WorldWideScience

Sample records for genetic mechanism discovered

  1. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Fayroz F. Sherif

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer’s disease (AD. Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA studies. New SNP biomarkers were observed to be significantly associated with Alzheimer’s disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively.

  2. Genetics Research Discovered in a Bestseller | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer One morning in early January, Amar Klar sat down at his computer and found an e-mail with a curious message from a colleague. While reading a bestselling novel, The Marriage Plot by Jeffrey Eugenides, his colleague, a professor at Princeton University, found a description of research on yeast genetics that was surprisingly similar to Klar’s early

  3. CRISPR genetic screens to discover host-virus interactions.

    Science.gov (United States)

    McDougall, William M; Perreira, Jill M; Reynolds, Erin C; Brass, Abraham L

    2018-04-01

    Viruses impose an immense burden on human health. With the goal of treating and preventing viral infections, researchers have carried out genetic screens to improve our understanding of viral dependencies and identify potential anti-viral strategies. The emergence of CRISPR genetic screening tools has facilitated this effort by enabling host-virus screens to be undertaken in a more versatile and fidelitous manner than previously possible. Here we review the growing number of CRISPR screens which continue to increase our understanding of host-virus interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  5. Beliefs about the Etiology of Homosexuality and about the Ramifications of Discovering Its Possible Genetic Origin

    Science.gov (United States)

    Sheldon, Jane P.; Pfeffer, Carla A.; Jayaratne, Toby Epstein; Feldbaum, Merle; Petty, Elizabeth M.

    2013-01-01

    Homosexuality is viewed by many as a social problem. As such, there has been keen interest in elucidating the origins of homosexuality among many scholars, from anthropologists to zoologists, psychologists to theologians. Research has shown that those who believe sexual orientation is inborn are more likely to have tolerant attitudes toward gay men and lesbians, whereas those who believe it is a choice have less tolerant attitudes. The current qualitative study used in-depth, open-ended telephone interviews with 42 White and 44 Black Americans to gain insight into the public's beliefs about the possible genetic origins of homosexuality. Along with etiological beliefs (and the sources of information used to develop those beliefs), we asked respondents to describe the benefits and dangers of scientists discovering the possible genetic basis for homosexuality. We found that although limited understanding and biased perspectives likely led to simplistic reasoning concerning the origins and genetic basis of homosexuality, many individuals appreciated complex and interactive etiological perspectives. These interactive perspectives often included recognition of some type of inherent aspect, such as a genetic factor(s), that served as an underlying predisposition that would be manifested after being influenced by other factors such as choice or environmental exposures. We also found that beliefs in a genetic basis for homosexuality could be used to support very diverse opinions, including those in accordance with negative eugenic agendas. PMID:17594974

  6. Discovering misattributed paternity in genetic counselling: different ethical perspectives in two countries.

    Science.gov (United States)

    Tozzo, Pamela; Caenazzo, Luciana; Parker, Michael J

    2014-03-01

    Misattributed paternity or 'false' paternity is when a man is wrongly thought, by himself and possibly by others, to be the biological father of a child. Nowadays, because of the progression of genetics and genomics the possibility of finding misattributed paternity during familial genetic testing has increased. In contrast to other medical information, which pertains primarily to individuals, information obtained by genetic testing and/or pedigree analysis necessarily has implications for other biologically related members in the family. Disclosing or not a misattributed paternity has a number of different biological and social consequences for the people involved. Such an issue presents important ethical and deontological challenges. The debate centres on whether or not to inform the family and, particularly, whom in the family, about the possibility that misattributed paternity might be discovered incidentally, and whether or not it is the duty of the healthcare professional (HCP) to disclose the results and to whom. In this paper, we consider the different perspectives and reported problems, and analyse their cultural, ethical and legal dimensions. We compare the position of HCPs from an Italian and British point of view, particularly their role in genetic counselling. We discuss whether the Oviedo Convention of the Council of Europe (1997) can be seen as a basis for enriching the debate.

  7. Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms

    Science.gov (United States)

    Mengmeng Lu; Konstantin V. Krutovsky; C. Dana Nelson; Jason B. West; Nathalie A. Reilly; Carol A. Loopstra

    2017-01-01

    In the USA, forest genetics research began over 100 years ago and loblolly pine breeding programs were established in the 1950s. However, the genetics underlying complex traits of loblolly pine remains to be discovered. To address this, adaptive and growth traits were measured and analyzed in a clonally tested loblolly pine (Pinus taeda L.) population. Over 2.8 million...

  8. Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise.

    Directory of Open Access Journals (Sweden)

    Ylenia Chiari

    2009-07-01

    Full Text Available Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.

  9. The Brain Mechanisms Underlying the Cognitive Benefits of Bilingualism may be Extraordinarily Difficult to Discover

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2014-12-01

    Full Text Available The hypothesis that coordinating two or more languages leads to an enhancement in executive functioning has been intensely studied for the past decade with very mixed results. The purpose of this review and analysis is to consider why it has been (and will continue to be difficult to discover the brain mechanisms underlying any cognitive benefits to bilingualism. Six reasons are discussed: 1 the phenomenon may not actually exist; 2 the cognitive neuroscientists investigating bilingual advantages may have been studying the wrong component of executive functioning; 3 most experiments use risky small numbers of participants and are underpowered; 4 the neural differences between groups do not align with the behavioral differences; 5 neural differences sometimes suffer from valence ambiguity, that is, disagreements whether “more” implies better or worse functioning and 6 neural differences often suffer from kind ambiguity, that is, disagreements regarding what type of mental events the pattern of activation in a region-of-interest actually reflects.

  10. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hirofumi Nakaoka

    Full Text Available Genome-wide association studies (GWAS have yielded novel genetic loci underlying common diseases. We propose a systems genetics approach to utilize these discoveries for better understanding of the genetic architecture of rheumatoid arthritis (RA. Current evidence of genetic associations with RA was sought through PubMed and the NHGRI GWAS catalog. The associations of 15 single nucleotide polymorphisms and HLA-DRB1 alleles were confirmed in 1,287 cases and 1,500 controls of Japanese subjects. Among these, HLA-DRB1 alleles and eight SNPs showed significant associations and all but one of the variants had the same direction of effect as identified in the previous studies, indicating that the genetic risk factors underlying RA are shared across populations. By receiver operating characteristic curve analysis, the area under the curve (AUC for the genetic risk score based on the selected variants was 68.4%. For seropositive RA patients only, the AUC improved to 70.9%, indicating good but suboptimal predictive ability. A simulation study shows that more than 200 additional loci with similar effect size as recent GWAS findings or 20 rare variants with intermediate effects are needed to achieve AUC = 80.0%. We performed the random walk with restart (RWR algorithm to prioritize genes for future mapping studies. The performance of the algorithm was confirmed by leave-one-out cross-validation. The RWR algorithm pointed to ZAP70 in the first rank, in which mutation causes RA-like autoimmune arthritis in mice. By applying the hierarchical clustering method to a subnetwork comprising RA-associated genes and top-ranked genes by the RWR, we found three functional modules relevant to RA etiology: "leukocyte activation and differentiation", "pattern-recognition receptor signaling pathway", and "chemokines and their receptors".These results suggest that the systems genetics approach is useful to find directions of future mapping strategies to illuminate

  11. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lasserre

    2015-06-01

    Full Text Available Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’, and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast.

  12. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  13. Introduction to Genetic Mechanisms of Carcinogenesis

    International Nuclear Information System (INIS)

    Yang, W.K.

    1983-01-01

    Recent technical advances in nucleic acid research and molecular biology have made it possible to explore the complicated genetic systems of eukaryotic cells. One of the fields showing rapid progress concerns genes and gene regulatory functions related to neoplastic processes. Thus, the 35th Annual Conference of the Biology Division of Oak Ridge National Laboratory, held at Gatlinburg, April 12-15, 1982, was organized with the intention to bring together investigators working on seemingly diverse fields of cancer research to discuss and exchange their views on the genetic mechanisms of carcinogenesis. The meeting was attended by workers from chemical, physical as well as biological carcinogenesis fields, by classical geneticists as well as by molecular biologists, and by researchers interested in experimental as well as in human cancers. Included in this volume are papers by the invited speakers of the symposium as well as by those presenting poster papers at the meeting

  14. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern

    Science.gov (United States)

    Telesh, Irena; Schubert, Hendrik; Skarlato, Sergei

    2013-12-01

    A recently discovered paradoxical maximum of planktonic protistan species in the salinity gradient of the Baltic Sea revealed an inverse trend of species number/salinity relation in comparison to the previously accepted species-minimum model for macrozoobenthos. Here, we review long-term data on organisms of different size classes and ecological groups to show that eukaryotic and prokaryotic microbes in plankton demonstrate a maximum species richness in the challenging zone of the critical salinity 5-8, where the large-bodied bottom dwellers (macrozoobenthos, macroalgae and aquatic higher plants) experience large-scale salinity stress which leads to an impoverished diversity. We propose a new conceptual model to explain why the diversity of small, fast-developing, rapidly evolving unicellular plankton organisms benefits from relative vacancy of brackish-water ecological niches and impaired competitiveness therein. The ecotone theory, Hutchinson's Ecological Niche Concept, species-area relationships and the Intermediate Disturbance Hypothesis are considered as a theoretical framework for understanding extinctions, speciation and variations in the evolution rates of different aquatic species in ecosystems with the pronounced salinity gradient.

  15. Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Liang He

    2016-10-01

    Full Text Available Age-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1 endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2 time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM, cancer, cardiovascular diseases (CVDs and neurodegenerative diseases (NDs, and (3 both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08, out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2 and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory

  16. What is Financial Therapy? Discovering Mechanisms and Aspects of an Emerging Field

    OpenAIRE

    Kristy L. Archuleta; Emily A. Burr; Anita K. Dale; Anthony Canale; Dan Danford; Erika Rasure; Jeff Nelson; Kelley Williams; Kurt Schindler; Brett Coffman; Ed Horwitz

    2012-01-01

    Very little research currently exists specifically on the topic of financial therapy. In this emerging field, it is important to lay the groundwork for future practice and study. The purpose of this study was to answer the question, “What are the mechanisms and aspects of financial therapy?” Using qualitative methods, eighteen members of the Financial Therapy Association were interviewed by members of the research team. The participants included six financial professi...

  17. What is Financial Therapy? Discovering Mechanisms and Aspects of an Emerging Field

    Directory of Open Access Journals (Sweden)

    Kristy L. Archuleta

    2012-12-01

    Full Text Available

    Very little research currently exists specifically on the topic of financial therapy. In this emerging field, it is important to lay the groundwork for future practice and study. The purpose of this study was to answer the question, “What are the mechanisms and aspects of financial therapy?” Using qualitative methods, eighteen members of the Financial Therapy Association were interviewed by members of the research team. The participants included six financial professionals, six mental health professions, and six researchers/educators all engaged in financial therapy. Six categories emerged from the analysis of data, including: (a integration, (b complexity, (c help seeker issues, (d helper issues, (e process, and (f research. The analysis resulted in a conceptual framework and ten theoretical assumptions of financial therapy.

  18. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers.

    Science.gov (United States)

    Zhang, Guang-Hui; Ma, Chun-Hua; Zhang, Jia-Jin; Chen, Jun-Wen; Tang, Qing-Yan; He, Mu-Han; Xu, Xiang-Zeng; Jiang, Ni-Hao; Yang, Sheng-Chao

    2015-03-08

    P. vietnamensis var. fuscidiscus, called "Yesanqi" in Chinese, is a new variety of P. vietnamensis, which was first found in Jinping County, the southern part of Yunnan Province, China. Compared with other Panax plants, this species contains higher content of ocotillol-type saponin, majonoside R2. Despite the pharmacological importance of ocotillol-type saponins, little is known about their biosynthesis in plants. Hence, P. vietnamensis var. fuscidiscus is a suitable medicinal herbal plant species to study biosynthesis of ocotillol-type saponins. In addition, the available genomic information of this important herbal plant is lacking. To investigate the P. vietnamensis var. fuscidiscus transcriptome, Illumina HiSeq™ 2000 sequencing platform was employed. We produced 114,703,210 clean reads, assembled into 126,758 unigenes, with an average length of 1,304 bp and N50 of 2,108 bp. Among these 126,758 unigenes, 85,214 unigenes (67.23%) were annotated based on the information available from the public databases. The transcripts encoding the known enzymes involved in triterpenoid saponins biosynthesis were identified in our Illumina dataset. A full-length cDNA of three Squalene epoxidase (SE) genes were obtained using reverse transcription PCR (RT-PCR) and the expression patterns of ten unigenes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Furthermore, 15 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely to involve in triterpenoid saponins biosynthesis pathway were discovered from transcriptome sequencing of P. vietnamensis var. fuscidiscus. We further analyzed the data and found 21,320 simple sequence repeats (SSRs), 30 primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism in 13 P. vietnamensis var. fuscidiscus accessions. Meanwhile, five major triterpene saponins in roots of P. vietnamensis var. fuscidicus were determined using high performance

  19. Genetics and pathological mechanisms of Usher syndrome.

    Science.gov (United States)

    Yan, Denise; Liu, Xue Z

    2010-06-01

    Usher syndrome (USH) comprises a group of autosomal recessively inherited disorders characterized by a dual sensory impairment of the audiovestibular and visual systems. Three major clinical subtypes (USH type I, USH type II and USH type III) are distinguished on the basis of the severity of the hearing loss, the presence or absence of vestibular dysfunction and the age of onset of retinitis pigmentosa (RP). Since the cloning of the first USH gene (MYO7A) in 1995, there have been remarkable advances in elucidating the genetic basis for this disorder, as evidence for 11 distinct loci have been obtained and genes for 9 of them have been identified. The USH genes encode proteins of different classes and families, including motor proteins, scaffold proteins, cell adhesion molecules and transmembrane receptor proteins. Extensive information has emerged from mouse models and molecular studies regarding pathogenesis of this disorder and the wide phenotypic variation in both audiovestibular and/or visual function. A unifying hypothesis is that the USH proteins are integrated into a protein network that regulates hair bundle morphogenesis in the inner ear. This review addresses genetics and pathological mechanisms of USH. Understanding the molecular basis of phenotypic variation and pathogenesis of USH is important toward discovery of new molecular targets for diagnosis, prevention and treatment of this debilitating disorder.

  20. A mechanism misregulating p27 in tumors discovered in a functional genomic screen.

    Directory of Open Access Journals (Sweden)

    Carrie M Garrett-Engele

    2007-12-01

    Full Text Available The cyclin-dependent kinase inhibitor p27(KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/- mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3 was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.

  1. Genetic theory – a suggested cupping therapy mechanism of action

    OpenAIRE

    Shaban , Tamer; Ravalia , Munir

    2017-01-01

    The Cupping Therapy mechanism of action is not clear. Cupping may increase local blood circulation, and may have an immunomodulation effect. Local and systemic effects of Cupping Therapy were reported. Genetic expression is a physiological process that regulates body functions. Genetic modulation is a reported acupuncture effect. In this article, the authors suggest genetic modulation theory as one of the possible mechanisms of action of cupping therapy.

  2. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  3. A possible mechanism behind autoimmune disorders discovered by genome-wide linkage and association analysis in celiac disease.

    Directory of Open Access Journals (Sweden)

    Malin Östensson

    Full Text Available Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1 polarity and epithelial cell functionality; 2 intestinal smooth muscle; 3 growth and energy homeostasis, including proline and glutamine metabolism; and finally 4 innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly

  4. Mechanisms of Bunyavirus Virulence: A Genetic Approach.

    Science.gov (United States)

    1984-12-01

    of canine parvovirus Type-2, feline panleukopenia virus and mink enteritis virus. Virology 129,401-414. Partner A., Webster, R. G., and Bean W. J...CM, and Webster RG. Procedures for the characterization of the genetic material of candidate vaccine strains. Develop Biol Standard 39:15-24, 1977

  5. Discovering Wavelets

    CERN Document Server

    Aboufadel, Edward

    1999-01-01

    An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets

  6. Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion

    DEFF Research Database (Denmark)

    Baker, J.M.; Funch, Peter; Giribet, G.

    2007-01-01

      Symbion americanus was recently described as the second species in the phylum Cycliophora, living commensally on the American commercial lobster Homarus americanus. A previous genetic analysis of American and European populations of cycliophorans suggested that haplotype divergence in S....... americanus was much greater than in its European counterpart S. pandora. This study examined the population structure and demographics of 169 individuals thought to belong to S. americanus collected from lobsters over 13 North American localities (Nova Scotia, Canada to Maryland, USA) between October 2003...... and January 2006. Cytochrome c oxidase subunit I sequence data clearly suggested the presence of three cryptic lineages in a species complex, often co-occurring in the same lobster specimens. One of these lineages, named the "G" lineage, was represented by very few individuals and therefore was excluded from...

  7. Genetic pathways to Neurodegeneration Models and mechanisms ...

    Indian Academy of Sciences (India)

    Paige Rudich

    Models and mechanisms of repeat expansion disorders: a worm's eye view ..... retardation 1 gene FMR1 gives rise to a spectrum of neurological disorders (Saul and Tarleton ... autism. Shorter repeat expansion lengths from 55-200 cause the.

  8. Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement.

    Science.gov (United States)

    Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad

    2017-08-01

    Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.

  9. Discovering Technicolor

    DEFF Research Database (Denmark)

    R. Andersen, J.; Antipin, O.; Azuelos, G.

    2011-01-01

    We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underly...... the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider....... of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron...... Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish...

  10. Use of Genetic Models to Study the Urinary Concentrating Mechanism

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Kortenoeven, Marleen L.A.; Fenton, Robert A.

    2015-01-01

    technology is providing critical new information about urinary concentrating processes and thus mechanisms for maintaining body water homeostasis. In this chapter we provide a brief overview of genetic mouse model generation, and then summarize findings in transgenic and knockout mice pertinent to our...

  11. Additional mechanisms conferring genetic susceptibility to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Miguel eCalero

    2015-04-01

    Full Text Available Familial Alzheimer's disease (AD, mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1 and PSEN2 involved in the production of the amyloid  peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies (GWAS there is a mounting list of genetic risk factors associated to common genetic variants that have been associated to sporadic AD. Besides APOE, that presents a strong association with the disease (OR~4, the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated to AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways and networks rather than the contribution of specific genes.

  12. Generation of Compliant Mechanisms using Hybrid Genetic Algorithm

    Science.gov (United States)

    Sharma, D.; Deb, K.

    2014-10-01

    Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.

  13. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.

    Science.gov (United States)

    Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K; Hamada, Tsuyoshi; Mu, Xinmeng Jasmine; Quist, Michael; Nowak, Jonathan A; Nishihara, Reiko; Qian, Zhi Rong; Inamura, Kentaro; Morikawa, Teppei; Nosho, Katsuhiko; Abril-Rodriguez, Gabriel; Connolly, Charles; Escuin-Ordinas, Helena; Geybels, Milan S; Grady, William M; Hsu, Li; Hu-Lieskovan, Siwen; Huyghe, Jeroen R; Kim, Yeon Joo; Krystofinski, Paige; Leiserson, Mark D M; Montoya, Dennis J; Nadel, Brian B; Pellegrini, Matteo; Pritchard, Colin C; Puig-Saus, Cristina; Quist, Elleanor H; Raphael, Ben J; Salipante, Stephen J; Shin, Daniel Sanghoon; Shinbrot, Eve; Shirts, Brian; Shukla, Sachet; Stanford, Janet L; Sun, Wei; Tsoi, Jennifer; Upfill-Brown, Alexander; Wheeler, David A; Wu, Catherine J; Yu, Ming; Zaidi, Syed H; Zaretsky, Jesse M; Gabriel, Stacey B; Lander, Eric S; Garraway, Levi A; Hudson, Thomas J; Fuchs, Charles S; Ribas, Antoni; Ogino, Shuji; Peters, Ulrike

    2018-06-01

    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  14. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.

    Science.gov (United States)

    Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi

    2017-08-01

    Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.

  15. Asymmetry in family history implicates nonstandard genetic mechanisms: application to the genetics of breast cancer.

    Directory of Open Access Journals (Sweden)

    Clarice R Weinberg

    2014-03-01

    Full Text Available Genome-wide association studies typically target inherited autosomal variants, but less studied genetic mechanisms can play a role in complex disease. Sex-linked variants aside, three genetic phenomena can induce differential risk in maternal versus paternal lineages of affected individuals: 1. maternal effects, reflecting the maternal genome's influence on prenatal development; 2. mitochondrial variants, which are inherited maternally; 3. autosomal genes, whose effects depend on parent of origin. We algebraically show that small asymmetries in family histories of affected individuals may reflect much larger genetic risks acting via those mechanisms. We apply these ideas to a study of sisters of women with breast cancer. Among 5,091 distinct families of women reporting that exactly one grandmother had breast cancer, risk was skewed toward maternal grandmothers (p<0.0001, especially if the granddaughter was diagnosed between age 45 and 54. Maternal genetic effects, mitochondrial variants, or variant genes with parent-of-origin effects may influence risk of perimenopausal breast cancer.

  16. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    Science.gov (United States)

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  17. Towards a Coherent Theory of Project Alliancing: Discovering the System’s Complex Mechanisms Yielding Value for Money

    Directory of Open Access Journals (Sweden)

    Pertti Lahdenperä

    2017-06-01

    Full Text Available Alliancing is a relatively new construction project delivery method receiving increasing interest globally while also eliciting many questions about its effectiveness. That is why its operating logic should be clarified beyond the currently existing general views. Correspondingly, this paper aims to define the means and mechanisms which influence the capacity of alliancing to produce value for money. The work establishes the interlaced impact chains between formal basic solutions of alliancing and the key result areas defining the value-for-money ratio. This is made by focussing on a single alliance project and its procedural solutions and experiences. The case project of the study was an urban road tunnel under a city structure and the impact chains were explored by interviewing all eight members of the alliance leadership team covering all contracting parties. The two-stage personal interviews were conducted in accordance with the systematic modelling procedure resulting in eight cognitive maps which were then combined into a group map. The resulting model included around one hundred interlinked concepts initially, but was streamlined for the paper. Accordingly, alliancing offers a concrete framework which gives better than normal chances of success in the case of complex, challenging projects fraught with much uncertainty. Many diverse basic alliance solutions/features contribute to success, while each feature also seems to strengthen the impact of the others. This suggests that, at its best, pure project alliance is not only a coherent but also a holistic solution to challenging projects.

  18. Genetic and epigenetic mechanisms of epilepsy: a review

    Directory of Open Access Journals (Sweden)

    Chen T

    2017-07-01

    Full Text Available Tian Chen,1,* Mohan Giri,2,* Zhenyi Xia,3 Yadu Nanda Subedi,2 Yan Li1 1Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China; 2National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal; 3Department of Thoracic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: Epilepsy is a common episodic neurological disorder or condition characterized by recurrent epileptic seizures, and genetics seems to play a key role in its etiology. Early linkage studies have localized multiple loci that may harbor susceptibility genes to epilepsy, and mutational analyses have detected a number of mutations involved in both ion channel and nonion channel genes in patients with idiopathic epilepsy. Genome-wide studies of epilepsy have found copy number variants at 2q24.2-q24.3, 7q11.22, 15q11.2-q13.3, and 16p13.11-p13.2, some of which disrupt multiple genes, such as NRXN1, AUTS2, NLGN1, CNTNAP2, GRIN2A, PRRT2, NIPA2, and BMP5, implicated for neurodevelopmental disorders, including intellectual disability and autism. Unfortunately, only a few common genetic variants have been associated with epilepsy. Recent exome-sequencing studies have found some genetic mutations, most of which are located in nonion channel genes such as the LGI1, PRRT2, EFHC1, PRICKLE, RBFOX1, and DEPDC5 and in probands with rare forms of familial epilepsy, and some of these genes are involved with the neurodevelopment. Since epigenetics plays a role in neuronal function from embryogenesis and early brain development to tissue-specific gene expression, epigenetic regulation may contribute to the genetic mechanism of neurodevelopment through which a gene and the environment interacting with each other affect the development of epilepsy. This review focused on the analytic tools used to identify epilepsy and then provided a

  19. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    Science.gov (United States)

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  20. An Adaptive Test Sheet Generation Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan-Yu Lin

    2012-01-01

    Full Text Available For test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the near future.

  1. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  2. A Discovered Ducal Seal Does Not Belong to the Incorporation Charter for the City of Krakow Solving the Mystery Using Genetic Methods.

    Science.gov (United States)

    Lech, Tomasz

    2016-01-01

    The Incorporation Charter for the city of Krakow, the former capital of Poland, is one of the most valuable documents stored in the National Archives in Krakow. The document, which was written in 1257 on parchment, grants Krakow the Magdeburg rights and regulates its legal, statutory, economic and settlement-related aspects. The Charter was placed in the National Register of the Memory of the World UNESCO programme in 2014. A ducal seal, considered to be the lost seal detached from the Incorporation Charter, was found in the sphragistic collection after nearly 500 years. Unfortunately, it was uncertain whether the seal in question was indeed the missing part of the document. The aim of the study presented below was to solve this mystery. For this purpose, the parchment on which the Incorporation Charter was written was compared with the fragment of the parchment attached to the discovered seal. The study involved the analysis of selected mitochondrial DNA sequences and additional analysis at the level of nuclear DNA using microsatellite markers in the form of 11 STR (Short Tandem Repeat) loci, to identify the species and individual whose skin had been used to make the parchment. This analysis revealed that seal and parchment was from different individuals and thereby discovered that the seal was never a part of the Incorporation Charter. The study is further an example of informative DNA preservation in cultural heritage objects.

  3. Molecular mechanism and genetic determinants of buprofezin degradation.

    Science.gov (United States)

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    . However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin has not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in R. qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. Copyright © 2017 American Society for Microbiology.

  4. Phylogeography and genetic identification of the newly-discovered populations of torrent salamanders (Rhyacotriton cascade and R. variegatus) in the central Cascades (USA)

    Science.gov (United States)

    Wagner, R.S.; Miller, Mark P.; Haig, Susan M.

    2006-01-01

    Newly discovered populations of Rhyacotritonidae were investigated for taxonomic identity, hybridization, and sympatry. Species in the genus Rhyacotriton have been historically difficult to identify using morphological characters. Mitochondrial (mtDNA) 16S ribosomal RNA sequences (491 bp) and allozymes (6 loci) were used to identify the distribution of populations occurring intermediate between the previously described ranges of R. variegatus and R. cascadae in the central Cascade Mountain region of Oregon. Allozyme and mitochondrial sequence data both indicated the presence of two distinct evolutionary lineages, with each lineage corresponding to the allopatric distribution of R. cascadae and R. variegatus. Results suggest the Willamette River acts as a phylogeographic barrier limiting the distribution of both species, although we cannot exclude the possibility that reproductive isolation also exists that reinforces species' distributions. This study extends the previously described geographical ranges of both R. cascadae and R. variegatus and defines an eastern range limit for R. variegatus conservation efforts.

  5. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  6. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  7. Relationship among the repair mechanisms and the genetic recombination

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1987-12-01

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  8. Genetic resistance to marrow transplantation as a leukemia defense mechanism

    International Nuclear Information System (INIS)

    Gallagher, M.T.; Lotzova, E.; Trentin, J.J.

    1976-01-01

    The normal role of genetic resistance to bone marrow transplantation was investigated. It is demonstrated, using three different systems e.g. colony studies in the spleen, spleen weight studies and mortality studies, that irradiated or unirradiated mice which show genetic resistance are able to recognize and reject intravenously transplanted parental lymphoma cells, while they accept normal parental bone marrow cells. Either the lymphoma cells have a new antigen which is recognized and reacted to by the cells responsible for genetic resistance and, or, bone marrow cells have a low level of Hh antigen which is increased greatly by the lymphoma transformation process, thereby resulting in the rejection of the lymphoma cells by the cells responsible for genetic resistance. Lymphoma resistance as well as genetic resistance can be overridden by increasing the number of cells injected. Genetic resistance seems to be restricted to the spleen and bone marrow. There is evidence that the normal biological role for genetic resistance may be lymphoma-leukemia surveillance

  9. Genetic factors and molecular mechanisms in dry eye disease.

    Science.gov (United States)

    Lee, Ling; Garrett, Qian; Flanagan, Judith; Chakrabarti, Subhabrata; Papas, Eric

    2018-04-01

    Dry eye disease (DED) is a complex condition with a multifactorial etiology that can be difficult to manage successfully. While external factors are modifiable, treatment success is limited if genetic factors contribute to the disease. The purpose of this review is to compile research describing normal and abnormal ocular surface function on a molecular level, appraise genetic studies involving DED or DED-associated diseases, and introduce the basic methods used for conducting genetic epidemiology studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  11. Genetic Identification of Communist Crimes' Victims (1944-1956) Based on the Analysis of One of Many Mass Graves Discovered on the Powazki Military Cemetery in Warsaw, Poland.

    Science.gov (United States)

    Ossowski, Andrzej; Diepenbroek, Marta; Kupiec, Tomasz; Bykowska-Witowska, Milena; Zielińska, Grażyna; Dembińska, Teresa; Ciechanowicz, Andrzej

    2016-11-01

    As the result of the communist terror in Poland, during years 1944-1956 more than 50,000 people died. Their bodies were buried secretly, and most places are still unknown. The research presents the results of identification of people buried in one of many mass graves, which were found at the cemetery Powązki Military in Warsaw, Poland. Exhumation revealed the remains of eight people, among which seven were identified genetically. Well-preserved molars were used for the study. Reference material was collected from the closest living relatives. In one case, an exhumation of victim's parents had to be performed. DNA from swabs was extracted with a PrepFiler ® BTA Forensic DNA Extraction Kit and organic method. Autosomal, Y-STR amplification, and mtDNA sequencing were performed. The biostatistical calculations resulted in LR values from 1608 to 928 × 10 18 . So far, remains of more than 50 victims were identified. © 2016 American Academy of Forensic Sciences.

  12. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  13. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Science.gov (United States)

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  14. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation.

    Science.gov (United States)

    Beare, Paul A; Jeffrey, Brendan M; Long, Carrie M; Martens, Craig M; Heinzen, Robert A

    2018-03-01

    Coxiella burnetii is an intracellular pathogen that causes human Q fever, a disease that normally presents as a severe flu-like illness. Due to high infectivity and disease severity, the pathogen is considered a risk group 3 organism. Full-length lipopolysaccharide (LPS) is required for full virulence and disease by C. burnetii and is the only virulence factor currently defined by infection of an immunocompetent animal. Transition of virulent phase I bacteria with smooth LPS, to avirulent phase II bacteria with rough LPS, occurs during in vitro passage. Semi-rough intermediate forms are also observed. Here, the genetic basis of LPS phase conversion was investigated to obtain a more complete understanding of C. burnetii pathogenesis. Whole genome sequencing of strains producing intermediate and/or phase II LPS identified several common mutations in predicted LPS biosynthesis genes. After passage in broth culture for 30 weeks, phase I strains from different genomic groups exhibited similar phase transition kinetics and elevation of mutations in LPS biosynthesis genes. Targeted mutagenesis and genetic complementation using a new C. burnetii nutritional selection system based on lysine auxotrophy confirmed that six of the mutated genes were necessary for production of phase I LPS. Disruption of two of these genes in a C. burnetii phase I strain resulted in production of phase II LPS, suggesting inhibition of the encoded enzymes could represent a new therapeutic strategy for treatment of Q fever. Additionally, targeted mutagenesis of genes encoding LPS biosynthesis enzymes can now be used to construct new phase II strains from different genomic groups for use in pathogen-host studies at a risk group 2 level.

  15. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  16. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  17. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  18. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  19. A new genetic mechanism of natural gas accumulation.

    Science.gov (United States)

    Yang, Chengyu; Ni, Zhiyong; Wang, Tieguan; Chen, Zhonghong; Hong, Haitao; Wen, Long; Luo, Bing; Wang, Wenzhi

    2018-05-29

    Natural gas of organic origin is primarily biogenic or thermogenic; however, the formation of natural gas is occasionally attributed to hydrothermal activity. The Precambrian dolomite reservoir of the Anyue gas field is divided into three stages. Dolomite-quartz veins were precipitated after two earlier stages of dolomite deposition. Fluid inclusions in the dolomite and quartz are divided into pure methane (P-type), methane-bearing (M-type), aqueous (W-type), and solid bitumen-bearing (S-type) inclusions. The W-type inclusions within the quartz and buried dolomite homogenized between 107 °C and 223 °C. Furthermore, the trapping temperatures and pressures of the fluid (249 °C to 319 °C and 1619 bar to 2300 bar, respectively) are obtained from the intersections of the isochores of the P-type and the coeval W-type inclusions in the quartz. However, the burial history of the reservoir indicates that the maximum burial temperature did not exceed 230 °C. Thus, the generation of the natural gas was not caused solely by the burial of the dolomite reservoir. The results are also supported by the presence of paragenetic pyrobitumen and MVT lead-zinc ore. A coupled system of occasional invasion by hydrothermal fluids and burial of the reservoir may represent a new genetic model for natural gas accumulation in this gas field.

  20. Discovering the Solar System

    Science.gov (United States)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  1. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  2. Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae.

    Science.gov (United States)

    Chaguza, Chrispin; Cornick, Jennifer E; Everett, Dean B

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus.

  3. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms.

    Science.gov (United States)

    Lahola-Chomiak, Adrian A; Walter, Michael A

    2018-01-01

    We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  4. Toward a Predictive Framework for Convergent Evolution: Integrating Natural History, Genetic Mechanisms, and Consequences for the Diversity of Life.

    Science.gov (United States)

    Agrawal, Anurag A

    2017-08-01

    A charm of biology as a scientific discipline is the diversity of life. Although this diversity can make laws of biology challenging to discover, several repeated patterns and general principles govern evolutionary diversification. Convergent evolution, the independent evolution of similar phenotypes, has been at the heart of one approach to understand generality in the evolutionary process. Yet understanding when and why organismal traits and strategies repeatedly evolve has been a central challenge. These issues were the focus of the American Society of Naturalists Vice Presidential Symposium in 2016 and are the subject of this collection of articles. Although naturalists have long made inferences about convergent evolution and its importance, there has been confusion in the interpretation of the pattern of convergence. Does convergence primarily indicate adaptation or constraint? How often should convergence be expected? Are there general principles that would allow us to predict where and when and by what mechanisms convergent evolution should occur? What role does natural history play in advancing our understanding of general evolutionary principles? In this introductory article, I address these questions, review several generalizations about convergent evolution that have emerged over the past 15 years, and present a framework for advancing the study and interpretation of convergence. Perhaps the most important emerging conclusion is that the genetic mechanisms of convergent evolution are phylogenetically conserved; that is, more closely related species tend to share the same genetic basis of traits, even when independently evolved. Finally, I highlight how the articles in this special issue further develop concepts, methodologies, and case studies at the frontier of our understanding of the causes and consequences of convergent evolution.

  5. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  6. Discovering Phonemes of Bidayuh

    Directory of Open Access Journals (Sweden)

    Jecky Misieng

    2012-07-01

    Full Text Available There are generally three views of the notion of a phoneme. The structuralist view of the phoneme focuses on this language phenomenon as a phonetic reality. In discovering phonemes of a language, phonologists who hold this view will look for minimal contrasting pairs as a way to determine contrasting sounds of that language. They will also look for allophones or two sounds of the same phoneme which may appear in complementary distribution. This paper will discuss the possible application of the structuralist approach to analyzing the phonemes of a dialect of Bidayuh, one of the Malayo-Polynesian languages spoken in the northern region of Borneo.

  7. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Zhang Xiaowen

    2012-10-01

    Full Text Available Abstract Background The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. Results De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins

  8. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  9. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  10. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences

    Science.gov (United States)

    Tribble, Gena D; Kerr, Jennifer E; Wang, Bing-Yan

    2013-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host–microbe interactions associated with periodontal disease. PMID:23642116

  11. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Science.gov (United States)

    Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline

    2015-01-01

    How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of

  12. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Directory of Open Access Journals (Sweden)

    Robin Cristofari

    Full Text Available How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the

  13. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms

    NARCIS (Netherlands)

    Burger, N.B.; Bekker, M.N.; Groot, C.J. de; Christoffels, V.M.; Haak, M.C.

    2015-01-01

    This overview provides insight into the underlying genetic mechanism of the high incidence of cardiac defects in fetuses with increased nuchal translucency (NT). Nuchal edema, the morphological equivalent of increased NT, is likely to result from abnormal lymphatic development and is strongly

  14. I'm so tired: biological and genetic mechanisms of cancer-related fatigue

    NARCIS (Netherlands)

    Barsevick, Andrea; Frost, Marlene; Zwinderman, Aeilko; Hall, Per; Halyard, Michele; Abertnethy, Amy P.; Baas, Frank; Barsevick, Andrea M.; Bartels, Meike; Boomsma, Dorret I.; Chauhan, Cynthia; Cleeland, Charles S.; Dueck, Amylou C.; Frost, Marlene H.; Halyard, Michele Y.; Klepstad, Pål; Martin, Nicholas G.; Miaskowski, Christine; Mosing, Miriam; Movsas, Benjamin; van Noorden, Cornelis J. F.; Patrick, Donald L.; Pedersen, Nancy L.; Ropka, Mary E.; Shi, Quiling; Shinozaki, Gen; Singh, Jasvinder A.; Sloan, Jeff A.; Sprangers, Mirjam A. G.; Veenhoven, Ruut; Yang, Ping

    2010-01-01

    Objective The goal of this paper is to discuss cancer-related fatigue (CRF) and address issues related to the investigation into potential biological and genetic causal mechanisms. The objectives are to: (1) describe CRF as a component of quality of life (QOL); (2) address measurement issues that

  15. Top quark discovered

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Nine months after a careful announcement of tentative evidence for the long-awaited sixth 'top' quark, physicists from the CDF and DO experiments at Fermilab's Tevatron proton-antiproton collider declared on 2 March that they had finally discovered the top quark. Last year (June 1994, page 1), the CDF experiment at the Tevatron reported a dozen candidate top events. These, said CDF, had all the characteristics expected of top, but the difficulties of extracting the tiny signal from a trillion proton-antiproton collisions made them shy of claiming a discovery. For its part, the companion DO Tevatron experiment reported a few similar events but were even more guarded about their interpretation as top quarks. Just after these hesitant announcements, performance at the Tevatron improved dramatically last summer. After the commissioning of a new linear accelerator and a magnet realignment, the machine reached a new world record proton-antiproton collision luminosity of 1.28 x 10 31 per sq cm per s, ten times that originally planned. Data began to pour in at an unprecedented rate and the data sample grew to six trillion collisions. Luminosity has subsequently climbed to 1.7 x 10 31 . The top quark is the final letter in the alphabet of Standard Model particles. According to this picture, all matter is composed of six stronglyinteracting subnuclear particles, the quarks, and six weakly interacting particles, the leptons. Both sextets are neatly arranged as three pairs in order of increasing mass. The fifth quark, the 'beauty' or 'b' quark, was also discovered at Fermilab, back in 1977. Since then physicists have been eagerly waiting for the top to turn up, but have been frustrated by its heaviness - the top is some 40 times the mass of its 'beautiful' partner. Not only is the top quark the heaviest by far, but it is the only quark which has been actively hunted. After the quarry was glimpsed last year, the net has now been

  16. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  17. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms

    Directory of Open Access Journals (Sweden)

    Adrian A. Lahola-Chomiak

    2018-01-01

    Full Text Available We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS and pigmentary glaucoma (PG. As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  18. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    Science.gov (United States)

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  19. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    Science.gov (United States)

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  20. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  1. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Daniel J. Guerra

    2011-01-01

    Full Text Available Autism spectrum disorders (ASDs have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  2. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.

    Directory of Open Access Journals (Sweden)

    Aviv Bergman

    2007-08-01

    Full Text Available An unrealized potential to understand the genetic basis of aging in humans, is to consider the immense survival advantage of the rare individuals who live 100 years or more. The Longevity Gene Study was initiated in 1998 at the Albert Einstein College of Medicine to investigate longevity genes in a selected population: the "oldest old" Ashkenazi Jews, 95 years of age and older, and their children. The study proved the principle that some of these subjects are endowed with longevity-promoting genotypes. Here we reason that some of the favorable genotypes act as mechanisms that buffer the deleterious effect of age-related disease genes. As a result, the frequency of deleterious genotypes may increase among individuals with extreme lifespan because their protective genotype allows disease-related genes to accumulate. Thus, studies of genotypic frequencies among different age groups can elucidate the genetic determinants and pathways responsible for longevity. Borrowing from evolutionary theory, we present arguments regarding the differential survival via buffering mechanisms and their target age-related disease genes in searching for aging and longevity genes. Using more than 1,200 subjects between the sixth and eleventh decades of life (at least 140 subjects in each group, we corroborate our hypotheses experimentally. We study 66 common allelic site polymorphism in 36 candidate genes on the basis of their phenotype. Among them we have identified a candidate-buffering mechanism and its candidate age-related disease gene target. Previously, the beneficial effect of an advantageous cholesteryl ester transfer protein (CETP-VV genotype on lipoprotein particle size in association with decreased metabolic and cardiovascular diseases, as well as with better cognitive function, have been demonstrated. We report an additional advantageous effect of the CETP-VV (favorable genotype in neutralizing the deleterious effects of the lipoprotein(a (LPA gene

  3. Malicious Botnet Survivability Mechanism Evolution Forecasting by Means of a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nikolaj Goranin

    2012-04-01

    Full Text Available Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks.

  4. Genetic instability in budding and fission yeast—sources and mechanisms

    Science.gov (United States)

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-01-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. PMID:26109598

  5. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  6. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  7. Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants.

    Science.gov (United States)

    Pontes, Daniela Santos; de Araujo, Rodrigo Santos Aquino; Dantas, Natalina; Scotti, Luciana; Scotti, Marcus Tullius; de Moura, Ricardo Olimpio; Mendonca-Junior, Francisco Jaime Bezerra

    2018-01-01

    The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.

    Science.gov (United States)

    Wu, Dan; Li, Ang; Ma, Fang; Yang, Jixian; Xie, Yutong

    2016-07-01

    Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.

  9. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction

    Directory of Open Access Journals (Sweden)

    Bianca Jupp

    2013-03-01

    Full Text Available Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.

  10. Epigenetics and genetics in endometrial cancer: new carcinogenic mechanisms and relationship with clinical practice.

    Science.gov (United States)

    Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Susumu, Nobuyuki; Aoki, Daisuke

    2012-04-01

    Endometrial cancer is the seventh most common cancer worldwide among females. An increased incidence and a younger age of patients are also predicted to occur, and therefore elucidation of the pathological mechanisms is important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, epigenetic mechanisms have been examined. Silencing of genes by DNA hypermethylation, hereditary epimutation of DNA mismatch repair genes and regulation of gene expression by miRNAs may underlie carcinogenesis in endometrial cancer. New therapies include targeting epigenetic changes using histone deacetylase inhibitors. Some cases of endometrial cancer may also be hereditary. Thus, patients with Lynch syndrome which is a hereditary disease, have a higher risk for developing endometrial cancer than the general population. Identification of such disease-related genes may contribute to early detection and prevention of endometrial cancer.

  11. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2018-01-01

    Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic...

  12. Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism.

    Science.gov (United States)

    Feng, Youjun

    2018-03-09

    Polymyxins, a group of cationic antimicrobial polypeptides, act as a last-resort defense against lethal infections by carbapenem-resistant Gram-negative pathogens. Recent emergence and fast spread of mobilized colistin resistance determinant mcr-1 argue the renewed interest of colistin in clinical therapies, threatening global public health and agriculture production. This mini-review aims to present an updated overview of mcr-1, covering its global dissemination, the diversity of its hosts/plasmid reservoirs, the complexity in the genetic environment adjacent to mcr-1, the appearance of new mcr-like genes, and the molecular mechanisms for mobilized colistin resistance determinant 1/2 (MCR-1/2).

  13. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  14. Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions.

    Science.gov (United States)

    Nadolny, Robyn; Gaff, Holly; Carlsson, Jens; Gauthier, David

    2015-10-01

    Two species of ixodid tick, Ixodes affinis Neumann and Amblyomma maculatum Koch, are simultaneously expanding their ranges throughout the mid-Atlantic region of the US. Although we have some understanding of the ecology and life history of these species, the ecological mechanisms governing where and how new populations establish and persist are unclear. To assess population connectivity and ancestry, we sequenced a fragment of the 16S mitochondrial rRNA gene from a representative sample of individuals of both species from populations throughout the eastern US. We found that despite overlapping host preferences throughout ontogeny, each species exhibited very different genetic and geographic patterns of population establishment and connectivity. I. affinis was of two distinct mitochondrial clades, with a clear geographic break separating northern and southern populations. Both I. affinis populations showed evidence of recent expansion, although the southern population was more genetically diverse, indicating a longer history of establishment. A. maculatum exhibited diverse haplotypes that showed no significant relationship with geographic patterns and little apparent connectivity between sites. Heteroplasmy was also observed in the 16S mitochondrial rRNA gene in 3.5% of A. maculatum individuals. Genetic evidence suggests that these species rely on different key life stages to successfully disperse into novel environments, and that host vagility, habitat stability and habitat connectivity all play critical roles in the establishment of new tick populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  16. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.

    Science.gov (United States)

    Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry

    2018-03-01

    Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia

  17. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  18. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

    Directory of Open Access Journals (Sweden)

    Grzegorz eKreiner

    2015-03-01

    Full Text Available Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by identified genetic mutations, the direct pathways from gene alteration to final cell death have not yet been fully elucidated. Advancements in genetic engineering have provided many transgenic mice that are used as an alternative to pharmacological models of neurodegenerative diseases. Surprisingly, even the models reiterating the same causative mutations do not fully recapitulate the inevitable neuronal loss, and some fail to even show phenotypic alterations, which suggests the possible existence of compensatory mechanisms. A better evaluation of these mechanisms may not only help us to explain why neurodegenerative diseases are mostly late-onset disorders in humans but may also provide new markers and targets for novel strategies designed to extend neuronal function and survival. The aim of this mini-review is to draw attention to this under-explored field in which investigations may reasonably contribute to unveiling hidden reserves in the organism.

  19. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Design Optimization of Steering Mechanisms for Articulated Off-Road Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Chen Zhou

    2018-02-01

    Full Text Available Two cylinders arranged symmetrically on a frame have become a major form of steering mechanism for articulated off-road vehicles (AORVs. However, the differences of stroke and arm lead to pressure fluctuation, vibration noise, and a waste of torque. In this paper, the differences of stroke and arm are reduced based on a genetic algorithm (GA. First, the mathematical model of the steering mechanism is put forward. Then, the difference of stroke and arm are optimized using a GA. Finally, a FW50GLwheel loader is used as an example to demonstrate the proposed GA-based optimization method, and its effectiveness is verified by means of automatic dynamic analysis of mechanical systems (ADAMS. The stroke difference of the steering hydraulic cylinders was reduced by 92% and the arm difference reached a decrease of 78% through GA optimization, in comparison with unoptimized structures. The simulation result shows that the steering mechanism optimized by GA behaved better than by previous methods.

  1. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  2. Genetics of nonsyndromic obesity.

    Science.gov (United States)

    Lee, Yung Seng

    2013-12-01

    Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.

  3. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  4. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  5. Discovering Hands - México

    OpenAIRE

    Salamanca Cárdenas, Daniela; Castelblanco Domínguez, Junio Andrés; Aguilar Ardila, Laura Andrea

    2016-01-01

    El modelo de Discovering Hands ha sido reconocido internacionalmente como un proyecto innovador que se ha expandido por diferentes países del mundo, como Austria, y se ha empezado a estudiar la propuesta en países como República Checa, India y Colombia. (Discovering Hands, 2016). Esto se debe a que no solo mejora el tratamiento de cáncer de mama, sino que también reduce los costos totales de tratamiento de la enfermedad y aumenta la fuerza laborar de los países donde esté presente. Al represe...

  6. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  7. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    Science.gov (United States)

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  8. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.

    Science.gov (United States)

    Bettencourt, Conceição; Hensman-Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas-Gómez, Petra; García-Velázquez, Lizbeth Esmeralda; Alonso-Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J; Jones, Lesley

    2016-06-01

    The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome-wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single-nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10(-5) ). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10(-5) ) and all SCAs (p = 2.22 × 10(-4) ) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10(-5) ), all in the same direction as in the HD GWAS. We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983-990. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  9. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  10. Optimal synthesis of four-bar steering mechanism using AIS and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Ettefagh, Mir Mohammad; Javash, Morteza Saeidi [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-06-15

    Synthesis of four-bar Ackermann steering mechanism was considered as an optimization problem for generating the best function between input and output links. The steering mechanism was designed through two heuristic optimization methods, namely, artificial immune system (AIS) algorithm and genetic algorithm (GA). The optimization was implemented using the two methods, length was selected as optimization parameter in the first method, whereas precision point distribution was considered in the second method. Two of the links in the first method had the same length to achieve a symmetric mechanism; one of these lengths was considered as optimization parameter. Five precision points were considered in the precision point distribution method, one of which was in the straight line condition, whereas the others were symmetric. The obtained results showed that the AIS algorithm can generate the closest function to the desired function in the first method. By contrast, GA can generate the closest function to the desired function with the least error in the second method.

  11. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Investigation of balancing problem for a planar mechanism using genetic algorithm

    International Nuclear Information System (INIS)

    Erkaya, Selcuk

    2013-01-01

    In this study, optimal balancing of a planar articulated mechanism is investigated to minimize the shaking force and moment fluctuations. Balancing of a four-bar mechanism is formulated as an optimization problem. On the other hand, an objective function based on the sub-components of shaking force and moment is constituted, and design variables consisting of kinematic and dynamic parameters are defined. Genetic algorithm is used to solve the optimization problem under the appropriate constraints. By using commercial simulation software, optimized values of design variables are also tested to evaluate the effectiveness of the proposed optimization process. This work provides a practical method for reducing the shaking force and moment fluctuations. The results show that both the structure of objective function and particularly the selection of weighting factors have a crucial role to obtain the optimum values of design parameters. By adjusting the value of weighting factor according to the relative sensitivity of the related term, there is a certain decrease at the shaking force and moment fluctuations. Moreover, these arrangements also decrease the initiative of mechanism designer on choosing the values of weighting factors.

  13. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions.

    Science.gov (United States)

    Wang, Qi; Liu, Jinge; Zhu, Hongyan

    2018-01-01

    Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.

  14. Heterozygosity level and its relationship with genetic variability mechanisms in beans

    Directory of Open Access Journals (Sweden)

    Rita Carolina de Melo

    Full Text Available ABSTRACT Heterozygosity is an extremely important resource in early breeding programs using autogamous plants because it is usually associated with the presence of genetic variability. Induced mutation and artificial hybridization can increase distinctly the proportion of loci in heterozygosis. This study aimed to compare segregating and mutant populations and relate the mechanisms used to generate variability with their respective heterozygosity levels tested. The treatments mutant populations (M2, M3, M4, M5, M6 and M7, segregating populations (F4, F5 and F6 and lines (BRS Pérola and IPR Uirapuru were evaluated by multivariate analysis and compared by orthogonal contrasts. The canonical discriminant analysis revealed which response variables contributed to differentiate the treatments assessed. All orthogonal contrasts involving the mutant populations showed significant differences, except the contrast between M2 vs. M3, M4, M5, M6, M7. The orthogonal contrast between the mutant and segregating populations denotes a significant variation in the interest in genetic breeding. The traits stem diameter (1.41 and number of legumes per plant (2.72 showed the highest canonical weight in this contrast. Conversely, number of grains per plant (-3.58 approached the mutant and segregating populations. No significant difference was observed in the linear comparison of means F5 vs. F6. The traits are fixed early in the segregant populations, unlike the mutant populations. Comparatively, induced mutation provides more loci in heterozygosis than artificial hybridization. Selection pressure should vary according to the variability creation mechanism used at the beginning of the breeding program.

  15. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  16. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva

    Full Text Available BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS and acute myeloid leukaemia (AML. Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3 and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1 and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  17. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Science.gov (United States)

    Silva, Gabriela; Cardoso, Bruno A; Belo, Hélio; Almeida, António Medina

    2013-01-01

    Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  18. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.

    Science.gov (United States)

    Commandeur, Arno E; Styer, Aaron K; Teixeira, Jose M

    2015-01-01

    Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome

  19. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  20. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  1. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  2. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations.

    Science.gov (United States)

    Moysés-Oliveira, Mariana; Guilherme, Roberta Dos Santos; Dantas, Anelisa Gollo; Ueta, Renata; Perez, Ana Beatriz; Haidar, Mauro; Canonaco, Rosane; Meloni, Vera Ayres; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-05-01

    To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility. Retrospective and case-control study. University-based research laboratory. Three women with balanced X-autosome translocation and primary amenorrhea. Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction. Karyotype, copy number variation, breakpoint mapping, and gene expression levels. All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region. The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.

    Science.gov (United States)

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L

    2017-12-01

    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  4. Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Predrag Kalajdzic

    Full Text Available Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w(-]3R2 resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1 located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1 has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results.

  5. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  6. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach.

    Science.gov (United States)

    Zhi, Xiao-Yang; Jiang, Zhao; Yang, Ling-Ling; Huang, Ying

    2017-02-01

    The pangenome of a bacterial species population is formed by genetic reduction and genetic expansion over the long course of evolution. Gene loss is a pervasive source of genetic reduction, and (exogenous and endogenous) gene gain is the main driver of genetic expansion. To understand the genetic innovation and speciation of the family Corynebacteriaceae, which cause a wide range of serious infections in humans and animals, we analyzed the pangenome of this family, and reconstructed its phylogeny using a phylogenomics approach. Genetic variations have occurred throughout the whole evolutionary history of the Corynebacteriaceae. Gene loss has been the primary force causing genetic changes, not only in terms of the number of protein families affected, but also because of its continuity on the time series. The variation in metabolism caused by these genetic changes mainly occurred for membrane transporters, two-component systems, and metabolism related to amino acids and carbohydrates. Interestingly, horizontal gene transfer (HGT) not only caused changes related to pathogenicity, but also triggered the acquisition of antimicrobial resistance. The Darwinian theory of evolution did not adequately explain the effects of dispersive HGT and/or gene loss in the evolution of the Corynebacteriaceae. These findings provide new insight into the evolution and speciation of Corynebacteriaceae and advance our understanding of the genetic innovation in microbial populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  8. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  9. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  10. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  11. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  12. The power of the age standardized incidence rate to discover the gene link between cancer diseases: development of a new epidemiological method to save money, time, and effort for genetic scientists.

    Science.gov (United States)

    Alghamdi, Ibrahim G; Hussain, Issam I; Alghamdi, Mohamed S; El-Sheemy, Mohammed A

    2015-01-01

    This study provides an incipient epidemiological rule using the concept of direct method of standardization to determine the genetic link between cancer diseases. The overall 8 or 10 years age standardized incidence rate (ASIR) for both cancer diseases, for example (A) and (B) should be calculated for all regions of the country. A line chart should be used to display the overall ASIR trend of both diseases (A and B). Pearson's correlation can be used to determine the strength of the association between the overall ASIRs of both diseases. The overlap or opposite direction of the overall ASIR trend of both diseases (A and B) should be determined and studied for possible associations between cancer diseases. If the trend of the overall 8 or 10 years ASIR of a disease (A) follows that of disease (B) in all regions of the country, then the genes of patients with both diseases (A and B) will be highly homogeneous, and they should be studied in the region with the highest and lowest overall ASIR for both diseases (A and B). In addition, if there is an opposite direction or overlapping trend for both diseases (A and B) in certain regions of the country or among specific groups of people with the same demographic characteristics, then the genes of patients will be investigated for both diseases to identify the potential gene link between cancer diseases. This study revealed that the overall ASIR trends of female breast cancer, prostate cancer, and ovarian cancer are very similar in all regions of Saudi Arabia and England. Our epidemiological evidence helps to save money, time, and effort for testing the potential gene link between cancer diseases.

  13. The power of the age standardized incidence rate to discover the gene link between cancer diseases: development of a new epidemiological method to save money, time, and effort for genetic scientists

    Science.gov (United States)

    Alghamdi, Ibrahim G; Hussain, Issam I; Alghamdi, Mohamed S; El-Sheemy, Mohammed A

    2015-01-01

    Background This study provides an incipient epidemiological rule using the concept of direct method of standardization to determine the genetic link between cancer diseases. Methods The overall 8 or 10 years age standardized incidence rate (ASIR) for both cancer diseases, for example (A) and (B) should be calculated for all regions of the country. A line chart should be used to display the overall ASIR trend of both diseases (A and B). Pearson’s correlation can be used to determine the strength of the association between the overall ASIRs of both diseases. The overlap or opposite direction of the overall ASIR trend of both diseases (A and B) should be determined and studied for possible associations between cancer diseases. Results If the trend of the overall 8 or 10 years ASIR of a disease (A) follows that of disease (B) in all regions of the country, then the genes of patients with both diseases (A and B) will be highly homogeneous, and they should be studied in the region with the highest and lowest overall ASIR for both diseases (A and B). In addition, if there is an opposite direction or overlapping trend for both diseases (A and B) in certain regions of the country or among specific groups of people with the same demographic characteristics, then the genes of patients will be investigated for both diseases to identify the potential gene link between cancer diseases. Conclusion This study revealed that the overall ASIR trends of female breast cancer, prostate cancer, and ovarian cancer are very similar in all regions of Saudi Arabia and England. Our epidemiological evidence helps to save money, time, and effort for testing the potential gene link between cancer diseases. PMID:25878508

  14. The power of the age standardized incidence rate to discover the gene link between cancer diseases: development of a new epidemiological method to save money, time, and effort for genetic scientists

    Directory of Open Access Journals (Sweden)

    Alghamdi IG

    2015-03-01

    Full Text Available Ibrahim G Alghamdi,1,2 Issam I Hussain,1 Mohamed S Alghamdi,3 Mohammed A El-Sheemy4 1School of Life Sciences, University of Lincoln, Lincoln, UK; 2College of Medicine, University of Al-Baha, Al-Baha, Saudi Arabia; 3Ministry of Health, General Directorate of Health Affairs Al-Baha, Al-Baha, Saudi Arabia; 4Lincoln Hospital, Research and Development United, Lincolnshire Hospitals NHS Trust, Lincoln, UK Background: This study provides an incipient epidemiological rule using the concept of direct method of standardization to determine the genetic link between cancer diseases. Methods: The overall 8 or 10 years age standardized incidence rate (ASIR for both cancer diseases, for example (A and (B should be calculated for all regions of the country. A line chart should be used to display the overall ASIR trend of both diseases (A and B. Pearson’s correlation can be used to determine the strength of the association between the overall ASIRs of both diseases. The overlap or opposite direction of the overall ASIR trend of both diseases (A and B should be determined and studied for possible associations between cancer diseases. Results: If the trend of the overall 8 or 10 years ASIR of a disease (A follows that of disease (B in all regions of the country, then the genes of patients with both diseases (A and B will be highly homogeneous, and they should be studied in the region with the highest and lowest overall ASIR for both diseases (A and B. In addition, if there is an opposite direction or overlapping trend for both diseases (A and B in certain regions of the country or among specific groups of people with the same demographic characteristics, then the genes of patients will be investigated for both diseases to identify the potential gene link between cancer diseases. Conclusion: This study revealed that the overall ASIR trends of female breast cancer, prostate cancer, and ovarian cancer are very similar in all regions of Saudi Arabia and England

  15. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    Science.gov (United States)

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  16. Genome-Wide Association Analyses Highlight the Potential for Different Genetic Mechanisms for Litter Size Among Sheep Breeds

    Science.gov (United States)

    Xu, Song-Song; Gao, Lei; Xie, Xing-Long; Ren, Yan-Ling; Shen, Zhi-Qiang; Wang, Feng; Shen, Min; Eyϸórsdóttir, Emma; Hallsson, Jón H.; Kiseleva, Tatyana; Kantanen, Juha; Li, Meng-Hua

    2018-01-01

    Reproduction is an important trait in sheep breeding as well as in other livestock. However, despite its importance the genetic mechanisms of litter size in domestic sheep (Ovis aries) are still poorly understood. To explore genetic mechanisms underlying the variation in litter size, we conducted multiple independent genome-wide association studies in five sheep breeds of high prolificacy (Wadi, Hu, Icelandic, Finnsheep, and Romanov) and one low prolificacy (Texel) using the Ovine Infinium HD BeadChip, respectively. We identified different sets of candidate genes associated with litter size in different breeds: BMPR1B, FBN1, and MMP2 in Wadi; GRIA2, SMAD1, and CTNNB1 in Hu; NCOA1 in Icelandic; INHBB, NF1, FLT1, PTGS2, and PLCB3 in Finnsheep; ESR2 in Romanov and ESR1, GHR, ETS1, MMP15, FLI1, and SPP1 in Texel. Further annotation of genes and bioinformatics analyses revealed that different biological pathways could be involved in the variation in litter size of females: hormone secretion (FSH and LH) in Wadi and Hu, placenta and embryonic lethality in Icelandic, folliculogenesis and LH signaling in Finnsheep, ovulation and preovulatory follicle maturation in Romanov, and estrogen and follicular growth in Texel. Taken together, our results provide new insights into the genetic mechanisms underlying the prolificacy trait in sheep and other mammals, suggesting targets for selection where the aim is to increase prolificacy in breeding projects.

  17. Recent insights into the genetic basis of systemic lupus erythematosus

    OpenAIRE

    Moser, Kathy L.; Kelly, Jennifer A.; Lessard, Christopher J.; Harley, John B.

    2009-01-01

    Genetic variation was first shown to be part of the cause of systemic lupus erythematosus (SLE or lupus) in the 1970s with associations in the human leukocyte antigen (HLA) region. Almost four decades later, and with the help of increasingly powerful genetic approaches, more than 25 genes are now known to contribute to the mechanisms that predispose individuals to lupus. Over half of these loci have been discovered in the past two years, underscoring the extraordinary success of recent genome...

  18. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms.

    Directory of Open Access Journals (Sweden)

    Eric J Foss

    2011-09-01

    Full Text Available Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.

  19. Towards precision medicine: discovering novel gynecological cancer biomarkers and pathways using linked data.

    Science.gov (United States)

    Jha, Alokkumar; Khan, Yasar; Mehdi, Muntazir; Karim, Md Rezaul; Mehmood, Qaiser; Zappa, Achille; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2017-09-19

    Next Generation Sequencing (NGS) is playing a key role in therapeutic decision making for the cancer prognosis and treatment. The NGS technologies are producing a massive amount of sequencing datasets. Often, these datasets are published from the isolated and different sequencing facilities. Consequently, the process of sharing and aggregating multisite sequencing datasets are thwarted by issues such as the need to discover relevant data from different sources, built scalable repositories, the automation of data linkage, the volume of the data, efficient querying mechanism, and information rich intuitive visualisation. We present an approach to link and query different sequencing datasets (TCGA, COSMIC, REACTOME, KEGG and GO) to indicate risks for four cancer types - Ovarian Serous Cystadenocarcinoma (OV), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) - covering the 16 healthy tissue-specific genes from Illumina Human Body Map 2.0. The differentially expressed genes from Illumina Human Body Map 2.0 are analysed together with the gene expressions reported in COSMIC and TCGA repositories leading to the discover of potential biomarkers for a tissue-specific cancer. We analyse the tissue expression of genes, copy number variation (CNV), somatic mutation, and promoter methylation to identify associated pathways and find novel biomarkers. We discovered twenty (20) mutated genes and three (3) potential pathways causing promoter changes in different gynaecological cancer types. We propose a data-interlinked platform called BIOOPENER that glues together heterogeneous cancer and biomedical repositories. The key approach is to find correspondences (or data links) among genetic, cellular and molecular features across isolated cancer datasets giving insight into cancer progression from normal to diseased tissues. The proposed BIOOPENER platform enriches mutations by filling in

  20. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    Science.gov (United States)

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  1. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    Science.gov (United States)

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    International Nuclear Information System (INIS)

    Rong Bao; Rui Xiaoting; Tao Ling

    2012-01-01

    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  3. Glowing Hot Transiting Exoplanet Discovered

    Science.gov (United States)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  4. Mutant butterflies discovered at Fukushima

    International Nuclear Information System (INIS)

    Chauveau, L.

    2012-01-01

    A Japanese study has shown that malformations are more and more common in butterflies (Zizeeria maha specie) leaving near the damaged nuclear plant of Fukushima Daiichi. A population of 144 butterflies were caught in 10 villages in a radius of 200 km around Fukushima in may 2011, the ratio of malformations was 12.4%. Obvious malformations were withered antennas and wings. In september 2011 a population of 238 butterflies were caught in the same places and the ratio of malformations was then 28.1%. The increase of the malformation ratio could be explained by a cumulative effect of the radiation exposition. In a second experiment, a population of butterflies was caught in a region non-affected by the radioactive contamination and was submitted in laboratory to radiations similar to that of the contamination around Fukushima and similar malformations appeared. The conclusion of the study is that radionuclides released during the Fukushima accident have caused genetic and physiological damages to this butterfly specie. (A.C.)

  5. Blue eyes in lemurs and humans: same phenotype, different genetic mechanism

    DEFF Research Database (Denmark)

    Bradley, Brenda J; Pedersen, Anja; Mundy, Nicholas I

    2009-01-01

    Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work...... on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might...... have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding...

  6. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.

    Science.gov (United States)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-12-23

    Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.

  7. Eliciting Autoimmunity to Ovarian Tumors in Mice by Genetic Disruption of T Cell Tolerance Mechanisms

    National Research Council Canada - National Science Library

    Nelson, Brad H

    2005-01-01

    Research in the fields of basic immunology and autoimmunity has identified several distinct mechanisms through which immune tolerance is established and maintained in the normal host, and additional...

  8. Symposium on Using Mechanics to Discover New Materials. Annual Technical Meeting of the Society of Engineering Science (45th) held in Urbana-Champaign, Illinois on 12-15 October 2008

    Science.gov (United States)

    2008-12-21

    University Antonio DeSimone, SISSA, Italy Background The recent years have seen numerous examples where mechanics, in conjunction with systematic...4. Raffaella Rizzoni, University of Ferrara 5. Liping Liu, University of Houston 6. L. Ben Freund, Brown University 7. William S. Klug... Ferrara Mattia Merlin Department of Engineering, University of Ferrara We investigate, both from an experimental and a theoretical point ofview

  9. Mechanisms of population heterogeneity among molting common mergansers on Kodiak Island, Alaska: Implications for genetic assessments of migratory connectivity

    Science.gov (United States)

    Pearce, John M.; Zwiefelhofer, Denny; Maryanski, Nate

    2009-01-01

    Quantifying population genetic heterogeneity within nonbreeding aggregations can inform our understanding of patterns of site fidelity, migratory connectivity, and gene flow between breeding and nonbreeding areas. However, characterizing mechanisms that contribute to heterogeneity, such as migration and dispersal, is required before site fidelity and migratory connectivity can be assessed accurately. We studied nonbreeding groups of Common Mergansers (Mergus merganser) molting on Kodiak Island, Alaska, from 2005 to 2007, using banding data to assess rates of recapture, mitochondrial (mt) DNA to determine natal area, and nuclear microsatellite genotypes to assess dispersal. Using baseline information from differentiated mtDNA haplogroups across North America, we were able to assign individuals to natal regions and document population genetic heterogeneity within and among molting groups. Band-recovery and DNA data suggest that both migration from and dispersal among natal areas contribute to admixed groups of males molting on Kodiak Island. A lack of differentiation in the Common Merganser's nuclear, bi-parentally inherited DNA, observed across North America, implies that dispersal can mislead genetic assessments of migratory connectivity and assignments of nonbreeding individuals to breeding areas. Thus multiple and independent data types are required to account for such behaviors before accurate assessments of migratory connectivity can be made.

  10. Distributed genetic process mining

    NARCIS (Netherlands)

    Bratosin, C.C.; Sidorova, N.; Aalst, van der W.M.P.

    2010-01-01

    Process mining aims at discovering process models from data logs in order to offer insight into the real use of information systems. Most of the existing process mining algorithms fail to discover complex constructs or have problems dealing with noise and infrequent behavior. The genetic process

  11. Discovering workflow nets using integer linear programming

    NARCIS (Netherlands)

    van Zelst, S.J.; van Dongen, B.F.; van der Aalst, W.M.P.; Verbeek, H.M.W.

    Process mining is concerned with the analysis, understanding and improvement of business processes. Process discovery, i.e. discovering a process model based on an event log, is considered the most challenging process mining task. State-of-the-art process discovery algorithms only discover local

  12. Perspectives of genetic engineering in radiobiology

    International Nuclear Information System (INIS)

    Khanson, K.P.; Zvonareva, N.B.; Evtushenko, V.I.

    1988-01-01

    Present evidence on the use of genetic engineering methods in studying the molecular mechanism of radiation damage and repair of DNA, as well as radiation mutagenesis and carcinogenesis has been summarized. The new approach to radiobiological research has proved to be extremely fruitful. Some previously unknown types of structural disorders in DNA molecule have been discovered, some repair genes isolated and their primary structure established, some aspects of radiation mutagenesis elucidated, and research into disiphering the molecular bases of neoplastic transformations of exposed cells are being successfully investigated. The perspectives of using genetic engineering methods in radiobiology are discussed

  13. Cancer genetics meets biomolecular mechanism-bridging an age-old gulf.

    Science.gov (United States)

    González-Sánchez, Juan Carlos; Raimondi, Francesco; Russell, Robert B

    2018-02-01

    Increasingly available genomic sequencing data are exploited to identify genes and variants contributing to diseases, particularly cancer. Traditionally, methods to find such variants have relied heavily on allele frequency and/or familial history, often neglecting to consider any mechanistic understanding of their functional consequences. Thus, while the set of known cancer-related genes has increased, for many, their mechanistic role in the disease is not completely understood. This issue highlights a wide gap between the disciplines of genetics, which largely aims to correlate genetic events with phenotype, and molecular biology, which ultimately aims at a mechanistic understanding of biological processes. Fortunately, new methods and several systematic studies have proved illuminating for many disease genes and variants by integrating sequencing with mechanistic data, including biomolecular structures and interactions. These have provided new interpretations for known mutations and suggested new disease-relevant variants and genes. Here, we review these approaches and discuss particular examples where these have had a profound impact on the understanding of human cancers. © 2018 Federation of European Biochemical Societies.

  14. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  15. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  16. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy.

    Science.gov (United States)

    Migliavacca, Roberta; Espinal, Paula; Principe, Luigi; Drago, Monica; Fugazza, Giulia; Roca, Ignasi; Nucleo, Elisabetta; Bracco, Silvia; Vila, Jordi; Pagani, Laura; Luzzaro, Francesco

    2013-02-01

    The aim of this study was to characterize the resistance mechanisms and genetic relatedness of 21 carbapenem-resistant Acinetobacter baumannii blood isolates collected in Italy during a 1-year multicenter prospective surveillance study. Genes coding for carbapenemase production were identified by polymerase chain reaction (PCR) and sequencing. Pulsed-field gel electrophoresis (PFGE), multiplex PCRs for group identification, and multilocus sequence typing (MLST) were used to determine genetic relationships. Carbapenem resistance was consistently related to the production of oxacillinases, mostly the plasmid-mediated OXA-58 enzyme. Strains producing the OXA-23 enzyme (chromosomally mediated) were also detected. Seven PFGE clones were identified, some of which being related to international (ICL- I and ICL-II) or national clonal lineages. Multiplex PCRs identified 4 different groups (group 2 being dominant), further distinguishable in 6 sequence types by MLST. The heterogeneity of profiles highlights the diffusion of international and national clonal lineages in Italy. Continuous surveillance is needed for monitoring the spread of these worrisome strains equipped with multiple drug resistance mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Discovery of chemical oscillatory layering in adarce from Rehai, Tengchong, Yunnan and its genetic mechanism

    International Nuclear Information System (INIS)

    Wang Jianghai; Dong Jinquan

    1994-01-01

    Based on characteristics of mineral assemblages and compositions of sinter in several typical region, Western Yunnan, it is recognized that rhythmic compositional layering is widespread in sinter. According to self-organization theory and fluid dynamic experiments completed by predecessors, the authors have studied dynamic features of fluids in thermo-chamber; and concluded that in which double-diffusive convection layering would imperatively take place on the basis of estimation of dynamic parameters and determination of differences between RT and R0. Finally, a two-stage genetic model has been put forward for explaining the rhythmic layering in sinter, i.e. :1) double-diffusive convection of fluid in chambers was induced by the gradients of temperature and concentration; and 2) the rising of layered fluids and the precipitation of the chemical material occurred. Obviously, rhythmic layering in sinter is a typical self-organizational phenomenon

  18. CNS autoimmune disease after Streptococcus pyogenes infections: animal models, cellular mechanisms and genetic factors

    Science.gov (United States)

    Cutforth, Tyler; DeMille, Mellissa MC; Agalliu, Ilir; Agalliu, Dritan

    2016-01-01

    Streptococcus pyogenes infections have been associated with two autoimmune diseases of the CNS: Sydenham’s chorea (SC) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus infections (PANDAS). Despite the high frequency of pharyngeal streptococcus infections among children, only a small fraction develops SC or PANDAS. This suggests that several factors in combination are necessary to trigger autoimmune complications: specific S. pyogenes strains that induce a strong immune response toward the host nervous system; genetic susceptibility that predispose children toward an autoimmune response involving movement or tic symptoms; and multiple infections of the throat or tonsils that lead to a robust Th17 cellular and humoral immune response when untreated. In this review, we summarize the evidence for each factor and propose that all must be met for the requisite neurovascular pathology and behavioral deficits found in SC/PANDAS. PMID:27110222

  19. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    DEFF Research Database (Denmark)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti

    2011-01-01

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown...... the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture...... underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working...

  20. Genetic or mechanical sexing system for the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Walder, J.M.M.

    1990-01-01

    A black puparium, monofactorial mutant was isolated in 1983 from a laboratory colony of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). The mutant was used to construct a genetic sexing strain based on pupal sorting. Translocations were induced in wild male adults, 48 hours old, by gamma radiation (55 Gy; 60 Co). These males were crossed to black pupae females and produced two pupal sorting strains (T-44 and T-213) in 1987. These strains were lost after six generations. In another series of translocation inductions the strain T-87B was screened. Rearing the strain for eight generations in the laboratory provided no indication of instability in the strain. T-87B is now being mass reared. (author). 16 refs, 4 tabs

  1. Discovering the essence of soil

    Science.gov (United States)

    Frink, D.

    2012-04-01

    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of

  2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Science.gov (United States)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-01-01

    Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088

  3. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code

    DEFF Research Database (Denmark)

    Yadavalli, Srujana S; Ibba, Michael

    2013-01-01

    Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms...

  4. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  5. Uncovering the molecular mechanisms of human cytomegalovirus immunoevasins US2 and US11 using genetic screens

    NARCIS (Netherlands)

    van de Weijer, M.L.

    2017-01-01

    During millions of years, the evolutionary arms race between viruses and their hosts has resulted in mutual adaptation. The host has equipped itself with an extensive arsenal of antiviral mechanisms to defend itself against these intruders, while viruses have developed strategies to counter, evade

  6. Genetics of Vitiligo

    Science.gov (United States)

    Spritz, Richard; Andersen, Genevieve

    2016-01-01

    Synopsis Vitiligo is “complex disorder” (also termed polygenic and multifactorial), reflecting simultaneous contributions of multiple genetic risk factors and environmental triggers. Large-scale genome-wide association studies, principally in European-derived whites and in Chinese, have discovered approximately 50 different genetic loci that contribute to vitiligo risk, some of which also contribute to other autoimmune diseases that are epidemiologically associated with vitiligo. At many of these vitiligo susceptibility loci the corresponding relevant genes have now been identified, and for some of these genes the specific DNA sequence variants that contribute to vitiligo risk are also now known. A large fraction of these genes encode proteins involved in immune regulation, a number of others play roles in cellular apoptosis, and still others are involved in regulating functions of melanocytes. For this last group, there appears to be an opposite relationship between susceptibility to vitiligo and susceptibility to melanoma, suggesting that vitiligo may engage a normal mechanism of immune surveillance for melanoma. While many of the specific biologic mechanisms through which these genetic factors operate to cause vitiligo remain to be elucidated, it is now clear that vitiligo is an autoimmune disease involving a complex relationship between programming and function of the immune system, aspects of the melanocyte autoimmune target, and dysregulation of the immune response. PMID:28317533

  7. Decision Mining Revisited – Discovering Overlapping Rules

    NARCIS (Netherlands)

    Mannhardt, F.; de Leoni, M.; Reijers, H.A.; van der Aalst, W.M.P.

    2016-01-01

    Decision mining enriches process models with rules underlying decisions in processes using historical process execution data. Choices between multiple activities are specified through rules defined over process data. Existing decision mining methods focus on discovering mutually-exclusive rules,

  8. Decision Mining Revisited - Discovering Overlapping Rules

    NARCIS (Netherlands)

    Mannhardt, F.; De Leoni, M.; Reijers, H.A.; van der Aalst, W.M.P.; Nurcan, S.; Soffer, P.; Bajec, M.; Eder, J.

    2016-01-01

    Decision mining enriches process models with rules underlying decisions in processes using historical process execution data. Choices between multiple activities are specified through rules defined over process data. Existing decision mining methods focus on discovering mutually-exclusive rules,

  9. Decision mining revisited - Discovering overlapping rules

    NARCIS (Netherlands)

    Mannhardt, Felix; De Leoni, Massimiliano; Reijers, Hajo A.; Van Der Aalst, Wil M P

    2016-01-01

    Decision mining enriches process models with rules underlying decisions in processes using historical process execution data. Choices between multiple activities are specified through rules defined over process data. Existing decision mining methods focus on discovering mutually-exclusive rules,

  10. Did the ancient egyptians discover Algol?

    Science.gov (United States)

    Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.

    2013-02-01

    Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).

  11. Discovering Diabetes Complications: an Ontology Based Model.

    Science.gov (United States)

    Daghistani, Tahani; Shammari, Riyad Al; Razzak, Muhammad Imran

    2015-12-01

    Diabetes is a serious disease that spread in the world dramatically. The diabetes patient has an average of risk to experience complications. Take advantage of recorded information to build ontology as information technology solution will help to predict patients who have average of risk level with certain complication. It is helpful to search and present patient's history regarding different risk factors. Discovering diabetes complications could be useful to prevent or delay the complications. We designed ontology based model, using adult diabetes patients' data, to discover the rules of diabetes with its complications in disease to disease relationship. Various rules between different risk factors of diabetes Patients and certain complications generated. Furthermore, new complications (diseases) might be discovered as new finding of this study, discovering diabetes complications could be useful to prevent or delay the complications. The system can identify the patients who are suffering from certain risk factors such as high body mass index (obesity) and starting controlling and maintaining plan.

  12. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms

    Science.gov (United States)

    Gallo, Eduardo F; Posner, Jonathan

    2016-01-01

    Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder including the use of animal models, neuromodulation, and pharmaco-imaging studies. PMID:27183902

  13. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease.

    Science.gov (United States)

    Shooshtari, Parisa; Huang, Hailiang; Cotsapas, Chris

    2017-07-06

    Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Mechanism of Inflammation in Age-Related Macular Degeneration: An Up-to-Date on Genetic Landmarks

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2013-01-01

    Full Text Available Age-related macular degeneration (AMD is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch’s membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.

  15. Warfarin resistance associated with genetic polymorphism of VKORC1: linking clinical response to molecular mechanism using computational modeling.

    Science.gov (United States)

    Lewis, Benjamin C; Nair, Pramod C; Heran, Subash S; Somogyi, Andrew A; Bowden, Jeffrey J; Doogue, Matthew P; Miners, John O

    2016-01-01

    The variable response to warfarin treatment often has a genetic basis. A protein homology model of human vitamin K epoxide reductase, subunit 1 (VKORC1), was generated to elucidate the mechanism of warfarin resistance observed in a patient with the Val66Met mutation. The VKORC1 homology model comprises four transmembrane (TM) helical domains and a half helical lid domain. Cys132 and Cys135, located in the N-terminal end of TM-4, are linked through a disulfide bond. Two distinct binding sites for warfarin were identified. Site-1, which binds vitamin K epoxide (KO) in a catalytically favorable orientation, shows higher affinity for S-warfarin compared with R-warfarin. Site-2, positioned in the domain occupied by the hydrophobic tail of KO, binds both warfarin enantiomers with similar affinity. Displacement of Arg37 occurs in the Val66Met mutant, blocking access of warfarin (but not KO) to Site-1, consistent with clinical observation of warfarin resistance.

  16. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  17. In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis

    DEFF Research Database (Denmark)

    Colman, Michael A; Ni, Haibo; Liang, Bo

    2017-01-01

    and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were...... provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results...

  18. Genetics of SCID

    Directory of Open Access Journals (Sweden)

    Cossu Fausto

    2010-11-01

    Full Text Available Abstract Human SCID (Severe Combined Immunodeficiency is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning. Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms. This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.

  19. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance

    Science.gov (United States)

    García-Becerra, Rocío; Santos, Nancy; Díaz, Lorenza; Camacho, Javier

    2013-01-01

    Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients. PMID:23344024

  20. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse.

    Science.gov (United States)

    Cross, Sarah J; Lotfipour, Shahrdad; Leslie, Frances M

    2017-03-01

    Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.

  1. About the Genetic Mechanisms of Apatites: A Survey on the Methodological Approaches

    Directory of Open Access Journals (Sweden)

    Linda Pastero

    2017-08-01

    Full Text Available Apatites are properly considered as a strategic material owing to the broad range of their practical uses, primarily biomedical but chemical, pharmaceutical, environmental and geological as well. The apatite group of minerals has been the subject of a huge number of papers, mainly devoted to the mass crystallization of nanosized hydroxyapatite (or carboapatite as a scaffold for osteoinduction purposes. Many wet and dry methods of synthesis have been proposed. The products have been characterized using various techniques, from the transmission electron microscopy to many spectroscopic methods like IR and Raman. The experimental approach usually found in literature allows getting tailor made micro- and nano- crystals ready to be used in a wide variety of fields. Despite the wide interest in synthesis and characterization, little attention has been paid to the relationships between bulk structure and corresponding surfaces and to the role plaid by surfaces on the mechanisms involved during the early stages of growth of apatites. In order to improve the understanding of their structure and chemical variability, close attention will be focused on the structural complexity of hydroxyapatite (HAp, on the richness of its surfaces and their role in the interaction with the precursor phases, and in growth kinetics and morphology.

  2. Development of enhanced radioprotectors - Biochemical and molecular genetical approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Hong, Jung A [Kyunghee University, Seoul (Korea)

    2000-04-01

    To identify radio-protective agent candidate among medicinal plants and to elucidate the mechanism of action of the candidate material by using modern biochemical and molecular biological methods, we screened radio-protective activity among 48 medicinal plants. Seven samples showed above 20% protective activities against oxidative cell damage: Euryale ferox, Glycyrrhiza uralensis, Salvia miltiorrhiza, Eucomia ulmoides, Paeonia suffruticosa, Spirodela polyrrhiza, and Nelumbo nucifera. We also screened for oxidative stress sensitizing activity among other 51 medicinal plants. Among those samples, 11 samples showed good sensitizing effect; Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, and Cridium officinale. We also reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. 165 refs., 9 figs., 8 tabs. (Author)

  3. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    International Nuclear Information System (INIS)

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C.

    1989-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals

  4. Genetic-and-epigenetic Interspecies Networks for Cross-talk Mechanisms in Human Macrophages and Dendritic Cells During MTB Infection

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2016-10-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis (Mtb infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs and dendritic cells (DCs, are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection.First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA regulation networks (GRNs, intraspecies protein-protein interaction networks (PPINs, and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb.After identifying the real cross-talk GWGEINs, the principal network projection (PNP method was employed to construct host-pathogen core networks (HPCNs between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive

  5. Discovering English with the Sketch Engine

    Science.gov (United States)

    Thomas, James

    2014-01-01

    "Discovering English with the Sketch Engine" is the title of a new book (Thomas, 2014) which introduces the use of corpora in language study, teaching, writing and translating. It focuses on using the Sketch Engine to identify patterns of normal usage in many aspects of English ranging from morphology to discourse and pragmatics. This…

  6. Discovering Science through Art-Based Activities

    Science.gov (United States)

    Alberts, Rebecca

    2010-01-01

    Art and science are intrinsically linked; the essence of art and science is discovery. Both artists and scientists work in a systematic but creative way--knowledge and understanding are built up through pieces of art or a series of labs. In the classroom, integrating science and visual art can provide students with the latitude to think, discover,…

  7. Two Newly Discovered Plants in Taiwan

    OpenAIRE

    Tian-Chuan Hsu; Jia-Jung Lin; Shih-Wen Chung

    2009-01-01

    Two herbs are newly discovered in Taiwan. Limnophila fragrans (G. Forst.) Seem. (Scrophulariaceae), native in SE Asia, is recognized from southern lowlands. Anagallis minima (L.) E. H. L. Krause (Primulaceae), native in N America and Europe, was found from northern mountainous region at low altitudes. In this study, descriptions, line drawings, color photos and a distribution map of the two species are provided.

  8. Did Viking discover life on Mars?

    Science.gov (United States)

    Klein, H. P.

    1999-01-01

    A major argument in the claim that life had been discovered during the Viking mission to Mars is that the results obtained in the Labeled Release (LR) experiment are analogous to those observed with terrestrial microorganisms. This assertion is critically examined and found to be implausible.

  9. Discovering Alaska's Salmon: A Children's Activity Book.

    Science.gov (United States)

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  10. Challenges in service mining : record, check, discover

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Daniel, F.; Dolog, P.; Li, Q.

    2013-01-01

    Process mining aims to discover, monitor and improve real processes by extracting knowledge from event logs abundantly available in today’s information systems. Although process mining has been applied in hundreds of organizations and process mining techniques have been embedded in a variety of

  11. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    NARCIS (Netherlands)

    Dutilh, Bas E; Cassman, Noriko; McNair, Katelyn; Sanchez, Savannah E; Silva, Genivaldo G Z; Boling, Lance; Barr, Jeremy J; Speth, Daan R; Seguritan, Victor; Aziz, Ramy K; Felts, Ben; Dinsdale, Elizabeth A; Mokili, John L; Edwards, Robert A

    2014-01-01

    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the

  12. VLA Discovers Giant Rings Around Galaxy Cluster

    Science.gov (United States)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  13. The Genetic and Environmental Factors for Keratoconus

    Directory of Open Access Journals (Sweden)

    Ariela Gordon-Shaag

    2015-01-01

    Full Text Available Keratoconus (KC is the most common cornea ectatic disorder. It is characterized by a cone-shaped thin cornea leading to myopia, irregular astigmatism, and vision impairment. It affects all ethnic groups and both genders. Both environmental and genetic factors may contribute to its pathogenesis. This review is to summarize the current research development in KC epidemiology and genetic etiology. Environmental factors include but are not limited to eye rubbing, atopy, sun exposure, and geography. Genetic discoveries have been reviewed with evidence from family-based linkage analysis and fine mapping in linkage region, genome-wide association studies, and candidate genes analyses. A number of genes have been discovered at a relatively rapid pace. The detailed molecular mechanism underlying KC pathogenesis will significantly advance our understanding of KC and promote the development of potential therapies.

  14. The discovered preference hypothesis - an empirical test

    DEFF Research Database (Denmark)

    Lundhede, Thomas; Ladenburg, Jacob; Olsen, Søren Bøye

    Using stated preference methods for valuation of non-market goods is known to be vulnerable to a range of biases. Some authors claim that these so-called anomalies in effect render the methods useless for the purpose. However, the Discovered Preference Hypothesis, as put forth by Plott [31], offers...... an nterpretation and explanation of biases which entails that the stated preference methods need not to be completely written off. In this paper we conduct a test for the validity and relevance of the DPH interpretation of biases. In a choice experiment concerning preferences for protection of Danish nature areas...... as respondents evaluate more and more choice sets. This finding supports the Discovered Preference Hypothesis interpretation and explanation of starting point bias....

  15. Discovering the secrets of the Olifants sediments

    CSIR Research Space (South Africa)

    Petersen, C

    2012-07-01

    Full Text Available is an important component of an aquatic ecosystem in that it provides habitat, feed- ing and spawning areas for aquatic fauna such as fish and benthic Discovering the secrets of THE OLIFANTS SEDIMENTS The polluted Upper Olifants River, in Mpumalanga, has... the distribution of bed material sizes. This allows for the determination ? Top right: The Koffie- spruit, a tributary of the Upper Olifants River. Middle right: Bank erosion was evident throughout the Koffiespruit study reach. This section of river...

  16. Two Newly Discovered Plants in Taiwan

    Directory of Open Access Journals (Sweden)

    Tian-Chuan Hsu

    2009-11-01

    Full Text Available Two herbs are newly discovered in Taiwan. Limnophila fragrans (G. Forst. Seem. (Scrophulariaceae, native in SE Asia, is recognized from southern lowlands. Anagallis minima (L. E. H. L. Krause (Primulaceae, native in N America and Europe, was found from northern mountainous region at low altitudes. In this study, descriptions, line drawings, color photos and a distribution map of the two species are provided.

  17. Discovering More Accurate Frequent Web Usage Patterns

    OpenAIRE

    Bayir, Murat Ali; Toroslu, Ismail Hakki; Cosar, Ahmet; Fidan, Guven

    2008-01-01

    Web usage mining is a type of web mining, which exploits data mining techniques to discover valuable information from navigation behavior of World Wide Web users. As in classical data mining, data preparation and pattern discovery are the main issues in web usage mining. The first phase of web usage mining is the data processing phase, which includes the session reconstruction operation from server logs. Session reconstruction success directly affects the quality of the frequent patterns disc...

  18. What if Fleming had not discovered penicillin?

    Science.gov (United States)

    Alharbi, Sulaiman Ali; Wainwright, Milton; Alahmadi, Tahani Awad; Salleeh, Hashim Bin; Faden, Asmaa A; Chinnathambi, Arunachalam

    2014-09-01

    What would have happened had Alexander Fleming not discovered penicillin in 1928? Perhaps the obvious answer is that, someone else would have discovered penicillin during 1930s and the Oxford group, would still have purified it sometime in the early 1940s. Here, however, in this counterfactual account of the penicillin story, it is argued that without Fleming, penicillin might still be undiscovered and the antibiotic age would never have dawned. As a result, many of the recent developments in medicine, such as organ transplantation, might have been delayed or, at best, made more hazardous. Penicillin might have come onto the scene a few years later but, had Fleming overlooked the discovery, it seems certain that penicillin would not have saved countless Allied lives, during and after D-Day. Instead of having enjoyed fifty and more years of the antibiotic age, it is argued here, that we would have had to rely upon highly developed sulphonamides, so-called "supasulfas", and other chemically-derived antibacterial drugs. Indeed, it might be the case that, even well into this new millennium, the antibiotic age has yet to dawn, and medicine is still waiting for someone to chance upon penicillin. Here we discuss what might have happened had Fleming not discovered penicillin and come to the conclusion that the medical armoury available today would have been far different and might have relied solely upon highly developed varieties of sulphonamides or similar, synthetic, non-antibiotic antibacterial agents.

  19. Involvement of genetic variants associated with primary open-angle glaucoma in pathogenic mechanisms and family history of glaucoma.

    Science.gov (United States)

    Mabuchi, Fumihiko; Sakurada, Yoichi; Kashiwagi, Kenji; Yamagata, Zentaro; Iijima, Hiroyuki; Tsukahara, Shigeo

    2015-03-01

    To investigate the associations between the non-intraocular pressure (IOP)-related genetic variants (genetic variants associated with vulnerability of the optic nerve independent of IOP) and primary open-angle glaucoma (POAG), including normal-tension glaucoma (NTG) and high-tension glaucoma (HTG), and between the non-IOP-related genetic variants and a family history of glaucoma. Case-control study. Japanese patients with NTG (n = 213) and HTG (n = 212) and 191 control subjects were genotyped for 5 non-IOP-related genetic variants predisposing to POAG near the SRBD1, ELOVL5, CDKN2B/CDKN2B-AS1, SIX1/SIX6, and ATOH7 genes. The load of these genetic variants was compared between the control subjects and patients with NTG or HTG and between the POAG patients with and without a family history of glaucoma. The total number of POAG risk alleles and the product of the odds ratios (POAG risk) of these genetic variants were significantly larger (P product of the odds ratios increased (P = .012 and P = .047, respectively). Non-IOP-related genetic variants contribute to the pathogenesis of HTG as well as NTG. A positive family history of glaucoma in cases of POAG is thought to reflect the influence of genetic variants predisposing to POAG. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder ( Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Grønkjær, P.

    2007-01-01

    with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic...

  1. Obesity in Childhood and Adolescence, Genetic Factors.

    Science.gov (United States)

    Kostovski, Marko; Tasic, Velibor; Laban, Nevena; Polenakovic, Momir; Danilovski, Dragan; Gucev, Zoran

    2017-12-01

    Obesity and excess weight are a pandemic phenomenon in the modern world. Childhood and adolescent obesity often ends up in obesity in adults. The costs of obesity and its consequences are staggering for any society, crippling for countries in development. Childhood obesity is also widespread in Macedonia. Metabolic syndrome, dyslipidemia and carbohydrate intolerance are found in significant numbers. Parents and grandparents are often obese. Some of the children are either dysmorphic, or slightly retarded. We have already described patients with Prader-Willi syndrome, Bardet-Biedl syndrome or WAGR syndrome. A genetic screening for mutations in monogenic obesity in children with early, rapid-onset or severe obesity, severe hyperphagia, hypogonadism, intestinal dysfunction, hypopigmentation of hair and skin, postprandial hypoglycaemia, diabetes insipidus, abnormal leptin level and coexistence of lean and obese siblings in the family discovers many genetic forms of obesity. There are about 30 monogenic forms of obesity. In addition, obesity is different in ethnic groups, and the types of monogenic obesity differ. In brief, an increasing number of genes and genetic mechanisms in children continue to be discovered. This sheds new light on the molecular mechanisms of obesity and potentially gives a target for new forms of treatment.

  2. Relationship among the repair mechanisms and the genetic recombination; Relacion entre los mecanismos de reparacion y la recombinacion genetica

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1987-12-15

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  3. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

    KAUST Repository

    Montes, Iratxe; Zarraonaindia, Iratxe; Iriondo, Mikel; Grant, W. Stewart; Manzano, Carmen; Cotano, Unai; Conklin, Darrell; Irigoien, Xabier; Estonba, Andone

    2016-01-01

    Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations. © 2016, Springer

  4. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

    KAUST Repository

    Montes, Iratxe

    2016-09-13

    Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations. © 2016, Springer

  5. Discovering Complete Quasispecies In Bacterial Genomes

    OpenAIRE

    Bertels, Frederic; Gokhale, Chaitanya; Traulsen, Arne

    2017-01-01

    Mobile genetic elements can be found in almost all genomes. Possibly the most common nonautonomous mobile genetic elements in bacteria are repetitive extragenic palindromic doublets forming hairpins (REPINs) that can occur hundreds of times within a genome. The sum of all REPINs in a genome can be viewed as an evolving population because REPINs replicate and mutate. In contrast to most other biological populations, we know the exact composition of the REPIN population and the sequence of each...

  6. Genetic alterations in hepatocellular carcinoma: An update

    Science.gov (United States)

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC. PMID:27895396

  7. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    Science.gov (United States)

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  8. Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes

    Czech Academy of Sciences Publication Activity Database

    Gilles, J. R. L.; Schetelig, M. F.; Scolari, F.; Marec, František; Capurro, M.L.; Franz, G.; Bourtzis, K.

    132S, č. 1 (2014), S178-S187 ISSN 0001-706X R&D Projects: GA ČR GA523/09/2106 Grant - others:Deutsche Forschungsgemeinschalft(DE) SCHE 1833/1 Institutional support: RVO:60077344 Keywords : female elimination * vector control * genetic sexing strains (GSS) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.270, year: 2014 http://www.sciencedirect.com/science/article/pii/S0001706X13002209?via=ihub

  9. Noradrenergic mechanisms and high blood pressure maintenance in genetic hypertension: The role of Gi proteins and voltage-dependent calcium channels

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Pintérová, Mária; Líšková, Silvia; Dobešová, Zdenka; Kuneš, Jaroslav

    2007-01-01

    Roč. 29, č. 4 (2007), s. 229-229 ISSN 1064-1963. [International symposium on SHR /12./. 20.10.2006-21.10.2006, Kyoto] R&D Projects: GA MZd(CZ) NR7786 Institutional research plan: CEZ:AV0Z50110509 Keywords : genetic hypertension * noradrenergic mechanisms * Gi proteins * voltage-dependent calcium channels Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  10. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT∗3A, TPMT∗2): Mechanisms for the genetic polymorphism of TPMT activity

    OpenAIRE

    Tai, Hung-Liang; Krynetski, Eugene Y.; Schuetz, Erin G.; Yanishevski, Yuri; Evans, William E.

    1997-01-01

    TPMT is a cytosolic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including medications such as mercaptopurine and thioguanine. TPMT activity exhibits autosomal codominant genetic polymorphism, and patients inheriting TPMT deficiency are at high risk of potentially fatal hematopoietic toxicity. The most prevalent mutant alleles associated with TPMT deficiency in humans have been cloned and characterized (TPMT∗2 and TPMT∗3A), but the mechanisms for ...

  11. The Universe for all to discover

    Science.gov (United States)

    Ortiz-Gil, A.; Ballesteros, F.; Espinós, H.; Fernández-Soto, A.; Lanzara, M.; Moya, M. J.; Navarro, J.

    2015-05-01

    In the title of this paper, we have changed the slogan of the International Year of Astronomy, ``The Universe yours to discover" to ``The Universe for all to discover" in order to emphasize the need to think about broader audiences when we plan astronomical activities at school or during outreach events. The strategy we propose follows what is known as the Universal Design for Learning (UDL). UDL allows to reach to the general public as well as to audiences which might be regarded as ``special" because they have some disability. It has been shown that everybody has a preferred style of learning (some remember better what they see, others what they hear or what they touch) and therefore, everybody is more or less able under the different styles of learning. Through this talk I am going to outline some of the principles of the UDL that can be applied in the teaching and communication of Astronomy, along with an example of its implementation in the project ``A Touch of the Universe".

  12. Discovering context-aware conditional functional dependencies

    Institute of Scientific and Technical Information of China (English)

    Yuefeng DU; Derong SHEN; Tiezheng NIE; Yue KOU; Ge YU

    2017-01-01

    Conditional functional dependencies(CFDs) are important techniques for data consistency.However,CFDs are limited to 1) provide the reasonable values for consistency repairing and 2) detect potential errors.This paper presents context-aware conditional functional dependencies(CCFDs) which contribute to provide reasonable values and detect potential errors.Especially,we focus on automatically discovering minimal CCFDs.In this paper,we present context relativity to measure the relationship of CFDs.The overlap of the related CFDs can provide reasonable values which result in more accuracy consistency repairing,and some related CFDs are combined into CCFDs.Moreover,we prove that discovering minimal CCFDs is NP-complete and we design the precise method and the heuristic method.We also present the dominating value to facilitate the process in both the precise method and the heuristic method.Additionally,the context relativity of the CFDs affects the cleaning results.We will give an approximate threshold of context relativity according to data distribution for suggestion.The repairing results are approved more accuracy,even evidenced by our empirical evaluation.

  13. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the

  14. Melanoma genetics

    DEFF Research Database (Denmark)

    Read, Jazlyn; Wadt, Karin A W; Hayward, Nicholas K

    2015-01-01

    Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence of herita......Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence...... in a combined total of approximately 50% of familial melanoma cases, the underlying genetic basis is unexplained for the remainder of high-density melanoma families. Aside from the possibility of extremely rare mutations in a few additional high penetrance genes yet to be discovered, this suggests a likely...... polygenic component to susceptibility, and a unique level of personal melanoma risk influenced by multiple low-risk alleles and genetic modifiers. In addition to conferring a risk of cutaneous melanoma, some 'melanoma' predisposition genes have been linked to other cancers, with cancer clustering observed...

  15. Inside a plant nucleus: discovering the proteins

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Šebela, M.; Doležel, Jaroslav

    2015-01-01

    Roč. 66, č. 6 (2015), s. 1627-1640 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell nucleus * chromatin * genome function Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  16. Discovering, Indexing and Interlinking Information Resources.

    Science.gov (United States)

    Celli, Fabrizio; Keizer, Johannes; Jaques, Yves; Konstantopoulos, Stasinos; Vudragović, Dušan

    2015-01-01

    The social media revolution is having a dramatic effect on the world of scientific publication. Scientists now publish their research interests, theories and outcomes across numerous channels, including personal blogs and other thematic web spaces where ideas, activities and partial results are discussed. Accordingly, information systems that facilitate access to scientific literature must learn to cope with this valuable and varied data, evolving to make this research easily discoverable and available to end users. In this paper we describe the incremental process of discovering web resources in the domain of agricultural science and technology. Making use of Linked Open Data methodologies, we interlink a wide array of custom-crawled resources with the AGRIS bibliographic database in order to enrich the user experience of the AGRIS website. We also discuss the SemaGrow Stack, a query federation and data integration infrastructure used to estimate the semantic distance between crawled web resources and AGRIS.

  17. Discovering Multidimensional Structure in Relational Data

    DEFF Research Database (Denmark)

    Jensen, Mikael Rune; Holmgren, Thomas; Pedersen, Torben Bach

    2004-01-01

    On-Line Analytical Processing (OLAP) systems based on multidimensional databases are essential elements of decision support. However, most existing data is stored in “ordinary” relational OLTP databases, i.e., data has to be (re-) modeled as multidimensional cubes before the advantages of OLAP to...... algorithms for discovering multidimensional schemas from relational databases. The algorithms take a wide range of available metadata into account in the discovery process, including functional and inclusion dependencies, and key and cardinality information....... tools are available. In this paper we present an approach for the automatic construction of multidimensional OLAP database schemas from existing relational OLTP databases, enabling easy OLAP design and analysis for most existing data sources. This is achieved through a set of practical and effective...

  18. Discovering new information in bibliographic databases

    Directory of Open Access Journals (Sweden)

    Emil Hudomalj

    2005-01-01

    Full Text Available Databases contain information that can usually not be revealed by standard query systems. For that purpose, the methods for knowledge discovery from databases can be applied, which enable the user to browse aggregated data, discover trends, produce online reports, explore possible new associations within the data etc. Such methods are successfully employed in various fields, such as banking, insurance and telecommunications, while they are seldom used in libraries. The article reviews the development of query systems for bibliographic databases, including some early attempts to apply modern knowledge discovery methods. Analytical databases are described in more detail, since they usually serve as the basis for knowledge discovery. Data mining approaches are presented, since they are a central step in the knowledge discovery process. The key role of librarians who can play a key part in developing systems for finding new information in existing bibliographic databases is stressed.

  19. Michael Maier--nine newly discovered letters.

    Science.gov (United States)

    Lenke, Nils; Roudet, Nicolas; Tilton, Hereward

    2014-02-01

    The authors provide a transcription, translation, and evaluation of nine newly discovered letters from the alchemist Michael Maier (1568-1622) to Gebhardt Johann von Alvensleben (1576-1631), a noble landholder in the vicinity of Magdeburg. Stemming from the final year of his life, this correspondence casts new light on Maier's biography, detailing his efforts to secure patronage amid the financial crisis of the early Thirty Years' War. While his ill-fated quest to perfect potable gold continued to form the central focus of his patronage suits, Maier also offered his services in several arts that he had condemned in his printed works, namely astrology and "supernatural" magic. Remarks concerning his previously unknown acquaintance with Heinrich Khunrath call for a re-evaluation of Maier's negotiation of the discursive boundaries between Lutheran orthodoxy and Paracelsianism. The letters also reveal Maier's substantial contribution to a work previously ascribed solely to the English alchemist Francis Anthony.

  20. Nuclear fission discovered fifty years ago

    International Nuclear Information System (INIS)

    Weis, M.

    1988-01-01

    Fifty years ago, Otto Hahn, Lise Meitner and Fritz Strassmann discovered the process of nuclear fission which, more than other scientific discoveries to date, profoundly has changed the world and continues to influence our life significantly: This discovery made the up to then incontestable physicists' view of the atom as an inseparable whole suddenly shatter to pieces. It has brought about the invaluable advantages of a peaceful utilization of nuclear energy, and at the same time put scientists in the position to build the most terrible weapon ever, threatening mankind and earth with complete destruction. All this certainly is reason enough to recall the scientists, their work and the spirit of the time. (orig.) [de

  1. Discovering network behind infectious disease outbreak

    Science.gov (United States)

    Maeno, Yoshiharu

    2010-11-01

    Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.

  2. Discovering the Library with Google Earth

    Directory of Open Access Journals (Sweden)

    Michaela Brenner

    2008-06-01

    Full Text Available Libraries need to provide attractive and exciting discovery tools to draw patrons to the valuable resources in their catalogs. The authors conducted a pilot project to explore the free version of Google Earth as such a discover tool for Portland State Library’s digital collection of urban planning documents. They created eye-catching placemarks with links to parts of this collection, as well as to other pertinent materials like books, images, and historical background information. The detailed how-to-do part of this article is preceded by a discussion about discovery of library materials and followed by possible applications of this Google Earth project.

  3. Pancreatic sarcoidosis discovered during Whipple procedure.

    Science.gov (United States)

    Cook, Jonathan; Spees, Tanner; Telefus, Phillip; Ranaudo, Jeffrey M; Carryl, Stephen; Xiao, Philip

    2013-04-04

    Pancreatic sarcoidosis is a rare variant of systemic sarcoidosis, with cases described in literature as recently as January 2010. We present here a case of pancreatic involvement with non-caseating granulomas discovered on laparotomy in a patient with a preoperative diagnosis of pancreatic carcinoma. Computer tomography scan without contrast revealed a well-marginated smooth-shaped tumor in the head of the pancreas morphologically consistent with malignancy. During Whipple procedure, the mass was found to be a large lymph node that contained numerous non-caseating granulomas. Radiologically and clinically, non-caseating granulomas of the pancreas are often misdiagnosed as malignant tumor. Special attention given to this differential diagnosis by surgeons, pathologists and clinicians can avoid misdiagnosis and unnecessary treatment. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2013.

  4. Discovering Sentinel Rules for Business Intelligence

    Science.gov (United States)

    Middelfart, Morten; Pedersen, Torben Bach

    This paper proposes the concept of sentinel rules for multi-dimensional data that warns users when measure data concerning the external environment changes. For instance, a surge in negative blogging about a company could trigger a sentinel rule warning that revenue will decrease within two months, so a new course of action can be taken. Hereby, we expand the window of opportunity for organizations and facilitate successful navigation even though the world behaves chaotically. Since sentinel rules are at the schema level as opposed to the data level, and operate on data changes as opposed to absolute data values, we are able to discover strong and useful sentinel rules that would otherwise be hidden when using sequential pattern mining or correlation techniques. We present a method for sentinel rule discovery and an implementation of this method that scales linearly on large data volumes.

  5. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  6. Barley-Puccinia rusts: a model system to study the genetics, evolution and mechanisms of nonhost immunity in plants

    NARCIS (Netherlands)

    Jafary, H.

    2006-01-01

    The genetic basis of nonhost resistance is one of the most intriguing questions in the field of infectious diseases. The inheritance is very hard to study, since it typically requires interspecific crosses between host and nonhost species. Until now, mutagenesis and transformation have lead to

  7. On the Genetics of Avian Personalities: mechanism and structure of behavioural strategies in the great tit (Parus major)

    NARCIS (Netherlands)

    Oers, C.H.J. van

    2003-01-01

    The need for evolutionary studies on quantitative traits that integrate genetics, development and fitness consequences is increasing. Due to the complexity, coherence and variability of behavioural traits, evolutionary biologists are therefore more and more attracted to the study of behaviour. The

  8. Defectological practise from the perspective of next generation genetics

    Directory of Open Access Journals (Sweden)

    Mihajlović Nevenka K.

    2015-01-01

    Full Text Available Defectologists not only discover and study people with certain mental and physical disabilities they also help these people by giving them the opportunity to lead a normal life. From the aspect of modern human and molecular genetics the job of a defectologist should be associated with people who some form of a genetic defect, also known as a 'genetic error'-mutation. This is the reason why a defectologist (in order to be a successful one has to know what is nature and type of the mutation that patient has, in other words he must find out the genetic diagnosis of the patient. However, the practice in our the conditions such as ours is a little different, most of the times the diagnosis is incomplete and does not give information about the true cause of the problem, this means that it gives only information about the symptoms but not about the true origin of the problem. Due to this fact the main focus of a defectologist is to properly diagnose the problem from a genetic perspective. A proper genetic diagnosis involves finding out what genetic mutation lays at the heart of the disease(also the molecular mechanisms of the diseases should be known. This approach has two benefits: (A successful treatment and rehabilitation of the patient and (B figuring out the future perspective of the patient. The genetic diagnosis is discovered by a multidiscipline team of experts: genetic counselors, defectologists, doctors and psychologist. The first step in finding out the genetic diagnosis is evaluating the patient and his/her family, later on we can use a genetic once have an idea that the nature of patients condition is indeed genetic. This is why the education of defectologist is needed in order to for them to know about the genetic factors that influence the appearance and the development of the patient's condition. This form of education should allow defectologist to get a better understanding of the potential of modern genetic techniques in precisely

  9. Molecular genetic studies of bacteroides fragilis

    International Nuclear Information System (INIS)

    Southern, J.A.

    1986-03-01

    This study aimed at providing a means for probing the molecular genetic organization of B.fragilis, particularly those strains where the DNA repair mechanisms had been described. The following routes of investigation were followed: the bacteriocin of B.fragilis BF-1; the investigation of any plasmids which might be discovered, with the aim of constructing a hybrid plasmid which might replicate in both E.coli and B.fragilis; and the preparation of a genetic library which could be screened for Bacteroides genes which might function in E.coli. Should any genes be isolated by screening the library they were to be studied with regard to their expression and regulation in E.coli. The above assays make use of radioactive markers such as 14 C, 35 S, 32 P, and 3 H in the labelling of RNA, plasmids and probes

  10. CORNELL: CLEO discovers B meson penguins

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour

  11. CORNELL: CLEO discovers B meson penguins

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour.

  12. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  13. Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mehrdad Mahdavi Jafari

    2017-06-01

    Full Text Available Among artificial intelligence approaches, artificial neural networks (ANNs and genetic algorithm (GA are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN and genetic algorithm (GA were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall carbon nanotubes (MWCNTs through modeling of nanocomposite characteristics. After examination the different ANN architectures an optimal structure of the model, i.e. 6-18-1, is obtained with 1.52% mean absolute error and R2 = 0.987. The proposed structure was used as fitting function for genetic algorithm. The results of GA simulation predicted that the combination sintering temperature 346 °C, sintering time 0.33 h, compact pressure 284.82 MPa, milling time 19.66 h and vial speed 310.5 rpm give the optimum hardness, (i.e., 87.5 micro Vickers in the composite with 0.53 wt% CNT. Also, sensitivity analysis shows that the sintering time, milling time, compact pressure, vial speed and amount of MWCNT are the significant parameter and sintering time is the most important parameter. Comparison of the predicted values with the experimental data revealed that the GA–ANN model is a powerful method to find the optimal conditions for preparing of Al6061-MWCNT.

  14. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng

    2018-05-16

    As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.

  15. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  16. THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Wu, Jingwen; Wright, Edward L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Assef, Roberto J. [Núcleo de Astronomía de la Facultad deIngeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, 1 University Road, Leicester, LE1 7RH (United Kingdom); Bridge, Carrie R.; Sayers, Jack [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic J.; Leisawitz, David T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cutri, Roc M.; Masci, Frank J.; Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Petty, Sara M. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Stanford, S. Adam, E-mail: Chao-Wei.Tsai@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2015-06-01

    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.

  17. ROSAT Discovers Unique, Distant Cluster of Galaxies

    Science.gov (United States)

    1995-06-01

    Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these

  18. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  19. Molecular genetics

    International Nuclear Information System (INIS)

    Parkinson, D.R.; Krontiris, T.G.

    1986-01-01

    In this chapter the authors review new findings concerning the molecular genetics of malignant melanoma in the context of other information obtained from clinical, epidemiologic, and cytogenetic studies in this malignancy. These new molecular approaches promise to provide a more complete understanding of the mechanisms involved in the development of melanoma, thereby suggesting new methods for its treatment and prevention

  20. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  1. The Impact of Discovering Life beyond Earth

    Science.gov (United States)

    Dick, Steven J.

    2016-01-01

    Introduction: astrobiology and society Steven J. Dick; Part I. Motivations and Approaches. How Do We Frame the Problems of Discovery and Impact?: Introduction; 1. Current approaches to finding life beyond earth, and what happens if we do Seth Shostak; 2. The philosophy of astrobiology: the Copernican and Darwinian presuppositions Iris Fry; 3. History, discovery, analogy: three approaches to the impact of discovering life beyond earth Steven J. Dick; 4. Silent impact: why the discovery of extraterrestrial life should be silent Clément Vidal; Part II. Transcending Anthropocentrism. How Do We Move beyond our Own Preconceptions of Life, Intelligence and Culture?: Introduction; 5. The landscape of life Dirk Schulze-Makuch; 6. The landscape of intelligence Lori Marino; 7. Universal biology: assessing universality from a single example Carlos Mariscal; 8. Equating culture, civilization, and moral development in imagining extraterrestrial intelligence: anthropocentric assumptions? John Traphagan; 9. Communicating with the other: infinity, geometry, and universal math and science Douglas Vakoch; Part III. Philosophical, Theological, and Moral Impact. How Do We Comprehend the Cultural Challenges Raised by Discovery?: Introduction; 10. Life, intelligence and the pursuit of value in cosmic evolution Mark Lupisella; 11. 'Klaatu barada nikto' - or, do they really think like us? Michael Ruse; 12. Alien minds Susan Schneider; 13. The moral subject of astrobiology: guideposts for exploring our ethical and political responsibilities towards extraterrestrial life Elspeth Wilson and Carol Cleland; 14. Astrobiology and theology Robin Lovin; 15. Would you baptize an extraterrestrial? Guy Consolmagno, SJ; Part IV. Practical Considerations: How Should Society Prepare for Discovery - and Non-Discovery?: Introduction; 16. Is there anything new about astrobiology and society? Jane Maienschein; 17. Evaluating preparedness for the discovery of extraterrestrial life: considering potential

  2. Contemplation and Calculation: The Universe Discovered.

    Science.gov (United States)

    Solovyov, Yury

    1992-01-01

    Discusses how early notions about celestial mechanics were restructured, one by one, involving the following concepts: the celestial sphere and its rotation; the spherical earth; planetary motion; and models for the solar system initiated by Eudoxus, Hipparchus, Ptolemy, and Copernicus. (JJK)

  3. Facultative parthenogenesis discovered in wild vertebrates.

    Science.gov (United States)

    Booth, Warren; Smith, Charles F; Eskridge, Pamela H; Hoss, Shannon K; Mendelson, Joseph R; Schuett, Gordon W

    2012-12-23

    Facultative parthenogenesis (FP)-asexual reproduction by bisexual species-has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes-the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted.

  4. Antimicrobial Resistance Mechanisms and Genetic Diversity of Multidrug-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Malaysia.

    Science.gov (United States)

    Biglari, Shirin; Hanafiah, Alfizah; Mohd Puzi, Shaliawani; Ramli, Ramliza; Rahman, Mostafizur; Lopes, Bruno Silvester

    2017-07-01

    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-bla OXA-23 and ISAba1-bla ADC and had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the bla OXA-51-like genes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.

  5. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  6. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity.

    Science.gov (United States)

    Vazquez-Roque, M I; Camilleri, M; Vella, A; Carlson, P; Laugen, J; Zinsmeister, A R

    2011-07-01

    The endocannabinoid system is associated with food intake. We hypothesized that genes regulating cannabinoids are associated with obesity. Genetic variations in fatty acid amide hydroxylase (FAAH) and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation [maximum tolerated volume (MTV) and symptoms after Ensure(®) nutrient drink test] were explored using a dominant genetic model, with gender and BMI as covariates. rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0mL for CC group compared to 242.5±11.3mL for CT/TT group, P=0.031) and a modest, non-significant association with GE of solids (P=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however, there was a difference in the Ensure(®) MTV (1174.6±37.2mL for CC group compared to 1395.0±123.1mL for CA/AA group, P=0.046) suggesting higher satiation with CC genotype. Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity. © 2011 Blackwell Publishing Ltd.

  7. Scientix in our school- discovering STEM

    Science.gov (United States)

    Melcu, Cornelia

    2017-04-01

    My name is Cornelia Melcu and I am a primary school teacher in Brasov. Additionally, I am a teacher trainer of Preparatory Class Curriculum, Google Application in Education Course and European Projects Course and a mentor to new teachers and students in university. I am an eTwinning, Scientix and ESERO ambassador too. During the last three school years my school was involved in several STEM projects, part of Scientix community. The main goal of those projects was to develop basic STEM skills of our students based on project work integrated into the curriculum. Open the Gates to the Universe (http://gatestotheuniverse.blogspot.ro; https://twinspace.etwinning.net/12520/home) is an eTwinning project for primary school students started on September 2015 and finished on September 2016. Some of our partners were from the Mediterranean area. The students discovered different aspects of space science and astronomy working on international groups. They explored some aspects of Science included in their curriculum using resources from ESERO, ROEDUSEIS and Space Awareness (e.g. Calculate with Rosetta, Writing the travel diary, Build Rosetta, How to become an astronaut, etc.) The project was a great opportunity to apply integrated learning methods for developing competencies which are a part of the primary school curriculum in Romania. In Language and Communication classes the students talked about their partners living places and their traditions and habits. They learnt some basic words in their partners language related to the weather. They created stories- both in Romanian and English; they described life in space and astronomical phenomena. They talked to the other partners during the several online meetings we organized and wrote short stories in English. In Mathematics and Science they found out about the Milky Way, the Solar System, the weather, famous astronauts and astronomers. They calculated, solved problems, made experiments and explained specific natural phenomena

  8. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  9. The genetics of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Bagyinszky E

    2014-04-01

    Full Text Available Eva Bagyinszky,1 Young Chul Youn,2 Seong Soo A An,1,* SangYun Kim3,*1Department of BioNano Technology Gachon University, Gyeonggi-do, 2Department of Neurology, Chung-Ang University College of Medicine, Seoul, 3Department of Neurology, Seoul National University Budang Hospital, Gyeonggi-do, South Korea*These authors contributed equally to this workAbstract: Alzheimer's disease (AD is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age, or late onset (over 65 years of age. Three main genes are involved in early onset AD: amyloid precursor protein (APP, presenilin 1 (PSEN1, and presenilin 2 (PSEN2. The apolipoprotein E (APOE E4 allele has been found to be a main risk factor for late-onset Alzheimer's disease. Additionally, genome-wide association studies (GWASs have identified several genes that might be potential risk factors for AD, including clusterin (CLU, complement receptor 1 (CR1, phosphatidylinositol binding clathrin assembly protein (PICALM, and sortilin-related receptor (SORL1. Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2 and cluster of differentiation 33 (CD33. Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.Keywords: dementia, amyloid precursor protein, presenilin 1, presenilin 2, APOE, mutation, diagnosis, genetic testing

  10. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.

    Science.gov (United States)

    Zhang, Yingtong; Navarro, Eusebio; Cánovas-Márquez, José T; Almagro, Lorena; Chen, Haiqin; Chen, Yong Q; Zhang, Hao; Torres-Martínez, Santiago; Chen, Wei; Garre, Victoriano

    2016-06-07

    Carotenoids are natural pigments with antioxidant properties that have important functions in human physiology and must be supplied through the diet. They also have important industrial applications as food colourants, animal feed additives and nutraceuticals. Some of them, such as β-carotene, are produced on an industrial scale with the use of microorganisms, including fungi. The mucoral Blakeslea trispora is used by the industry to produce β-carotene, although optimisation of production by molecular genetic engineering is unfeasible. However, the phylogenetically closely related Mucor circinelloides, which is also able to accumulate β-carotene, possesses a vast collection of genetic tools with which to manipulate its genome. This work combines classical forward and modern reverse genetic techniques to deepen the regulation of carotenoid synthesis and generate candidate strains for biotechnological production of β-carotene. Mutagenesis followed by screening for mutants with altered colour in the dark and/or in light led to the isolation of 26 mutants that, together with eight previously isolated mutants, have been analysed in this work. Although most of the mutants harboured mutations in known structural and regulatory carotenogenic genes, eight of them lacked mutations in those genes. Whole-genome sequencing of six of these strains revealed the presence of many mutations throughout their genomes, which makes identification of the mutation that produced the phenotype difficult. However, deletion of the crgA gene, a well-known repressor of carotenoid biosynthesis in M. circinelloides, in two mutants (MU206 and MU218) with high levels of β-carotene resulted in a further increase in β-carotene content to differing extents with respect to the crgA single-null strain; in particular, one strain derived from MU218 was able to accumulate up to 4 mg/g of β-carotene. The additive effect of crgA deletion and the mutations present in MU218 suggests the existence of a

  11. Most Powerful Eruption in the Universe Discovered

    Science.gov (United States)

    2005-01-01

    emission within the cavities shows that jets from the black hole erupted to create the cavities. Gas is being pushed away from the black hole at supersonic speeds over a distance of about a million light years. The mass of the displaced gas equals about a trillion Suns, more than the mass of all the stars in the Milky Way. LA Radio & Chandra X-ray Composite of MS 0735.6+7421 VLA Radio & Chandra X-ray Composite of MS 0735.6+7421 The rapid growth of supermassive black holes is usually detected by observing very bright radiation from the centers of galaxies in the optical and X-ray wavebands, or luminous radio jets. In MS 0735 no bright central radiation is found and the radio jets are faint. Therefore, the true nature of MS 0735 is only revealed through X-ray observations of the hot cluster gas. "Until now we had no idea that this black hole was gorging itself", said co-author Michael Wise of the Massachusetts Institute of Technology. "The discovery of this eruption shows that X-ray telescopes are necessary to understand some of the most violent events in the Universe." The astronomers estimated how much energy was needed to create the cavities by calculating the density, temperature and pressure of the hot gas. By making a standard assumption, that 10% of the gravitational energy goes into launching the jets, they estimated how much material the black hole swallowed. Size Comparison of MS 0735.6+7421 & Perseus Cluster Size Comparison of MS 0735.6+7421 & Perseus Cluster Besides generating the cavities, some of the energy from this eruption should keep the hot gas around the black hole from cooling, and some of it may also generate large-scale magnetic fields in the galaxy cluster. Chandra observers have discovered other cavities in galaxy clusters, but this one is easily the largest and the most powerful. For example, the energy content here exceeds that of the Perseus cavities by 250 times, and dwarfs the cavities in M87 by a factor of 10,000. NASA's Marshall Space Flight

  12. The potential of the ILC for discovering new particles

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keisuke [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Grojean, Christophe [DESY, Hamburg (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; ICREA, Barcelona (Spain); Peskin, Michael E. [Stanford Univ., Menlo Park, CA (United States). SLAC; Collaboration: LCC Physics Working Group; and others

    2017-02-15

    This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.

  13. The potential of the ILC for discovering new particles

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.

    2017-02-01

    This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.

  14. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from

  15. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides.

    Science.gov (United States)

    Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C

    2015-01-28

    We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.

  16. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    Science.gov (United States)

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Genetics of osteoarthritis.

    Science.gov (United States)

    Rodriguez-Fontenla, Cristina; Gonzalez, Antonio

    2015-01-01

    Osteoarthritis (OA) is a complex disease caused by the interaction of multiple genetic and environmental factors. This review focuses on the studies that have contributed to the discovery of genetic susceptibility factors in OA. The most relevant associations discovered until now are discussed in detail: GDF-5, 7q22 locus, MCF2L, DOT1L, NCOA3 and also some important findings from the arcOGEN study. Moreover, the different approaches that can be used to minimize the specific problems of the study of OA genetics are discussed. These include the study of microsatellites, phenotype standardization and other methods such as meta-analysis of GWAS and gene-based analysis. It is expected that these new approaches contribute to finding new susceptibility genetic factors for OA. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  18. Discovering the interior of black holes

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.; Yagi, K.

    2017-12-01

    The detection of gravitational waves (GWs) from black hole (BH) mergers provides an inroad toward probing the interior of astrophysical BHs. The general-relativistic description of the BH interior is that of empty spacetime with a (possibly) singular core. Recently, however, the hypothesis that the BH interior does not exist has been gaining traction, as it provides a means for resolving the BH information-loss problem. Here, we propose a simple method for answering the following question: Does the BH interior exist and, if so, does it contain some distribution of matter or is it mostly empty? Our proposal is premised on the idea that, similar to the case of relativistic, ultracompact stars, any BH-like object whose interior has some matter distribution should support fluid modes in addition to the conventional spacetime modes. In particular, the Coriolis-induced Rossby (r-) modes, whose spectrum is mostly insensitive to the composition of the interior matter, should be a universal feature of such BH-like objects. In fact, the frequency and damping time of these modes are determined by only the object's mass and speed of rotation. The r-modes oscillate at a lower frequency, decay at a slower rate, and produce weaker GWs than do the spacetime modes. Hence, they imprint a model-insensitive signature of a nonempty interior in the GW spectrum resulting from a BH merger. We find that future GW detectors, such as Advanced LIGO with its design sensitivity, have the potential of detecting such r-modes if the amount of GWs leaking out quantum mechanically from the interior of a BH-like object is sufficiently large.

  19. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Tyson, Gene [University of Queensland, Brisbane Australia; Meile, Christof [University of Georgia, Athens, Georgia; McGlynn, Shawn [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yu, Hang [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chadwick, Grayson [California Inst. of Technology (CalTech), Pasadena, CA (United States); Marlow, Jeffrey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trembath-Reichert, Elizabeth [California Inst. of Technology (CalTech), Pasadena, CA (United States); Dekas, Anne [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellisman, Mark [University of California San Diego; Hatzenpichler, Roland [California Inst. of Technology (CalTech), Pasadena, CA (United States); Skennerton, Connor [California Inst. of Technology (CalTech), Pasadena, CA (United States); Scheller, Silvan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-12-25

    The global biological CH4 cycle is largely controlled through coordinated and often intimate microbial interactions between archaea and bacteria, the majority of which are still unknown or have been only cursorily identified. Members of the methanotrophic archaea, aka ‘ANME’, are believed to play a major role in the cycling of methane in anoxic environments coupled to sulfate, nitrate, and possibly iron and manganese oxides, frequently forming diverse physical and metabolic partnerships with a range of bacteria. The thermodynamic challenges overcome by the ANME and their bacterial partners and corresponding slow rates of growth are common characteristics in anaerobic ecosystems, and, in stark contrast to most cultured microorganisms, this type of energy and resource limited microbial lifestyle is likely the norm in the environment. While we have gained an in-depth systems level understanding of fast-growing, energy-replete microorganisms, comparatively little is known about the dynamics of cell respiration, growth, protein turnover, gene expression, and energy storage in the slow-growing microbial majority. These fundamental properties, combined with the observed metabolic and symbiotic versatility of methanotrophic ANME, make these cooperative microbial systems a relevant (albeit challenging) system to study and for which to develop and optimize culture-independent methodologies, which enable a systems-level understanding of microbial interactions and metabolic networks. We used an integrative systems biology approach to study anaerobic sediment microcosms and methane-oxidizing bioreactors and expanded our understanding of the methanotrophic ANME archaea, their interactions with physically-associated bacteria, ecophysiological characteristics, and underlying genetic basis for cooperative microbial methane-oxidation linked with different terminal electron acceptors. Our approach is inherently multi-disciplinary and multi-scaled, combining transcriptional and

  20. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  1. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  2. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy.

    Science.gov (United States)

    Li, Jingyun; Zhang, Yuan; Zhang, Luo

    2015-02-01

    Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.

  3. Genetic algorithm based on optimization of neural network structure for fault diagnosis of the clutch retainer mechanism of MF 285 tractor

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2016-09-01

    Full Text Available Introduction The diagnosis of agricultural machinery faults must be performed at an opportune time, in order to fulfill the agricultural operations in a timely manner and to optimize the accuracy and the integrity of a system, proper monitoring and fault diagnosis of the rotating parts is required. With development of fault diagnosis methods of rotating equipment, especially bearing failure, the security, performance and availability of machines has been increasing. In general, fault detection is conducted through a specific procedure which starts with data acquisition and continues with features extraction, and subsequently failure of the machine would be detected. Several practical methods have been introduced for fault detection in rotating parts of machineries. The review of the literature shows that both Artificial Neural Networks (ANN and Support Vector Machines (SVM have been used for this purpose. However, the results show that SVM is more effective than Artificial Neural Networks in fault detection of such machineries. In some smart detection systems, incorporating an optimized method such as Genetic Algorithm in the Neural Network model, could improve the fault detection procedure. Consequently, the fault detection performance of neural networks may also be improved by combining with the Genetic Algorithm and hence will be comparable with the performance of the Support Vector Machine. In this study, the so called Genetic Algorithm (GA method was used to optimize the structure of the Artificial Neural Networks (ANN for fault detection of the clutch retainer mechanism of Massey Ferguson 285 tractor. Materials and Methods The test rig consists of some electro mechanical parts including the clutch retainer mechanism of Massey Ferguson 285 tractor, a supporting shaft, a single-phase electric motor, a loading mechanism to model the load of the tractor clutch and the corresponding power train gears. The data acquisition section consists of a

  4. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2017-07-01

    Full Text Available A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.

  5. Molecular and genetic approach to understanding the mechanisms by which fractionated X-irradiation induces leukemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meruelo, D; Rossomando, A

    1986-01-01

    The authors laboratory's approach to try to shed light on the question of a viral etiology for radiation-induced leukemia has focused on defining, localizing and understanding the mode of action of genes involved in susceptibility to fractionated x-irradiation-(FXI) induced disease. These studies have indicated that multiple genes control the process of leukemogenesis. Not every mouse strain which shows some susceptibility to FXI-induced leukemia carries the susceptible gene at each of the multiple loci involved in the disease process. It is plausible to conclude that more than one mechanism of leukemogenesis can be triggered by FXI. Studies have focused on the mode of action of one such locus Ril-1. Several reagents have been developed to help clone and characterize this locus. Currently chromosomal ''walking'' and ''hopping'' techniques are being used in conjunction with an RFLP molecular probe which is adjacent to Ril-1. In addition a cDNA library has been prepared from a radiation-induced thymoma and substraction hybridization analysis is being used in the search for Ril-1.

  6. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    Science.gov (United States)

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  7. A molecular and genetic approach to understanding the mechanisms by which fractionated X-irradiation induces leukemia in mice

    International Nuclear Information System (INIS)

    Meruelo, D.; Rossomando, A.

    1986-01-01

    The authors laboratory's approach to try to shed light on the question of a viral etiology for radiation-induced leukemia has focused on defining, localizing and understanding the mode of action of genes involved in susceptibility to fractionated x-irradiation-(FXI) induced disease. These studies have indicated that multiple genes control the process of leukemogenesis. Not every mouse strain which shows some susceptibility to FXI-induced leukemia carries the susceptible gene at each of the multiple loci involved in the disease process. It is plausible to conclude that more than one mechanism of leukemogenesis can be triggered by FXI. Studies have focused on the mode of action of one such locus Ril-1. Several reagents have been developed to help clone and characterize this locus. Currently chromosomal ''walking'' and ''hopping'' techniques are being used in conjunction with an RFLP molecular probe which is adjacent to Ril-1. In addition a cDNA library has been prepared from a radiation-induced thymoma and substraction hybridization analysis is being used in the search for Ril-1. (author)

  8. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  9. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    Science.gov (United States)

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.

    Science.gov (United States)

    Benson, Jacqueline M; Poland, Jesse A; Benson, Brent M; Stromberg, Erik L; Nelson, Rebecca J

    2015-03-01

    Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the

  11. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Benson

    2015-03-01

    Full Text Available Gray leaf spot (GLS, caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR loci. Nested association mapping (NAM was used to identify 16 quantitative trait loci (QTL for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will

  12. A new screening method for discovering antibacterial agents from ...

    African Journals Online (AJOL)

    A new screening method for discovering antibacterial agents from filamentous fungi. ... African Journal of Biotechnology ... Keywords: Drug-resistant bacterial pathogens, novel antibiotics; screening method, filamentous fungi products ...

  13. On a New Technique for Discovering Variable Stars

    Directory of Open Access Journals (Sweden)

    Mironov A. V.

    2003-12-01

    Full Text Available A technique for discovering variable stars based on the calculation of the correlation coefficients is proposed. Applications of the technique are shown on the results of numerical experiments and on the Hipparcos photometric data.

  14. Strontium-90 Error Discovered in Subcontract Laboratory Spreadsheet. Topical Report

    International Nuclear Information System (INIS)

    Brown, D.D.; Nagel, A.S.

    1999-07-01

    West Valley Demonstration Project health physicists and environment scientists discovered a series of errors in a subcontractor's spreadsheet being used to reduce data as part of their strontium-90 analytical process

  15. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Recently, several human genetic and genomewide association studies (GWAS) have discovered many genetic loci that are associated with the concentration of the blood lipids. To confirm the reported loci in Chinese population, we conducted a cross section study to analyse the association of 25 reported SNPs, genotyped ...

  16. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

    Science.gov (United States)

    Schrum, Jacob; Miikkulainen, Risto

    2016-03-12

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

  17. Intrauterine and genetic factors in early childhood sensitization

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus

    2010-01-01

    The allergy-associated (atopic) diseases; asthma, eczema and rhinoconjunctivitis, are the most common chronic diseases in childhood. A large number of environmental and genetic risk factors have been suggested, but still our understanding of the underlying disease mechanisms and etiologies...... with production of specific IgE-antibodies against allergens. Sensitization may cause allergic symptoms, and sensitization early in life is a strong risk factor for later disease. Fetal and early postnatal life seems to be a critical period for development of atopic disease and may be an important “window...... of opportunity” for prevention. The aim of this thesis was to increase the understanding of sensitization in early life. We studied indicators of sensitization in the newborn, and early development of sensitization and disease associated with a newly discovered genetic risk factor. Such insight may increase our...

  18. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 80; Issue 1. Testing quantum dynamics in genetic information processing ... Keywords. assembly; computation; database search; DNA replication; genetic information; nucleotide base; polymerase enzyme; quantum coherence; quantum mechanics; quantum superposition.

  19. NREL Discovers Enzyme Domains that Dramatically Improve Performance | News

    Science.gov (United States)

    of genomics data to find better enzymes, based on their genetic sequence alone. "In 10 years, it on these enzymes that can be targeted via genetic engineering to help break down cellulose faster to Decker, "At the time, tools for genetic engineering in Trichoderma were very limited, but we

  20. p16(INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2011-02-01

    Full Text Available Although caloric restriction (CR has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG in the culture medium. Moreover, GR decreased expression of p16(INK4a (p16, a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.

  1. Is pigment patterning in fish skin determined by the Turing mechanism?

    Science.gov (United States)

    Watanabe, Masakatsu; Kondo, Shigeru

    2015-02-01

    More than half a century ago, Alan Turing postulated that pigment patterns may arise from a mechanism that could be mathematically modeled based on the diffusion of two substances that interact with each other. Over the past 15 years, the molecular and genetic tools to verify this prediction have become available. Here, we review experimental studies aimed at identifying the mechanism underlying pigment pattern formation in zebrafish. Extensive molecular genetic studies in this model organism have revealed the interactions between the pigment cells that are responsible for the patterns. The mechanism discovered is substantially different from that predicted by the mathematical model, but it retains the property of 'local activation and long-range inhibition', a necessary condition for Turing pattern formation. Although some of the molecular details of pattern formation remain to be elucidated, current evidence confirms that the underlying mechanism is mathematically equivalent to the Turing mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacement.

    Science.gov (United States)

    Tang, X-Y; Zhang, J; Peng, J; Tan, S-L; Zhang, W; Song, G-B; Liu, L-M; Li, C-L; Ren, H; Zeng, L; Liu, Z-Q; Chen, X-P; Zhou, X-M; Zhou, H-H; Hu, J-X; Li, Z

    2017-08-01

    Warfarin is a widely used anticoagulant with a narrow therapeutic index. Polymorphisms in the VKORC1, CYP2C9 and CYP4F2 genes have been verified to correlate with warfarin stable dosage (WSD). Whether any other genes or variants affect the dosage is unknown. The aim of our study was to investigate the relationship between GGCX, miR-133 variants and the WSD in Han Chinese patients with mechanical heart valve replacement (MHVR). A total of 231 patients were enrolled in the study. Blood samples were collected for genotyping. The average WSD among subjects with different GGCX or miR-133 genotypes was compared. Regression analyses were performed to test for any association of genetic polymorphisms with WSD. The warfarin dosage in patients with the GGCX rs699664 TT and rs12714145 TT genotypes was 3.77±0.93 (95% CI: 3.35-4.19) mg/d and 3.70±1.00 (95% CI: 3.32-4.09) mg/d, respectively. The GGCX rs699664 and rs12714145 genotypes were significantly associated with WSD (Pwarfarin stable dosage between subjects with MIR133B rs142410335 wild-type and variant genotypes (P>.05). The genotypes of GGCX rs699644 and rs12714145 were significantly associated with WSD (Pwarfarin stable dosage in Han Chinese patients with MHVR neither in univariate regression nor in multivariate regression analyses. © 2017 John Wiley & Sons Ltd.

  3. Whakapapa, genealogy and genetics.

    Science.gov (United States)

    Evans, Donald

    2012-05-01

    This paper provides part of an analysis of the use of the Maori term whakapapa in a study designed to test the compatibility and commensurability of views of members of the indigenous culture of New Zealand with other views of genetic technologies extant in the country. It is concerned with the narrow sense of whakapapa as denoting biological ancestry, leaving the wider sense of whakapapa as denoting cultural identity for discussion elsewhere. The phenomenon of genetic curiosity is employed to facilitate this comparison. Four levels of curiosity are identified, in the Maori data, which penetrate more or less deeply into the psyche of individuals, affecting their health and wellbeing. These phenomena are compared with non-Maori experiences and considerable commonalities are discovered together with a point of marked difference. The results raise important questions for the ethical application of genetic technologies. © 2010 Blackwell Publishing Ltd.

  4. The genetic basis of addictive disorders.

    Science.gov (United States)

    Ducci, Francesca; Goldman, David

    2012-06-01

    Addictions are common, chronic, and relapsing diseases that develop through a multistep process. The impact of addictions on morbidity and mortality is high worldwide. Twin studies have shown that the heritability of addictions ranges from 0.39 (hallucinogens) to 0.72 (cocaine). Twin studies indicate that genes influence each stage from initiation to addiction, although the genetic determinants may differ. Addictions are by definition the result of gene × environment interaction. These disorders, which are in part volitional, in part inborn, and in part determined by environmental experience, pose the full range of medical, genetic, policy, and moral challenges. Gene discovery is being facilitated by a variety of powerful approaches, but is in its infancy. It is not surprising that the genes discovered so far act in a variety of ways: via altered metabolism of drug (the alcohol and nicotine metabolic gene variants), via altered function of a drug receptor (the nicotinic receptor, which may alter affinity for nicotine but as discussed may also alter circuitry of reward), and via general mechanisms of addiction (genes such as monoamine oxidase A and the serotonin transporter that modulate stress response, emotion, and behavioral control). Addiction medicine today benefits from genetic studies that buttress the case for a neurobiologic origin of addictive behavior, and some general information on familially transmitted propensity that can be used to guide prevention. A few well-validated, specific predictors such as OPRM1, ADH1B, ALDH2, CHRNA5, and CYP26 have been identified and can provide some specific guidance, for example, to understand alcohol-related flushing and upper GI cancer risk (ADH1B and AKLDH2), variation in nicotine metabolism (CYP26), and, potentially, naltrexone treatment response (OPRM1). However, the genetic predictors available are few in number and account for only a small portion of the genetic variance in liability, and have not been integrated

  5. MICRO-STRUCTURAL INVESTIGATION OF SOME ARTIFACTS DISCOVERED AT POROLISSUM

    Directory of Open Access Journals (Sweden)

    MUNTEANU Mihai

    2014-09-01

    Full Text Available the paper presents the investigation of two fragments of roman bronze artefacts, discovered during archaeological works performed at Porolissum, an important military and economical point on the northern limes of Dacia Province. One of the analyzed fragments (Mi1 was taken from a consistent fragment of a Roman bronze statue, while the second (Mi2 was among a lot of small metal pieces, discovered in the same investigated area. Using highly sophisticated micro-structural analysing techniques – X-Ray diffraction, the paper investigates the possibility that the Mi2 fragment may have belonged to the same statue from which the sample Mi1 was taken

  6. The Magic of Mathematics Discovering the Spell of Mathematics

    CERN Document Server

    Pappas, Theoni

    2011-01-01

    Delves into the world of ideas, explores the spell mathematics casts on our lives, and helps you discover mathematics where you least expect it. Be spellbound by the mathematical designs found in nature. Learn how knots may untie the mysteries of life. Be mesmerized by the computer revolution. Discover how the hidden forces of mathematics hold architectural structures together connect your telephone calls help airplanes get off the ground solve the mysteries of the living cell. See how some artists use a mathematical palette in their works and how many writers draw upon the wealth of its ideas

  7. Genetics & sport: bioethical concerns.

    Science.gov (United States)

    Miah, Andy

    2012-12-01

    This paper provides an overview of the ethical issues pertaining to the use of genetic insights and techniques in sport. Initially, it considers a range of scientific findings that have stimulated debate about the ethical issues associated with genetics applied to sport. It also outlines some of the early policy responses to these discoveries from world leading sports organizations, along with knowledge about actual use of gene technologies in sport. Subsequently, it considers the challenges with distinguishing between therapeutic use and human enhancement within genetic science, which is a particularly important issue for the world of sport. Next, particular attention is given to the use of genetic information, which raises questions about the legitimacy and reliability of genetic tests, along with the potential public value of having DNA databanks to economize in health care. Finally, the ethics of gene transfer are considered, inviting questions into the values of sport and humanity. It argues that, while gene modification may seem conceptually similar to other forms of doping, the requirements upon athletes are such that new forms of enhancement become increasingly necessary to discover. Insofar as genetic science is able to create safer, more effective techniques of human modification, then it may be an appealing route through which to modify athletes to safeguard the future of elite sports as enterprises of human excellence.

  8. Evaluation and application of summary statistic imputation to discover new height-associated loci.

    Science.gov (United States)

    Rüeger, Sina; McDaid, Aaron; Kutalik, Zoltán

    2018-05-01

    As most of the heritability of complex traits is attributed to common and low frequency genetic variants, imputing them by combining genotyping chips and large sequenced reference panels is the most cost-effective approach to discover the genetic basis of these traits. Association summary statistics from genome-wide meta-analyses are available for hundreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it requires reimputation of the genetic data, rerunning the association scan, and meta-analysing the results. A much more efficient method is to directly impute the summary statistics, termed as summary statistics imputation, which we improved to accommodate variable sample size across SNVs. Its performance relative to genotype imputation and practical utility has not yet been fully investigated. To this end, we compared the two approaches on real (genotyped and imputed) data from 120K samples from the UK Biobank and show that, genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distinguishes true associations from null ones: We observed the largest differences in power for variants with low minor allele frequency and low imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statistical power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations, we applied summary statistics imputation to the GIANT height meta-analysis summary statistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants published in an exome chip study. Our study demonstrates that summary statistics imputation is a very efficient and cost-effective way to identify and fine-map trait-associated loci. Moreover, the ability to impute summary statistics is important for follow-up analyses, such as Mendelian

  9. Targeting hepatocellular carcinoma: what did we discover so far?

    Directory of Open Access Journals (Sweden)

    Ana Filipa Brito

    2016-10-01

    Full Text Available Hepatocellular carcinoma (HCC is increasingly considered an issue of global importance. Its rates of incidence and mortality have been markedly increasing over the last decades. Among risk factors, some should be highlighted, namely the infections by hepatitis B and C virus, as well as clinical cases of cirrhosis. HCC is characterized as asymptomatic disease in the initial stages which most often leads to a late diagnosis. At molecular and genetic level HCC represents a highly complex tumor entity, including a wide variety of mutations, thus accounting for different mechanisms of resistance towards therapeutic approaches. In particular, mutations of the TP53 gene, as well as a deregulation between the expression of pro- and anti-apoptotic proteins of the BCL-2 family are observed. Regarding treatment modalities, surgical procedures offer the best chance of cure, however, due to a late diagnosis, most of concerned patients cannot be subjected to them. Chemotherapy and radiotherapy are also ineffective, and currently, the treatment with sorafenib is the most commonly used systemic therapy although it can only increase the patient survival for some months. In this sense, a quick and accurate investigation is of utmost importance in order to develop ways of early diagnosis as well as new therapies for HCC.

  10. Interplay of DNA repair with transcription: from structures to mechanisms.

    Science.gov (United States)

    Deaconescu, Alexandra M; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-12-01

    Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  12. Discover 4-H Clubs: The Essential Resource for 4-H

    Science.gov (United States)

    MacArthur, Stacey; Nelson, Cindy; Brower, Naomi; Memmott, Margie; Peterson, Gaelynn

    2016-01-01

    Obstacles facing new 4-H volunteers include time constraints and difficulty finding project-specific information, resources, and opportunities available for club members. As a solution to these obstacles and an aid for assisting volunteers in becoming confident in delivering information to youth, content experts produced Discover 4-H Clubs, a…

  13. US NSF: scientists discover planetary system similar to our own

    CERN Multimedia

    2003-01-01

    An international team of scientists has discovered a planet and star that may share the same relationship as Jupiter and our Sun, the closest comparison that researchers have found since they began their search for extra-solar planets nearly a decade ago (1 page).

  14. Scientists discover planetary system similar to our own

    CERN Multimedia

    2003-01-01

    'An international team of scientists has discovered a planet and star that may share the same relationship as Jupiter and our Sun, the closest comparison that researchers have found since they began their search for extra-solar planets nearly a decade ago' (1 page).

  15. Re-discovering indigenous knowledge – Ulwazi Lwemveli for ...

    African Journals Online (AJOL)

    Therefore, the imperative to re-discover and re-store IK cannot be underestimated since building on this knowledge is particularly effective in helping to reach those living in rural communities. This knowledge is often the main asset they control, and certainly one with which they are more familiar. The case studies discussed ...

  16. REVIEW: Discovering Statistics Using SPSS for Windows ANDY FIELD (2000)

    OpenAIRE

    SHARMA, Reviewed By Ashok

    2015-01-01

    The book "Discovering Statistics Using SPSS for Windows" is exactly that! Since it calculates amazingly fast, in the recent years, the computer has become the most useful and helpful tool for the researchers in almost every field of knowledge - be it open and distance education, psychology, sociology, management or else.

  17. The Spy VI child : A newly discovered Neandertal infant

    NARCIS (Netherlands)

    Crevecoeur, Isabelle; Bayle, Priscilla; Rougier, Helene; Maureille, Bruno; Higham, Thomas; van der Plicht, Johannes; De Clerck, Nora; Semal, Patrick

    2010-01-01

    Spy cave (Jemeppe-sur-Sambre Belgium) is reputed for the two adult Neandertal individuals discovered in situ in 1886 Recent reassessment of the Spy collections has allowed direct radiocarbon dating of these individuals The sorting of all of the faunal collections has also led to the discovery of the

  18. How to Discover the Rogers–Ramanujan Identities

    Indian Academy of Sciences (India)

    IAS Admin

    The purpose of this article is to introduce you to the. Rogers–Ramanujan identities, by discussing an approach to discover them. When you see that they appear from a very simple generalization of the simplest possible in- finite continued fraction, that in turn is related to the celebrated Fibonacci sequence, perhaps you may ...

  19. Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5Å Resolution

    KAUST Repository

    Quitterer, Felix; List, Anja; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2012-01-01

    The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide l-lysine-Nε-3R-methyl-d-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5′-adenylyl-β-γ-imidodiphosphate, ADP, d-ornithine (d-Orn), l-lysine (Lys), phosphorylated d-Orn, l-lysine-Nε-d-ornithine, inorganic phosphate, carbonate, and Mg2 +. The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of d-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an SN2 reaction resulting in l-lysine-Nε-d-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis. © 2012 Elsevier Ltd.

  20. Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5Å Resolution

    KAUST Repository

    Quitterer, Felix

    2012-12-01

    The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide l-lysine-Nε-3R-methyl-d-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5′-adenylyl-β-γ-imidodiphosphate, ADP, d-ornithine (d-Orn), l-lysine (Lys), phosphorylated d-Orn, l-lysine-Nε-d-ornithine, inorganic phosphate, carbonate, and Mg2 +. The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of d-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an SN2 reaction resulting in l-lysine-Nε-d-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis. © 2012 Elsevier Ltd.

  1. Future possibilities in migraine genetics

    DEFF Research Database (Denmark)

    Rudkjøbing, Laura Aviaja; Esserlind, Ann-Louise; Olesen, Jes

    2012-01-01

    Migraine with and without aura (MA and MO, respectively) have a strong genetic basis. Different approaches using linkage-, candidate gene- and genome-wide association studies have been explored, yielding limited results. This may indicate that the genetic component in migraine is due to rare...... variants; capturing these will require more detailed sequencing in order to be discovered. Next-generation sequencing (NGS) techniques such as whole exome and whole genome sequencing have been successful in finding genes in especially monogenic disorders. As the molecular genetics research progresses......, the technology will follow, rendering these approaches more applicable in the search for causative migraine genes in MO and MA. To date, no studies using NGS in migraine genetics have been published. In order to gain insight into the future possibilities of migraine genetics, we have looked at NGS studies...

  2. Discovering epistasis in large scale genetic association studies by exploiting graphics cards.

    Science.gov (United States)

    Chen, Gary K; Guo, Yunfei

    2013-12-03

    Despite the enormous investments made in collecting DNA samples and generating germline variation data across thousands of individuals in modern genome-wide association studies (GWAS), progress has been frustratingly slow in explaining much of the heritability in common disease. Today's paradigm of testing independent hypotheses on each single nucleotide polymorphism (SNP) marker is unlikely to adequately reflect the complex biological processes in disease risk. Alternatively, modeling risk as an ensemble of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for example, may be a more sensible way to approach gene mapping in modern studies. Implementing such analyzes genome-wide can quickly become intractable due to the fact that even modest size SNP panels on modern genotype arrays (500k markers) pose a combinatorial nightmare, require tens of billions of models to be tested for evidence of interaction. In this article, we provide an in-depth analysis of programs that have been developed to explicitly overcome these enormous computational barriers through the use of processors on graphics cards known as Graphics Processing Units (GPU). We include tutorials on GPU technology, which will convey why they are growing in appeal with today's numerical scientists. One obvious advantage is the impressive density of microprocessor cores that are available on only a single GPU. Whereas high end servers feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over 2600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on GPUs varies across problems. However, epistasis screens fare well due to the high degree of parallelism exposed in these problems. Papers that we review routinely report GPU speedups of over two orders of magnitude (>100x) over standard CPU implementations.

  3. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

    NARCIS (Netherlands)

    I. Tachmazidou (Ioanna); Süveges, D. (Dániel); J. Min (Josine); G.R.S. Ritchie (Graham R.S.); Steinberg, J. (Julia); K. Walter (Klaudia); V. Iotchkova (Valentina); J.A. Schwartzentruber (Jeremy); J. Huang (Jian); Y. Memari (Yasin); McCarthy, S. (Shane); Crawford, A.A. (Andrew A.); C. Bombieri (Cristina); M. Cocca (Massimiliano); A.-E. Farmaki (Aliki-Eleni); T.R. Gaunt (Tom); P. Jousilahti (Pekka); M.N. Kooijman (Marjolein ); Lehne, B. (Benjamin); G. Malerba (Giovanni); S. Männistö (Satu); A. Matchan (Angela); M.C. Medina-Gomez (Carolina); S. Metrustry (Sarah); A. Nag (Abhishek); I. Ntalla (Ioanna); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); C. Sala (Cinzia); W.R. Scott (William R.); H.A. Shihab (Hashem A.); L. Southam (Lorraine); B. St Pourcain (Beate); M. Traglia (Michela); K. Trajanoska (Katerina); Zaza, G. (Gialuigi); W. Zhang (Weihua); M.S. Artigas; Bansal, N. (Narinder); M. Benn (Marianne); Chen, Z. (Zhongsheng); P. Danecek (Petr); Lin, W.-Y. (Wei-Yu); A. Locke (Adam); J. Luan (Jian'An); A.K. Manning (Alisa); Mulas, A. (Antonella); C. Sidore (Carlo); A. Tybjaerg-Hansen; A. Varbo (Anette); M. Zoledziewska (Magdalena); C. Finan (Chris); Hatzikotoulas, K. (Konstantinos); A.E. Hendricks (Audrey E.); J.P. Kemp (John); A. Moayyeri (Alireza); Panoutsopoulou, K. (Kalliope); Szpak, M. (Michal); S.G. Wilson (Scott); M. Boehnke (Michael); F. Cucca (Francesco); Di Angelantonio, E. (Emanuele); C. Langenberg (Claudia); C.M. Lindgren (Cecilia M.); McCarthy, M.I. (Mark I.); A.P. Morris (Andrew); B.G. Nordestgaard (Børge); R.A. Scott (Robert); M.D. Tobin (Martin); N.J. Wareham (Nick); P.R. Burton (Paul); J.C. Chambers (John); Smith, G.D. (George Davey); G.V. Dedoussis (George); J.F. Felix (Janine); O.H. Franco (Oscar); Gambaro, G. (Giovanni); P. Gasparini (Paolo); C.J. Hammond (Christopher J.); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); M.E. Kleber (Marcus); J.S. Kooner (Jaspal S.); M. Perola (Markus); C.L. Relton (Caroline); S.M. Ring (Susan); F. Rivadeneira Ramirez (Fernando); V. Salomaa (Veikko); T.D. Spector (Timothy); O. Stegle (Oliver); D. Toniolo (Daniela); A.G. Uitterlinden (André); I.E. Barroso (Inês); C.M.T. Greenwood (Celia); Perry, J.R.B. (John R.B.); Walker, B.R. (Brian R.); A.S. Butterworth (Adam); Y. Xue (Yali); R. Durbin (Richard); K.S. Small (Kerrin); N. Soranzo (Nicole); N.J. Timpson (Nicholas); E. Zeggini (Eleftheria)

    2016-01-01

    textabstractDeep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the

  4. Discovering epistasis in large scale genetic association studies by exploiting graphics cards

    Directory of Open Access Journals (Sweden)

    Gary K Chen

    2013-12-01

    Full Text Available Despite the enormous investments made in collecting DNA samples and generating germline variation data across thousands of individuals in modern genome wide association studies (GWAS, progress has been frustratingly slow in explaining much of the heritability in common disease. Today’s paradigm of testing independent hypotheses on each SNP marker is unlikely to adequately reflect the complex biological processes in disease risk. Alternatively, modeling risk as an ensemble of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for example, may be a more sensible way to approach gene mapping in modern studies. Implementing such analyses genome-wide can quickly become intractable due to the fact that even modest size SNP panels on modern genotype arrays (500k markers pose a combinatorial nightmare, require tens of billions of models to be tested for evidence of interaction. In this article, we provide an in-depth analysis of programs that have been developed to explicitly overcome these enormous computational barriers through the use of processors on graphics cards known as Graphics Processing Units (GPU. We include tutorials on GPU technology, which will convey why they are growing in appeal with today’s numerical scientists. One obvious advantage is the impressive density of microprocessor cores that are available on only a single GPU. Whereas high end servers feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over 2,600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on GPUs varies across problems. However epistasis screens fare well due to the high degree of parallelism exposed in these problems. Papers that we review routinely report GPU speedups of over two orders of magnitude (>100x over standard CPU implementations.

  5. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

    DEFF Research Database (Denmark)

    Tachmazidou, Ioanna; Süveges, Dániel; Min, Josine L

    2017-01-01

    Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader alleli...

  6. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Zoumpopoulou, Georgia; Foligné, Benoit; Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer's health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut-brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.

  7. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches

    Directory of Open Access Journals (Sweden)

    Konstantinos ePapadimitriou

    2015-02-01

    Full Text Available Over the past decades the food industry has been revolutionized towards the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut-brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.

  8. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches

    Science.gov (United States)

    Papadimitriou, Konstantinos; Zoumpopoulou, Georgia; Foligné, Benoit; Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms. PMID:25741323

  9. College mechanics

    CERN Document Server

    Şengül, Caner

    2016-01-01

    College Mechanics QueBank has been designed to be different, enthusiastic, interesting and helpful to you. Therefore, it is not just a test bank about mechanics but also it is like a compass in order to find your way in mechanics Each chapter in this book is put in an order to follow a hierarchy of the mechanics topics; from vectors to simple harmonic motion. Throughout the book there are many multiple choice and long answer questions for you to solve. They have been created for YGS, LYS, SAT, IB or other standardized exams in the world because mechanics has no boundaries and so Physics has no country. Learn the main principle of each chapter and explore the daily life applications. Then you can start to solve the questions by planning a problem solving method carefully. Finally, enjoy solving the questions and discover the meachanics of the universe once more.

  10. Genetic Mapping

    Science.gov (United States)

    ... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...

  11. Genetic transformation of forest trees

    African Journals Online (AJOL)

    Admin

    In this review, the recent progress on genetic transformation of forest trees were discussed. Its described also, different applications of genetic engineering for improving forest trees or understanding the mechanisms governing genes expression in woody plants. Key words: Genetic transformation, transgenic forest trees, ...

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. cytosine methylation; DNA methylation mechanisms; DNA demethylation mechanisms; Darwinian-cum-Lamarckian evolution; epialleles; epigenetic modifications; genetic recombination; heritable induced defence; mutational hotspots; transgenerational inheritance.

  13. Genetic privacy.

    Science.gov (United States)

    Sankar, Pamela

    2003-01-01

    During the past 10 years, the number of genetic tests performed more than tripled, and public concern about genetic privacy emerged. The majority of states and the U.S. government have passed regulations protecting genetic information. However, research has shown that concerns about genetic privacy are disproportionate to known instances of information misuse. Beliefs in genetic determinacy explain some of the heightened concern about genetic privacy. Discussion of the debate over genetic testing within families illustrates the most recent response to genetic privacy concerns.

  14. A New Species of Frog (Anura: Dicroglossidae) Discovered from the Mega City of Dhaka.

    Science.gov (United States)

    Howlader, Mohammad Sajid Ali; Nair, Abhilash; Merilä, Juha

    2016-01-01

    We describe a new species of frog of the genus Zakerana discovered from the urban core of Dhaka, Bangladesh, one of the most densely populated cities in the world. Although the new species is morphologically similar to the geographically proximate congeners in the Bangladeshi cricket frog group, we show that it can be distinguished from all congeners on the basis of morphological characters, advertisement calls and variation in two mitochondrial DNA genes (12S rRNA and 16S rRNA). Apart from several diagnostic differences in body proportions, the new species differs from other Zakerana species in having a flattened snout (from ventral view) projecting over the lower jaw, and diagnostic trapezoid-shaped red markings on the vocal sac in males. Molecular genetic analyses show that the new species is highly divergent (3.1-20.1% sequence divergence) from all congeneric species, and forms a well-supported clade with its sister species, Zakerana asmati. The discovery of a new amphibian species from the urban core of Dhaka together with several recent descriptions of new amphibian species from Bangladesh may indicate that more amphibian species remain to be discovered from this country.

  15. A Network Biology Approach to Discover the Molecular Biomarker Associated with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Liwei Zhuang

    2014-01-01

    Full Text Available In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular carcinoma (HCC investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study, we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be used as suitable targets for therapeutic intervention in HCC.

  16. Metagenomic approach for discovering new pathogens in infection disease outbreaks

    Directory of Open Access Journals (Sweden)

    Emanuela Giombini

    2011-09-01

    Full Text Available Viruses represent the most abundant biological components on earth.They can be found in every environment, from deep layers of oceans to animal bodies.Although several viruses have been isolated and sequenced, in each environment there are millions of different types of viruses that have not been identified yet.The advent of nextgeneration sequencing technologies with their high throughput capabilities make possible to study in a single experiment all the community of microorganisms present in a particular sample “microbioma”.They made more feasible the application of the metagenomic approach, by which it is also possible to discover and identify new pathogens, that may pose a threat to public health.This paper summarizes the most recent applications of nextgeneration sequencing to discover new viral pathogens during the occurrence of infection disease outbreaks.

  17. Possible origin of Saturn's newly discovered outer ring

    International Nuclear Information System (INIS)

    Moehlmann, D.

    1986-01-01

    Within a planetogonic model the self-gravitationally caused formation of pre-planetary and pre-satellite rings from an earlier thin disk is reported. The theoretically derived orbital radii of these rings are compared with the orbital levels in the planetary system and the satellite systems of Jupiter, Saturn and Uranus. From this comparison it is concluded that at the radial position of Saturn's newly discovered outer ring an early pre-satellite ring of more or less evolved satellites could have existed. These satellites should have been disturbed in their evolution by the gravitation of the neighbouring massive satellite Titan. The comparison also may indicate similarities between the asteroidal belt and the newly discovered outer ring of Saturn

  18. Decision Tree Approach to Discovering Fraud in Leasing Agreements

    OpenAIRE

    Horvat Ivan; Pejić Bach Mirjana; Merkač Skok Marjana

    2014-01-01

    Background: Fraud attempts create large losses for financing subjects in modern economies. At the same time, leasing agreements have become more and more popular as a means of financing objects such as machinery and vehicles, but are more vulnerable to fraud attempts. Objectives: The goal of the paper is to estimate the usability of the data mining approach in discovering fraud in leasing agreements. Methods/Approach: Real-world data from one Croatian leasing firm was used for creating tow mo...

  19. Discovering and Promoting Commodity Health Attributes: Programs and Issues

    OpenAIRE

    Carman, Hoy F.

    2007-01-01

    There is a growing consumer segment demanding healthy foods and diets, health and nutrition messages can expand food demand, and governments in the U.S. and EU, faced with increasing obesity and associated health outcomes, want consumers to have reliable information to choose healthy diets. California commodity organizations, charged with expanding the demand for almonds, avocados, strawberries and walnuts, are funding health and nutrition research as a means to discover a unique selling prop...

  20. Discovering the quantum universe the role of particle colliders

    CERN Document Server

    2006-01-01

    What does "Quantum Universe" mean? To discover what the universe is made of and how it works is the challenge of particle physics. "Quantum Universe" defines the quest to explain the universe in terms of quantum physics, which governs the behavior of the microscopic, subatomic world. It describes a revolution in particle physics and a quantum leap in our understanding of the mystery and beauty of the universe.

  1. Discovering Social Circles in Ego Networks (Author’s Manuscript)

    Science.gov (United States)

    2013-01-10

    refer to as social cir- cles. Practically all major social networks provide such functionality, for example, ‘circles’ on Google+, and ‘lists’ on Facebook ...Discovering Social Circles in Ego Networks Julian McAuley and Jure Leskovec Stanford jmcauley@cs.stanford.edu, jure@cs.stanford.edu January 11, 2013...Abstract People’s personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking

  2. A systematic framework to discover pattern for web spam classification

    OpenAIRE

    Jelodar, Hamed; Wang, Yongli; Yuan, Chi; Jiang, Xiaohui

    2017-01-01

    Web spam is a big problem for search engine users in World Wide Web. They use deceptive techniques to achieve high rankings. Although many researchers have presented the different approach for classification and web spam detection still it is an open issue in computer science. Analyzing and evaluating these websites can be an effective step for discovering and categorizing the features of these websites. There are several methods and algorithms for detecting those websites, such as decision t...

  3. Discovering Authentication Credentials in Volatile Memory of Android Mobile Devices

    OpenAIRE

    Apostolopoulos , Dimitris; Marinakis , Giannis; Ntantogian , Christoforos; Xenakis , Christos

    2013-01-01

    Part 5: Adoption Issues in e/m-Services; International audience; This paper investigates whether authentication credentials in the volatile memory of Android mobile devices can be discovered using freely available tools. The experiments that we carried out for each application included two different sets: In the first set, our goal was to check if we could recover our own submitted credentials from the memory dump of the mobile device. In the second set of experiments, the goal was to find pa...

  4. MP-GeneticSynth: inferring biological network regulations from time series.

    Science.gov (United States)

    Castellini, Alberto; Paltrinieri, Daniele; Manca, Vincenzo

    2015-03-01

    MP-GeneticSynth is a Java tool for discovering the logic and regulation mechanisms responsible for observed biological dynamics in terms of finite difference recurrent equations. The software makes use of: (i) metabolic P systems as a modeling framework, (ii) an evolutionary approach to discover flux regulation functions as linear combinations of given primitive functions, (iii) a suitable reformulation of the least squares method to estimate function parameters considering simultaneously all the reactions involved in complex dynamics. The tool is available as a plugin for the virtual laboratory MetaPlab. It has graphical and interactive interfaces for data preparation, a priori knowledge integration, and flux regulator analysis. Availability and implementation: Source code, binaries, documentation (including quick start guide and videos) and case studies are freely available at http://mplab.sci.univr.it/plugins/mpgs/index.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Athlome Project Consortium: a concerted effort to discover genomic and other "omic" markers of athletic performance.

    Science.gov (United States)

    Pitsiladis, Yannis P; Tanaka, Masashi; Eynon, Nir; Bouchard, Claude; North, Kathryn N; Williams, Alun G; Collins, Malcolm; Moran, Colin N; Britton, Steven L; Fuku, Noriyuki; Ashley, Euan A; Klissouras, Vassilis; Lucia, Alejandro; Ahmetov, Ildus I; de Geus, Eco; Alsayrafi, Mohammed

    2016-03-01

    Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14-17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium. Copyright © 2016 the American Physiological Society.

  6. Recent insights into the genetic basis of systemic lupus erythematosus.

    Science.gov (United States)

    Moser, K L; Kelly, J A; Lessard, C J; Harley, J B

    2009-07-01

    Genetic variation was first shown to be important in systemic lupus erythematosus (SLE or lupus) in the 1970s with associations in the human leukocyte antigen region. Almost four decades later, and with the help of increasingly powerful genetic approaches, more than 25 genes are now known to contribute to the mechanisms that predispose individuals to lupus. Over half of these loci have been discovered in the past 2 years, underscoring the extraordinary success of genome-wide association approaches in SLE. Well-established risk factors include alleles in the major histocompatibility complex region (multiple genes), IRF5, ITGAM, STAT4, BLK, BANK1, PDCD1, PTPN22, TNFSF4, TNFAIP3, SPP1, some of the Fcgamma receptors, and deficiencies in several complement components, including C1q, C4 and C2. As reviewed here, many susceptibility genes fall into key pathways that are consistent with previous studies implicating immune complexes, host immune signal transduction and interferon pathways in the pathogenesis of SLE. Other loci have no known function or apparent immunological role and have the potential to reveal novel disease mechanisms. Certainly, as our understanding of the genetic etiology of SLE continues to mature, important new opportunities will emerge for developing more effective diagnostic and clinical management tools for this complex autoimmune disease.

  7. New Genetic Insights from Autoimmune Thyroid Disease

    Directory of Open Access Journals (Sweden)

    Terry F. Davies

    2012-01-01

    Full Text Available The autoimmune thyroid diseases (AITDs (Graves’ disease and Hashimoto’s thyroiditis are complex genetic diseases which most likely have more than 20 genes contributing to the clinical phenotypes. To date, the genes known to be contributing fall into two categories: immune regulatory genes (including HLA, CTLA4, PTPN22, CD40, CD25, and FCRL3 and thyroid-specific genes (TG and TSHR. However, none of these genes contribute more than a 4-fold increase in risk of developing one of these diseases, and none of the polymorphisms discovered is essential for disease development. Hence, it appears that a variety of different gene interactions can combine to cause the same clinical disease pattern, but the contributing genes may differ from patient to patient and from population to population. Furthermore, this possible mechanism leaves open the powerful influence of the environment and epigenetic modifications of gene expression. For the clinician, this means that genetic profiling of such patients is unlikely to be fruitful in the near future.

  8. Molecular genetics

    International Nuclear Information System (INIS)

    Kubitschek, H.E.

    1975-01-01

    Progress is reported on studies on the nature and action of lethal and mutagenic lesions in DNA and the mechanisms by which these are produced in bacteria by ionizing radiation or by decay of radioisotopes incorporated in DNA. Studies of radioisotope decay provide the advantages that the original lesion is localized in the genetic material and the immediate physical and chemical changes that occur at decay are known. Specific types of DNA damage were related to characteristic decay properties of several radioisotopes. Incorporated 125 I, for example, induces a double-stranded break in DNA with almost every decay, but causes remarkably little damage of any other kind to the DNA. (U.S.)

  9. WONOEP appraisal: new genetic approaches to study epilepsy

    Science.gov (United States)

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  10. Discovering MicroRNAs and Their Targets in Plants

    Czech Academy of Sciences Publication Activity Database

    Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Matoušek, Jaroslav

    2015-01-01

    Roč. 34, č. 6 (2015), s. 553-571 ISSN 0735-2689 Institutional support: RVO:60077344 Keywords : computational methods * degradome * high-throughput approaches Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.810, year: 2015

  11. Something about Genetics in Psychiatry

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2012-11-01

    Full Text Available Genetics in psychiatry is based on the application of the achievements and methods of population’s genetics, immunogenetics, cytogenetics, molecular genetics and pharmacogenetics. Methods of genealogy are already known, and so are the twins method, methods of adoption. Especially present are the methods of DNA recombination discovering the location of genes on chromosomes and creating genetic maps. For now, it can be said that chromosomes 6, 22 and 8 are in the center of attention of geneticists examining the genetic background of schizophrenia[1]. Some studies also suggest an association could be made between HLA-A9 and paranoid schizophrenia. The manic-depressive disorders are more associated with a gene on the short arm of chromosome 11 and the X chromosome. Mental disorders are polygenic and conditioned multifactorial. It is because of the interaction of a number of genetic and environmental factors. The conclusion of most studies is that for the repetition of psychiatric disorders in families heritable factors are more deserving than environmental factors (e.g. studies in families with adopted children, although it is impossible to clearly separate the effects of genetic factors from the effects of environmental factors. The first studies that have attempted to detect predisposition genes for complex diseases were studies of genetic connectivity. They were based on the search of loci - markers in families, which were passed on through generations in the same way as the disease. In the search for the association of complexed hereditary diseases and certain variations of genes in a candidate, the evaluation of endofenotyp can be of a great benefit. Complexed diseases are characterized by a very diverse clinical picture and valuable data could be obtained if we individually evaluate each isolated characteristic of phenotype. The aim of the evaluation of endophenotype in the case of psychiatric disorders, is to penetrate into the mechanisms

  12. Kosambi and the Genetic Mapping Function

    Indian Academy of Sciences (India)

    Research Centre, Indian. Agricultural ... Gregor Johann Mendel discovered that segregation of simple traits in pea ... Cytology furnishes mechanism that the experimental evidence demands” .... practice, however, the existence of interference may cause over .... Morgan's mapping function of true additivity; incomplete inter-.

  13. Development of sexing mechanisms in the Mediterranean fruit fly Ceratitis capitata through manipulation of radiation-induced conditional lethals and other genetic measures

    International Nuclear Information System (INIS)

    Milani, R.

    1990-05-01

    The African populations of Ceratitis capitata (Kenya and Reunion Isl.) and two Mediterranean ones (Sardinia and Procida Isl.) have been studied for genetic variability at 25 loci by electrophoresis. Parameters using gene frequencies indicate the presence of substantial geographic heterogeneity. The major part of this heterogeneity is attributable to genetic drift and is correlated with the dispersion of medfly from the source area of the species (Subsaharan Africa) to the periphery. Kenya has all the properties of a native population, as gene flow estimates, in terms of number of immigrant per generation, is significant between Kenya and the derived Mediterranean populations, supporting the hypothesis of a recent colonization. But part of the geographic heterogeneity is related to the presence of fixed alleles in Reunion population which appears particularly differentiated, although it maintains the genetic attributes of the ancestral population. Selection may have played an important role in the differentiation of this population. 12 refs, 2 figs, 2 tabs

  14. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp.

    Science.gov (United States)

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-05-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. LIGO Discovers the Merger of Two Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    is: how do binary black holes form? Two primary mechanisms have been proposed:A binary star system contains two stars that are each massive enough to individually collapse into a black hole. If the binary isnt disrupted during the two collapse events, this forms an isolated black-hole binary.Single black holes form in dense cluster environments and then because they are the most massive objects sink to the center of the cluster. There they form pairs through dynamical interactions.Now that were able to observe black-hole binaries through gravitational-wave detections, one way we could distinguish between the two formation mechanisms is from spin measurements. If we discover a clear preference for the misalignment of the two black holes spins, this would favor formation in clusters, where theres no reason for the original spins to be aligned.The current, single detection is not enough to provide constraints, but if we can compile a large enough sample of events, we can start to present a statistical case favoring one channel over the other.What does GW150914 mean for the future of gravitational-wave detection?The fact that Advanced LIGO detected an event even before the start of its first official observing run is certainly promising! The LIGO team estimates that the volume the detectors can probe will still increase by at least a factor of ~10 as the observing runs become more sensitive and of longer duration.Aerial view of the Virgo interferometer near Pisa, Italy. [Virgo Collaboration]In addition, LIGO is not alone in the gravitational-wave game. LIGOs counterpart in Europe, Virgo, is also undergoing design upgrades to increase its sensitivity. Within this year, Virgo should be able to take data simultaneously with LIGO, allowing for better localization of sources. And the launch of (e)LISA, ESAs planned space-based interferometer, will grant us access to a new frequency range, opening a further window to the gravitational-wave sky.The detection of GW150914 marks

  16. Genetics and acronyms

    Directory of Open Access Journals (Sweden)

    Giovanni Corsello

    2014-06-01

    Full Text Available In a global society as the present, the nomenclature and terminology of diseases must be universally accepted among the specialists. This sentence is particularly true in some fields of medicine, as genetics, in which the progress of knowledge has been particularly rapid in last years.Many genetic disorders were termed using the names of the doctor (or the doctors who discovered and described them.The name of doctors and specialist were also frequently used to term sign and symptoms of diseases, including genetic syndromes.More rarely, a new disease received the name of the first patients described.In some cases the authors clearly proposed acronyms, that rapidly diffused as a good method to term genetic diseases and syndromes.Acronyms can be originated from the initial of main signs and symptoms; in some instances the acronym reproduces a word with other kind of semantic suggestions; some acronyms in their list of initials show also numbers, while others show also the initial of the words related to the physiopathology of disease.In more recent years acronyms were proposed to mark multicentric studies. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in Neonatology Guest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  17. Tools and strategies for discovering novel enzymes and metabolic pathways

    Directory of Open Access Journals (Sweden)

    John A. Gerlt

    2016-12-01

    Full Text Available The number of entries in the sequence databases continues to increase exponentially – the UniProt database is increasing with a doubling time of ∼4 years (2% increase/month. Approximately 50% of the entries have uncertain, unknown, or incorrect function annotations because these are made by automated methods based on sequence homology. If the potential in complete genome sequences is to be realized, strategies and tools must be developed to facilitate experimental assignment of functions to uncharacterized proteins discovered in genome projects. The Enzyme Function Initiative (EFI; previously supported by U54GM093342 from the National Institutes of Health, now supported by P01GM118303 developed web tools for visualizing and analyzing (1 sequence and function space in protein families (EFI-EST and (2 genome neighbourhoods in microbial and fungal genomes (EFI-GNT to assist the design of experimental strategies for discovering the in vitro activities and in vivo metabolic functions of uncharacterized enzymes. The EFI developed an experimental platform for large-scale production of the solute binding proteins (SBPs for ABC, TRAP, and TCT transport systems and their screening with a physical ligand library to identify the identities of the ligands for these transport systems. Because the genes that encode transport systems are often co-located with the genes that encode the catabolic pathways for the transported solutes, the identity of the SBP ligand together with the EFI-EST and EFI-GNT web tools can be used to discover new enzyme functions and new metabolic pathways. This approach is demonstrated with the characterization of a novel pathway for ethanolamine catabolism.

  18. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.

    Science.gov (United States)

    Murugan, Karthik; Babu, Kesavan; Sundaresan, Ramya; Rajan, Rakhi; Sashital, Dipali G

    2017-10-05

    CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. NLRC5: a newly discovered MHC class I transactivator (CITA)

    OpenAIRE

    Meissner, Torsten B.; Li, Amy; Kobayashi, Koichi S.

    2011-01-01

    Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator), is a master regulator of MHC class II gene expression as well as of some of the genes involved in MHC class II antigen presentation. It has recently been discovered that another member of the NLR protein family, NLRC5, transcriptionally activates MHC class I genes, and thus acts as “CITA” (MHC class I transactivator)...

  20. Knots and surfaces a guide to discovering mathematics

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Knots and Surfaces is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequi

  1. Growing Self-Estemm and Discovering Intelligences through Oral Production

    Directory of Open Access Journals (Sweden)

    Ochoa Dora Liliana

    2002-08-01

    Full Text Available After having applied a needs analysis in an eleventh grade course of English, I could notice that there was a big lack of security and self-confidence in the students. They expressed in different data-gathering instruments their fear when speaking in front of the class. Also, they talked about their insecurity when pronouncing English and the need for more opportunities for developing speaking. Therefore, the implementation of an innovation in class was carried out in order to respond to the students¿ needs and make them discover their talents. The implementation was successful and students improved some areas of their communicative competence.

  2. An approach for discovering keywords from Spanish tweets using Wikipedia

    Directory of Open Access Journals (Sweden)

    Daniel AYALA

    2016-05-01

    Full Text Available Most approaches to keywords discovery when analyzing microblogging messages (among them those from Twitter are based on statistical and lexical information about the words that compose the text. The lack of context in the short messages can be problematic due to the low co-occurrence of words. In this paper, we present a new approach for keywords discovering from Spanish tweets based on the addition of context information using Wikipedia as a knowledge base. We present four different ways to use Wikipedia and two ways to rank the new keywords. We have tested these strategies using more than 60000 Spanish tweets, measuring performance and analyzing particularities of each strategy.

  3. Discovering Communicable Scientific Knowledge from Spatio-Temporal Data

    Science.gov (United States)

    Schwabacher, Mark; Langley, Pat; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes how we used regression rules to improve upon a result previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  4. Very Bright CV discovered by MASTER-ICATE (Argentina)

    Science.gov (United States)

    Saffe, C.; Levato, H.; Mallamaci, C.; Lopez, C.; Lipunov, F. Podest V.; Denisenko, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Yecheistov, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Gabovich, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Frolova, A.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Podvorotny, P.; Shumkov, V.; Shurpakov, S.

    2013-06-01

    MASTER-ICATE very wide-field camera (d=72mm f/1.2 lens + 11 Mpix CCD) located near San Juan, Argentina has discovered OT source at (RA, Dec) = 14h 20m 23.5s -48d 55m 40s on the combined image (exposure 275 sec) taken on 2013-06-08.048 UT. The OT unfiltered magnitude is 12.1m (limit 13.1m). There is no minor planet at this place. The OT is seen in more than 10 images starting from 2013-06-02.967 UT (275 sec exposure) when it was first detected at 12.4m.

  5. Application of omics technologies for environmental risk assessment of genetically modified plants : arabidopsis and modified defence mechanisms as a model study

    NARCIS (Netherlands)

    Houshyani Hassanzadeh, B.

    2012-01-01

    As a result of rapid biotechnological developments in the past century, genetically modified (GM) crops were developed and introduced for field application. Despite the advantages of these crops and the professional marketing policies, people also started questioning the safety of GM products

  6. Development of a genetic sexing mechanism in the Mediterranean fruit fly Ceratitis capitata for isolation of males in the egg or neonatal larval stage. Coordinated programme on development of sexing mechanisms in fruit flies through manipulation of radiation induced conditional lethals and other genetic measures

    International Nuclear Information System (INIS)

    Milani, R.

    1984-05-01

    The use of biochemical markers has allowed a sufficiently detailed evaluation of the genetic variability of the medfly; it has also fostered significant progress in the field of formal genetics. Chromosomal examinations have provided clues for interpreting genetical aspects of sex determination and of occasional recombination of linked factors in heterozygous males. The results obtained are considered a reliable basis for rewarding progress both in basic research and in applied programs

  7. Evolving temporal association rules with genetic algorithms

    OpenAIRE

    Matthews, Stephen G.; Gongora, Mario A.; Hopgood, Adrian A.

    2010-01-01

    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of...

  8. Sex Determination, Sex Ratios, and Genetic Conflict

    NARCIS (Netherlands)

    Werren, John H.; Beukeboom, Leo W.

    1998-01-01

    Genetic mechanisms of sex determination are unexpectedly diverse and change rapidly during evolution. We review the role of genetic conflict as the driving force behind this diversity and turnover. Genetic conflict occurs when different components of a genetic system are subject to selection in

  9. Somatic and genetic effects

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on somatic and genetic effects of the 7th international congress of radiation research. They cover the following main topics: haematopoietic and immune systems, mechanisms of late effects in various tissues, endogenous and exogenous factors in radiation carcinogenesis, teratogenic effects, genetic effects, in vitro transformation, tumour induction in different tissues, carcinogenesis in incorporated tissues, cancer epidemology and risk assessment. refs.; figs.; tabs

  10. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    Science.gov (United States)

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  11. Discovering the cosmos with small spacecraft the American explorer program

    CERN Document Server

    Harvey, Brian

    2018-01-01

    Explorer was the original American space program and Explorer 1 its first satellite, launched in 1958. Sixty years later, it is the longest continuously running space program in the world, demonstrating to the world how we can explore the cosmos with small spacecraft. Almost a hundred Explorers have already been launched.  Explorers have made some of the fundamental discoveries of the Space Age.Explorer 1 discovered Earth’s radiation belts. Later Explorers surveyed the Sun, the X-ray and ultraviolet universes, black holes, magnetars and gamma ray bursts. An Explorer found the remnant of the Big Bang. One Explorer chased and was the first to intercept a comet. The program went through a period of few launches during the crisis of funding for space science in the 1980s. However, with the era of ‘faster, cheaper, better,’ the program was reinvented, and new exiting missions began to take shape, like Swift and the asteroid hunter WISE.  Discovering the Cosmos with Small Spacecraft gives an account of ...

  12. Discovering objects in a blood recipient information system.

    Science.gov (United States)

    Qiu, D; Junghans, G; Marquardt, K; Kroll, H; Mueller-Eckhardt, C; Dudeck, J

    1995-01-01

    Application of object-oriented (OO) methodologies has been generally considered as a solution to the problem of improving the software development process and managing the so-called software crisis. Among them, object-oriented analysis (OOA) is the most essential and is a vital prerequisite for the successful use of other OO methodologies. Though there are already a good deal of OOA methods published, the most important aspect common to all these methods: discovering objects classes truly relevant to the given problem domain, has remained a subject to be intensively researched. In this paper, using the successful development of a blood recipient information system as an example, we present our approach which is based on the conceptual framework of responsibility-driven OOA. In the discussion, we also suggest that it may be inadequate to simply attribute the software crisis to the waterfall model of the software development life-cycle. We are convinced that the real causes for the failure of some software and information systems should be sought in the methodologies used in some crucial phases of the software development process. Furthermore, a software system can also fail if object classes essential to the problem domain are not discovered, implemented and visualized, so that the real-world situation cannot be faithfully traced by it.

  13. Learning Faster by Discovering and Exploiting Object Similarities

    Directory of Open Access Journals (Sweden)

    Tadej Janež

    2013-03-01

    Full Text Available In this paper we explore the question: “Is it possible to speed up the learning process of an autonomous agent by performing experiments in a more complex environment (i.e., an environment with a greater number of different objects?” To this end, we use a simple robotic domain, where the robot has to learn a qualitative model predicting the change in the robot's distance to an object. To quantify the environment's complexity, we defined cardinal complexity as the number of objects in the robot's world, and behavioural complexity as the number of objects' distinct behaviours. We propose Error reduction merging (ERM, a new learning method that automatically discovers similarities in the structure of the agent's environment. ERM identifies different types of objects solely from the data measured and merges the observations of objects that behave in the same or similar way in order to speed up the agent's learning. We performed a series of experiments in worlds of increasing complexity. The results in our simple domain indicate that ERM was capable of discovering structural similarities in the data which indeed made the learning faster, clearly superior to conventional learning. This observed trend occurred with various machine learning algorithms used inside the ERM method.

  14. Screening individual hybridomas by microengraving to discover monoclonal antibodies

    Science.gov (United States)

    Ogunniyi, Adebola O; Story, Craig M; Papa, Eliseo; Guillen, Eduardo; Love, J Christopher

    2014-01-01

    The demand for monoclonal antibodies (mAbs) in biomedical research is significant, but the current methodologies used to discover them are both lengthy and costly. Consequently, the diversity of antibodies available for any particular antigen remains limited. Microengraving is a soft lithographic technique that provides a rapid and efficient alternative for discovering new mAbs. This protocol describes how to use microengraving to screen mouse hybridomas to establish new cell lines producing unique mAbs. Single cells from a polyclonal population are isolated into an array of microscale wells (~105 cells per screen). The array is then used to print a protein microarray, where each element contains the antibodies captured from individual wells. The antibodies on the microarray are screened with antigens of interest, and mapped to the corresponding cells, which are then recovered from their microwells by micromanipulation. Screening and retrieval require approximately 1–3 d (9–12 d including the steps for preparing arrays of microwells). PMID:19528952

  15. Thymolipoma combined with hyperthyroidism discovered by neurological symptoms.

    Science.gov (United States)

    Takahashi, Hidenobu; Harada, Masahiko; Kimura, Masakazu; Kato, Harubumi

    2007-04-01

    Thymolipomas are rare slow-growing mediastinal thymic neoplasms. Most cases are asymptomatic and are sometimes discovered as a huge mass on chest x-ray films. A few cases have been discovered during examinations for other diseases. We report the second case of thymolipoma combined with hyperthyroidism in the English language literature. Neurological symptoms suddenly appeared in a 45-year-old woman. Central nervous system disorder was suggested but no significant abnormalities were found on brain MR nor were there any neurological signs. Several months later, neurological and systemic examinations on admission revealed hyperthyroidism and an anterior mediastinal tumor, 9.0x5.0x3.0 cm in size on chest CT films. Despite treatment of hyperthyroidism by medication, her neurological symptoms remained. Neurologists recommended resection of the mediastinal tumor. Malignancy could not be ruled out because of the irregularity of the tumor appearance on contrast-enhanced chest CT. Furthermore, the tumor appeared to be attached to the ascending aorta, so cytological and/or pathological diagnosis by CT-guided needle biopsy before operation were contraindicated. Extended thymectomy was performed in May 2005. The pathological diagnosis was benign thymolipoma consisting of mature fatty tissue and thymic tissue structures with Hassall's corpuscles. Her neurological symptoms seemed slightly but not markedly improved. The relationship between thymolipoma and hyperthyroidism is still unknown.

  16. Genetic modification and genetic determinism

    Science.gov (United States)

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  17. Interaction between the Bacterium Pseudomonas fluorescens strain CHA0, its genetic derivatives and vermiculite: Effects on chemical, mineralogical and mechanical properties of vermiculite

    Science.gov (United States)

    Mueller, Barbara

    2016-04-01

    Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.

  18. Issues Involving Health and Safety when Radioactive Materials are discovered

    International Nuclear Information System (INIS)

    2010-01-01

    The paper covers the contribution of man made sources of radiation to radiation dose and effects of radiation like vomiting, nausea and deaths. The late effects of radiation are cancer and leukemia with the higher the dose the higher the probability. If mutations occur in the genetic cells, effects may be inherited to the next generations.

  19. Discovering Structure in High-Dimensional Data Through Correlation Explanation

    Science.gov (United States)

    2014-12-08

    transforming complex data into simpler, more meaningful forms goes under the rubric of representation learning [2] which shares many goals with...Zhivotovsky, and M.W. Feldman. Genetic structure of human populations. Science, 298(5602):2381–2385, 2002. [14] K. Bache and M. Lichman. UCI machine

  20. Simultaneously Discovering and Localizing Common Objects in Wild Images.

    Science.gov (United States)

    Wang, Zhenzhen; Yuan, Junsong

    2018-09-01

    Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad

  1. Denying humanness to others: a newly discovered mechanism by which violent video games increase aggressive behavior.

    Science.gov (United States)

    Greitemeyer, Tobias; McLatchie, Neil

    2011-05-01

    Past research has provided abundant evidence that playing violent video games increases aggressive behavior. So far, these effects have been explained mainly as the result of priming existing knowledge structures. The research reported here examined the role of denying humanness to other people in accounting for the effect that playing a violent video game has on aggressive behavior. In two experiments, we found that playing violent video games increased dehumanization, which in turn evoked aggressive behavior. Thus, it appears that video-game-induced aggressive behavior is triggered when victimizers perceive the victim to be less human.

  2. Systems biology: An emerging strategy for discovering novel pathogenetic mechanisms that promote cardiovascular disease

    OpenAIRE

    Maron, Bradley A.; Leopold, Jane A.

    2016-01-01

    Reductionist theory proposes that analyzing complex systems according to their most fundamental components is required for problem resolution, and has served as the cornerstone of scientific methodology for more than four centuries. However, technological gains in the current scientific era now allow for the generation of large datasets that profile the proteomic, genomic, and metabolomic signatures of biological systems across a range of conditions. The accessibility of data on such a vast s...

  3. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    Genetic algorithms (GAs) are computational optimisation schemes with an ... The algorithms solve optimisation problems ..... Genetic Algorithms in Search, Optimisation and Machine. Learning, Addison-Wesley Publishing Company, Inc. 1989.

  4. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    artificial genetic system) string feature or ... called the genotype whereas it is called a structure in artificial genetic ... assigned a fitness value based on the cost function. Better ..... way it has produced complex, intelligent living organisms capable of ...

  5. A new hard X-ray transient discovered by INTEGRAL

    DEFF Research Database (Denmark)

    Gibaud, L.; Bazzano, A.; Bozzo, E.

    2011-01-01

    INTEGRAL discovered a new hard X-ray transient, IGR J17498-2921, during the observations performed from 2011-08-11 22:45 to 2011-08-12 05:54 UTC. The source is detected in the IBIS/ISGRI mosaic at a preliminary significance level of 11 and 9 sigma in the 20-40 keV and 40-80 keV energy bands......, respectively. The corresponding fluxes are 19+/-2 and 23+/-3 mCrab (68% c.l., only statistical). The best determined source position is at RA=17:49:49; DEC=-29:21:14 (J2000) with a 90% confinement radius of 2.3 arcmin. The IBIS/ISGRI spectrum (exposure time 15.9 ks) can be well described by a a power...

  6. Discovering Mira Ceti: Celestial Change and Cosmic Continuity

    Science.gov (United States)

    Hatch, Robert Alan

    In the short narrative that follows I introduce two new heroes. Although we begin with Fabricius's first sighting in 1596, the new pivot point in the drama is the collaboration between Hevelius and Boulliau that began around 1660. As it happens, Learned Europe paid little attention to Mira in the generation after the first scattered sightings of 1596, indeed, nearly 70 years passed before the New Star was given a working identity. Like Columbus discovering America, Fabricius and Holwarda saw different things - for convenience, I call them Fabricius's Star and Holwarda's Star. Hevelius's Historiola (Danzig, 1662) and Boulliau's Ad astronomos (Paris, 1667) presented a different vision. It made Mira famous. As I shall argue, if Hevelius gave Mira a history, Boulliau gave Mira a future.5 In the end, the New Star not only challenged the ancient cosmos, it became an enduring icon for the New Science, a returning reminder of celestial continuity and cosmic order.

  7. SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS

    International Nuclear Information System (INIS)

    Chen, Christine H.; Sheehan, Patrick; Watson, Dan M.; Manoj, P.; Najita, Joan R.

    2009-01-01

    We have rereduced Spitzer IRS spectra and reanalyzed the spectral energy distributions (SEDs) of three nearby debris disks: λ Boo, HD 139664, and HR 8799. We find that the thermal emission from these objects is well modeled using two single temperature black body components. For HR 8799 - with no silicate emission features despite a relatively hot inner dust component (T gr = 150 K) - we infer the presence of an asteroid belt interior to and a Kuiper Belt exterior to the recently discovered orbiting planets. For HD 139664, which has been imaged in scattered light, we infer the presence of strongly forward scattering grains, consistent with porous grains, if the cold, outer disk component generates both the observed scattered light and thermal emission. Finally, careful analysis of the λ Boo SED suggests that this system possesses a central clearing, indicating that selective accretion of solids onto the central star does not occur from a dusty disk.

  8. Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes.

    Science.gov (United States)

    Ganesan, Kavita; Lloyd, Shane; Sarkar, Vikren

    2016-01-01

    The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases.

  9. Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes

    Directory of Open Access Journals (Sweden)

    Kavita Ganesan

    2016-01-01

    Full Text Available The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases.

  10. About Genetic Counselors

    Science.gov (United States)

    ... clinical care in many areas of medicine. Assisted Reproductive Technology/Infertility Genetics Cancer Genetics Cardiovascular Genetics Cystic Fibrosis Genetics Fetal Intervention and Therapy Genetics Hematology Genetics Metabolic Genetics ...

  11. Occult carcinoma discovered after simple hysterectomy treated with postoperative radiotherapy

    International Nuclear Information System (INIS)

    Crane, Christopher H.; Schneider, Bernard F.

    1999-01-01

    Purpose: Treatment of patients with occult carcinoma of the cervix discovered after simple hysterectomy is controversial. The purpose of this review is to examine our results with postoperative radiotherapy and to compare them to similar reports and to reports of treatment with radical parametrectomy. Methods and Materials: Between November 1979 and April:, 18 patients were treated with radiotherapy at the University of Virginia for invasive carcinoma of the cervix discovered after simple hysterectomy. Simple hysterectomy was performed in all 18 patients for a variety of indications. After surgery gross residual carcinoma remained in four patients; and microscopic disease was present at the surgical margins in two patients. The remaining patients had no evidence of residual disease. All 18 patients had postoperative radiotherapy with or without brachytherapy. The endpoints for this study were local control, survival, and treatment-related toxicity. Actuarial rates were calculated using the Life method. Results: Median follow-up for all 18 patients was 42 months (range 2-202 months). Both the 5 and the 10-year actuarial local control rates were 88%. Five and 10-year actuarial overall survival rates were both 93%. Two patients had both local and distant cancer recurrences. There were no recurrences among the six patients treated with external beam alone. The remaining patients are all alive without evidence of disease, including two patients who had gross residual disease after surgery, and one patient with both microscopic positive margin and a positive lymph node (the only patient to undergo lymph node sampling). There was no severe acute morbidity and only one patient had severe late morbidity. Conclusions: Invasive carcinoma found after simple hysterectomy may be treated safely and effectively with postoperative radiotherapy. Patients with known residual disease following surgery do poorly with either radiotherapy or reoperation, but treatment with radiotherapy

  12. Risk of appendicitis in patients with incidentally discovered appendicoliths.

    Science.gov (United States)

    Khan, Muhammad Sohaib; Chaudhry, Mustafa Belal Hafeez; Shahzad, Noman; Tariq, Marvi; Memon, Wasim Ahmed; Alvi, Abdul Rehman

    2018-01-01

    An appendicolith-related appendiceal obstruction leading to appendicitis is a commonly encountered surgical emergency that has clear evidence-based management plans. However, there is no consensus on management of asymptomatic patients when appendicoliths are found incidentally. The objective of this study was to determine the risk of appendicitis in patients with an incidental finding of the appendicolith. A retrospective matched cohort study of patients with appendicolith discovered incidentally on computed tomographic scan from January 2008 to December 2014 at our institution was completed. The size and position of the appendicolith were ascertained. The study group was matched by age and gender to a control group. Both groups were contacted and interviewed regarding development of appendicitis. In total, 111 patients with appendicolith were successfully contacted and included in the study. Mean age was found to be 38 ± 15 y with 36 (32%) of the study population being females. Mean length of appendix was 66 ± 16 mm, and mean width was 5.8 ± 0.9 mm. Mean size of the appendicolith was 3.6 ± 1.1 mm (1.4-7.8 mm). Fifty-eight percent of appendicoliths was located at the proximal end or whole of appendix, 31% at mid area, and 11% at the distal end of appendix. All patients of the study and control groups were contacted, and at a mean follow-up of 4.0 ± 1.7 y, there was no occurrence of acute appendicitis in either group. Patients with incidentally discovered appendicolith on radiological imaging did not develop appendicitis. Hence, the risk of developing acute appendicitis for these patients does not seem higher than the general population. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. La tiroides como modelo de mecanismos moleculares en enfermedades genéticas The thyroid as a model for molecular mechanisms in genetic diseases

    Directory of Open Access Journals (Sweden)

    Carina M. Rivolta

    2005-06-01

    éticas.Thyroid diseases constitute a heterogeneous collection of abnormalities associated with mutations in genes responsible for the development of thyroid: thyroid transcription factor-1 (TTF-1, thyroid transcriptions factor-2 (TTF-2 and PAX8, or in one of the genes coding for the proteins involved in thyroid hormone biosynthesis such as thyroglobulin (TG, thyroperoxidase (TPO, hydrogen peroxide-generating system (DUOX2, sodium/iodide symporter (NIS, pendrin (PDS, TSH and TSH receptor (TSHr. Congenital hypothyroidism occurs with a prevalence of 1 in 4000 newborns. Patients with this syndrome can be divided into two groups: nongoitrous (dysem/bryogenesis or goitrous (dyshormonogenesis congenital hypothyroidism. The dysembryogenesis group, which accounts for 85% of the cases, results from ectopy, agenesis and hypoplasia. In a minority of these patients, the congenital hypothyroidism is associated with mutations in TTF-1, TTF-2, PAX-8, TSH or TSHr genes. The presence of congenital goiter (15% of the cases has been linked to mutations in the NIS, TG, TPO, DUOX2 or PDS genes. The congenital hypothyroidism with dyshormonogenesis is transmitted as an autosomal recessive trait. Somatic mutations of the TSHr have been identified in hyperfunctioning thyroid adenomas. Another established thyroid disease is the resistance to thyroid hormone (RTH. It is a syndrome of reduced tissue responsiveness to hormonal action caused by mutations located in the thyroid hormone receptor b (TRb gene. Mutant TRbs interfere with the function of the wild-type receptor by a dominant negative mechanism. In conclusion, the identification of mutations in the thyroid expression genes has provided important insights into structure-function relationships. The thyroid constitutes an excellent model for the molecular study of genetic diseases.

  14. Management of genetic epilepsies: From empirical treatment to precision medicine.

    Science.gov (United States)

    Striano, Pasquale; Vari, Maria Stella; Mazzocchetti, Chiara; Verrotti, Alberto; Zara, Federico

    2016-05-01

    Despite the over 20 antiepileptic drugs (AEDs) now licensed for epilepsy treatment, seizures can be effectively controlled in about ∼70% of patients. Thus, epilepsy treatment is still challenging in about one third of patients and this may lead to a severe medically, physically, and socially disabling condition. However, there is clear evidence of heterogeneity of response to existing AEDs and a significant unmet need for effective intervention. A number of studies have shown that polymorphisms may influence the poor or inadequate therapeutic response as well as the occurrence of adverse effects. In addition, the new frontier of genomic technologies, including chromosome microarrays and next-generation sequencing, improved our understanding of the genetic architecture of epilepsies. Recent findings in some genetic epilepsy syndromes provide insights into mechanisms of epileptogenesis, unrevealing the role of a number of genes with different functions, such as ion channels, proteins associated to the vesical synaptic cycle or involved in energy metabolism. The rapid progress of high-throughput genomic sequencing and corresponding analysis tools in molecular diagnosis are revolutionizing the practice and it is a fact that for some monogenic epilepsies the molecular confirmation may influence the choice of the treatment. Moreover, the novel genetic methods, that are able to analyze all known genes at a reasonable price, are of paramount importance to discover novel therapeutic avenues and individualized (or precision) medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genetic Modifiers of Sickle Cell Disease

    Science.gov (United States)

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  16. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  17. [The genetics of addictions].

    Science.gov (United States)

    Ibañez Cuadrado, Angela

    2008-01-01

    The addictions are common chronic psychiatric diseases which represent a serious worldwide public-health problem. They have a high prevalence and negative effects at individual, family and societal level, with a high sanitary cost. Epidemiological genetic research has revealed that addictions are moderately to highly heritable. Also the investigation has evidenced that environmental and genetic factors contribute to individual differences in vulnerability to addictions. Advances in the neurobiology of addiction joined to the development of new molecular genetic technologies, have led to the identification of a variety of underlying genes and pathways in addiction process, leading to the description of common molecular mechanisms in substance and behaviour dependencies. Identifying gene-environment interactions is a crucial issue in future research. Other major goal in genetic research is the identification of new therapeutic targets for treatment and prevention.

  18. The Sociology of the Gene: Genetics and Education on the Eve of the Biotech Century.

    Science.gov (United States)

    Rifkin, Jeremy

    1998-01-01

    Researchers in molecular biology are discovering an increasing genetic basis for a wide range of mental diseases, moods, behaviors, and personality traits. Findings are creating the context for a new sociobiology favoring a genetic interpretation of human motivations and drives. Genetic engineering will give some people unprecedented power over…

  19. Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells

    NARCIS (Netherlands)

    Lazzarano, S. (Stefano); Kučka, M. (Marek); Castro, J.P.L. (João P. L.); Naumann, R. (Ronald); Medina, P. (Paloma); Fletcher, M.N.C. (Michael N. C.); Wombacher, R. (Rebecka); J.H. Gribnau (Joost); Hochepied, T. (Tino); Van Montagu, M. (Marc); C. Libert; Chan, Y.F. (Yingguang Frank)

    2018-01-01

    textabstractDiscovering the genetic changes underlying species differences is a central goal in evolutionary genetics. However, hybrid crosses between species in mammals often suffer from hybrid sterility, greatly complicating genetic mapping of trait variation across species. Here, we describe a

  20. Data Recommender: An Alternative Way to Discover Open Scientific Datasets

    Science.gov (United States)

    Klump, J. F.; Devaraju, A.; Williams, G.; Hogan, D.; Davy, R.; Page, J.; Singh, D.; Peterson, N.

    2017-12-01

    Over the past few years, institutions and government agencies have adopted policies to openly release their data, which has resulted in huge amounts of open data becoming available on the web. When trying to discover the data, users face two challenges: an overload of choice and the limitations of the existing data search tools. On the one hand, there are too many datasets to choose from, and therefore, users need to spend considerable effort to find the datasets most relevant to their research. On the other hand, data portals commonly offer keyword and faceted search, which depend fully on the user queries to search and rank relevant datasets. Consequently, keyword and faceted search may return loosely related or irrelevant results, although the results may contain the same query. They may also return highly specific results that depend more on how well metadata was authored. They do not account well for variance in metadata due to variance in author styles and preferences. The top-ranked results may also come from the same data collection, and users are unlikely to discover new and interesting datasets. These search modes mainly suits users who can express their information needs in terms of the structure and terminology of the data portals, but may pose a challenge otherwise. The above challenges reflect that we need a solution that delivers the most relevant (i.e., similar and serendipitous) datasets to users, beyond the existing search functionalities on the portals. A recommender system is an information filtering system that presents users with relevant and interesting contents based on users' context and preferences. Delivering data recommendations to users can make data discovery easier, and as a result may enhance user engagement with the portal. We developed a hybrid data recommendation approach for the CSIRO Data Access Portal. The approach leverages existing recommendation techniques (e.g., content-based filtering and item co-occurrence) to produce

  1. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1991-12-01

    Ionizing radiation effects on the gem cells, which can result in genetic abnormalities, are described. The basic mechanisms of radiation interactions with chromosomes, or specifically DNA, which can result in radiation induced mutation are discussed. Methods of estimating genetic risks, and some values for quantitative risk estimates are given. (U.K.). 13 refs., 2 figs., 1 tab

  2. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  3. Genetic Sensitivity to the Bitter Taste of 6-n-Propylthiouracil (PROP and Its Association with Physiological Mechanisms Controlling Body Mass Index (BMI

    Directory of Open Access Journals (Sweden)

    Beverly J. Tepper

    2014-08-01

    Full Text Available Taste sensitivity to the bitter compound 6-n-propylthiouracil (PROP is considered a marker for individual differences in taste perception that may influence food preferences and eating behavior, and thereby energy metabolism. This review describes genetic factors that may contribute to PROP sensitivity including: (1 the variants of the TAS2R38 bitter receptor with their different affinities for the stimulus; (2 the gene that controls the gustin protein that acts as a salivary trophic factor for fungiform taste papillae; and (3 other specific salivary proteins that could be involved in facilitating the binding of the PROP molecule with its receptor. In addition, we speculate on the influence of taste sensitivity on energy metabolism, possibly via modulation of the endocannabinoid system, and its possible role in regulating body composition homeostasis.

  4. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model.

    Science.gov (United States)

    Fransson, Martin N; Gréen, Henrik; Litton, Jan-Eric; Friberg, Lena E

    2011-02-01

    The formulation vehicle Cremophor EL has previously been shown to affect paclitaxel kinetics, but it is not known whether it also affects the kinetics of paclitaxel metabolites. This information may be important for understanding paclitaxel metabolism in vivo and in the investigation of the role of genetic polymorphisms in the metabolizing enzymes CYP2C8 and CYP3A4/CYP3A5 and the ABCB1 transporter. In this study we used the population pharmacokinetic approach to explore the influence of predicted Cremophor EL concentrations on paclitaxel (Taxol) metabolites. In addition, correlations between genetic polymorphisms and enzyme activity with clearance of paclitaxel, its two primary metabolites, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, and its secondary metabolite, 6α-p-3'-dihydroxypaclitaxel were investigated. Model building was based on 1156 samples from a study with 33 women undergoing paclitaxel treatment for gynecological cancer. Total concentrations of paclitaxel were fitted to a model described previously. One-compartment models characterized unbound metabolite concentrations. Total concentrations of 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel were strongly dependent on predicted Cremophor EL concentrations, but this association was not found for 6α-p-3'-dihydroxypaclitaxel. Clearance of 6α-hydroxypaclitaxel (fraction metabolized) was significantly correlated (p < 0.05) to the ABCB1 allele G2677T/A. Individuals carrying the polymorphisms G/A (n = 3) or G/G (n = 5) showed a 30% increase, whereas individuals with polymorphism T/T (n = 8) showed a 27% decrease relative to those with the polymorphism G/T (n = 17). The correlation of G2677T/A with 6α-hydroxypaclitaxel has not been described previously but supports other findings of the ABCB1 transporter playing a part in paclitaxel metabolism.

  5. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  6. Metabolome analysis for discovering biomarkers of gastroenterological cancer.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Matsubara, Atsuki; Azuma, Takeshi; Yoshida, Masaru

    2014-09-01

    Improvements in analytical technologies have made it possible to rapidly determine the concentrations of thousands of metabolites in any biological sample, which has resulted in metabolome analysis being applied to various types of research, such as clinical, cell biology, and plant/food science studies. The metabolome represents all of the end products and by-products of the numerous complex metabolic pathways operating in a biological system. Thus, metabolome analysis allows one to survey the global changes in an organism's metabolic profile and gain a holistic understanding of the changes that occur in organisms during various biological processes, e.g., during disease development. In clinical metabolomic studies, there is a strong possibility that differences in the metabolic profiles of human specimens reflect disease-specific states. Recently, metabolome analysis of biofluids, e.g., blood, urine, or saliva, has been increasingly used for biomarker discovery and disease diagnosis. Mass spectrometry-based techniques have been extensively used for metabolome analysis because they exhibit high selectivity and sensitivity during the identification and quantification of metabolites. Here, we describe metabolome analysis using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Furthermore, the findings of studies that attempted to discover biomarkers of gastroenterological cancer are also outlined. Finally, we discuss metabolome analysis-based disease diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. AN EFFICIENT WEB PERSONALIZATION APPROACH TO DISCOVER USER INTERESTED DIRECTORIES

    Directory of Open Access Journals (Sweden)

    M. Robinson Joel

    2014-04-01

    Full Text Available Web Usage Mining is the application of data mining technique used to retrieve the web usage from web proxy log file. Web Usage Mining consists of three major stages: preprocessing, clustering and pattern analysis. This paper explains each of these stages in detail. In this proposed approach, the web directories are discovered based on the user’s interestingness. The web proxy log file undergoes a preprocessing phase to improve the quality of data. Fuzzy Clustering Algorithm is used to cluster the user and session into disjoint clusters. In this paper, an effective approach is presented for Web personalization based on an Advanced Apriori algorithm. It is used to select the user interested web directories. The proposed method is compared with the existing web personalization methods like Objective Probabilistic Directory Miner (OPDM, Objective Community Directory Miner (OCDM and Objective Clustering and Probabilistic Directory Miner (OCPDM. The result shows that the proposed approach provides better results than the aforementioned existing approaches. At last, an application is developed with the user interested directories and web usage details.

  8. The 3D model of debriefing: defusing, discovering, and deepening.

    Science.gov (United States)

    Zigmont, Jason J; Kappus, Liana J; Sudikoff, Stephanie N

    2011-04-01

    The experiential learning process involves participation in key experiences and analysis of those experiences. In health care, these experiences can occur through high-fidelity simulation or in the actual clinical setting. The most important component of this process is the postexperience analysis or debriefing. During the debriefing, individuals must reflect upon the experience, identify the mental models that led to behaviors or cognitive processes, and then build or enhance new mental models to be used in future experiences. On the basis of adult learning theory, the Kolb Experiential Learning Cycle, and the Learning Outcomes Model, we structured a framework for facilitators of debriefings entitled "the 3D Model of Debriefing: Defusing, Discovering, and Deepening." It incorporates common phases prevalent in the debriefing literature, including description of and reactions to the experience, analysis of behaviors, and application or synthesis of new knowledge into clinical practice. It can be used to enhance learning after real or simulated events. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Can doubly strange dibaryon resonances be discovered at RHIC?

    International Nuclear Information System (INIS)

    Paganis, S. D.; Hoffmann, G. W.; Ray, R. L.; Tang, J.-L.; Udagawa, T.; Longacre, R. S.

    2000-01-01

    The baryon-baryon continuum invariant mass spectrum generated from relativistic nucleus + nucleus collision data may reveal the existence of doubly strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly strange dibaryon states are considered for experimental search using the STAR detector (solenoidal tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to ΛΛ and/or pΞ - , depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensitivity are studied as a function of resonance production rate and width for one particular dibaryon which can directly strong decay to pΞ - , but not ΛΛ. Results indicate that such resonances may be discovered using STAR if the resonance production rates are comparable to coalescence model predictions for dibaryon bound states. (c) 2000 The American Physical Society

  10. Inner solar system material discovered in the Oort cloud.

    Science.gov (United States)

    Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J

    2016-04-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.

  11. More Far-Side Deep Moonquake Nests Discovered

    Science.gov (United States)

    Nakamura, Y.; Jackson, John A.; Jackson, Katherine G.

    2004-01-01

    As reported last year, we started to reanalyze the seismic data acquired from 1969 to 1977 with a network of stations established on the Moon during the Apollo mission. The reason for the reanalysis was because recent advances in computer technology make it possible to employ much more sophisticated analysis techniques than was possible previously. The primary objective of the reanalysis was to search for deep moonquakes on the far side of the Moon and, if found, to use them to infer the structure of the Moon's deep interior, including a possible central core. The first step was to identify any new deep moonquakes that escaped our earlier search by applying a combination of waveform cross-correlation and single-link cluster analysis, and then to see if any of them are from previously unknown nests of deep moonquakes. We positively identified 7245 deep moonquakes, more than a five-fold increase from the previous 1360. We also found at least 88 previously unknown deep-moonquake nests. The question was whether any of these newly discovered nets were on the far side of the Moon, and we now report that our analysis of the data indicates that some of them are indeed on the far side.

  12. Discovering Patterns in Brain Signals Using Decision Trees

    Directory of Open Access Journals (Sweden)

    Narusci S. Bastos

    2016-01-01

    Full Text Available Even with emerging technologies, such as Brain-Computer Interfaces (BCI systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain’s behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain’s behaviour.

  13. Prediction of Human Activity by Discovering Temporal Sequence Patterns.

    Science.gov (United States)

    Li, Kang; Fu, Yun

    2014-08-01

    Early prediction of ongoing human activity has become more valuable in a large variety of time-critical applications. To build an effective representation for prediction, human activities can be characterized by a complex temporal composition of constituent simple actions and interacting objects. Different from early detection on short-duration simple actions, we propose a novel framework for long -duration complex activity prediction by discovering three key aspects of activity: Causality, Context-cue, and Predictability. The major contributions of our work include: (1) a general framework is proposed to systematically address the problem of complex activity prediction by mining temporal sequence patterns; (2) probabilistic suffix tree (PST) is introduced to model causal relationships between constituent actions, where both large and small order Markov dependencies between action units are captured; (3) the context-cue, especially interactive objects information, is modeled through sequential pattern mining (SPM), where a series of action and object co-occurrence are encoded as a complex symbolic sequence; (4) we also present a predictive accumulative function (PAF) to depict the predictability of each kind of activity. The effectiveness of our approach is evaluated on two experimental scenarios with two data sets for each: action-only prediction and context-aware prediction. Our method achieves superior performance for predicting global activity classes and local action units.

  14. Commentary: discovering a different model of medical student education.

    Science.gov (United States)

    Watson, Robert T

    2012-12-01

    Traditional medical schools in modern academic health centers make discoveries, create new knowledge and technology, provide innovative care to the sickest patients, and educate future academic and practicing physicians. Unfortunately, the growth of the research and clinical care missions has sometimes resulted in a loss of emphasis on the general professional education of medical students. The author concludes that it may not be practical for many established medical schools to functionally return to the reason they were created: for the education of medical students.He had the opportunity to discover a different model of medical student education at the first new MD-granting medical school created in the United States in 25 years (in 2000), the Florida State University College of Medicine. He was initially skeptical about how its distributed regional campuses model, using practicing primary care physicians to help medical students learn in mainly ambulatory settings, could be effective. But his experience as a faculty member at the school convinced him that the model works very well.He proposes a better alignment of form and function for many established medical schools and an extension of the regional community-based model to the formation of community-based primary care graduate medical education programs determined by physician workforce needs and available resources.

  15. Unified Photo Enhancement by Discovering Aesthetic Communities From Flickr.

    Science.gov (United States)

    Hong, Richang; Zhang, Luming; Tao, Dacheng

    2016-03-01

    Photo enhancement refers to the process of increasing the aesthetic appeal of a photo, such as changing the photo aspect ratio and spatial recomposition. It is a widely used technique in the printing industry, graphic design, and cinematography. In this paper, we propose a unified and socially aware photo enhancement framework which can leverage the experience of photographers with various aesthetic topics (e.g., portrait and landscape). We focus on photos from the image hosting site Flickr, which has 87 million users and to which more than 3.5 million photos are uploaded daily. First, a tagwise regularized topic model is proposed to describe the aesthetic topic of each Flickr user, and coherent and interpretable topics are discovered by leveraging both the visual features and tags of photos. Next, a graph is constructed to describe the similarities in aesthetic topics between the users. Noticeably, densely connected users have similar aesthetic topics, which are categorized into different communities by a dense subgraph mining algorithm. Finally, a probabilistic model is exploited to enhance the aesthetic attractiveness of a test photo by leveraging the photographic experiences of Flickr users from the corresponding communities of that photo. Paired-comparison-based user studies show that our method performs competitively on photo retargeting and recomposition. Moreover, our approach accurately detects aesthetic communities in a photo set crawled from nearly 100000 Flickr users.

  16. Systematic Serendipity: A Method to Discover the Anomalous

    Science.gov (United States)

    Giles, Daniel; Walkowicz, Lucianne

    2018-01-01

    One of the challenges in the era of big data astronomical surveys is identifying anomalous data, data that exhibits as-of-yet unobserved behavior. These data may result from systematic errors, extreme (or rare) forms of known phenomena, or, most interestingly, truly novel phenomena that has historically required a trained eye and often fortuitous circumstance to identify. We describe a method that uses machine clustering techniques to discover anomalous data in Kepler lightcurves, as a step towards systematizing the detection of novel phenomena in the era of LSST. As a proof of concept, we apply our anomaly detection method to Kepler data including Boyajian's Star (KIC 8462852). We examine quarters 4, 8, 11, and 16 of the Kepler data which contain Boyajian’s Star acting normally (quarters 4 and 11) and anomalously (quarters 8 and 16). We demonstrate that our method is capable of identifying Boyajian’s Star’s anomalous behavior in quarters of interest, and we further identify other anomalous light curves that exhibit a range of interesting variability.

  17. Decision Tree Approach to Discovering Fraud in Leasing Agreements

    Directory of Open Access Journals (Sweden)

    Horvat Ivan

    2014-09-01

    Full Text Available Background: Fraud attempts create large losses for financing subjects in modern economies. At the same time, leasing agreements have become more and more popular as a means of financing objects such as machinery and vehicles, but are more vulnerable to fraud attempts. Objectives: The goal of the paper is to estimate the usability of the data mining approach in discovering fraud in leasing agreements. Methods/Approach: Real-world data from one Croatian leasing firm was used for creating tow models for fraud detection in leasing. The decision tree method was used for creating a classification model, and the CHAID algorithm was deployed. Results: The decision tree model has indicated that the object of the leasing agreement had the strongest impact on the probability of fraud. Conclusions: In order to enhance the probability of the developed model, it would be necessary to develop software that would enable automated, quick and transparent retrieval of data from the system, processing according to the rules and displaying the results in multiple categories.

  18. Discovering EEG resting state alterations of semantic dementia.

    Science.gov (United States)

    Grieder, Matthias; Koenig, Thomas; Kinoshita, Toshihiko; Utsunomiya, Keita; Wahlund, Lars-Olof; Dierks, Thomas; Nishida, Keiichiro

    2016-05-01

    Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer's disease. Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  20. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  1. Genetic Romanticism

    DEFF Research Database (Denmark)

    Tupasela, Aaro

    2016-01-01

    inheritance as a way to unify populations within politically and geographically bounded areas. Thus, new genetics have contributed to the development of genetic romanticisms, whereby populations (human, plant, and animal) can be delineated and mobilized through scientific and medical practices to represent...

  2. PALFA Discovers Neutron Stars on a Collision Course

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys

  3. Discovering significant evolution patterns from satellite image time series.

    Science.gov (United States)

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  4. A DISK MIRROR RECENTLY DISCOVERED SOUTH THE LOWER MUREȘ

    Directory of Open Access Journals (Sweden)

    Vitalie Bârcă

    2016-11-01

    Full Text Available The object of this study is the analysis of the disk mirror discovered in 2010 during the rescue archaeological excavations carried out in occasion of the construction of the Arad-Timişoara motorway, respectively the Arad-Seceani sector. The mirror was found at  ca. 1 m north grave 1 in site B0_6, where beside other two cremation graves, poorly preserved, other 129 archaeological features were also investigated.Though not exhaustively, we attempt herein to present the origin, distribution of this mirror type in the Sarmatian world and the chronological interval of their use within said environment.The author notes that these disk mirror types from the funerary Sarmatian features of the Great Hungarian Plain count amongst the most numerous, being found within funerary contexts on the entire duration of the Sarmatian inhabitancy of this geographical area. Further, the author notes that mirrors of the type are widely spread on broad geographical areas, hence the establishment of any production centres is highly difficult, but also that very likely, they were produced in various cultural environments over several centuries. Their high numbers in the Sarmatian world proves it is possible they made them, although there is no certain substantiating evidence. The author does not exclude either the possibility of the presence of travelling artisans in the Sarmatian environment making certain item categories upon order, mirrors of the type included.In terms of the dating of G 1 at Arad (site B_06, where the mirror most definitely originates, the author concludes that together with the other two graves (G 2 and G 3 are contemporary and date sometime to the end of the 2nd century – early decades of the 3rd century AD.

  5. Discovering Higgs Bosons of the MSSM using Jet Substructure

    International Nuclear Information System (INIS)

    Kribs, Graham D.; Martin, Adam; Roy, Tuhin S.; Spannowsky, Michael

    2010-01-01

    We present a qualitatively new approach to discover Higgs bosons of the MSSM at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to b(bar b) throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to b(bar b). The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m # tilde q#,m # tilde g# > m # tilde W#, # tilde B# > m h + μ; m(tilde q);m # tilde q#,m # tilde g# > m # tilde W#, # tilde B# > m h,H,A + μ; and m # tilde q#,m # tilde g# > m # tilde W# > m h + μ with m # tilde B# ∼ μ. In these cascades, the Higgs bosons are boosted, with pT > 200 GeV a large fraction of the time. Since Higgs bosons appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs boson can be the same order as squark/gluino production. Given 10 fb -1 of 14 TeV LHC data, with m # tilde q# ∼< 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S√ B of the Higgs signal is sufficiently high that the b(bar b) mode can become the discovery mode of the lightest Higgs boson of the MSSM.

  6. Discovering Higgs bosons of the MSSM using jet substructure

    International Nuclear Information System (INIS)

    Kribs, Graham D.; Roy, Tuhin S.; Spannowsky, Michael; Martin, Adam

    2010-01-01

    We present a qualitatively new approach to discover Higgs bosons of the minimal supersymmetric standard model (MSSM) at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to bb throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to bb. The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m q -tilde, m g -tilde>m W -tilde ,B -tilde>m h +μ; m q -tilde, m g -tilde>m W -tilde ,B -tilde>m h,H,A +μ; and m q -tilde, m g -tilde>m W -tilde>m h +μ with m B -tilde≅μ. In these cascades, the Higgs bosons are boosted, with p T >200 GeV a large fraction of the time. Since Higgses appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs can be the same order as squark/gluino production. Given 10 fb -1 of 14 TeV LHC data, with m q -tilde < or approx. 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S/√(B) of the Higgs signal is sufficiently high that the bb mode can become the discovery mode of the lightest Higgs boson of the MSSM.

  7. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Genetics of human hydrocephalus

    Science.gov (United States)

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  9. CCR 20th Anniversary Commentary: A Genetic Mechanism of Imatinib Resistance in Gastrointestinal Stromal Tumor-Where Are We a Decade Later?

    Science.gov (United States)

    Antonescu, Cristina R; DeMatteo, Ronald P

    2015-08-01

    In the June 1, 2005, issue of Clinical Cancer Research, Antonescu and colleagues defined second-site KIT mutations in gastrointestinal stromal tumor (GIST) as the leading mechanism of acquired resistance to imatinib. Secondary mutations were detectable mainly in KIT exon 11 mutant GISTs after prolonged initial clinical responses. These findings played a critical role in designing the next generation of tyrosine kinase inhibitors. ©2015 American Association for Cancer Research.

  10. Discovering the Network Topology: An Efficient Approach for SDN

    Directory of Open Access Journals (Sweden)

    Leonardo OCHOA-ADAY

    2016-11-01

    Full Text Available Network topology is a physical description of the overall resources in the network. Collecting this information using efficient mechanisms becomes a critical task for important network functions such as routing, network management, quality of service (QoS, among many others. Recent technologies like Software-Defined Networks (SDN have emerged as promising approaches for managing the next generation networks. In order to ensure a proficient topology discovery service in SDN, we propose a simple agents-based mechanism. This mechanism improves the overall efficiency of the topology discovery process. In this paper, an algorithm for a novel Topology Discovery Protocol (SD-TDP is described. This protocol will be implemented in each switch through a software agent. Thus, this approach will provide a distributed solution to solve the problem of network topology discovery in a more simple and efficient way.

  11. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  12. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and sequence-level meta-analysis.

    Science.gov (United States)

    Rhee, Soo-Yon; Blanco, Jose Luis; Jordan, Michael R; Taylor, Jonathan; Lemey, Philippe; Varghese, Vici; Hamers, Raph L; Bertagnolio, Silvia; Rinke de Wit, Tobias F; Aghokeng, Avelin F; Albert, Jan; Avi, Radko; Avila-Rios, Santiago; Bessong, Pascal O; Brooks, James I; Boucher, Charles A B; Brumme, Zabrina L; Busch, Michael P; Bussmann, Hermann; Chaix, Marie-Laure; Chin, Bum Sik; D'Aquin, Toni T; De Gascun, Cillian F; Derache, Anne; Descamps, Diane; Deshpande, Alaka K; Djoko, Cyrille F; Eshleman, Susan H; Fleury, Herve; Frange, Pierre; Fujisaki, Seiichiro; Harrigan, P Richard; Hattori, Junko; Holguin, Africa; Hunt, Gillian M; Ichimura, Hiroshi; Kaleebu, Pontiano; Katzenstein, David; Kiertiburanakul, Sasisopin; Kim, Jerome H; Kim, Sung Soon; Li, Yanpeng; Lutsar, Irja; Morris, Lynn; Ndembi, Nicaise; Ng, Kee Peng; Paranjape, Ramesh S; Peeters, Martine; Poljak, Mario; Price, Matt A; Ragonnet-Cronin, Manon L; Reyes-Terán, Gustavo; Rolland, Morgane; Sirivichayakul, Sunee; Smith, Davey M; Soares, Marcelo A; Soriano, Vincent V; Ssemwanga, Deogratius; Stanojevic, Maja; Stefani, Mariane A; Sugiura, Wataru; Sungkanuparph, Somnuek; Tanuri, Amilcar; Tee, Kok Keng; Truong, Hong-Ha M; van de Vijver, David A M C; Vidal, Nicole; Yang, Chunfu; Yang, Rongge; Yebra, Gonzalo; Ioannidis, John P A; Vandamme, Anne-Mieke; Shafer, Robert W

    2015-04-01

    accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling. Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen.

  13. Genetic testing for hearing impairment.

    Science.gov (United States)

    Topsakal, V; Van Camp, G; Van de Heyning, P

    2005-01-01

    For some patients, genetic testing can reveal the etiology of their hearing impairment, and can provide evidence for a medical diagnosis. However, a gap between fundamental genetic research on hereditary deafness and clinical otology emerges because of the steadily increasing number of discovered genes for hereditary hearing impairment (HHI) and the comparably low clinical differentiation of the HHIs. In an attempt to keep up with the scientific progress, this article enumerates the indications of genetic testing for HHI from a clinical point of view and describes the most frequently encountered HHIs in Belgium. Domains of recent scientific interest, molecular biological aspects, and some pitfalls with HHIs are highlighted. The overview comprises bilateral congenital hearing loss, late-onset progressive high frequency hearing loss, progressive bilateral cochleo-vestibular deficit, and progressive low frequency hearing loss. Also, several syndromal forms of HHI are summarized, and the availability of genetic tests mentioned. Finally, the requirements for successful linkage analysis, an important genetic research tool for localizing the potential genes of a trait on a chromosome, are briefly described.

  14. Investigating core genetic-and-epigenetic cell cycle networks for stemness and carcinogenic mechanisms, and cancer drug design using big database mining and genome-wide next-generation sequencing data.

    Science.gov (United States)

    Li, Cheng-Wei; Chen, Bor-Sen

    2016-10-01

    Recent studies have demonstrated that cell cycle plays a central role in development and carcinogenesis. Thus, the use of big databases and genome-wide high-throughput data to unravel the genetic and epigenetic mechanisms underlying cell cycle progression in stem cells and cancer cells is a matter of considerable interest. Real genetic-and-epigenetic cell cycle networks (GECNs) of embryonic stem cells (ESCs) and HeLa cancer cells were constructed by applying system modeling, system identification, and big database mining to genome-wide next-generation sequencing data. Real GECNs were then reduced to core GECNs of HeLa cells and ESCs by applying principal genome-wide network projection. In this study, we investigated potential carcinogenic and stemness mechanisms for systems cancer drug design by identifying common core and specific GECNs between HeLa cells and ESCs. Integrating drug database information with the specific GECNs of HeLa cells could lead to identification of multiple drugs for cervical cancer treatment with minimal side-effects on the genes in the common core. We found that dysregulation of miR-29C, miR-34A, miR-98, and miR-215; and methylation of ANKRD1, ARID5B, CDCA2, PIF1, STAMBPL1, TROAP, ZNF165, and HIST1H2AJ in HeLa cells could result in cell proliferation and anti-apoptosis through NFκB, TGF-β, and PI3K pathways. We also identified 3 drugs, methotrexate, quercetin, and mimosine, which repressed the activated cell cycle genes, ARID5B, STK17B, and CCL2, in HeLa cells with minimal side-effects.

  15. Evolutionary genetics

    National Research Council Canada - National Science Library

    Maynard Smith, John

    1989-01-01

    .... It differs from other textbooks of population genetics in applying the basic theory to topics, such as social behaviour, molecular evolution, reiterated DNA, and sex, which are the main subjects...

  16. Genetic Discrimination

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  17. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  18. Desktop Genetics

    OpenAIRE

    Hough, Soren H; Ajetunmobi, Ayokunmi; Brody, Leigh; Humphryes-Kirilov, Neil; Perello, Edward

    2016-01-01

    Desktop Genetics is a bioinformatics company building a gene-editing platform for personalized medicine. The company works with scientists around the world to design and execute state-of-the-art clustered regularly interspaced short palindromic repeats (CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental intent, single-guide RNA design and data from international genomics projects into a novel CRISPR artificial intelligence system. We believe that machine learni...

  19. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Juliana Durack

    Full Text Available The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation.

  20. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    Science.gov (United States)

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  1. Planetary dreams : the quest to discover life beyond earth

    Science.gov (United States)

    Shapiro, Robert

    1999-03-01

    The Quest To Discover Life Beyond Earth. "The 'dreams' that I write of are not the usual ones, the images that come up in our minds involuntarily during certain stages of sleep, but rather the hopes and expectations that we have lavished upon other worlds around us."-from the Preface. The surprisingly long history of debate over extraterrestrial life is full of marvelous visions of what life "out there" might be like, as well as remarkable stories of alleged sightings and heated disputes about the probability that life might actually have arisen more than once. In Planetary Dreams, acclaimed author Robert Shapiro explores this rich history of dreams and debates in search of the best current answers to the most elusive and compelling of all questions: Are we alone? In his pursuit, he presents three contrasting views regarding how life might have started: through Divine Creation, by a highly unlikely stroke of luck, or by the inevitable process of a natural law that he terms the Life Principle. We are treated to a lively fictional dinner debate among the leading proponents of these schools of thought-with the last named group arguing that life has almost surely formed in many places throughout the universe, and the others that life may well be entirely unique to our own blue planet. To set the stage for a deep exploration of the question, the author then leads us on a fantastic journey through the museum of the cosmos, an imagined building that holds models of the universe at different degrees of magnification. We then journey deep into inner space to view the astonishingly intricate life of a single cell, and learn why the origin of such a complex object from simple chemical mixtures poses one of the most profound enigmas known to science. Writing in a wonderfully entertaining style, Shapiro then reviews the competing theories about the start of life on Earth, and suggests the debate may best be settled by finding signs of life on the other worlds of our solar

  2. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    Science.gov (United States)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  3. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  4. J. Genet. classic 37

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  5. Genetics of gallstone disease.

    Directory of Open Access Journals (Sweden)

    Mittal B

    2002-04-01

    Full Text Available Gallstone disease is a complex disorder where both environmental and genetic factors contribute towards susceptibility to the disease. Epidemiological and family studies suggest a strong genetic component in the causation of this disease. Several genetically derived phenotypes in the population are responsible for variations in lipoprotein types, which in turn affect the amount of cholesterol available in the gall bladder. The genetic polymorphisms in various genes for apo E, apo B, apo A1, LDL receptor, cholesteryl ester transfer and LDL receptor-associated protein have been implicated in gallstone formation. However, presently available information on genetic differences is not able to account for a large number of gallstone patients. The molecular studies in the animal models have not only confirmed the present paradigm of gallstone formation but also helped in identification of novel genes in humans, which might play an important role in pathogenesis of the disease. Precise understanding of such genes and their molecular mechanisms may provide the basis of new targets for rational drug designs and dietary interventions.

  6. AN OVERVIEW OF SEARCHING AND DISCOVERING WEB BASED INFORMATION RESOURCES

    Directory of Open Access Journals (Sweden)

    Cezar VASILESCU

    2010-01-01

    Full Text Available The Internet becomes for most of us a daily used instrument, for professional or personal reasons. We even do not remember the times when a computer and a broadband connection were luxury items. More and more people are relying on the complicated web network to find the needed information.This paper presents an overview of Internet search related issues, upon search engines and describes the parties and the basic mechanism that is embedded in a search for web based information resources. Also presents ways to increase the efficiency of web searches, through a better understanding of what search engines ignore at websites content.

  7. Method for discovering relationships in data by dynamic quantum clustering

    Science.gov (United States)

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  8. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  9. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world.

    Science.gov (United States)

    Galán, Juan-Carlos; González-Candelas, Fernando; Rolain, Jean-Marc; Cantón, Rafael

    2013-01-01

    Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.

  10. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: From the resistome to genetic plasticity in the beta-lactamases world

    Directory of Open Access Journals (Sweden)

    Juan- Carlos eGalán

    2013-02-01

    Full Text Available Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are -lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread and diversification of -lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of -lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyse the antibiotic resistance problem from new perspectives. From intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the

  11. Genetic GIScience

    DEFF Research Database (Denmark)

    Jacquez, Geoffrey; Sabel, Clive E; Shi, Chen

    2015-01-01

    The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic...... geographic information science (genetic GIScience), that is founded on the exposome, genome+, and behavome. It provides an improved understanding of human health in relation to biology (the genome+), environmental exposures (the exposome), and their social, societal, and behavioral determinants (the behavome......). Genetic GIScience poses three key needs: first, a mathematical foundation for emergent theory; second, process-based models that bridge biological and geographic scales; third, biologically plausible estimates of space?time disease lags. Compartmental models are a possible solution; this article develops...

  12. A knowledge-based integrated approach for discovering and repairing declare maps

    NARCIS (Netherlands)

    Maggi, F.M.; Jagadeesh Chandra Bose, R.P.; Aalst, van der W.M.P.; Salinesi, C.; Norrie, M.C.; Pastor, O.

    2013-01-01

    Process mining techniques can be used to discover process models from event data. Often the resulting models are complex due to the variability of the underlying process. Therefore, we aim at discovering declarative process models that can deal with such variability. However, for real-life event

  13. 32 CFR 644.533 - Contamination discovered after return of land to owner, or sale.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Contamination discovered after return of land to owner, or sale. 644.533 Section 644.533 National Defense Department of Defense (Continued) DEPARTMENT OF... Other Contamination from Proposed Excess Land and Improvements § 644.533 Contamination discovered after...

  14. The Use of a Performance Assessment for Identifying Gifted Lebanese Students: Is DISCOVER Effective?

    Science.gov (United States)

    Sarouphim, Ketty M.

    2009-01-01

    The purpose of this study was to investigate the effectiveness of DISCOVER, a performance- based assessment in identifying gifted Lebanese students. The sample consisted of 248 students (121 boys, 127 girls) from Grades 3-5 at two private schools in Beirut, Lebanon. Students were administered DISCOVER and the Raven Standard Progressive Matrices…

  15. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Directory of Open Access Journals (Sweden)

    Francis Delpeyroux

    2011-08-01

    Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  16. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  17. An algorithm for discovering Lagrangians automatically from data

    Directory of Open Access Journals (Sweden)

    Daniel J.A. Hills

    2015-11-01

    Full Text Available An activity fundamental to science is building mathematical models. These models are used to both predict the results of future experiments and gain insight into the structure of the system under study. We present an algorithm that automates the model building process in a scientifically principled way. The algorithm can take observed trajectories from a wide variety of mechanical systems and, without any other prior knowledge or tuning of parameters, predict the future evolution of the system. It does this by applying the principle of least action and searching for the simplest Lagrangian that describes the system’s behaviour. By generating this Lagrangian in a human interpretable form, it can also provide insight into the workings of the system.

  18. Discovering relevance knowledge in data: a growing cell structures approach.

    Science.gov (United States)

    Azuaje, F; Dubitzky, W; Black, N; Adamson, K

    2000-01-01

    Both information retrieval and case-based reasoning systems rely on effective and efficient selection of relevant data. Typically, relevance in such systems is approximated by similarity or indexing models. However, the definition of what makes data items similar or how they should be indexed is often nontrivial and time-consuming. Based on growing cell structure artificial neural networks, this paper presents a method that automatically constructs a case retrieval model from existing data. Within the case-based reasoning (CBR) framework, the method is evaluated for two medical prognosis tasks, namely, colorectal cancer survival and coronary heart disease risk prognosis. The results of the experiments suggest that the proposed method is effective and robust. To gain a deeper insight and understanding of the underlying mechanisms of the proposed model, a detailed empirical analysis of the models structural and behavioral properties is also provided.

  19. Desktop Genetics.

    Science.gov (United States)

    Hough, Soren H; Ajetunmobi, Ayokunmi; Brody, Leigh; Humphryes-Kirilov, Neil; Perello, Edward

    2016-11-01

    Desktop Genetics is a bioinformatics company building a gene-editing platform for personalized medicine. The company works with scientists around the world to design and execute state-of-the-art clustered regularly interspaced short palindromic repeats (CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental intent, single-guide RNA design and data from international genomics projects into a novel CRISPR artificial intelligence system. We believe that machine learning techniques can transform this information into a cognitive therapeutic development tool that will revolutionize medicine.

  20. Identifying genetic relatives without compromising privacy.

    Science.gov (United States)

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  1. Distant World in Peril Discovered from La Silla

    Science.gov (United States)

    2003-01-01

    Giant Exoplanet Orbits Giant Star Summary When, in a distant future, the Sun begins to expand and evolves into a "giant" star, the surface temperature on the Earth will rise dramatically and our home planet will eventually be incinerated by that central body. Fortunately for us, this dramatic event is several billion years away. However, that sad fate will befall another planet, just discovered in orbit about the giant star HD 47536, already within a few tens of millions of years. At a distance of nearly 400 light-years from us, it is the second-remotest planetary system discovered to date [1]. This is an interesting side-result of a major research project, now carried out by a European-Brazilian team of astronomers [2]. In the course of a three-year spectroscopic survey, they have observed about 80 giant stars in the southern sky with the advanced FEROS spectrograph on the 1.52-m telescope installed at the ESO La Silla Observatory (Chile). It is one of these stars that has just been found to host a giant planet. This is only the fourth such case known and with a diameter of about 33 million km (or 23.5 times that of our Sun), HD 47536 is by far the largest of those giant stars [1]. The distance of the planet from the star is still of the order of 300 million km (or twice the distance of the Earth from the Sun), a safe margin now, but this will not always be so. The orbital period is 712 days, i.e., somewhat less than two Earth years, and the planet's mass is 5 - 10 times that of Jupiter. The presence of exoplanets in orbit around giant stars, some of which will eventually perish into their central star (be "cannibalized"), provides a possible explanation of the anomalous abundance of certain chemical elements that is observed in the atmospheres of some stars, cf. ESO PR 10/01. This interesting discovery bodes well for coming observations of exoplanetary systems with new, more powerful instruments, like HARPS to be installed next year at the ESO 3.6-m telescope on

  2. A maternal-effect genetic incompatibility in Caenorhabditis elegans

    OpenAIRE

    Burga, Alejandro; Ben-David, Eyal; Kruglyak, Leonid

    2017-01-01

    Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing a genetic incompatibility between strains of the nematode Caenorhabditis elegans . The element is made up of sup-35 , a maternal-effect toxin that kills developing embryos, and pha-1 , its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development based on its mutant phenotype, but this phenotype in fact arises fro...

  3. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    Science.gov (United States)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  4. Education and certification of genetic counselors.

    Science.gov (United States)

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  5. New Genetics

    Science.gov (United States)

    ... of the booklet. » more Chapter 1: How Genes Work Covers DNA, RNA, transcription, RNA splicing, translation, ribosomes, antibiotics, genetic diseases, gene chips. » more Chapter 2: RNA and DNA Revealed: New Roles, New Rules Covers microRNAs, RNAi, epigenetics, telomeres, mtDNA, recombinant DNA. » ...

  6. Genetic effects

    International Nuclear Information System (INIS)

    Kato, Hiroo

    1975-01-01

    In 1948-1953 a large scale field survey was conducted to investigate the possible genetic effects of A-bomb radiation on over 70,000 pregnancy terminations in the cities of Hiroshima and Nagasaki. The indices of possible genetic effect including sex ratio, birth weight, frequency of malformation, stillbirth, neonatal death, deaths within 9 months and anthropometric measurements at 9 months of age for these children were investigated in relation to their parent's exposure status to the A-bomb. There were no detectable genetic effects in this sample, except for a slight change in sex ratio which was in the direction to be expected if exposure had induced sex-linked lethal mutations. However, continued study of the sex ratio, based upon birth certificates in Hiroshima and Nagasaki for 1954-1962, did not confirm the earlier trend. Mortality in these children of A-bomb survivors is being followed using a cohort of 54,000 subjects. No clearly significant effect of parental exposure on survival of the children has been demonstrated up to 1972 (age 17 on the average). On the basis of the regression data, the minimal genetic doubling dose of this type of radiation for mutations resulting in death is estimated at 46 rem for the father and 125 rem for the mother. (auth.)

  7. Genetic analysis

    NARCIS (Netherlands)

    Koornneef, M.; Alonso-Blanco, C.; Stam, P.

    2006-01-01

    The Mendelian analysis of genetic variation, available as induced mutants or as natural variation, requires a number of steps that are described in this chapter. These include the determination of the number of genes involved in the observed trait's variation, the determination of dominance

  8. A new method for discovering behavior patterns among animal movements

    Science.gov (United States)

    Wang, Y.; Luo, Ze; Takekawa, John Y.; Prosser, Diann J.; Xiong, Y.; Newman, S.; Xiao, X.; Batbayar, N.; Spragens, Kyle A.; Balachandran, S.; Yan, B.

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.

  9. J. Genet. classic 235

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  10. Genetic effects

    International Nuclear Information System (INIS)

    Bender, M.A.; Abrahamson, S.; Denniston, C.; Schull, W.J.

    1989-01-01

    In this chapter, we present a comprehensive analysis of the major classes of genetic diseases that would be increased as a result of an increased gonadal radiation exposure to a human population. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The major classes of genetic disease will be induced at different frequencies, and will also impact differentially in terms of survivability and fertility on the affected individuals and their descendants. Some classes of disease will be expected to persist for only a few generations at most. Other types of genetic disease will persist through a longer period. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. For each of these classes we have derived the general equations of mutation induction for the male and female germ cells of critical importance in the mutation process. The frequency of induced mutations will be determined initially by the dose received, the type of radiation and, to some extent at high dose, by the manner in which the dose is received. We have used the modeling analyses to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population receives a chronic dose of 0.1 Gy (10 rad) over a 50-year period, the second in which an equivalent population receives an acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations

  11. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  12. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  13. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  14. Genetic determinants of glycated hemoglobin levels in the Greenlandic Inuit population

    DEFF Research Database (Denmark)

    Appel, Emil V R; Moltke, Ida; Jørgensen, Marit E

    2018-01-01

    We previously showed that a common genetic variant leads to a remarkably increased risk of type 2 diabetes (T2D) in the small and historically isolated Greenlandic population. Motivated by this, we aimed at discovering novel genetic determinants for glycated hemoglobin (HbA1C) and at estimating...

  15. The CUAHSI Water Data Center: Empowering scientists to discover, use, store, and share water data

    Science.gov (United States)

    Couch, A. L.; Hooper, R. P.; Arrigo, J. S.

    2012-12-01

    The proposed CUAHSI Water Data Center (WDC) will provide production-quality water data resources based upon the successful large-scale data services prototype developed by the CUAHSI Hydrologic Information System (HIS) project. The WDC, using the HIS technology, concentrates on providing time series data collected at fixed points or on moving platforms from sensors primarily (but not exclusively) in the medium of water. The WDC's missions include providing simple and effective data discovery tools useful to researchers in a variety of water-related disciplines, and providing simple and cost-effective data publication mechanisms for projects that do not desire to run their own data servers. The WDC's activities will include: 1. Rigorous curation of the water data catalog already assembled during the CUAHSI HIS project, to ensure accuracy of records and existence of declared sources. 2. Data backup and failover services for "at risk" data sources. 3. Creation and support for ubiquitously accessible data discovery and access, web-based search and smartphone applications. 4. Partnerships with researchers to extend the state of the art in water data use. 5. Partnerships with industry to create plug-and-play data publishing from sensors, and to create domain-specific tools. The WDC will serve as a knowledge resource for researchers of water-related issues, and will interface with other data centers to make their data more accessible to water researchers. The WDC will serve as a vehicle for addressing some of the grand challenges of accessing and using water data, including: a. Cross-domain data discovery: different scientific domains refer to the same kind of water data using different terminologies, making discovery of data difficult for researchers outside the data provider's domain. b. Cross-validation of data sources: much water data comes from sources lacking rigorous quality control procedures; such sources can be compared against others with rigorous quality

  16. What Can the Study of Genetics Offer to Educators?

    Science.gov (United States)

    Thomas, Michael S. C.; Kovas, Yulia; Meaburn, Emma L.; Tolmie, Andrew

    2015-01-01

    This article explores the potential contribution of modern genetic methods and findings to education. It is familiar to hear that the "gene" for this or that behavior has been discovered, or that certain skills are "highly heritable." Can this help educators? To explore this question, we describe the methods used to relate…

  17. Genetic variants in RBFOX3 are associated with sleep latency

    NARCIS (Netherlands)

    N. Amin (Najaf); K.V. Allebrandt; A. van der Spek (Ashley); B. Müller-Myhsok (B.); K. Hek (Karin); M. Teder-Laving (Maris); C. Hayward (Caroline); T. Esko (Tõnu); J. van Mill; H. Mbarek; N.F. Watson (Nathaniel F); S.A. Melville (Scott); F.M. Del Greco (Fabiola); E.M. Byrne (Enda); E. Oole (Edwin); I. Kolcic (Ivana); T.H. Chen; D.S. Evans (Daniel); J. Coresh (Josef); N. Vogelzangs (Nicole); J. Karjalainen (Juha); G.A.H.M. Willemsen (Gonneke); S.A. Gharib (Sina); L. Zgaga (Lina); E. Mihailov (Evelin); K.L. Stone (Katie L); H. Campbell (Harry); R.W.W. Brouwer (Rutger); A. Demirkan (Ayşe); A.J. Isaacs (Aaron); Z. Dogas; K. Marciante (Kristin); S. Campbell (Susan); F. Borovecki (Fran); A.I. Luik (Annemarie I); M. Li (Man); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); M.C.G.N. van den hout (Mirjam); S.R. Cummings (Steven R.); Y.S. Aulchenko (Yurii); P.R. Gehrman (Philip); A.G. Uitterlinden (André); H.E. Wichmann (Heinz Erich); M. Müller-Nurasyid (Martina); R.S.N. Fehrmann (Rudolf); G.W. Montgomery (Grant); A. Hofman (Albert); W.H.L. Kao (Wen Hong Linda); B.A. Oostra (Ben); A. Wright (Alan); J.M. Vink (Jacqueline); J.F. Wilson (James F); P.P. Pramstaller (Peter Paul); A.A. Hicks (Andrew); O. Polasek (Ozren); N.M. Punjabi (Naresh); S. Redline (Susan); B.M. Psaty (Bruce); A.C. Heath (Andrew C.); M. Merrow; G.J. Tranah (Gregory); D.J. Gottlieb (Daniel J); D.I. Boomsma (Dorret); N.G. Martin (Nicholas); I. Rudan (Igor); H.W. Tiemeier (Henning); W.F.J. van IJcken (Wilfred); B.W.J.H. Penninx; A. Metspalu (Andres); T. Meitinger (Thomas); L. Franke (Lude); T. Roenneberg; C.M. van Duijn (Cornelia)

    2016-01-01

    textabstractTime to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep

  18. Genetic variants in RBFOX3 are associated with sleep latency

    NARCIS (Netherlands)

    Amin, N.; Allebrandt, K.V.; Spek, A.; Müller-Myhsok, B.; Hek, K.; Teder-Laving, M.; Hayward, C.; Esko, T.; van Mill, J.G.; Mbarek, H.; Watson, N.F.; Melville, S.A.; Del Greco, M.F.; Byrne, E.M.; Oole, E.; Kolcic, I.; Chen, T.; Evans, D.S.; Coresh, J.; Vogelzangs, N.; Karjalainen, J.; Willemsen, G.; Gharib, S.A.; Zgaga, L.; Mihailov, E.; Stone, K.L.; Campbell, H.; Brouwer, R.W.W.; Demirkan, A.; Isaacs, A.; Dogas, Z.; Marciante, K.; Campbell, S.; Borovecki, F.; Luik, A.I.; Li, M.; Hottenga, J.J.; Huffman, J.E.; van den Hout, M.C.G.N.; Cummings, S.R.; Aulchenko, Y.S.; Gehrman, P.R.; Uitterlinden, A.G.; Wichmann, H.E.; Müller-Nurasyid, M.; Fehrmann, R.S.N.; Montgomery, G.W.; Hofman, A.; Hong, W.; Kao, L.; Oostra, B.A.; Wright, A.F.; Vink, J.M.; Wilson, J.F.; Pramstaller, P.P.; Hicks, A.A.; Polasek, O.; Punjabi, N.M.; Redline, S.; Psaty, B.M.; Heath, A.C.; Merrow, M.; Tranah, G.J.; Gottlieb, D.J.; Boomsma, D.I.; Martin, N.G.; Rudan, I.; Tiemeier, H.; van Ijcken, W.F.J.; Penninx, B.W.J.H.; Metspalu, A.; Meitinger, T.; Franke, L.; Roenneberg, T.; van Duijn, C.M.

    2016-01-01

    Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We

  19. The expanding genomic landscape of autism: discovering the 'forest' beyond the 'trees'

    Science.gov (United States)

    Hu, Valerie W

    2013-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by significant deficits in reciprocal social interactions, impaired communication and restricted, repetitive behaviors. As autism spectrum disorders are among the most heritable of neuropsychiatric disorders, much of autism research has focused on the search for genetic variants in protein-coding genes (i.e., the 'trees'). However, no single gene can account for more than 1% of the cases of autism spectrum disorders. Yet, genome-wide association studies have often identified statistically significant associations of genetic variations in regions of DNA that do not code for proteins (i.e., intergenic regions). There is increasing evidence that such noncoding regions are actively transcribed and may participate in the regulation of genes, including genes on different chromosomes. This article summarizes evidence that suggests that the research spotlight needs to be expanded to encompass far-reaching gene-regulatory mechanisms that include a variety of epigenetic modifications, as well as noncoding RNA (i.e., the 'forest'). Given that noncoding RNA represents over 90% of the transcripts in most cells, we may be observing just the 'tip of the iceberg' or the 'edge of the forest' in the genomic landscape of autism.

  20. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  1. Genetic effects

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.; Denniston, C.; Schull, W.

    1985-01-01

    Modeling analyses are used to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population received a chronic dose of 0.1 Gy (10 rad) over a 50 year period, the second in which an equivalent population receives acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. 28 references, 3 figures, 5 tables

  2. The Marfan syndrome genetics

    Directory of Open Access Journals (Sweden)

    Galina Pungerčič

    2005-05-01

    Full Text Available Background: The Marfan syndrome is an autosomal dominant heritable disorder of connective tissue. It is caused by mutations in the fibrillin-1 gene encoding glycoprotein fibrillin-1, a component of microfibrils of extracellular matrix. Patients with Marfan syndrome show wide spectra of clinical signs, primarily on skeletal, cardiovascular and ocular organ systems. Cardiovascular complications (especially aortic aneurysm and aortic dissection are the most common cause of mortality of Marfan syndrome patients. Discovering genotype-phenotype correlations is complicated because of the large number of mutations reported as well as clinical heterogeneity among individuals with the same mutation. Despite the progress in the knowledge of the molecular nature of Marfan syndrome the diagnosis is still based mainly on the clinical features in the different body systems.Conclusions: Early identification of patient with Marfan syndrome is of considerable importance because of appropriate treatment that can greatly improve life expectancy. Unfortunately, despite the improvement of diagnostic methods, medical and surgical therapy, the mortality due to undiagnosed Marfan syndrome is still high. The present article reviews the molecular genetic studies of Marfan syndrome since the discovery of the mutations in the fibrillin-1 gene.

  3. New insights in oncology: Epi-genetics and cancer stem cells

    International Nuclear Information System (INIS)

    Krutovskikh, V.; Partensky, C.

    2011-01-01

    Cancer is a multi-etiologic, multistage disease with a prevalent genetic component, which happens when a large number of genes, critical for cell growth, death, differentiation, migration, and metabolic plasticity are altered irreversibly, so as to either 'gain' (oncogenes) or 'lose' (tumour suppressors) their function. Recent discoveries have revealed the previously underestimated etiologic importance of multiple epigenetic, that is to say, reversible factors (histone modifications, DNA methylation, non-coding RNA) involved in the transcriptional and post-transcriptional regulation of proteins, indispensable for the control of cancerous phenotype. Stable alterations of epigenetic machinery ('epi-mutations') turn out to play a critical role at different steps of carcinogenesis. In addition, due to substantial recent progress in stem cell biology, the new concept of cancer stem cells has emerged. This, along with newly discovered epigenetic cancer mechanisms, gives rise to a hope to overcome radio- and chemo-resistance and to eradicate otherwise incurable neoplasms. (authors)

  4. Cancer Genetics Services Directory

    Science.gov (United States)

    ... Services Directory Cancer Prevention Overview Research NCI Cancer Genetics Services Directory This directory lists professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, ...

  5. Genetic analysis of Myanmar Vigna species in responses to salt ...

    African Journals Online (AJOL)

    Genetic analysis of Myanmar Vigna species in responses to salt stress at the ... of reduction was highly dependent on different genotypes and salinity levels. ... the mechanism of salt tolerance and for the provision of genetic resources for ...

  6. Molecular genetic analysis of consanguineous families with primary ...

    Indian Academy of Sciences (India)

    MUZAMMIL AHMAD KHAN

    3Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria. 4Department of Cell and ... Materials and methods. Family recruitment and sample collection ..... 2014 A Drosophila genetic resource of mutats to study mechanism ...

  7. Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data

    Science.gov (United States)

    Oyen, D. A.; Komurlu, C.; Lanza, N. L.

    2018-04-01

    Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.

  8. ISLSCP II IGBP DISCover and SiB Land Cover, 1992-1993

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes the geographic distributions of 17 classes of land cover based on the International Geosphere-Biosphere DISCover land cover legend (Loveland...

  9. Strategic Sustainability Performance Plan. Discovering Sustainable Solutions to Power and Secure America’s Future

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-09-01

    Sustainability is fundamental to the Department of Energy’s research mission and operations as reflected in the Department’s Strategic Plan. Our overarching mission is to discover the solutions to power and secure America’s future.

  10. Novel transcripts discovered by mining genomic DNA from defined regions of bovine chromosome 6

    Directory of Open Access Journals (Sweden)

    Eberlein Annett

    2009-04-01

    Full Text Available Abstract Background Linkage analyses strongly suggest a number of QTL for production, health and conformation traits in the middle part of bovine chromosome 6 (BTA6. The identification of the molecular background underlying the genetic variation at the QTL and subsequent functional studies require a well-annotated gene sequence map of the critical QTL intervals. To complete the sequence map of the defined subchromosomal regions on BTA6 poorly covered with comparative gene information, we focused on targeted isolation of transcribed sequences from bovine bacterial artificial chromosome (BAC clones mapped to the QTL intervals. Results Using the method of exon trapping, 92 unique exon trapping sequences (ETS were discovered in a chromosomal region of poor gene coverage. Sequence identity to the current NCBI sequence assembly for BTA6 was detected for 91% of unique ETS. Comparative sequence similarity search revealed that 11% of the isolated ETS displayed high similarity to genomic sequences located on the syntenic chromosomes of the human and mouse reference genome assemblies. Nearly a third of the ETS identified similar equivalent sequences in genomic sequence scaffolds from the alternative Celera-based sequence assembly of the human genome. Screening gene, EST, and protein databases detected 17% of ETS with identity to known transcribed sequences. Expression analysis of a subset of the ETS showed that most ETS (84% displayed a distinctive expression pattern in a multi-tissue panel of a lactating cow verifying their existence in the bovine transcriptome. Conclusion The results of our study demonstrate that the exon trapping method based on region-specific BAC clones is very useful for targeted screening for novel transcripts located within a defined chromosomal region being deficiently endowed with annotated gene information. The majority of identified ETS represents unknown noncoding sequences in intergenic regions on BTA6 displaying a

  11. Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.

    Science.gov (United States)

    Ellison, Christopher E; Kowbel, David; Glass, N Louise; Taylor, John W; Brem, Rachel B

    2014-04-01

    Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the

  12. A Combined Bioinformatics and Functional Metagenomics Approach to Discovering Lipolytic Biocatalysts

    Directory of Open Access Journals (Sweden)

    Thorsten eMasuch

    2015-10-01

    Full Text Available The majority of protein sequence data published today is of metagenomic origin. However, our ability to assign functions to these sequences is often hampered by our general inability to cultivate the larger part of microbial species and the sheer amount of sequence data generated in these projects. Here we present a combination of bioinformatics, synthetic biology and Escherichia coli genetics to discover biocatalysts in metagenomic datasets. We created a subset of the Global Ocean Sampling dataset, the largest metagenomic project published to date, by removing all proteins that matched Hidden Markov Models of known protein families from PFAM and TIGRFAM with high confidence (e-value > 10-5. This essentially left us with proteins with low or no homology to known protein families, still encompassing ~1.7 million different sequences. In this subset, we then identified protein families de novo with a Markov clustering algorithm. For each protein family, we defined a single representative based on its phylogenetic relationship to all other members in that family. This reduced the dataset to ~17,000 representatives of protein families with more than 10 members. Based on conserved regions typical for lipases and esterases, we selected a representative gene from a family of 27 members for synthesis. This protein, when expressed in E. coli, showed lipolytic activity towards para-nitrophenyl (pNP esters. The Km value of the enzyme was 66.68 µM for pNP-butyrate and 68.08 µM for pNP-palmitate with kcat/Km values at 3.4 x 106 and 6.6 x 105 M-1s-1, respectively. Hydrolysis of model substrates showed enantiopreference for the R-form. Reactions yielded 43% and 61% enantiomeric excess of products with ibuprofen methyl ester and 2-phenylpropanoic acid ethyl ester, respectively. The enzyme retains 50 % of its maximum activity at temperatures as low as 10 °C, its activity is enhanced in artificial seawater and buffers with higher salt concentrations with an

  13. Ensemble attribute profile clustering: discovering and characterizing groups of genes with similar patterns of biological features

    Directory of Open Access Journals (Sweden)

    Bissell MJ

    2006-03-01

    Full Text Available Abstract Background Ensemble attribute profile clustering is a novel, text-based strategy for analyzing a user-defined list of genes and/or proteins. The strategy exploits annotation data present in gene-centered corpora and utilizes ideas from statistical information retrieval to discover and characterize properties shared by subsets of the list. The practical utility of this method is demonstrated by employing it in a retrospective study of two non-overlapping sets of genes defined by a published investigation as markers for normal human breast luminal epithelial cells and myoepithelial cells. Results Each genetic locus was characterized using a finite set of biological properties and represented as a vector of features indicating attributes associated with the locus (a gene attribute profile. In this study, the vector space models for a pre-defined list of genes were constructed from the Gene Ontology (GO terms and the Conserved Domain Database (CDD protein domain terms assigned to the loci by the gene-centered corpus LocusLink. This data set of GO- and CDD-based gene attribute profiles, vectors of binary random variables, was used to estimate multiple finite mixture models and each ensuing model utilized to partition the profiles into clusters. The resultant partitionings were combined using a unanimous voting scheme to produce consensus clusters, sets of profiles that co-occured consistently in the same cluster. Attributes that were important in defining the genes assigned to a consensus cluster were identified. The clusters and their attributes were inspected to ascertain the GO and CDD terms most associated with subsets of genes and in conjunction with external knowledge such as chromosomal location, used to gain functional insights into human breast biology. The 52 luminal epithelial cell markers and 89 myoepithelial cell markers are disjoint sets of genes. Ensemble attribute profile clustering-based analysis indicated that both lists

  14. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    Science.gov (United States)

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  15. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease.

    Science.gov (United States)

    Ivanov, Yury V; Shariat, Nikki; Register, Karen B; Linz, Bodo; Rivera, Israel; Hu, Kai; Dudley, Edward G; Harvill, Eric T

    2015-10-26

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Here we describe a novel Type II-C CRISPR and its associated genes-cas1, cas2, and cas9-in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies.

  16. The genetics of Alzheimer's disease.

    Science.gov (United States)

    Bertram, Lars; Tanzi, Rudolph E

    2012-01-01

    Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Genetics and epigenetics of obesity.

    Science.gov (United States)

    Herrera, Blanca M; Keildson, Sarah; Lindgren, Cecilia M

    2011-05-01

    Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40-70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these variants do not fully explain the heritability of obesity, other forms of variation, such as epigenetics marks, must be considered. Epigenetic marks, or "imprinting", affect gene expression without actually changing the DNA sequence. Failures in imprinting are known to cause extreme forms of obesity (e.g. Prader-Willi syndrome), but have also been convincingly associated with susceptibility to obesity. Furthermore, environmental exposures during critical developmental periods can affect the profile of epigenetic marks and result in obesity. We review the most recent evidence for genetic and epigenetic mechanisms involved in the susceptibility and development of obesity. Only a comprehensive understanding of the underlying genetic and epigenetic mechanisms, and the metabolic processes they govern, will allow us to manage, and eventually prevent, obesity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry

    Science.gov (United States)

    Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan

    2015-12-01

    Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the

  19. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    Science.gov (United States)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  20. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  1. The genealogy and genetic viability of reintroduced Yellowstone grey wolves.

    Science.gov (United States)

    Vonholdt, Bridgett M; Stahler, Daniel R; Smith, Douglas W; Earl, Dent A; Pollinger, John P; Wayne, Robert K

    2008-01-01

    The recovery of the grey wolf in Yellowstone National Park is an outstanding example of a successful reintroduction. A general question concerning reintroduction is the degree to which genetic variation has been preserved and the specific behavioural mechanisms that enhance the preservation of genetic diversity and reduce inbreeding. We have analysed 200 Yellowstone wolves, including all 31 founders, for variation in 26 microsatellite loci over the 10-year reintroduction period (1995-2004). The population maintained high levels of variation (1995 H(0) = 0.69; 2004 H(0) = 0.73) with low levels of inbreeding (1995 F(IS) = -0.063; 2004 F(IS) = -0.051) and throughout, the population expanded rapidly (N(1995) = 21; N(2004) = 169). Pedigree-based effective population size ratios did not vary appreciably over the duration of population expansion (1995 N(e)/N(g) = 0.29; 2000 N(e)/N(g) = 0.26; 2004 N(e)/N(g) = 0.33). We estimated kinship and found only two of 30 natural breeding pairs showed evidence of being related (average r = -0.026, SE = 0.03). We reconstructed the genealogy of 200 wolves based on genetic and field data and discovered that they avoid inbreeding through a wide variety of behavioural mechanisms including absolute avoidance of breeding with related pack members, male-biased dispersal to packs where they breed with nonrelatives, and female-biased subordinate breeding. We documented a greater diversity of such population assembly patterns in Yellowstone than previously observed in any other natural wolf population. Inbreeding avoidance is nearly absolute despite the high probability of within-pack inbreeding opportunities and extensive interpack kinship ties between adjacent packs. Simulations showed that the Yellowstone population has levels of genetic variation similar to that of a population managed for high variation and low inbreeding, and greater than that expected for random breeding within packs or across the entire breeding pool. Although short

  2. Genetics of cardiomyopathies in children

    Directory of Open Access Journals (Sweden)

    Matteo Vatta

    2011-08-01

    Full Text Available Cardiomyopathies are diseases of the heart muscle leading to heart failure and/or an increased risk of arrhythmogenic sudden cardiac death. These disorders represent a major cause of morbidity and mortality in children. In childhood forms of cardiomyopathy, genetic etiologies are frequent, but non-genetic or acquired causes, such viral infection, also play a significant role. In the last twenty years, the genetic causes of cardiomyopathies have been increasingly identified and clinical correlations are beginning to be defined. Here we present an overview of the recent advances in our understanding of the genetics of cardiomyopathies in children and what is known about the pathophysiological mechanisms underlying these gene-related forms of disease.

  3. What Froze the Genetic Code?

    Directory of Open Access Journals (Sweden)

    Lluís Ribas de Pouplana

    2017-04-01

    Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  4. What Froze the Genetic Code?

    Science.gov (United States)

    Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert

    2017-04-05

    The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  5. Human genetics and sleep behavior.

    Science.gov (United States)

    Shi, Guangsen; Wu, David; Ptáček, Louis J; Fu, Ying-Hui

    2017-06-01

    Why we sleep remains one of the greatest mysteries in science. In the past few years, great advances have been made to better understand this phenomenon. Human genetics has contributed significantly to this movement, as many features of sleep have been found to be heritable. Discoveries about these genetic variations that affect human sleep will aid us in understanding the underlying mechanism of sleep. Here we summarize recent discoveries about the genetic variations affecting the timing of sleep, duration of sleep and EEG patterns. To conclude, we also discuss some of the sleep-related neurological disorders such as Autism Spectrum Disorder (ASD) and Alzheimer's Disease (AD) and the potential challenges and future directions of human genetics in sleep research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility.

    Science.gov (United States)

    Bush, W S; McCauley, J L; DeJager, P L; Dudek, S M; Hafler, D A; Gibson, R A; Matthews, P M; Kappos, L; Naegelin, Y; Polman, C H; Hauser, S L; Oksenberg, J; Haines, J L; Ritchie, M D

    2011-07-01

    Gene-gene interactions are proposed as an important component of the genetic architecture of complex diseases, and are just beginning to be evaluated in the context of genome-wide association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is that it also increases power to detect weak main effects. We conducted a knowledge-driven interaction analysis of a GWAS of 931 multiple sclerosis (MS) trios to discover gene-gene interactions within established biological contexts. We identify heterogeneous signals, including a gene-gene interaction between CHRM3 (muscarinic cholinergic receptor 3) and MYLK (myosin light-chain kinase) (joint P=0.0002), an interaction between two phospholipase C-β isoforms, PLCβ1 and PLCβ4 (joint P=0.0098), and a modest interaction between ACTN1 (actinin alpha 1) and MYH9 (myosin heavy chain 9) (joint P=0.0326), all localized to calcium-signaled cytoskeletal regulation. Furthermore, we discover a main effect (joint P=5.2E-5) previously unidentified by single-locus analysis within another related gene, SCIN (scinderin), a calcium-binding cytoskeleton regulatory protein. This work illustrates that knowledge-driven interaction analysis of GWAS data is a feasible approach to identify new genetic effects. The results of this study are among the first gene-gene interactions and non-immune susceptibility loci for MS. Further, the implicated genes cluster within inter-related biological mechanisms that suggest a neurodegenerative component to MS.

  7. Genetics of allergy and allergic sensitization

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sparks, Rachel; Waage, Johannes

    2015-01-01

    information about shared genetics between allergy, related phenotypes and autoimmunity. Studies of monogenic diseases have elucidated critical cellular pathways and protein functions responsible for allergy. These complementary approaches imply genetic mechanisms involved in Th2 immunity, T......Our understanding of the specific genetic lesions in allergy has improved in recent years due to identification of common risk variants from genome-wide association studies (GWAS) and studies of rare, monogenic diseases. Large-scale GWAS have identified novel susceptibility loci and provided...

  8. Discovering Greatness

    Science.gov (United States)

    Ali, Muhammad

    2012-01-01

    People are confronting the most pressing challenge facing every family, school, and community--raising respectful children in a toxic world. In simpler societies, raising children was a shared task of the whole community, as adults and youth worked in harmony and mutual respect. Today, humans are the only species in creation living out of balance.…

  9. Discovering Mozart.

    Science.gov (United States)

    Rusk, Nicole

    2010-06-01

    High-throughput imaging of genome-wide RNA interference screens and systematic analysis of protein complexes involved in mitosis yield valuable resources and reveal new subunits of well-characterized complexes.

  10. Understanding genetics in neuroimaging.

    Science.gov (United States)

    Vasquez, Marina Lipkin; Renault, Ilana Zalcberg

    2015-02-01

    Gene expression is a process of DNA sequence reading into protein synthesis. In cases of problems in DNA repair/apoptosis mechanisms, cells accumulate genomic abnormalities and pass them through generations of cells. The accumulation of mutations causes diseases and even tumors. In addition to cancer, many other neurologic conditions have been associated with genetic mutations. Some trials are testing patients with epigenetic treatments. Epigenetic therapy must be used with caution because epigenetic processes and changes happen constantly in normal cells, giving rise to drug off-target effects. Scientists are making progress in specifically targeting abnormal cells with minimal damage to normal ones. Copyright © 2015. Published by Elsevier Inc.

  11. Genetically Determined Height and Coronary Artery Disease

    NARCIS (Netherlands)

    Nelson, Christopher P.; Hamby, Stephen E.; Saleheen, Danish; Hopewell, Jenna C.; Zeng, Lingyao; Assimes, Themistocles L.; Kanoni, Stavroula; Willenborg, Christina; Burgess, Stephen; Amouyel, Phillipe; Anand, Sonia; Blankenberg, Stefan; Boehm, Bernhard O.; Clarke, Robert J.; Collins, Rory; Dedoussis, George; Farrall, Martin; Franks, Paul W.; Groop, Leif; Hall, Alistair S.; Hamsten, Anders; Hengstenberg, Christian; Hovingh, G. Kees; Ingelsson, Erik; Kathiresan, Sekar; Kee, Frank; König, Inke R.; Kooner, Jaspal; Lehtimäki, Terho; März, Winifred; McPherson, Ruth; Metspalu, Andres; Nieminen, Markku S.; O'Donnell, Christopher J.; Palmer, Colin N. A.; Peters, Annette; Perola, Markus; Reilly, Muredach P.; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Shah, Svati H.; Schreiber, Stefan; Siegbahn, Agneta; Thorsteinsdottir, Unnur; Veronesi, Giovani; Wareham, Nicholas; Willer, Cristen J.; Zalloua, Pierre A.; Erdmann, Jeanette

    2015-01-01

    BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. Rob J. Kulathinal. Articles written in Journal of Genetics. Volume 87 Issue 4 December 2008 pp 327-338 Perspectives. The molecular basis of speciation: from patterns to processes, rules to mechanisms · Rob J. Kulathinal Rama S. Singh · More Details Abstract Fulltext PDF.

  13. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    Science.gov (United States)

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-08-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5‧-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.

  14. The Recently Discovered Bokeloh Bat Lyssavirus: Insights Into Its Genetic Heterogeneity and Spatial Distribution in Europe and the Population Genetics of Its Primary Host.

    Science.gov (United States)

    Eggerbauer, Elisa; Troupin, Cécile; Passior, Karsten; Pfaff, Florian; Höper, Dirk; Neubauer-Juric, Antonie; Haberl, Stephanie; Bouchier, Christiane; Mettenleiter, Thomas C; Bourhy, Hervé; Müller, Thomas; Dacheux, Laurent; Freuling, Conrad M

    2017-01-01

    In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a Natterer's bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same country and in France in recent years, all from the same bat species and all found in moribund or dead bats. Here we report the description and the full-length genome sequence of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of them were isolated from the Natterer's bat, except one from Germany, which was found in a common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in Europe. The latter represents the first case of transmission of BBLV to another bat species. Phylogenetic analysis clearly demonstrated the presence of two different lineages among this lyssavirus species: lineages A and B. The spatial distribution of these two lineages remains puzzling, as both of them comprised isolates from France and Germany; although clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer's bat did not suggest a circulation of the respective BBLV sublineages in specific Natterer's bat subspecies, as all of them were shown to belong to the M. nattereri sensu stricto clade/subspecies and were closely related (German and French positive bats). At the bat host level, we demonstrated that the distribution of BBLV at the late stage of the disease seems large and massive, as viral RNA was detected in many different organs. © 2017 Elsevier Inc. All rights reserved.

  15. A dual inhibitor against prolyl isomerase Pin1 and cyclophilin discovered by a novel real-time fluorescence detection method

    International Nuclear Information System (INIS)

    Mori, Tadashi; Hidaka, Masafumi; Lin, Yi-Chin; Yoshizawa, Ibuki; Okabe, Takayoshi; Egashira, Shinichiro; Kojima, Hirotatsu; Nagano, Tetsuo; Koketsu, Mamoru; Takamiya, Mari; Uchida, Takafumi

    2011-01-01

    Research highlights: → A Pin1 (prolyl isomerase) inhibitor, TME-001, has been discovered by using a new established high-throughput screening method. → The TME-001 showed a cell-active inhibition with lower cytotoxic effect than known Pin1 inhibitors. → Kinetic analyses revealed that the TME-001 is the first compound that exhibits dual inhibition of Pin1 and another type of prolyl isomerase, cyclophilin. → Thus, similarities of structure and reaction mechanism between Pin1 and cyclophilin are proposed. -- Abstract: Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer's disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC 50 = 6.1 μM) and cyclophilin, another type of PPIase, (IC 50 = 13.7 μM). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.

  16. Mammalian Genetics and Teratology Section

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The work of the Mammalian Genetics and Teratology Section includes research in mutagenesis, basic genetics, reproductive biology, and teratogenesis involving basic studies, method development, including exploration of the biological material, and testing. The basic studies make good use of the genetic material accumulated in mutagenesis experiments of various kinds, or of the findings of mutagenesis experiments themselves. In the latter category is the finding of a repair system in the fertilized egg. The genetics of repair competency or deficiency are now under study. A linear relationship between gene dosage and level of expression of an enzyme has been demonstrated. Opportunities for the study of gene action are provided by a number of X-autosome translocations which continue to be discovered in the course of mutagenesis experiments. In these rearrangements, X-chromosome inactivation extends to neighboring autosomal loci. Considerable progress has been made in developing the skeletal mutation system, which provides information on dominants that is highly useful for risk assessment. A sensitive-indicator test is now under development which will make the screening for skeletal mutations much faster and easier. Method development has also progressed on the in vivo somatic-mutation test now being widely used as an in vivo screen for mutagens. Another method developed here is the numerical sex-chromosome anomaly (NSA) test for nondisjunction. The NSA method is being used to explore the effects of female age on chromosome loss and nondisjunction. A model for estimating the misclassification error was experimentally established for the heritable translocation test. A rapid, easy, and sensitive in vivo screening test for teratogenesis was developed. An in vitro teratogenic prescreen being developed makes use of teratocarcinoma-derived cell lines

  17. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST)

    International Nuclear Information System (INIS)

    Morgenthaler, Stephan; Thilly, William G.

    2007-01-01

    A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this 'cohort allelic sums test' or 'CAST', the statistical model and test are provided as an Excel (TM) program, CASTAT (C) at http://epidemiology.mit.edu. Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated ∼25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 ''false positive'' gene associations per 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and

  18. Quantum Genetic Algorithms for Computer Scientists

    OpenAIRE

    Lahoz Beltrá, Rafael

    2016-01-01

    Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Geneti...

  19. Genetics of infectious diseases: hidden etiologies and common pathways.

    Science.gov (United States)

    Orlova, Marianna; Di Pietrantonio, Tania; Schurr, Erwin

    2011-09-01

    Since the completion of the human genome sequence, the study of common genetic polymorphisms in complex human diseases has become a main activity of human genetics. Employing genome-wide association studies, hundreds of modest genetic risk factors have been identified. In infectious diseases the identification of common risk factors has been varied and as in other common diseases it seems likely that important genetic risk factors remain to be discovered. Nevertheless, the identification of disease-specific genetic risk factors revealed an unexpected overlap in susceptibility genes of diverse inflammatory and infectious diseases. Analysis of the multi-disease susceptibility genes has allowed the definition of shared key pathways of inflammatory dysregulation and suggested unexpected infectious etiologies for other "non-infectious" common diseases.

  20. Genetics and plant development.

    Science.gov (United States)

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.