic structure of the ark shell Scapharca broughtonii Schrenck from Korea, China, and Russia based on COI gene sequences.

    Science.gov (United States)

    Cho, Eun-Seob; Jung, Choon-Goon; Sohn, Sang-Gyu; Kim, Chul-Won; Han, Seock-Jung

    2007-01-01

    Haplotype distribution, gene flow, and population genetic structure of the ark shell (Scapharca broughtonii) were studied using a partial sequence of a mitochondrial COI gene. The sequence analysis of 100 specimens obtained from a total of seven localities-five in Korea, one in China, and one in Russia- revealed 29 haplotypes, ranging in sequence divergence from 0.1% to 2.1%. Among these, the most frequent haplotype, SB16, was extensively distributed over study areas, especially in all Korean localities. This extensive distribution consequently resulted in the near absence of statistically significant genetic distance. Also, a high rate of gene flow was characteristic among localities in Korea. A test of genetic population structure showed that the ark shell in Korea formed a large genetic group. Moreover, an AMOVA test to determine the allocation of the genetic variance showed that most of the variance was distributed between localities, instead of within localities. However, a significant population differentiation was found between geographic populations [i.e., Jinhae (locality 6) in Korea and Sangdong (locality 5) in China and Vladivostok (locality 7) in Russia] based on geographic distance and population structure. These distinct groups may be associated with geographic characteristics and barriers. The results suggest that most of the ark shell populations in Korea caused considerable distribution to form a genetically homogeneous and intermixing structure, whereas some of the Korean and Chinese and Russian populations had a significantly different genetic structure.

  11. Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta.

    Science.gov (United States)

    Brinkerhoff, R Jory; Martin, Andrew P; Jones, Ryan T; Collinge, Sharon K

    2011-01-01

    Oropsylla hirsuta is the primary flea of the black-tailed prairie dog and is a vector of the plague bacterium, Yersinia pestis. We examined the population genetic structure of O. hirsuta fleas collected from 11 prairie dog colonies, 7 of which had experienced a plague-associated die-off in 1994. In a sample of 332 O. hirsuta collected from 226 host individuals, we detected 24 unique haplotype sequences in a 480 nucleotide segment of the cytochrome oxidase II gene. We found significant overall population structure but we did not detect a signal of isolation by distance, suggesting that O. hirsuta may be able to disperse relatively quickly at the scale of this study. All 7 colonies that were recently decimated by plague showed signs of recent population expansion, whereas 3 of the 4 plague-negative colonies showed haplotype patterns consistent with stable populations. These results suggest that O. hirsuta populations are affected by plague-induced prairie dog die-offs and that flea dispersal among prairie dog colonies may not be dependent exclusively on dispersal of prairie dogs. Re-colonization following plague events from plague-free refugia may allow for rapid flea population expansion following plague epizootics.

  12. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-03-01

    Full Text Available Abstract Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP, Duffy-binding protein (DBP, Merozoite surface protein-1 (MSP-1, Apical membrane antigen-1 (AMA-1 and Thrombospondin related anonymous protein (TRAP. Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.

  13. Population genetic structure and long-distance dispersal of a recently expanding migratory bird.

    Science.gov (United States)

    Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin

    2016-06-01

    Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale.

  14. Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data.

    Science.gov (United States)

    Schaid, Daniel J; McDonnell, Shannon K; Sinnwell, Jason P; Thibodeau, Stephen N

    2013-07-01

    Searching for rare genetic variants associated with complex diseases can be facilitated by enriching for diseased carriers of rare variants by sampling cases from pedigrees enriched for disease, possibly with related or unrelated controls. This strategy, however, complicates analyses because of shared genetic ancestry, as well as linkage disequilibrium among genetic markers. To overcome these problems, we developed broad classes of "burden" statistics and kernel statistics, extending commonly used methods for unrelated case-control data to allow for known pedigree relationships, for autosomes and the X chromosome. Furthermore, by replacing pedigree-based genetic correlation matrices with estimates of genetic relationships based on large-scale genomic data, our methods can be used to account for population-structured data. By simulations, we show that the type I error rates of our developed methods are near the asymptotic nominal levels, allowing rapid computation of P-values. Our simulations also show that a linear weighted kernel statistic is generally more powerful than a weighted "burden" statistic. Because the proposed statistics are rapid to compute, they can be readily used for large-scale screening of the association of genomic sequence data with disease status.

  15. Genetic diversity, Population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers

    OpenAIRE

    Lassois, Ludivine; Denancé, Caroline; Ravon, Elisa; Guyader, Arnaud; Guisnel, Rémi; Hibrand-Saint-Oyan, Laurence; Poncet, Charles; Lasserre - Zuber, Pauline; Feugey, Laurence; Durel, Charles-Eric

    2016-01-01

    In-depth characterization of apple genetic resources is a prerequisite for genetic improvement and for germplasm management. In this study, we fingerprinted a very large French collection of 2163 accessions with 24 SSR markers in order to evaluate its genetic diversity, population structure and genetic relationships, to link these features with cultivar selection date or usage (old or modern, dessert or cider cultivars), and to construct core collections. Most markers were highly discriminati...

  16. The use of carcasses for the analysis of cetacean population genetic structure: a comparative study in two dolphin species.

    Science.gov (United States)

    Bilgmann, Kerstin; Möller, Luciana M; Harcourt, Robert G; Kemper, Catherine M; Beheregaray, Luciano B

    2011-01-01

    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully

  17. Within-population genetic structure in beech (Fagus sylvatica L. stands characterized by different disturbance histories: does forest management simplify population substructure?

    Directory of Open Access Journals (Sweden)

    Andrea Piotti

    Full Text Available The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L. plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs. Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θ ST ranged from 0.025 to 0.124. The proportion of within-population genetic variation due to genetic substructuring (F CluPlot = 0.067 was higher than the differentiation among the 10 plots (F PlotTot = 0.045. Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.

  18. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    Science.gov (United States)

    Piotti, Andrea; Leonardi, Stefano; Heuertz, Myriam; Buiteveld, Joukje; Geburek, Thomas; Gerber, Sophie; Kramer, Koen; Vettori, Cristina; Vendramin, Giovanni Giuseppe

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L.) plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs). Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θ ST ranged from 0.025 to 0.124). The proportion of within-population genetic variation due to genetic substructuring (F CluPlot = 0.067) was higher than the differentiation among the 10 plots (F PlotTot = 0.045). Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i) genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii) indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.

  19. Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe

    DEFF Research Database (Denmark)

    Mucci, Nadia; Arrendal, Johanna; Ansorge, Hermann

    2010-01-01

    Eurasian otter populations strongly declined and partially disappeared due to global and local causes (habitat destruction, water pollution, human persecution) in parts of their continental range. Conservation strategies, based on reintroduction projects or restoration of dispersal corridors......, should rely on sound knowledge of the historical or recent consequences of population genetic structuring. Here we present the results of a survey performed on 616 samples, collected from 19 European countries, genotyped at the mtDNA control-region and 11 autosomal microsatellites. The mtDNA variability...... was low (nucleotide diversity = 0.0014; average number of pairwise differences = 2.25), suggesting that extant otter mtDNA lineages originated recently. A star-shaped mtDNA network did not allow outlining any phylogeographic inference. Microsatellites were only moderately variable (H o = 0.50; H e = 0...

  20. Phylogeography and Population Genetic Structure of Amur Grayling Thymallus grubii in the Amur Basin

    Science.gov (United States)

    Ma, Bo; Lui, Tingting; Zhang, Ying; Chen, Jinping

    2012-01-01

    Amur grayling, Thymallus grubii, is an important economic cold freshwater fish originally found in the Amur basin. Currently, suffering from loss of habitat and shrinking population size, T. grubii is restricted to the mountain river branches of the Amur basin. In order to assess the genetic diversity, population genetic structure and infer the evolutionary history within the species, we analysised the whole mitochondrial DNA control region (CR) of 95 individuals from 10 rivers in China, as well as 12 individuals from Ingoda/Onon and Bureya River throughout its distribution area. A total of 64 variable sites were observed and 45 haplotypes were identified excluding sites with gaps/missing data. Phylogenetic analysis was able to confidently predict two subclade topologies well supported by maximum-parsimony and Bayesian methods. However, basal branching patterns cannot be unambiguously estimated. Haplotypes from the mitochondrial clades displayed local homogeneity, implying a strong population structure within T. grubii. Analysis of molecular variance detected significant differences among the different geographical rivers, suggesting that T. grubii in each river should be managed and conserved separately. PMID:25049647

  1. The effect of a population bottleneck on the evolution of genetic variance/covariance structure.

    Science.gov (United States)

    Jarvis, J P; Cropp, S N; Vaughn, T T; Pletscher, L S; King-Ellison, K; Adams-Hunt, E; Erickson, C; Cheverud, J M

    2011-10-01

    It is well known that standard population genetic theory predicts decreased additive genetic variance (V(a) ) following a population bottleneck and that theoretical models including interallelic and intergenic interactions indicate such loss may be avoided. However, few empirical data from multicellular model systems are available, especially regarding variance/covariance (V/CV) relationships. Here, we compare the V/CV structure of seventeen traits related to body size and composition between control (60 mating pairs/generation) and bottlenecked (2 mating pairs/generation; average F = 0.39) strains of mice. Although results for individual traits vary considerably, multivariate analysis indicates that V(a) in the bottlenecked populations is greater than expected. Traits with patterns and amounts of epistasis predictive of enhanced V(a) also show the largest deviations from additive expectations. Finally, the correlation structure of weekly weights is not significantly different between control and experimental lines but correlations between necropsy traits do differ, especially those involving the heart, kidney and tail length. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  2. Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Pascal T Geraghty

    Full Text Available BACKGROUND: Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna, a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. METHODS AND FINDINGS: Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025. While two metrics of genetic divergence (ΦST and F ST revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717-0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008. Evidence for fine-scale genetic structuring was also detected along Australia's east coast (pairwise ΦST = 0.01328, p < 0.015, and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04. CONCLUSIONS: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.

  3. Genetic structuring among silverside fish (Atherinella brasiliensis) populations from different Brazilian regions

    Science.gov (United States)

    da Silva Cortinhas, Maria Cristina; Kersanach, Ralf; Proietti, Maíra; Dumont, Luiz Felipe Cestari; D'Incao, Fernando; Lacerda, Ana Luzia F.; Prata, Pedro Sanmartin; Matoso, Daniele Aparecida; Noleto, Rafael Bueno; Ramsdorf, Wanessa; Boni, Talge Aiex; Prioli, Alberto José; Cestari, Marta Margarete

    2016-09-01

    Estuaries are dynamic environments, key for the survival of innumerous ecologically or economically important fish species. Among these species are Neotropical silversides (Atherinella brasiliensis), which are resident and abundant in Brazilian estuaries and used as a complementary source of income and food for local communities. To better understand silverside populations in Brazil, we evaluated the genetic diversity, structure and demography of fish sampled at six estuaries from the northeastern to the southern coast, using Random Amplified Polymorphic DNA and mitochondrial DNA (D-loop) markers. High haplotype diversities (h ranging from 0.75 to 0.99) were found in all populations except Carapebus, located in Southeast Brazil (h = 0.54). A total of 69 mtDNA haplotypes were found, with Itaparica (Northeast Brazil) and Carapebus presenting only exclusive haplotypes, while some were shared among populations in the South. Strong regional structure was observed, with very high differentiation between Itaparica and Carapebus, as well as among these two populations and the ones from the Southern region (Paranaguá, Conceição, Camacho and Patos). Among southern areas, low/moderate structure was detected. Most populations showed unimodal mismatch distributions indicating recent demographic expansion, while Carapebus presented a multimodal distribution characteristic of a stable or bottlenecked population. Times since possible population expansion were highest in Itaparica (32,500 ya) and Carapebus (29,540 ya), while in the Southern region longest time was observed at Conceição (25,540 ya) and shortest at Patos (9720 ya). In a general manner, haplotype diversities were directly related to times since population expansions; again, Carapebus was the exception, displaying long time since expansion but low diversity, possibly due to a recent bottleneck caused by the isolation and human impacts this lagoon is subject to. Isolation by Distance was significant for Itaparica

  4. Does multiple hosts mean multiple parasites? Population genetic structure of Schistosoma japonicum between definitive host species.

    Science.gov (United States)

    Wang, T P; Shrivastava, J; Johansen, M V; Zhang, S Q; Wang, F F; Webster, J P

    2006-10-01

    Multi-host parasites, those capable of infecting more than one species of host, are responsible for the majority of all zoonotic, emerging or persistent human and animal diseases and are considered one of the major challenges for the biomedical sciences in the 21st century. We characterized the population structure of the multi-host parasite Schistosoma japonicum in relation to its definitive host species by genotyping miracidia collected from humans and domestic animals across five villages around the Yangtze River in Anhui Province, mainland China, using microsatellite markers. High levels of polymorphisms were observed and two main genetic clusters were identified which separated water buffalo, cattle and humans from goats, pigs, dogs and cats. We thereby believe that we present the first evidence of definitive host-based genetic variation in Schistosoma japonicum which has important epidemiological, evolutionary, medical and veterinary implications.

  5. Farming termites determine the genetic population structure of Termitomyces fungal symbionts

    DEFF Research Database (Denmark)

    Nobre, Tânia; Fernandes, Cecília; Boomsma, Jacobus J

    2011-01-01

    fungal symbionts. However, even in the few termite lineages that secondarily adopted vertical symbiont transmission, the fungal symbionts are not monophyletic. We addressed this paradox by studying differential transmission of fungal symbionts by alate male and female reproductives, and the genetic......Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several...... associated with the alternative termite hosts Macrotermes subhyalinus and Macrotermes natalensis. While Termitomyces associated with these alternative hosts are horizontally transmitted and recombine freely, the genetic population structure of the same Termitomyces associated with M. bellicosus is consistent...

  6. Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast.

    Science.gov (United States)

    Kaba, Dramane; Ravel, Sophie; Acapovi-Yao, Geneviève; Solano, Philippe; Allou, Koffi; Bosson-Vanga, Henriette; Gardes, Laetitia; N'Goran, Eliezer Kouakou; Schofield, Christopher John; Koné, Moussa; Dujardin, Jean-Pierre

    2012-07-30

    Sleeping sickness, transmitted by G. p. palpalis, is known to be present in the Ivory Coast. G. p. palpalis has recently been reported to occur in several places within the town of Abidjan, including: (i) the Banco forest, (ii) the Abobo Adjamé University campus and (iii) the zoological park. Could these three places be treated sequentially, as separate tsetse populations, or should they be taken as one area comprising a single, panmictic population? The amount of gene flow between these places provides strategic information for vector control. It was estimated by the use of both microsatellite DNA and morphometric markers. The idea was to assess the interest of the faster and much less expensive morphometric approach in providing relevant information about population structure. Thus, to detect possible lack of insect exchange between these neighbouring areas of Abidjan, we used both genetic (microsatellite DNA) and phenetic (geometric morphometrics) markers on the same specimens.Using these same markers, we also compared these samples with specimens from a more distant area of south Ivory Coast, the region of Aniassué (186 km north from Abidjan). Neither genetic nor phenetic markers detected significant differentiation between the three Abidjan G. p. palpalis samples. Thus, the null hypothesis of a single panmictic population within the city of Abidjan could not be rejected, suggesting the control strategy should not consider them separately. The markers were also in agreement when comparing G. p. palpalis from Abidjan with those of Aniassué, showing significant divergence between the two sites. Both markers suggested that a successful control of tsetse in Abidjan would require the three Abidjan sites to be considered together, either by deploying control measures simultaneously in all three sites, or by a continuous progression of interventions following for instance the "rolling carpet" principle. To compare the geometry of wing venation of tsetse flies is a

  7. Genetic Diversity and Population Structure of the Rare and Endangered Plant Species Pulsatilla patens (L.) Mill in East Central Europe.

    Science.gov (United States)

    Szczecińska, Monika; Sramko, Gabor; Wołosz, Katarzyna; Sawicki, Jakub

    2016-01-01

    Pulsatilla patens s.s. is a one of the most endangered plant species in Europe. The present range of this species in Europe is highly fragmented and the size of the populations has been dramatically reduced in the past 50 years. The rapid disappearance of P. patens localities in Europe has prompted the European Commission to initiate active protection of this critically endangered species. The aim of this study was to estimate the degree and distribution of genetic diversity within European populations of this endangered species. We screened 29 populations of P. patens using a set of six microsatellite primers. The results of our study indicate that the analyzed populations are characterized by low levels of genetic diversity (Ho = 0.005) and very high levels of inbreeding (FIS = 0.90). These results suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species. Private allelic richness was very low, being as low as 0.00 for most populations. Average genetic diversity over loci and mean number of alleles in P. patens populations were significantly correlated with population size, suggesting severe genetic drift. The results of AMOVA point to higher levels of variation within populations than between populations.The results of Structure and PCoA analyses suggest that the genetic structure of the studied P. patens populations fall into three clusters corresponding to geographical regions. The most isolated populations (mostly from Romania) formed a separate group with a homogeneous gene pool located at the southern, steppic part of the distribution range. Baltic, mostly Polish, populations fall into two genetic groups which were not fully compatible with their geographic distribution.Our results indicate the serious genetic depauperation of P. patens in the western part of its range, even hinting at an ongoing extinction vortex. Therefore, special conservation attention is required to maintain the populations

  8. Genetic Structure and Temporal Dynamics of a Colletotrichum graminicola Population in a Sorghum Disease Nursery.

    Science.gov (United States)

    Rosewich, U L; Pettway, R E; McDonald, B A; Duncan, R R; Frederiksen, R A

    1998-10-01

    ABSTRACT Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics of Colletotrichum graminicola (= C. sublineolum), the causal agent of sorghum anthracnose. Screening of 80 anonymous probes from a genomic library detected polymorphisms in 81% of 299 probe-enzyme combinations among nine international isolates. Seven single- or low-copy probes were used to study a collection of 411 isolates sampled during 1991 to 1993 from a sorghum disease nursery in Georgia. Nei's gene diversity was moderately high, with = 0.215 on average, while genotypic diversity was extremely low with an average genotypic diversity value of G = 1.513. Only nine multilocus haplotypes were identified, with one haplotype being present at a frequency of approximately 80% each year. Two other haplotypes were found at significant frequencies (4 to 10%). Allele and haplotype frequencies did not differ over the 3 years, indicating that this population was stable. Our findings suggest that genetic drift and gene flow were not major contributors to genetic structure, while asexual reproduction had a significant effect.

  9. Population genetic structure in the eastern population of Greater Sandhill Cranes (Grus canadensis Tabida)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Sandhill Crane (SACR; Grus canadensis) is the most populous of the 15 extant crane species. Their breeding range covers the majority of the continental U.S. and...

  10. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Nicholas John Deacon

    Full Text Available Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses.High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation.Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by

  11. A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy.

    Science.gov (United States)

    Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio

    2015-11-30

    Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena.

  12. Population genetic structure of the tropical tree species Aegiphila sellowiana (Lamiaceae).

    Science.gov (United States)

    Medri, C; Ruas, E A; Ruas, C F; Medri, P S; Medri, M E; Ruas, P M

    2011-12-20

    The Tibagi River, located in southern Brazil, is associated with a significant degree of environmental heterogeneity, along its 550 km extension. There is concern about the integrity of this river's ecosystem, as human interference has been increasing. Aegiphila sellowiana (Lamiaceae) is an important pioneer tree species, commonly found near rivers; the fruit is consumed by avifauna. We studied this species along three ecological gradients, comprising the upper, middle, and lower regions of the Tibagi River basin. The genetic structure of nine subpopulations of A. sellowiana distributed along these gradients was investigated using RAPDs. Moderate levels of gene diversity (ranging from 0.091 to 0.132) were identified, inferred by a traditional approach and a Bayesian model-based method. The F-statistic, G(ST) parameters and molecular variance analysis showed high genetic differentiation among the three regions (39.5 to 50.26%). Analysis of molecular variance revealed high levels of genetic variation between populations (50.26%), while lower values of genetic variation (ranging from 9.56 to 16.35%) were seen between subpopulations within the upper, middle, and lower regions of the Tibagi River basin. The validity of these results was confirmed by principal coordinate analysis. Linear regression analysis showed significant correlations (r = 0.621, P = 0.0001) between the genetic and geographical distances. The differences observed in genetic variation between regions are probably due to habitat fragmentation; for conservation purposes, we recommend that at least one subpopulation from each region of the Tibagi River should be maintained.

  13. At the brink of supercoloniality: genetic, behavioral and chemical assessments of population structure of the desert ant Cataglyphis niger

    Directory of Open Access Journals (Sweden)

    Maya eSaar

    2014-05-01

    Full Text Available The nesting habits of ants play an important role in structuring ant populations. They vary from monodomy, a colony occupies a single nest, via polydomy, a colony occupies multiple adjacent nests, to supercoloniality, a colony spans over large territories comprising dozen to thousands nests without having any boundaries. The population structure of the desert ant Cataglyphis niger, previously considered to form supercolonies, was studied using genetic, chemical and behavioral tools in plots of 50x50 meters at two distinct populations. At the Palmahim site, the plot comprised 15 nests that according to the genetic analysis constituted three colonies. Likewise at the Rishon Leziyyon site 14 nests constituted 5 genetic colonies. In both sites, both chemical analysis and the behavioral (aggression tests confirmed the colony genetic architecture. The behavioral tests also revealed that aggression between colonies within a population was higher than that exhibited between colonies of different populations, suggesting the occurrence of the nasty neighbor phenomenon. In contrast to supercolony structure previously reported in another population of this species, the presently studied populations were composed of polydomous colonies. However, both the genetic and chemical data revealed that the inter-colonial differences between sites were larger than those within site, suggesting some within-site population viscosity. Thus, C. niger exhibits flexible nesting characteristics, from polydomy to supercoloniality, and can be considered at the brink of supercoloniality. We attribute the differences in population structure among sites to the intensity of intraspecific competition.

  14. Microsatellite variation reveals high levels of genetic variability and population structure in the gorgonian coral Pseudopterogorgia elisabethae across the Bahamas.

    Science.gov (United States)

    Gutierrez-Rodriguez, Carla; Lasker, Howard R

    2004-08-01

    The primary mechanism of gene flow in marine sessile invertebrates is larval dispersal. In Pseudopterogorgia elisabethae, a commercially important Caribbean gorgonian coral, a proportion of the larvae drop to the substratum within close proximity to the maternal colony, and most matings occur between individuals in close proximity to each other. Such limited dispersal of reproductive propagules suggests that gene flow is limited in this gorgonian. In this study, we characterized the population genetic structure of P. elisabethae across the Bahamas using six microsatellite loci. P. elisabethae was collected from 18 sites across the Bahamas. Significant deviations from Hardy-Weinberg equilibrium due to deficits of heterozygotes within populations were detected for all 18 populations in at least one of the six screened loci. Levels of genetic structure among populations of P. elisabethae were high and significant. A distance analysis placed populations within three groups, one formed by populations located within Exuma Sound, a semi-isolated basin, another consisting of populations located outside the basin and a third group comprising two populations from San Salvador Island. The patterns of genetic variation found in this study are concordant with the life-history traits of the species and in part with the geography of the Bahamas. Conservation and management plans developed for P. elisabethae should considered the high degree of genetic structure observed among populations of the species, as well as the high genetic diversity found in the San Salvador and the Exuma Sound populations. Copyright 2004 Blackwell Publishing Ltd

  15. Different patterns of genetic structure of relict and isolated populations of endangered peat-bog pine (Pinus uliginosa Neumann).

    Science.gov (United States)

    Wachowiak, W; Prus-Glowacki, W

    2009-01-01

    Recent changes in environmental conditions in populations of peat-bog pine (Pinus uliginosa Neumann) caused rapid decline or even extinction of the species in several stands in Central Europe. Conservation strategies for P. uliginosa require information about the evolutionary history and genetic structure of its populations. Using isozymes we assessed the genetic structure of P. uliginosa from four isolated stands in Poland and compared the results to genetic structures of other closely related pine species including eight populations of Pinus mugo, ten of Pinus sylvestris and one of Pinus uncinata. The level of genetic variability of P. uliginosa measured by the mean number of alleles per locus and average heterozygosity was similar to others related to P. uliginosa taxa from the reference group but it differs among populations. High genetic similarity was found between two populations of P. uliginosa from Low Silesian Pinewood. The populations were genetically distinct as compared to other populations including locus classicus of the species from the peat bog at Batorów Reserve. Very low genetic distance (DN = 0.002) and small genetic differentiation (GST = 0.003) were found between P. uliginosa and P. mugo in the sympatric populations of the species from Zieleniec peat bog suggesting the ongoing natural hybridisation and genetic contamination of peat-bog pine from this area. Some evidence for skew in allele frequency distribution potentially due to recent bottleneck was found in population from Low Silesian Pinewood. The analysed open pollinated progeny derived from two P. uliginosa stands from Low Silesian Pinewood showed the excess of homozygotes as compared to the maternal trees indicating high level of inbreeding (F = 0.105, F = 0.081). The results are discussed in the context of evolution of P. uliginosa populations, taxonomic relationships between the analysed species and conservation strategies for active protection of peat-bog pine.

  16. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina.

    Science.gov (United States)

    Maggi, M; Medici, S; Quintana, S; Ruffinengo, S; Marcángeli, J; Gimenez Martinez, P; Fuselli, S; Eguaras, M

    2012-04-01

    Although mitochondrial DNA mapping of Varroa destructor revealed the presence of several haplotypes, only two of them (Korean and Japanese haplotypes) were capable to infest Apis mellifera populations. Even though the Korean haplotype is the only one that has been reported in Argentina, these conclusions were based on mites sampled in apiaries from a specific geographical place (Buenos Aires province). To study mites from several sites of Argentina could reveal the presence of the Japanese genotype, especially considering sites near to Brazil, where Japanese haplotype was already detected. The aim of this work was to study the genetic structure of V. destructor populations from apiaries located in various provinces of Argentina, in order to determine the presence of different haplotypes. The study was carried out between January 2006 and December 2009. Phoretic adult Varroa mites were collected from honey bee workers sampled from colonies of A. mellifera located in Entre Ríos, Buenos Aires, Corrientes, Río Negro, Santa Cruz and Neuquén provinces. Twenty female mites from each sampling site were used to carry out the genetic analysis. For DNA extraction a nondestructive method was used. DNA sequences were compared to Korean haplotype (AF106899) and Japanese haplotype (AF106897). All DNA sequences obtained from mite populations sampled in Argentina, share 98% of similitude with Korean Haplotype (AF106899). Taking into account these results, we are able to conclude that Korean haplotype is cosmopolite in Argentina.

  17. Biogeography and Genetic Structure in Populations of a Widespread Lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota).

    Science.gov (United States)

    Núñez-Zapata, Jano; Cubas, Paloma; Hawksworth, David L; Crespo, Ana

    2015-01-01

    The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-α were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3). In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area). The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species.

  18. Biogeography and Genetic Structure in Populations of a Widespread Lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota.

    Directory of Open Access Journals (Sweden)

    Jano Núñez-Zapata

    Full Text Available The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands, the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-α were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3. In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area. The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species.

  19. Genetic variation and population structure of the mushroom Pleurotusferulae in China inferred from nuclear DNA analysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Meng-ran; HUANG Chen-yang; WU Xiang-li; CHEN Qiang; QU Ji-bin; LI Yan-chun; GAO Wei; ZHANG Jin-xia

    2016-01-01

    To investigate the genetic diversity of an edible fungusPleurotus ferulae, a total of 89 wild samples colected from six geographical locations in the Xinjiang Uygur Autonomous Region of China and two geographical locations in Italy, were analyzed using three DNA fragments including the translation elongation factor (EF1α), the second largest subunit of the RNA polymerase II (RPB2) and the largest subunit of the RNA polymerase II (RPB1). The results indicated relatively abundant genetic variability in the wild resources ofP.ferulae.The analysis of molecular variance (AMOVA) showed that the vast majority of the genetic variation was found within geographical populations. Both the Chinese populations and the Italian populations ofP. ferulaedisplayed a limited genetic differentiation. The degree of differentiation between the Chinese populations and the Italian populations was obviously higher than that between the populations from the same region, and moreover the genetic differentiation among al the tested populations was correlated to the geographical dis-tance. The phylogeny analyses conifrmed that samples from China and Italy belonged to another genetic group separated fromPleurotus eryngi. They were closely related to each other but were clustered according to their geographical origins, which implied the Chinese populations were highly differentiated from the Italian populations because of distance isolation, and the two populations from different regions might be stil in the process of alopatric divergence.

  20. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus.

    Science.gov (United States)

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.

  1. Extreme heterogeneity in parasitism despite low population genetic structure among monarch butterflies inhabiting the Hawaiian Islands.

    Science.gov (United States)

    Pierce, Amanda A; de Roode, Jacobus C; Altizer, Sonia; Bartel, Rebecca A

    2014-01-01

    Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus) are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4-85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here.

  2. Extreme Heterogeneity in Parasitism Despite Low Population Genetic Structure among Monarch Butterflies Inhabiting the Hawaiian Islands

    Science.gov (United States)

    Pierce, Amanda A.; de Roode, Jacobus C.; Altizer, Sonia; Bartel, Rebecca A.

    2014-01-01

    Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus) are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4–85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here. PMID:24926796

  3. Extreme heterogeneity in parasitism despite low population genetic structure among monarch butterflies inhabiting the Hawaiian Islands.

    Directory of Open Access Journals (Sweden)

    Amanda A Pierce

    Full Text Available Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4-85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here.

  4. Gateways to Hawai‘i: Genetic Population Structure of the Tropical Sea Cucumber Holothuria atra

    Directory of Open Access Journals (Sweden)

    Derek J. Skillings

    2011-01-01

    Full Text Available Holothuria atra is one of the most common and widest ranging tropical, coral reef sea cucumbers in the world, and here we examine population genetic structure based on mitochondrial COI to aid in determining the appropriate scale for coral reef management. Based on SAMOVA, AMOVA and BARRIER analyses, we show that despite its large range, H. atra has hierarchical, fine-scale population structure driven primarily by between-archipelago barriers, but with significant differences between sites within an archipelago as well. Migrate analyses along with haplotype networks and patterns of haplotype diversity suggest that Hawai‘i and Kingman reef are important centers of the genetic diversity in the region rather than an evolutionary dead-end for migrants from the Indo-Pacific. Finally we show that for H. atra Kingman Reef is the most likely stepping stone between Hawai‘i and the rest of the Pacific, not Japan or Johnston Atoll as previously presumed. Based on our data, Johnston Atoll can instead be seen as an outpost of the Northwestern Hawaiian Islands rather than a gateway to the Hawaiian Archipelago.

  5. Variation in genetic admixture and population structure among Latinos: the Los Angeles Latino eye study (LALES

    Directory of Open Access Journals (Sweden)

    Le Marchand Loic

    2009-11-01

    Full Text Available Abstract Background Population structure and admixture have strong confounding effects on genetic association studies. Discordant frequencies for age-related macular degeneration (AMD risk alleles and for AMD incidence and prevalence rates are reported across different ethnic groups. We examined the genomic ancestry characterizing 538 Latinos drawn from the Los Angeles Latino Eye Study [LALES] as part of an ongoing AMD-association study. To help assess the degree of Native American ancestry inherited by Latino populations we sampled 25 Mayans and 5 Mexican Indians collected through Coriell's Institute. Levels of European, Asian, and African descent in Latinos were inferred through the USC Multiethnic Panel (USC MEP, formed from a sample from the Multiethnic Cohort (MEC study, the Yoruba African samples from HapMap II, the Singapore Chinese Health Study, and a prospective cohort from Shanghai, China. A total of 233 ancestry informative markers were genotyped for 538 LALES Latinos, 30 Native Americans, and 355 USC MEP individuals (African Americans, Japanese, Chinese, European Americans, Latinos, and Native Hawaiians. Sensitivity of ancestry estimates to relative sample size was considered. Results We detected strong evidence for recent population admixture in LALES Latinos. Gradients of increasing Native American background and of correspondingly decreasing European ancestry were observed as a function of birth origin from North to South. The strongest excess of homozygosity, a reflection of recent population admixture, was observed in non-US born Latinos that recently populated the US. A set of 42 SNPs especially informative for distinguishing between Native Americans and Europeans were identified. Conclusion These findings reflect the historic migration patterns of Native Americans and suggest that while the 'Latino' label is used to categorize the entire population, there exists a strong degree of heterogeneity within that population, and that

  6. Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation.

    Science.gov (United States)

    Tsumura, Y; Matsumoto, A; Tani, N; Ujino-Ihara, T; Kado, T; Iwata, H; Uchida, K

    2007-08-01

    We investigated 25 natural populations of Chamaecyparis obtusa using 51 cleaved amplified polymorphic sequence (CAPS) markers, which were developed using information on sequence-tagged sites (STS) in Cryptomeria japonica. Most CAPS markers have codominant expression patterns, and are suitable for population studies because of their robustness and convenience. We estimated various genetic diversity parameters, including average heterozygosity (H(e)) and allelic richness and found that the more peripheral populations tended to have lower genetic diversity than central populations, in agreement with a previous theoretical study. The overall genetic differentiation between populations was low, but statistically significant (G(ST)=0.039), and similar to the level reported in a previous allozyme study. We attempted to detect non-neutral loci associated with local adaptation to clarify the relationship between the fixation index (F(ST)) and H(e) values for each locus and found seven candidates non-neutral loci. Phylogenetic tree analysis of the populations and Bayesian clustering analysis revealed a pattern of gradually increasing isolation of populations with increasing geographical distance. Three populations had a high degree of linkage disequilibrium, which we attribute to severe bottlenecks due to human disturbance or competition with other species during their migration from refugia after the most recent glaciation. We concluded that the small populations in western Japan and in Kanto district are more important, from a conservation perspective, than the populations in central Japan, due to their genetic divergence, relatively small sizes and restricted areas.

  7. Population genetic structure of Helicobacter pylori strains from Portuguese-speaking countries.

    Science.gov (United States)

    Oleastro, Mónica; Rocha, Raquel; Vale, Filipa F

    2017-08-01

    The human gastric colonizer Helicobacter pylori is useful to track human migrations given the agreement between the bacterium phylogeographic distribution and human migrations. As Portugal was an African and Brazilian colonizer for over 400 years, we hypothesized that Portuguese isolates were likely genetically closer with those from countries colonized by Portuguese in the past. We aimed to characterize the population structure of several Portuguese-speaking countries, including Portugal, Brazil, Angola, and Cape Verde. We included strains isolated in Portugal from Portuguese and from former Portuguese colonies. These strains were typed by multilocus sequence typing (MLST) for seven housekeeping genes. We also retrieved from Multi Locus Sequence Typing Web site additional housekeeping gene sequences, namely from Angola and Brazil. We provided evidence that strains from Portuguese belong to hpEurope and that the introgression of hpEurope in non-European countries that speak Portuguese is low, except for Brazil and Cape Verde, where hpEurope accounted for one quarter and one half of the population, respectively. We found genetic similarity for all strains from Portuguese-speaking countries that belong to hpEurope population. Moreover, these strains showed a predominance of ancestral Europe 2 (AE2) over ancestral Europe 1 (AE1), followed by ancestral Africa 1. H. pylori is a useful marker even for relative recent human migration events and may become rapidly differentiated from founder populations. H. pylori from Portuguese-speaking countries assigned to hpEurope appears to be a hybrid population resulting from the admixture of AE1, AE2 and ancestral hpAfrica1. © 2017 John Wiley & Sons Ltd.

  8. Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae

    Directory of Open Access Journals (Sweden)

    Sun Jing-Tao

    2012-02-01

    Full Text Available Abstract Background Two colour forms of the two-spotted spider mite (Tetranychus urticae Koch coexist in China: a red (carmine form, which is considered to be native and a green form which is considered to be invasive. The population genetic diversity and population genetic structure of this organism were unclear in China, and there is a controversy over whether they constitute distinct species. To address these issues, we genotyped a total of 1,055 individuals from 18 red populations and 7 green populations in China using eight microsatellite loci. Results We identified 109 alleles. We found a highly significant genetic differentiation among the 25 populations (global FST = 0.506, global FST {ENA} = 0.473 and a low genetic diversity in each population. In addition, genetic diversity of the red form mites was found to be higher than the green form. Pearson correlations between statistics of variation (AR and HE and geographic coordinates (latitude and longitude showed that the genetic diversity of the red form was correlated with latitude. Using Bayesian clustering, we divided the Chinese mite populations into five clades which were well congruent with their geographic distributions. Conclusions Spider mites possess low levels of genetic diversity, limit gene flow between populations and significant and IBD (isolation by distance effect. These factors in turn contribute to the strong subdivision of genetic structure. In addition, population genetic structure results don't support the separation of the two forms of spider mite into two species. The morphological differences between the two forms of mites may be a result of epigenetic effects.

  9. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges.

    Science.gov (United States)

    Tsutsui, N D; Case, T J

    2001-05-01

    Introduced species often possess low levels of genetic diversity relative to source populations as a consequence of the small population sizes associated with founder events. Additionally, native and introduced populations of the same species can possess divergent genetic structuring at both large and small geographic scales. Thus, genetic systems that have evolved in the context of high diversity may function quite differently in genetically homogeneous introduced populations. Here we conduct a genetic analysis of native and introduced populations of the Argentine ant (Linepithema humile) in which we show that the population-level changes that have occurred during introduction have produced marked changes in the social structure of this species. Native populations of the Argentine ant are characterized by a pattern of genetic isolation by distance, whereas this pattern is absent in introduced populations. These differences appear to arise both from the effects of recent range expansion in the introduced range as well as from differences in gene flow within each range. Relatedness within nests and colonies is lower in the introduced range than in the native range as a consequence of the widespread genetic similarity that typifies introduced populations. In contrast, nestmates and colony-mates in the native range are more closely related, and local genetic differentiation is evident. Our results shed light on the problem posed for kin selection theory by the low levels of relatedness that are characteristic of many unicolonial species and suggest that the loss of genetic variation may be a common mechanism for the transition to a unicolonial colony structure.

  10. Population genetic structure of the German cockroach (Blattodea: Blattellidae) in apartment buildings.

    Science.gov (United States)

    Crissman, Jonathan R; Booth, Warren; Santangelo, Richard G; Mukha, Dmitry V; Vargo, Edward L; Schal, Coby

    2010-07-01

    The German cockroach, Blattella germanica (L.) (Blattodea: Blattellidae), is a major residential pest with the potential to vector various pathogens and produce and disseminate household allergens. Understanding population genetic structure and differentiation of this important pest is critical to efforts to eradicate infestations, yet little is known in this regard. Using highly polymorphic microsatellite markers, we investigated patterns of genetic diversity and differentiation within and among 18 apartments from six apartment complexes located in Raleigh, NC. No departure from panmixia was found between rooms within apartments, indicating that active dispersal resulting in gene flow may occur among rooms within apartment units. Alternatively, aggregations within apartments may exist in relative isolation under a metapopulation framework, derived from a recent, common source. Thus, in the event of population control practices leading to incomplete cockroach eradication within an apartment, recolonization of shelters and rooms is likely to occur from a genetically similar aggregation. A pattern of isolation-by-distance across the six apartment complexes indicated that dispersal was more common within complexes than among them, and F statistics suggested greater genetic similarity between apartments in a single building than between separate buildings of an apartment complex. Similarly, neighbor-joining tree and Bayesian clustering analyses were able to cluster only those apartments that were within a single building, indicating higher dispersal with associated gene flow within buildings than between them. The lack of any broader connectivity, as indicated by significant F(ST) and G-tests suggests that human-mediated dispersal of B. germanica between buildings of an apartment complex or between complexes occurs infrequently enough to have negligible effects on gene flow.

  11. A genome-wide analysis of population structure in the Finnish Saami with implications for genetic association studies.

    Science.gov (United States)

    Huyghe, Jeroen R; Fransen, Erik; Hannula, Samuli; Van Laer, Lut; Van Eyken, Els; Mäki-Torkko, Elina; Aikio, Pekka; Sorri, Martti; Huentelman, Matthew J; Van Camp, Guy

    2011-03-01

    The understanding of patterns of genetic variation within and among human populations is a prerequisite for successful genetic association mapping studies of complex diseases and traits. Some populations are more favorable for association mapping studies than others. The Saami from northern Scandinavia and the Kola Peninsula represent a population isolate that, among European populations, has been less extensively sampled, despite some early interest for association mapping studies. In this paper, we report the results of a first genome-wide SNP-based study of genetic population structure in the Finnish Saami. Using data from the HapMap and the human genome diversity project (HGDP-CEPH) and recently developed statistical methods, we studied individual genetic ancestry. We quantified genetic differentiation between the Saami population and the HGDP-CEPH populations by calculating pair-wise F(ST) statistics and by characterizing identity-by-state sharing for pair-wise population comparisons. This study affirms an east Asian contribution to the predominantly European-derived Saami gene pool. Using model-based individual ancestry analysis, the median estimated percentage of the genome with east Asian ancestry was 6% (first and third quartiles: 5 and 8%, respectively). We found that genetic similarity between population pairs roughly correlated with geographic distance. Among the European HGDP-CEPH populations, F(ST) was smallest for the comparison with the Russians (F(ST)=0.0098), and estimates for the other population comparisons ranged from 0.0129 to 0.0263. Our analysis also revealed fine-scale substructure within the Finnish Saami and warns against the confounding effects of both hidden population structure and undocumented relatedness in genetic association studies of isolated populations.

  12. Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites

    DEFF Research Database (Denmark)

    Pham, Lan Doan; Do, Duy Ngoc; Binh, Nguyen Trong

    2013-01-01

    geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels...

  13. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    Science.gov (United States)

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  14. Geographical structuring of Trypanosoma cruzi populations from Chilean Triatoma infestans triatomines and their genetic relationship with other Latino American counterparts

    Science.gov (United States)

    Venegas, J; Rojas, T; DÍaz, F; Miranda, S; Jercic, M I; González, C; Coñoepán, W; Pichuantes, S; RodrÍguez, J; Gajardo, M; Sánchez, G

    2011-01-01

    In order to obtain more information about the population structure of Chilean Trypanosoma cruzi, and their genetic relationship with other Latino American counterparts, we performed the study of T. cruzi samples detected in the midgut content of Triatoma infestans insects from three endemic regions of Chile. The genetic characteristics of these samples were analysed using microsatellite markers and PCR conditions that allow the detection of predominant T. cruzi clones directly in triatomine midgut content. Population genetic analyses using the Fisher’s exact method, analysis of molecular variance (AMOVA) and the determination of FST showed that the northern T. cruzi population sample was genetically differentiated from the two southern population counterparts. Further analysis showed that the cause of this genetic differentiation was the asymmetrical distribution of TcIII T. cruzi predominant clones. Considering all triatomines from the three regions, the most frequent predominant lineages were TcIII (38%), followed by TcI (34%) and hybrid (8%). No TcII lineage was observed along the predominant T. cruzi clones. The best phylogenetic reconstruction using the shared allelic genetic distance was concordant with the population genetic analysis and tree topology previously described studying foreign samples. The correlation studies showed that the lineage TcIII from the III region was genetically differentiated from the other two, and this differentiation was correlated with geographical distance including Chilean and mainly Brazilian samples. It will be interesting to investigate whether this geographical structure may be related with different clinical manifestation of Chagas disease. PMID:22325822

  15. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil

    Science.gov (United States)

    Mai, Ana C. G.; Miño, Carolina I.; Marins, Luis F. F.; Monteiro-Neto, Cassiano; Miranda, Laura; Schwingel, Paulo R.; Lemos, Valéria M.; Gonzalez-Castro, Mariano; Castello, Jorge P.; Vieira, João P.

    2014-08-01

    The mullet Mugil liza is distributed along the Atlantic coast of South America, from Argentina to Venezuela, and it is heavily exploited in Brazil. We assessed patterns of distribution of neutral nuclear genetic variation in 250 samples from the Brazilian states of Rio de Janeiro, São Paulo, Santa Catarina and Rio Grande do Sul (latitudinal range of 23-31°S) and from Buenos Aires Province in Argentina (36°S). Nine microsatellite loci revealed 131 total alleles, 3-23 alleles per locus, He: 0.69 and Ho: 0.67. Significant genetic differentiation was observed between Rio de Janeiro samples (23°S) and those from all other locations, as indicated by FST, hierarchical analyses of genetic structure, Bayesian cluster analyses and assignment tests. The presence of two different demographic clusters better explains the allelic diversity observed in mullets from the southernmost portion of the Atlantic coast of Brazil and from Argentina. This may be taken into account when designing fisheries management plans involving Brazilian, Uruguayan and Argentinean M. liza populations.

  16. Significant population genetic structure detected in the rock bream Oplegnathus fasciatus (Temminck & Schlegel, 1844) inferred from fluorescent-AFLP analysis

    Science.gov (United States)

    Xiao, Yongshuang; Ma, Daoyuan; Xu, Shihong; Liu, Qinghua; Wang, Yanfeng; Xiao, Zhizhong; Li, Jun

    2016-05-01

    Oplegnathus fasciatus (rock bream) is a commercial rocky reef fish species in East Asia that has been considered for aquaculture. We estimated the population genetic diversity and population structure of the species along the coastal waters of China using fluorescent-amplified fragment length polymorphisms technology. Using 53 individuals from three populations and four pairs of selective primers, we amplified 1 264 bands, 98.73% of which were polymorphic. The Zhoushan population showed the highest Nei's genetic diversity and Shannon genetic diversity. The results of analysis of molecular variance (AMOVA) showed that 59.55% of genetic variation existed among populations and 40.45% occurred within populations, which indicated that a significant population genetic structure existed in the species. The pairwise fixation index F st ranged from 0.20 to 0.63 and were significant after sequential Bonferroni correction. The topology of an unweighted pair group method with arithmetic mean tree showed two significant genealogical branches corresponding to the sampling locations of North and South China. The AMOVA and STRUCTURE analyses suggested that the O. fasciatus populations examined should comprise two stocks.

  17. Fine-scale population genetic structure of a wildlife disease vector: The southern house mosquito on the island of Hawaii

    Science.gov (United States)

    Keyghobadi, N.; LaPointe, D.; Fleischer, R.C.; Fonseca, D.M.

    2006-01-01

    The southern house mosquito, Culex quinquefasciatus, is a widespread tropical and subtropical disease vector. In the Hawaiian Islands, where it was introduced accidentally almost two centuries ago, it is considered the primary vector of avian malaria and pox. Avian malaria in particular has contributed to the extinction and endangerment of Hawaii's native avifauna, and has altered the altitudinal distribution of native bird populations. We examined the population genetic structure of Cx. quinquefasciatus on the island of Hawaii at a smaller spatial scale than has previously been attempted, with particular emphasis on the effects of elevation on population genetic structure. We found significant genetic differentiation among populations and patterns of isolation by distance within the island. Elevation per se did not have a limiting effect on gene flow; however, there was significantly lower genetic diversity among populations at mid elevations compared to those at low elevations. A recent sample taken from just above the predicted upper altitudinal distribution of Cx. quinquefasciatus on the island of Hawaii was confirmed as being a temporary summer population and appeared to consist of individuals from more than one source population. Our results indicate effects of elevation gradients on genetic structure that are consistent with known effects of elevation on population dynamics of this disease vector. ?? 2006 The Authors.

  18. Genetic structure of wild bonobo populations: diversity of mitochondrial DNA and geographical distribution.

    Directory of Open Access Journals (Sweden)

    Yoshi Kawamoto

    Full Text Available Bonobos (Pan paniscus inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species' range. In 136 effective samples from different individuals (range: 7-37 per population, we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D, which included a newly identified clade (D. MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.

  19. Genetic structure of the Mon-Khmer speaking groups and their affinity to the neighbouring Tai populations in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Seielstad Mark

    2011-06-01

    Full Text Available Abstract Background The Mon-Khmer speaking peoples inhabited northern Thailand before the arrival of the Tai speaking people from southern China in the thirteenth century A.D. Historical and anthropological evidence suggests a close relationship between the Mon-Khmer groups and the present day majority northern Thai groups. In this study, mitochondrial and Y-chromosomal DNA polymorphisms in more than 800 volunteers from eight Mon-Khmer and ten Tai speaking populations were investigated to estimate the degree of genetic divergence between these major linguistic groups and their internal structure. Results A large fraction of genetic variation is observed within populations (about 80% and 90% for mtDNA and the Y-chromosome, respectively. The genetic divergence between populations is much higher in Mon-Khmer than in Tai speaking groups, especially at the paternally inherited markers. The two major linguistic groups are genetically distinct, but only for a marginal fraction (1 to 2% of the total genetic variation. Genetic distances between populations correlate with their linguistic differences, whereas the geographic distance does not explain the genetic divergence pattern. Conclusions The Mon-Khmer speaking populations in northern Thailand exhibited the genetic divergence among each other and also when compared to Tai speaking peoples. The different drift effects and the post-marital residence patterns between the two linguistic groups are the explanation for a small but significant fraction of the genetic variation pattern within and between them.

  20. Population genetic structure of eelgrass (Zostera marina) on the Korean coast: Current status and conservation implications for future management.

    Science.gov (United States)

    Kim, Jae Hwan; Kang, Ji Hyoun; Jang, Ji Eun; Choi, Sun Kyeong; Kim, Min Ji; Park, Sang Rul; Lee, Hyuk Je

    2017-01-01

    Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name "eelgrass") is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061-0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern tip of

  1. Population genetic structure of eelgrass (Zostera marina) on the Korean coast: Current status and conservation implications for future management

    Science.gov (United States)

    Kim, Jae Hwan; Kang, Ji Hyoun; Jang, Ji Eun; Choi, Sun Kyeong; Kim, Min Ji; Park, Sang Rul; Lee, Hyuk Je

    2017-01-01

    Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name “eelgrass”) is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061–0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern

  2. Population genetic structure between Yap and Palau for the coral Acropora hyacinthus.

    Science.gov (United States)

    Cros, Annick; Toonen, Robert J; Davies, Sarah W; Karl, Stephen A

    2016-01-01

    Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F' ST values between Palau and Yap (0.10), Palau and Ngulu (0.09) and Yap and Ngulu (0.09) were all significant and similar to pairwise F' ST values of sites within Palau (0.02-0.12) and within Yap (0.02-0.09) highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau.

  3. Analysis of genetic diversity and population structure of Bellamya quadrata from lakes of middle and lower Yangtze River.

    Science.gov (United States)

    Gu, Qianhong; Zhang, Man; Zhou, Chuanjiang; Zhu, Guorong; Dong, Jing; Gao, Yunni; Chen, Jie; Chen, Peng

    2015-10-01

    As an endemic species of freshwater gastropods in China, Bellamya quadrata plays an important role in ecosystem service provision and commercial importance. However, the species is overharvested and its natural habitats are under severe threat due to fragmentation and loss. To estimate the genetic diversity and population structure of B. quadrata, 285 individuals from eight lake populations across middle and lower Yangtze River were sampled. Seven microsatellite loci were genotyped. Our results showed that (i) the genetic diversity of B. quadrata was high in most of the studied populations, yet effective population sizes appear to be rather small in some populations; (ii) low levels of genetic differentiation exists among populations but gene flow was generally high; (iii) no clear geographic or genetic structure was observed in the studied region, implying mechanisms (zoochoric dispersal and anthropogenic translocations) that enhance dispersal and gene flow have promoted population connectivity. However, the comparatively high genetic diversity of B. quadrata could be attributed to a lag phase, suggesting that the genetic diversity of this species may be lost in the future and the priorities for conservation of B. quadrata are necessary.

  4. An ancient Mediterranean melting pot: investigating the uniparental genetic structure and population history of sicily and southern Italy.

    Science.gov (United States)

    Sarno, Stefania; Boattini, Alessio; Carta, Marilisa; Ferri, Gianmarco; Alù, Milena; Yao, Daniele Yang; Ciani, Graziella; Pettener, Davide; Luiselli, Donata

    2014-01-01

    Due to their strategic geographic location between three different continents, Sicily and Southern Italy have long represented a major Mediterranean crossroad where different peoples and cultures came together over time. However, its multi-layered history of migration pathways and cultural exchanges, has made the reconstruction of its genetic history and population structure extremely controversial and widely debated. To address this debate, we surveyed the genetic variability of 326 accurately selected individuals from 8 different provinces of Sicily and Southern Italy, through a comprehensive evaluation of both Y-chromosome and mtDNA genomes. The main goal was to investigate the structuring of maternal and paternal genetic pools within Sicily and Southern Italy, and to examine their degrees of interaction with other Mediterranean populations. Our findings show high levels of within-population variability, coupled with the lack of significant genetic sub-structures both within Sicily, as well as between Sicily and Southern Italy. When Sicilian and Southern Italian populations were contextualized within the Euro-Mediterranean genetic space, we observed different historical dynamics for maternal and paternal inheritances. Y-chromosome results highlight a significant genetic differentiation between the North-Western and South-Eastern part of the Mediterranean, the Italian Peninsula occupying an intermediate position therein. In particular, Sicily and Southern Italy reveal a shared paternal genetic background with the Balkan Peninsula and the time estimates of main Y-chromosome lineages signal paternal genetic traces of Neolithic and post-Neolithic migration events. On the contrary, despite showing some correspondence with its paternal counterpart, mtDNA reveals a substantially homogeneous genetic landscape, which may reflect older population events or different demographic dynamics between males and females. Overall, both uniparental genetic structures and TMRCA

  5. Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia.

    Science.gov (United States)

    Túnez, Juan I; Cappozzo, Humberto L; Nardelli, Maximiliano; Cassini, Marcelo H

    2010-08-01

    The north-central Patagonian coast is the sea lions most abundant area in Argentina. As occurs along the entire Atlantic coast, the distribution of breeding colonies at this smaller geographical scale is also patchy, showing at least three areas with breeding activity. We study the genetic structure and historical population dynamics of the species in five colonies in this area, analysing a 508 base-pair segment of the D-loop control region. Otaria flavescens showed 10 haplotypes with 12 polymorphic sites. The genealogical relationship between haplotypes revealed a shallow pattern of phylogeographic structure. The analysis of molecular variance showed significant differences between colonies, however, pairwise comparisons only indicate significant differences between a pair of colonies belonging to different breeding areas. The pattern of haplotype differentiation and the mismatch distribution analysis suggest a possible bottleneck that would have occurred 64,000 years ago, followed by a demographic expansion of the three southernmost colonies. Thus, the historical population dynamics of O. flavescens in north-central Patagonia appears to be closely related with the dynamics of the Late Pleistocene glaciations.

  6. Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster

    NARCIS (Netherlands)

    Kuang, H.; Eck, van H.J.; Sicard, D.; Michelmore, R.; Nevo, E.

    2008-01-01

    Genetic structure and diversity of natural populations of prickly lettuce (Lactuca serriola) were studied using AFLP markers and then compared with the diversity of the RGC2 disease resistance gene cluster. Screening of 696 accessions from 41 populations using 319 AFLP markers showed that eastern Tu

  7. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum.

    Directory of Open Access Journals (Sweden)

    Rachel P Naegele

    Full Text Available Cultivated pepper (Capsicum annuum is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height to 0.98 (pericarp thickness. When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation.

  8. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum

    Science.gov (United States)

    Naegele, Rachel P.; Mitchell, Jenna; Hausbeck, Mary K.

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation. PMID:27415818

  9. Microsatellite data analysis for population genetics.

    Science.gov (United States)

    Kim, Kyung Seok; Sappington, Thomas W

    2013-01-01

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of variation at selectively neutral marker loci, and microsatellites continue to be a popular choice of marker. In recent decades, software programs to estimate population genetics parameters have been developed at an increasing pace as computational science and theoretical knowledge advance. Numerous population genetics software programs are presently available to analyze microsatellite genotype data, but only a handful are commonly employed for calculating parameters such as genetic variation, genetic structure, patterns of spatial and temporal gene flow, population demography, individual population assignment, and genetic relationships within and between populations. In this chapter, we introduce statistical analyses and relevant population genetic software programs that are commonly employed in the field of population genetics and molecular ecology.

  10. The impact of selection on population genetic structure in the clam Meretrix petechialis revealed by microsatellite markers.

    Science.gov (United States)

    Lu, Xia; Wang, Hongxia; Li, Yan; Liu, Baozhong

    2016-02-01

    The aim of our work is to evaluate the impact of mass selection on genetic structure in artificially closed populations of the clam Meretrix petechialis. In the present study, we performed mass selection over four generations (from 2004 to 2010) on two clam populations [shell features of purple lines (SP) and black dots (SB)] and analyzed their temporal genetic variation and structure using microsatellite makers. The two closed populations originated from the natural Shandong population (SD); thus, a natural SD population (10SD) was used to detect the current genetic structure after 6 years of natural selection. The results showed that the genetic diversity of the four generations of SB and SP was gradually reduced but remained at relatively high levels (SB, A = 18.9.4-16.8, Ho = 0.7389-0.6971, and He = 0.8897-0.8591; SP, A = 20.0-17.8, Ho = 0.7512-0.7043, and He = 0.8938-0.8625), which has not been reduced compared with that of the 10SD population (A = 17.8, Ho = 0.6803, and He = 0.8302). The Ne estimates for the two populations were almost at the same levels as the actual numbers of parental individuals. In addition, a low inbreeding coefficient was detected in the two populations (SB, 0.00201-0.00639; SP, 0.00176-0.00541). Based on the results, the present mass selection has not made a large impact on the population genetic structure of the closed populations. The present investigation provides important information for the development of management strategies for genetic breeding of the clam.

  11. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

    Science.gov (United States)

    Besnard, Guillaume; Basic, Nevena; Christin, Pascal-Antoine; Savova-Bianchi, Dessislava; Galland, Nicole

    2009-03-01

    Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci.Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.Four main genetic clusters were recognized based on nuclear and plastid loci,which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and non metalliferous locations at such loci.Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation.

  12. Genetic structure of Chilean populations of Seriola lalandi for the diversification of the national aquaculture in the north of Chile

    Directory of Open Access Journals (Sweden)

    Gonzalo Fernández

    2015-05-01

    Full Text Available Seriola lalandi has been recognized as a potential aquaculture species in Chile, however, little is known about the genetic structure of local populations. This is important, as the current production system is based on an initial wild catching and ill management of these stocks can cause reduced genetic variability. To assess the genetic structure of local S. lalandi we evaluated 27 published microsatellite markers developed from genomic libraries of other species of the genera. However only 12 markers could be used to properly assess the populations, most of these markers showed deviations from Hardy-Weinberg equilibrium with moderate inbreeding (F = 0.12. This species tends to show schooling behavior, so in all likelihood mating between relatives within small groups of fish is not unexpected. The population structure was assessed using Structure software, showing the presence of admixture with varying levels of individual ancestry. This was seen in both populations, without significant genetic differentiation. This may be explained by the migratory behavior, with mating between different populations likely to happen in small groups. Management of aquaculture resources is essential to secure a sustainable production system; this study is the first to provide estimates of genetic diversity of Chilean populations of S. lalandi.

  13. Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks.

    Science.gov (United States)

    Barson, N J; Cable, J; Van Oosterhout, C

    2009-03-01

    Riverine fish populations are traditionally considered to be highly structured and subject to strong genetic drift. Here, we use microsatellites to analyse the population structure of the guppy (Poecilia reticulata), focussing on the headwater floodplain area of the Caroni drainage in Trinidad. We also analyse the population genetics of guppies in the Northern Drainage in Trinidad, a habitat characterized by rivers flowing directly into the sea, and a small isolated population in Tobago. Upland Caroni populations are highly differentiated and display low levels of genetic diversity. However, we found no evidence to suggest that these upland populations experienced recent population crashes and the populations appear to approach mutation-drift equilibrium. Dominant downstream migration over both short- and long-time frames has a strong impact on the population genetics of lowland Caroni populations. This drainage system could be considered a source-sink metapopulation, with the tributary furthest downstream representing a 'super sink', receiving immigrants from rivers upstream in the drainage. Moreover, the effective population size in the lowlands is surprisingly low in comparison with the apparently large census population sizes.

  14. Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis in southern Ivory Coast

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2012-07-01

    Full Text Available Abstract Background Sleeping sickness, transmitted by G. p. palpalis, is known to be present in the Ivory Coast. G. p. palpalis has recently been reported to occur in several places within the town of Abidjan, including: (i the Banco forest, (ii the Abobo Adjamé University campus and (iii the zoological park. Could these three places be treated sequentially, as separate tsetse populations, or should they be taken as one area comprising a single, panmictic population? Methods The amount of gene flow between these places provides strategic information for vector control. It was estimated by the use of both microsatellite DNA and morphometric markers. The idea was to assess the interest of the faster and much less expensive morphometric approach in providing relevant information about population structure. Thus, to detect possible lack of insect exchange between these neighbouring areas of Abidjan, we used both genetic (microsatellite DNA and phenetic (geometric morphometrics markers on the same specimens. Using these same markers, we also compared these samples with specimens from a more distant area of south Ivory Coast, the region of Aniassué (186 km north from Abidjan. Results Neither genetic nor phenetic markers detected significant differentiation between the three Abidjan G. p. palpalis samples. Thus, the null hypothesis of a single panmictic population within the city of Abidjan could not be rejected, suggesting the control strategy should not consider them separately. The markers were also in agreement when comparing G. p. palpalis from Abidjan with those of Aniassué, showing significant divergence between the two sites. Conclusions Both markers suggested that a successful control of tsetse in Abidjan would require the three Abidjan sites to be considered together, either by deploying control measures simultaneously in all three sites, or by a continuous progression of interventions following for instance the "rolling carpet" principle

  15. Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula.

    Science.gov (United States)

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Gómez, Ricardo; Perfectti, Francisco; Camacho, Juan Pedro Martínez

    2013-01-01

    The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260-655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average G(ST) = 0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.

  16. Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula.

    Directory of Open Access Journals (Sweden)

    María Inmaculada Manrique-Poyato

    Full Text Available The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260-655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average G(ST = 0.129, and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.

  17. Analysis of genetic distribution and population genetic structure of the MyoD gene in 10 pig breeds

    Institute of Scientific and Technical Information of China (English)

    Li ZHU; Xuewei LI; Surong SHUAI; Mingzhou LI; Fangqiong LI; Lei CHEN

    2008-01-01

    Restriction fragment length polymorphism (RFLP) data was applied to analyze the distribution of the MyoD gene in 10 pig breeds and pig breed crosses.The population genetic information about genetic distribution,variation,and heterozygosity of the MyoD gene in different breed populations were analyzed.Based on the allele frequency,genetic distance and evolution distance among each breed populations were calculated and Unweighted Pair Group Method with Arithmetic mean (UPGMA) phylogenetic tree was gained based on the evolution distances between populations.The results indicated that the distribution of the MyoD genotype kept in Hardy-Weinberg equilibrium in most tested groups but not in Duroc (D) and Duroc × (Landrance × Yorkshire)(DLY) population.Generally,the genetic diversity of the MyoD gene was abundant and these tested breed populations had high genetic variations.The evolution of the MyoD gene was under natural selection pressure.On the phylogenetic tree,10 pig breeds were divided into 4 clusters.The first cluster consisted of four breeds developed from Landrace.The second cluster was two indigenous Chinese pig breeds.The third cluster was three breeds developed from Duroc.The fourth cluster was a Tibetan pig breed.The constitution of the topology of the phylogenetic tree was consistent with the breeding history of each pig breed.From this experiment,we can conclude that some RFLP data obtained from functional gene can be used in the genetic deviation research between some closely related species or between different populations in certain species.

  18. Information geometry and population genetics the mathematical structure of the Wright-Fisher model

    CERN Document Server

    Hofrichter, Julian; Tran, Tat Dat

    2017-01-01

    The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

  19. Genetic structure and seed germination in Portuguese populations of Cheirolophus uliginosus (Asteraceae: Implications for conservation strategies

    Directory of Open Access Journals (Sweden)

    Vitales, D.

    2013-12-01

    Full Text Available Cheirolophus uliginosus is a threatened species, endemic to the Atlantic coast of the Iberian Peninsula, where it occupies a few restricted localities. In our study we analysed the patterns of cpDNA haplotypes variation and reproductive success—germinability—among seven Portuguese populations of varying size. The aim was to examine the reproductive performance of Ch. uliginosus related to genetic structure and population size. The results showed very low within-population variability of cpDNA markers. Our study indicates that the germination rate is significantly reduced in small populations ( 250 individuals do not show any constraint. In the search for plausible causes explaining the lower germination success in the smallest populations, ecological concerns and genetic isolation must be taken into account. Besides, in large-sized populations of Ch. uliginosus (> 250 plants a higher incidence of predispersal seed predation was observed, maybe affecting their sexual reproductive response. Finally, smaller populations—presenting a reduced reproductive success—contain also the most evolutionary distant haplotypes, so their conservation should be a priority.Cheirolophus uliginosus es una especie amenazada endémica de la costa atlántica de la península ibérica, donde ocupa unas pocas y reducidas localidades. En nuestro estudio, analizamos los patrones de variación de los haplotipos de ADN cloroplástico y el éxito reproductivo —capacidad germinativa— en siete poblaciones portuguesas de diferente tamaño. El éxito reproductivo de Ch. uliginosus se ha examinado en relación con la estructura genética y el tamaño de sus poblaciones. Los resultados indican una variabilidad intrapoblacional muy baja para los marcadores cloroplásticos utilizados. Nuestro estudio muestra una tasa de germinación significativamente reducida en las poblaciones pequeñas ( 250 individuos. Para explicar este fenómeno, se deben tomar en consideración las

  20. Genetic structure of Mugil cephalus L. populations from the northern coast of Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdy

    2016-01-01

    Full Text Available Aim: The gray mullet, Mugil cephalus, has been farmed in semi-intensive ponds with tilapia and carps in Egypt for years. The current study used the fluorescent amplified fragment length polymorphism (F-AFLP technique to search for genetic differences between the populations of M. cephalus in the northern region of Egypt and to detect the gene flow between sampled locations and the homogeneity within M. cephalus genetic pool in Egypt. Materials and Methods: To fulfill the study objectives 60 (15/location samples were collected from four northern coast governorates of Egypt (Alexandria “sea,” Kafr El-Sheikh “farm,” Damietta “farm” and Port Said “sea”. Three replicates of bulked DNA (5 samples/replicate for each location were successfully amplified using the standard AFLP protocol using fluorescent primers. DNA polymorphism, genetic diversity, and population structure were assessed while positive outlier loci were successfully detected among the sampled locations. Based on the geographical distribution of sampling sites, the gene flow, the genetic differentiation, and correlations to sampling locations were estimated. Results: A total of 1890 polymorphic bands were scored for all locations, where 765, 1054, 673, and 751 polymorphic bands were scored between samples from Alexandria, Kafr El-Sheikh, Damietta and Port Said, respectively. The effective number of alleles (ne for all bulked samples combined together was 1.42. The expected heterozygosity under Hardy–Weinberg assumption (He for all bulked samples combined together was 0.28. Bulked samples from Damietta yielded the lowest ne (1.35 and the lowest He (0.23 when inbreeding coefficient (FIS = 1. Bulked samples from Kafr El-Sheikh scored the highest ne (1.55 and the highest He (0.37. Bulked samples from Alexandria scored 1.40 for ne and 0.26 for He, while bulked samples from Port Said scored 1.39 for ne and 0.26 for He. The observed bulked samples formed three sub-population

  1. Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers.

    Science.gov (United States)

    Asuka, Y; Tomaru, N; Nisimura, N; Tsumura, Y; Yamamoto, S

    2004-05-01

    The within-population genetic structure of Fagus crenata in a 4-ha plot (200 x 200 m) of an old-growth beech forest was analysed using microsatellite markers. To assess the genetic structure, Moran's I spatial autocorrelation coefficient was calculated. Correlograms of Moran's I showed significant positive values less than 0.100 for short-distance classes, indicating weak genetic structure. The genetic structure within the population is created by limited seed dispersal, and is probably weakened by overlapping seed shadow, secondary seed dispersal, extensive pollen flow and the thinning process. Genetic structure was detected in a western subplot of 50 x 200 m with immature soils and almost no dwarf bamboos (Sasa spp.), where small and intermediate-sized individuals were distributed in aggregations with high density because of successful regeneration. By contrast, genetic structure was not found in an eastern subplot of the same size with mature soils and Sasa cover, where successful regeneration was prevented, and the density of the small and intermediate-sized individuals was low. Moreover, genetic structure of individuals in a small-size class (diameter at breast height large-size class (diameter at breast height >/= 12 cm). The apparent genetic structure detected in the 4-ha plot was therefore probably the result of the structure in the western portion of the plot and in small and intermediate-sized individuals that successfully regenerated under the favourable environment. The heterogeneity in genetic structure presumably reflects variation in the density that should be affected by differences in regeneration dynamics associated with heterogeneity in environmental conditions.

  2. Population genetic structure of the round stingray Urobatis halleri (Elasmobranchii: Rajiformes) in southern California and the Gulf of California.

    Science.gov (United States)

    Plank, S M; Lowe, C G; Feldheim, K A; Wilson, R R; Brusslan, J A

    2010-08-01

    The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small F(ST) values (-0.0017 to 0.0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep-water channel from the coastal sites, however, was significantly divergent (large F(ST), 0.0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size.

  3. Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure

    Directory of Open Access Journals (Sweden)

    José Alexandre Felizola Diniz Filho

    2006-01-01

    Full Text Available Conservation genetics has been focused on the ecological and evolutionary persistence of targets (species or other intraspecific units, especially when dealing with narrow-ranged species, and no generalized solution regarding the problem of where to concentrate conservation efforts for multiple genetic targets has yet been achieved. Broadly distributed and abundant species allow the identification of evolutionary significant units, management units, phylogeographical units or other spatial patterns in genetic variability, including those generated by effects of habitat fragmentation caused by human activities. However, these genetic units are rarely considered as priority conservation targets in regional conservation planning procedures. In this paper, we discuss a theoretical framework in which target persistence and genetic representation of targets defined using multiple genetic criteria can be explicitly incorporated into the broad-scale reserve network models used to optimize biodiversity conservation based on multiple species data. When genetic variation can be considered discrete in geographical space, the solution is straightforward, and each spatial unit must be considered as a distinct target. But methods for dealing with continuous genetic variation in space are not trivial and optimization procedures must still be developed. We present a simple heuristic and sequential algorithm to deal with this problem by combining multiple networks of local populations of multiple species in which minimum separation distance between conserved populations is a function of spatial autocorrelation patterns of genetic variability within each species.

  4. Genetic structure of European populations of Salmo salar L (Atlantic salmon) inferred from mitochondrial DNA

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Loeschcke, V.

    1996-01-01

    analyses of the NADH dehydrogenase 1 segment, employing four endonucleases. Significant genetic differentiation was observed among populations. A hierarchical analysis of the distribution of the mtDNA variability revealed that only a small part was distributed among geographical groups within the study......The genetic relationships between the only natural population of Atlantic salmon (Salmo salar L.) in Denmark and seven other European salmon populations were studied using RFLP analysis of PCR amplified mitochondrial DNA segments. Six different haplotypes were detected by restriction enzyme...

  5. Population Genetic Structure of the Medicinal Plant Vitex rotundifolia in China: Implications for its Use and Conservation

    Institute of Scientific and Technical Information of China (English)

    Yuan Hu; Yu Zhu; Qiao-Yan Zhang; Hai-Liang Xin; Lu-Ping Qin; Bao-Rong Lu; Khalid Rahman; Han-Chen Zheng

    2008-01-01

    Vitexrotundifolia L.is an important plant species used in traditional Chinese medicine.For its efficient use and conservation,genetic diversity and clonal variation of V.rotundifolia populations in China were investigated using inter-simple sequence repeat markers.Fourteen natural populations were included to estimate genetic diversity,and a large population with 135 individuals was used to analyze clonal variation and fine-scale spatial genetic structure.The overall genetic diversity (GD) of V.rotundifolia populations in China was moderate (GD=0.190),with about 40% within-population variation.Across all populations surveyed,the average within-population diversity was moderate (P = 22.6%; GD = 0.086).A relatively high genetic differentiation (Gst=0.587)among populations was detected based on the analysis of molecular variance data.Such characteristics of V.rotundifolia are likely attributed to its sexual/asexual reproduction and limited gene flow.The genotypic diversity (D=0.992) was greater than the average values of a clonal plant,indicating its significant reproduction through seedlings.Spatial autocorrelation analysis showed a clear within-population structure with gene clusters of approximately 20 m.Genetic diversity patterns of V.rotundifolia in China provide a useful guide for its efficient use and conservation by selecting particular populations displaying greater variation that may contain required medicinal compounds,and by sampling individuals in a population at >20 m spatial intervals to avoid collecting individuals with identical or similar genotypes.

  6. Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature.

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    Full Text Available The genetic diversity and population genetics of the Echinococcus granulosus sensu stricto complex were investigated based on sequencing of mitochondrial DNA (mtDNA. Total 81 isolates of hydatid cyst collected from ungulate animals from different geographical areas of North India were identified by sequencing of cytochrome c oxidase subunit1 (coxi gene. Three genotypes belonging to E. granulosus sensu stricto complex were identified (G1, G2 and G3 genotypes. Further the nucleotide sequences (retrieved from GenBank for the coxi gene from seven populations of E. granulosus sensu stricto complex covering 6 continents, were compared with sequences of isolates analysed in this study. Molecular diversity indices represent overall high mitochondrial DNA diversity for these populations, but low nucleotide diversity between haplotypes. The neutrality tests were used to analyze signatures of historical demographic events. The Tajima's D test and Fu's FS test showed negative value, indicating deviations from neutrality and both suggested recent population expansion for the populations. Pairwise fixation index was significant for pairwise comparison of different populations (except between South America and East Asia, Middle East and Europe, South America and Europe, Africa and Australia, indicating genetic differentiation among populations. Based on the findings of the present study and those from earlier studies, we hypothesize that demographic expansion occurred in E. granulosus after the introduction of founder haplotype particular by anthropogenic movements.

  7. Comparative Analysis of Population Genetic Structure in Bemisia tabaci (Gennadius) Biotypes B and Q Based on ISSR Marker

    Institute of Scientific and Technical Information of China (English)

    CHU Dong; WAN Fang-hao; XU Bao-yun; WU Qing-jun; ZHANG You-jun

    2008-01-01

    Bemisia tabaci (Gennadius) biotypes B and Q are two invasive biotypes in the species complex. The comparison of the population genetic structure of the two biotypes is of significance to show their invasive mechanism and to their control. The intersimple sequence repeats (ISSR) marker was used to analyze the 16 B-biotype populations and 4 Q-biotype populations worldwide with a Trialeurodes vaporariorum population in Shanxi Province, China, and a B. tabaci non-B/Q-biotype population in Zhejiang Province, China, was used as control populations. The analysis of genetic diversity showed that the diversity indexes of biotype Q including Nei's gene diversity index, Shannon informative index, and the percentage of polymorphic loci were higher than those of biotype B. The high genetic diversity of biotype Q might provide the genetic basis for the excellent ecological adaptation. Cluster analysis suggested that the ISSR could not be used in the phylogenetic analysis though it could easily distinguish the biotypes of B. tabaci. The difference of the population genetic structure between the biotype B and the biotype Q exists based on the ISSR marker. Meanwhile, the results suggested that the molecular marker has its limitation in the phylogenetic analysis among the biotypes of B. tabaci.

  8. Genetic structure of Chinese indigenous goats and the special geographical structure in the Southwest China as a geographic barrier driving the fragmentation of a large population.

    Directory of Open Access Journals (Sweden)

    Caihong Wei

    Full Text Available BACKGROUND: China has numerous native domestic goat breeds, however, extensive studies are focused on the genetic diversity within the fewer breeds and limited regions, the population demographic history and origin of Chinese goats are still unclear. The roles of geographical structure have not been analyzed in Chinese goat domestic process. In this study, the genetic relationships of Chinese indigenous goat populations were evaluated using 30 microsatellite markers. METHODOLOGY/PRINCIPAL FINDINGS: Forty Chinese indigenous populations containing 2078 goats were sampled from different geographic regions of China. Moderate genetic diversity at the population level (H(S of 0.644 and high population diversity at the species level (H(T value of 0.737 were estimated. Significant moderate population differentiation was detected (F(ST value of 0.129. Significant excess homozygosity (F(IS of 0.105 and recent population bottlenecks were detected in thirty-six populations. Neighbour-joining tree, principal components analysis and Bayesian clusters all revealed that Chinese goat populations could be subdivided into at least four genetic clusters: Southwest China, South China, Northwest China and East China. It was observed that the genetic diversity of Northern China goats was highest among these clusters. The results here suggested that the goat populations in Southwest China might be the earliest domestic goats in China. CONCLUSIONS/SIGNIFICANCE: Our results suggested that the current genetic structure of Chinese goats were resulted from the special geographical structure, especially in the Western China, and the Western goat populations had been separated by the geographic structure (Hengduan Mountains and Qinling Mountains-Huaihe River Line into two clusters: the Southwest and Northwest. It also indicated that the current genetic structure was caused by the geographical origin mainly, in close accordance with the human's migration history throughout

  9. Population Genetic Structure and Genetic Diversity in Twisted-Jaw Fish, Belodontichthys truncatus Kottelat & Ng, 1999 (Siluriformes: Siluridae, from Mekong Basin

    Directory of Open Access Journals (Sweden)

    Surapon Yodsiri

    2017-01-01

    Full Text Available The Mekong River and its tributaries possess the second highest diversity in fish species in the world. However, the fish biodiversity in this river is threatened by several human activities, such as hydropower plant construction. Understanding the genetic diversity and genetic structure of the species is important for natural resource management. Belodontichthys truncatus Kottelat & Ng is endemic to the Mekong River basin and is an important food source for people in this area. In this study, the genetic diversity, genetic structure, and demographic history of the twisted-jaw fish, B. truncatus, were investigated using mitochondrial cytochrome b gene sequences. A total of 124 fish specimens were collected from 10 locations in the Mekong and its tributaries. Relatively high genetic diversity was found in populations of B. truncatus compared to other catfish species in the Mekong River. The genetic structure analysis revealed that a population from the Chi River in Thailand was genetically significantly different from other populations, which is possibly due to the effect of genetic drift. Demographic history analysis indicated that B. truncatus has undergone recent demographic expansion dating back to the end of the Pleistocene glaciation.

  10. Structuring the genetic heterogeneity of the Basque population: a view from classical polymorphisms.

    Science.gov (United States)

    Manzano, C; de, la Rúa C; Iriondo, M; Mazón, L I; Vicario, A; Aguirre, A

    2002-02-01

    In this study we analyze 18 classical polymorphisms (ABO, Rh, MNSs, Lewis, P, Duffy, Kell, ADA, ESD, PGM1, PGD, AK1, ACP1, GLO1, HP, GC, TF, and PI) in over 2000 autochthonous individuals from 14 natural districts in three provinces of the Basque Country (Alava, Guipuzcoa, and Biscay). Heterogeneity analysis via the chi2 test and a calculation of F(ST) indicate that there is significant genetic heterogeneity between the Basque districts. The R matrix informs us that this heterogeneity is not significantly concentrated in a single district or in the districts of a single province, but is rather distributed among several districts belonging to the three provinces analyzed. We undertake to assess the influence of various historical, geographical, and cultural factors on the genetic structure of the Basque population. Analysis suggests that allele distribution is geographically patterned in the Basque Country. The gradient distributions observed in the case of some alleles (ABO*O, RH*cDE, RH*cde, MNS*MS, and ACP1*C) on the basis of Moran's autocorrelation coefficient I, along with the influence of the two main travel routes through the Basque Country (western route through Bilbao and eastern route through Vitoria), suggest that the gene flow tends toward the coast. As regards other factors considered (administrative division, repopulation processes, linguistic heterogeneity, and north vs. south cultural heterogeneity), we detected only a certain influence exerted by an old tribal differentiation (2000 B.P.), which would diminish with the passage of time.

  11. Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes

    OpenAIRE

    Kamler, Jan F.; Gray, Melissa M; Oh, Annie; Macdonald, David W.

    2013-01-01

    We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyad...

  12. Effects of traffic pollution on the genetic structure of Poa annua L.populations

    Institute of Scientific and Technical Information of China (English)

    LI Ning; CHEN Xiao-yong; SHEN Lang; LI Yuan-yuan; CAI Yue-wei

    2004-01-01

    The genetic composition of Poa annua L. populations with a series of traffic pollution was studied by starch electrophoresis. Five enzyme systems were stained. The results showed that: (1) Traffic pollution can dramatically change genotypic frequencies at some loci of P. annua populations. Significant deviations from Hardy-Weinberg equilibrium were observed on loci Fe-1 and Me due to the excess of heterozygote in some populations. (2) The effective number of alleles per locus, and the observed and expected heterozygosity were higher in the pollution series than in the clear control site(Botanic Park population), but the increase was not related with the pollution extent. (3) Most genetic variation was found within populations, and only 6.21% was among populations of the polluted series. Slightly higher differentiation(FST=7.98%) was observed when the control population was included. (4) The calculated gene flow(Nm) is 2.8841 per generation. The mean of genetic identity is 0.9864 and the genetic distance average to 0.0138.

  13. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Sarma Devojit K

    2012-03-01

    Full Text Available Abstract Background Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII gene. Methods Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. Results A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. Conclusions The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be

  14. Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis.

    Directory of Open Access Journals (Sweden)

    Mengran Zhao

    Full Text Available The genetic diversity of 123 wild strains of Pleurotus eryngii var. tuoliensis, which were collected from nine geographical locations in Yumin, Tuoli, and Qinghe counties in the Xinjiang Autonomous Region of China, was analysed using two molecular marker systems (inter-simple sequence repeat and start codon targeted. At the variety level, the percentage of polymorphic loci and Nei's gene diversity index for P. eryngii var. tuoliensis was 96.32% and 0.238, respectively. At the population level, Nei's gene diversity index ranged from 0.149 to 0.218 with an average of 0.186, and Shannon's information index ranged from 0.213 to 0.339 with an average of 0.284. These results revealed the abundant genetic variability in the wild resources of P. eryngii var. tuoliensis. Nei's gene diversity analysis indicated that the genetic variance was mainly found within individual geographical populations, and the analysis of molecular variance revealed low but significant genetic differentiation among local and regional populations. The limited gene flow (Nm = 1.794 was inferred as a major reason for the extent of genetic differentiation of P. eryngii var. tuoliensis. The results of Mantel tests showed that the genetic distance among geographical populations of P. eryngii var. tuoliensis was positively correlated with the geographical distance and the longitudinal distances (rGo = 0.789 and rLn = 0.873, respectively, which indicates that geographical isolation is an important factor for the observed genetic differentiation. Nine geographical populations of P. eryngii var. tuoliensis were divided into three groups according to their geographical origins, which revealed that the genetic diversity was closely related to the geographical distribution of this wild fungus.

  15. Genetic population structure of the white sifaka (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar (1992-2001).

    Science.gov (United States)

    Lawler, Richard R; Richard, Alison F; Riley, Margaret A

    2003-09-01

    Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.

  16. Genetic structure and diversity in an isolated population of an endemic mole salamander (Ambystoma rivulare Taylor, 1940) of central Mexico.

    Science.gov (United States)

    Heredia-Bobadilla, Rosa-Laura; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Martínez-Gómez, Daniel; Mendoza-Martínez, Germán David; Sunny, Armando

    2016-12-01

    Human activities are affecting the distribution of species worldwide by causing fragmentation and isolation of populations. Isolation and fragmentation lead to populations with lower genetic variability and an increased chance of inbreeding and genetic drift, which results in a loss of biological fitness over time. Studies of the genetic structure of small and isolated populations are critically important for management and conservation decisions. Ambystoma rivulare is a micro-endemic Mexican mole salamander from central Mexico. It is found in the most ecologically disturbed region in Mexico, the Trans-Mexican Volcanic Belt. The goal of this study of the population genetics of the micro-endemic mole salamander was to provide information to be used as a basis for future research and conservation planning of this species and other species of the Ambystoma genus in Mexico. The structural analysis found two subpopulations, one for each river sampled, with no signs of admixture and very high levels of genetic differentiation. Medium to high levels of heterozygosity and few alleles and genotypes were observed. Evidence of an ancestral genetic bottleneck, low values of effective population size, small inbreeding coefficients, and low gene flow were also found.

  17. Genetic diversity and population structure of Anastrepha striata (Diptera: Tephritidae) in three natural regions of southwestern Colombia using mitochondrial sequences.

    Science.gov (United States)

    Gallo-Franco, Jenny Johana; Velasco-Cuervo, Sandra Marcela; Aguirre-Ramirez, Elkin; González Obando, Ranulfo; Carrejo, Nancy Soraya; Toro-Perea, Nelson

    2017-02-01

    Anastrepha striata is widely distributed across the Americas and is a pest of economically important crops, especially crops of the Myrtaceae family. Insect population structures can be influenced by the presence of physical barriers or characteristics associated with habitat differences. This study evaluated the effect of the Western Andes on the population structure of A. striata. Individuals were collected from Psidium guajava fruits from three natural regions of southwestern Colombia (Pacific Coast, mountainous region and the inter-Andean valley of the Cauca River). Based on a 1318 bp concatenated of the genes Cytochrome Oxidase subunit I (COI) and NADH dehydrogenase subunit 6 (ND6), 14 haplotypes with few changes among them (between 1 and 3) were found. There was only one dominant haplotype in all three regions. No genetic structure associated with the three eco-geographical regions of the study was found. Moreover, the Western Andes are not an effective barrier for the genetic isolation of the populations from the Pacific Coast compared with the inter-Andean valley populations. This genetic homogeneity could be partially due to anthropogenic intervention, which acts as a dispersal agent of infested fruits. Another hypothesis to explain the lack of structure would be the relatively recent arrival of A. striata to the region, as indicated by an analysis of the demographic history, which reveals a process of population expansion. This study represents the first attempt to understand the population genetics of A. striata in Colombia and could contribute to the integral management of this pest.

  18. Population genetic structure of a centipede species with high levels of developmental instability.

    Science.gov (United States)

    Fusco, Giuseppe; Leśniewska, Małgorzata; Congiu, Leonardo; Bertorelle, Giorgio

    2015-01-01

    European populations of the geophilomorph centipede Haplophilus subterraneus show a high proportion of individuals with morphological anomalies, suggesting high levels of developmental instability. The broad geographic distribution of this phenomenon seems to exclude local environmental causes, but the source of instability is still to be identified. The goal of the present study was to collect quantitative data on the occurrence of phenodeviants in different populations, along with data on the patterns of genetic variation within and between populations, in order to investigate possible association between developmental instability and genetic features. In a sample of 11 populations of H. subterraneus, distributed in western and central Europe, we looked for phenodeviants, in particular with respect to trunk morphology, and studied genetic variation through the genotyping of microsatellite loci. Overall, no support was found to the idea that developmental instability in H. subterraneus is related to a specific patterns of genetic variation, including inbreeding estimates. We identified a major genetic partition that subdivides French populations from the others, and a low divergence among northwestern areas, which are possibly related to the post-glacial recolonization from southern refugia and/or to recent anthropogenic soil displacements. A weak correlation between individual number of leg bearing segments and the occurrence of trunk anomalies seems to support a trade-off between these two developmental traits. These results, complemented by preliminary data on developmental stability in two related species, suggest that the phenomenon has not a simple taxonomic distribution, while it exhibits an apparent localization in central and eastern Europe.

  19. Does population genetic structure support present management regulations of the northern shrimp (Pandalus borealis) in Skagerrak and the North Sea?

    DEFF Research Database (Denmark)

    Knutsen, Halvor; Jorde, Per Erik; Gonzalez, Enrique Blanco;

    2015-01-01

    Population structuring in the northern shrimp (Pandalus borealis) in the North Sea area (including Fladen and Skagerrak) was studied by microsatellite DNA analyses. Screening 20 sample locations in the open ocean and Skagerrak fjords for nine loci revealed low but significant genetic heterogeneity....... The spatial genetic structure among oceanic samples of Skagerrak and the eastern North Sea was weak and non-significant, consistent with the current management regime of one single stock. However, Skagerrak fjord samples generally displayed elevated levels of genetic differentiation, and significantly so...

  20. Genetic population structure of an anchialine shrimp, Metabetaeus lohena (Crustacea: Alpheidae, in the Hawaiian Islands

    Directory of Open Access Journals (Sweden)

    Atlantis Russ

    2010-03-01

    Full Text Available Anchialine habitats in the Hawaiian Islands, characterized as coastal bodies of land-locked salt or brackish water that fluctuate with the tides due to subterranean connections, are the only ecosystems of this type found within the United States. These habitats are currently subject to anthropogenic impacts tha t threaten their future existence. Previous research has shown strong genetic population structure of an endemic atyid shrimp, Halocaridina rubra, in these habitats. The native alpheid shrimp, Metabetaeus lohena, whose known range entirely overlaps that of H. rubra, has feeding and reproductive behaviors that are biologically distinct from H. rubra. Its historic scarcity and status as a candidate for the US Fish and Wildlife Department’s Endangered Species List, make M. lohena an ideal species to compare against the known genetic structure of H. rubra. We investigated the population structure of this native anchialine shrimp to test the hypothesis that genetic population structure differs between the two shrimp species and that M. lohena is genetically unstructured across its range. A survey of 605 bp of the mitochondrial cytochrome c oxidase subunit I (COI gene from 127 individuals collected at 7 sites spanning the islands of O’ahu, Maui and Hawaii revealed 43 haplotypes. The most common haplotype was represented in similar proportions from all sites sampled, accounting for 44% of the surveyed sequences. Analyses of molecular variation (AMOVA, pairwise ΦST values, Bayesian estimates of migration (M, Mantel tests and Nested Clade Analyses (NCAs all failed to reveal evidence of major barriers to gene flow among most populations separated by inter-island channels. This lack of genetic structure in M. lohena is found to be in stark contrast with the highly structured population of H. rubra, and may be attributed to oceanic dispersal strategies and/or a recent introduction to the Hawaiian Islands. Rev. Biol. Trop. 58 (1: 159-170. Epub

  1. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests.

    Science.gov (United States)

    Bendel, Muriel; Kienast, Felix; Rigling, Daniel

    2006-06-01

    Armillaria species are plant pathogens that cause Armillaria root rot and are known to cause mortality of mountain pines (Pinus mugo) in the Swiss National Park in the Central Alps. The identity of isolates and the spatially explicit population structure of the Armillaria species were investigated in a 3.3km(2) study area in the Swiss National Park. In total, 242 Armillaria isolates, 205 from wood samples and 37 from epiphytic rhizomorphs, were collected. Species were identified using haploid-diploid pairings and genets were determined using intraspecific somatic incompatibility tests. The population structure differed markedly among the Armillaria species. A. cepistipes and A. borealis mainly occurred as genets of small spatial extent (mean 0.2ha, and 0.6ha), whereas A. ostoyae formed significantly larger genets (mean 6.8ha). The largest A. ostoyae genet extended over approx. 37ha. Several disease centres associated with Heterobasidion annosum were found to be embedded within large Armillaria genets. The extension of large A. ostoyae genets suggests that forests that occupy the study area have developed in the presence of these Armillaria genets. The finding of large Armillaria genets supports the assumption that large genets occur in areas with cold climate and little precipitation.

  2. Genetic diversity and population structure of black Dahe pig based on DNA sequences analyses of mitochondrial and nuclear genes.

    Science.gov (United States)

    Tang, Lizhou; Yu, Long; Wang, Junjie; Liu, Chao; Shi, Xiaodong; Ding, Wei; Zhu, Lei; Guo, Songchang

    2016-01-01

    To investigate the genetic diversity and population structure of black Dahe pigs, we collected 175 samples from 5 local populations and sequenced them using a combination of two selected molecular markers for mitochondrial cytochrome b and Major Histocompatibility Complex (MHC) DRB. Overall, the results of AMOVA and phylogenetic tree and gene flow analyses detected high levels of gene flow among the five populations, particularly individual pigs from Dahe town (Pop1) or Yingshang town (Pop2) to other populations (Pop3, Pop4, and Pop5). The genetic diversity analyses showed that the diversity indices of the five populations did not vary significantly, but they were much lower than those of other Chinese pig species. These results suggest that distinct gene flow, unstable population pattern, and lower genetic diversity have been influenced mainly by human introductions for economic ends. These findings provide genetic information that could be used for the preservation and further genetic improvement of the black Dahe pig, as well as an important reference for the evaluation, conservation, and utilization of the genetic resources of this breed.

  3. Population genetic structure between Yap and Palau for the coral Acropora hyacinthus

    Directory of Open Access Journals (Sweden)

    Annick Cros

    2016-08-01

    Full Text Available Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F′ST values between Palau and Yap (0.10, Palau and Ngulu (0.09 and Yap and Ngulu (0.09 were all significant and similar to pairwise F′ST values of sites within Palau (0.02–0.12 and within Yap (0.02–0.09 highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau.

  4. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    Science.gov (United States)

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  5. Ssr analysis for genetic structure and diversity determination of maize local populations from former Yugoslavia territories.

    Science.gov (United States)

    Ignjatović-Micić, D; Drinić, S Mladenović; Nikolić, A; Lazić-Jancić, V

    2008-11-01

    A collection of 2178 local populations from ex-Yugoslavia territories is maintained in Maize Research Institute (MRI) gene bank. These populations were characterized mainly by morphological markers. In this work 21 local populations belonging to seven different agro-ecological groups have been subjected to SSR analysis using a DNA-pooling strategy. The objective of this work was to develop genetic fingerprints for characterization, identification and classification of the populations, as well as for estimation of their genetic diversity. Also, a DNA-pooling strategy was employed with the aim to certify if it could be applied for population analysis with SSR markers. Statistical analysis of 25 informative SSR primers revealing 224 alleles (bands) showed that the average within-population mean number of alleles was 2.55, the average values for total and within-population diversity were 0.784 and 0.502, respectively and G(ST) value was 0.360. Genetic distance values calculated using Modified Rogers' Distance were in the range from 0.35 to 0.60. The silver staining method of DNA used for bulked samples showed some weakness that could be overcome with a more sensitive staining method. Nevertheless, the results in this work indicate that the SSR analysis of bulks could be used for characterizing a large number of populations in gene banks.

  6. Mexican mestizo population sub-structure: effects on genetic and forensic statistical parameters.

    Science.gov (United States)

    Noris, Gino; Santana, Carla; Meraz-Ríos, Marco Antonio; de Lourdes Munoz, María; Majluf-Cruz, Abraham; Magaña, Jonathan J; Granados, Julio; Quezada, Rosa; Revilla, María Cristina; Martínez-Salas, Sergio; Xihuitl, Salvador; Martínez de la Escalera, Gonzalo; Díaz-Badillo, Alvaro; Calderon-Aranda, Emma S; Gómez, Rocío

    2012-12-01

    Since Mexican mestizos are an admixed population, it is necessary to determine the effects that the substructure of the population has on genetic and forensic parameters. With this aim, a study was performed with 15 STR loci (CODIS plus D2S1338 and D19S433) on 1,640 unrelated Mexican mestizos. We determine allele and genotypic frequencies observing departure from Hardy-Weinberg expectation (12 out of 15 loci, with an excess of homozygotes, Fis > 0), as well as pairs of loci in an apparent linkage disequilibrium (13 of 92 loci). We conducted a test for genetic population stratification, the results show that the Mexican mestizo population is substructured into three subgroups, which are in HW and linkage equil