WorldWideScience

Sample records for genetic material damage

  1. Effect of low dose pre-irradiation on DNA damage and genetic material damage caused by high dosage of cyclophosphamide

    International Nuclear Information System (INIS)

    Yu Hongsheng; Zhu Jingjuan; Shang Qingjun; Wang Zhuomin; Cui Fuxian

    2007-01-01

    Objective: To study the effect of low dose γ-rays pre-irradiation on the induction of DNA damage and genetic material damage in peripheral lymphocytes by high dosage of cyclophosphamide (CTX). Methods: Male Kunming strain mice were randomly divided into five groups: control group, sham-irradiated group, low dose irradiated group(LDR group), cyclophosphamide chemotherapy group(CTX group) and low dose irradiation combined with chemotherapy group(LDR + CTX group). After being feeded for one week, all the mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, groups of LDR and LDR + CTX were administered with 75 mGy of whole-body irradiation, 30 h later groups CTX and LDR + CTX were injected intraperitoneally 3.0 mg cyclophosphamide. All the mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes was analyzed using single cell gel electrophoresis (SCGE). Genetic material damage was analyzed using micronucleus frequency(MNF) of polychromatoerythrocytes(PCE) in bone marrow. Results: (1) Compared with control group and sham-irradiated group, the DNA damage of peripheral lymphocytes in CTX group were increased significantly (P 0.05). Conclusions: (1) High- dosage of CTX chemotherapy can cause DNA damage in peripheral lymphocytes. 75 mGy y-irradiation before chemotherapy may have certain protective effect on DNA damage. (2) CTX has potent mutagenic effect, giving remarkable rise to MNF of PCE. 75 mGy γ-ray pre-irradiation has not obvious protection against genetic toxicity of high-dose CTX chemotherapy. (authors)

  2. LSD and Genetic Damage

    Science.gov (United States)

    Dishotsky, Norman I.; And Others

    1971-01-01

    Reviews studies of the effects of lysergic acid diethylamide (LSD) on man and other organisms. Concludes that pure LSD injected in moderate doses does not cause chromosome or detectable genetic damage and is not a teratogen or carcinogen. (JM)

  3. Genetic doping and health damages.

    Science.gov (United States)

    Fallahi, Aa; Ravasi, Aa; Farhud, Dd

    2011-01-01

    Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as "the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ". The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack.

  4. Atom bombs and genetic damage

    International Nuclear Information System (INIS)

    Berry, R.J.

    1982-01-01

    Comments are made on a 1981 review on genetic damage in the off-spring of the atom bomb survivors in Hiroshima and Nagasaki. The main criticisms of the review concerned, 1) the 'minimal' doubling dose value for radiation-induced mutation in man, 2) the gametic doubling dose value for sex chromosome aneuploidy and 3) the validity of trebling an observed acute doubling dose to measure the effect of chronic irradiation. The firmest conclusion which may be deduced from the studies on A-bomb survivors is that humans are fairly resistant to genetic damage from radiation. (U.K.)

  5. Genetic damage following nuclear war

    International Nuclear Information System (INIS)

    Oftedal, P.

    1984-01-01

    Genetic damage may be caused by ionizing radiation from the exploding bomb itself, or from radioactive nuclides released or formed in the explosion. Long-wave radiation in the heat flash and physical force do not contribute. Thus only a small fraction of the energy of the explosion - fission or fusion- can cause genetic damage. Neutron irradiation is generally found to be 5-20 times more efficient than gamma irradiation for the same absorbed dose. Fetuses and children are generally more radiosensitive than adults. Exposure of gonads during the proliferative stage of gonad growth may conceivably lead to a ''fluctuation test'' effect, so that a gonad may contain a sector of cells carrying identical mutations. A corresponding development may take place if the gonad stem cell population has been severely depleted by an acute exposure and recovers

  6. Genetic damage from low-level and natural background radiation

    International Nuclear Information System (INIS)

    Oftedal, P.

    1988-01-01

    Relevant predictions that have been made of possible low level biological effects on man are reviewed, and the estimate of genetic damage is discussed. It is concluded that in spite of a number of attempts, no clear-cut case of effects in human populations of radiation at natural levels has been demonstrated. The stability of genetic material is dynamic, with damage, repair and selection running as continuous processes. Genetic materials are well protected and are conservative in the extreme, not least because evolution by genetic adaptation is an expensive process: Substitution of one allele A 1 by another A 2 means the death of the whole A 1 population

  7. Damage Atlas for Photographic materials

    Directory of Open Access Journals (Sweden)

    Kristel Van Camp

    2010-11-01

    Full Text Available La conservation des documents photographiques peut nécessiter des interventions préventives ou curatives. Ce choix est guidé par leur état de conservation. Une meilleure connaissance des détériorations est donc cruciale. Le répertoire présenté ici essaie de les classifier selon des caractéristiques spécifiques et leur niveau de gravité. Les différents types de dégradation sont illustrés et décrits avec une terminologie précise. L’auteur propose en regard de ceux-ci l’intervention qui semble la plus appropriée. Ce répertoire s’adresse à toutes les personnes concernées par la photographie, qu’ils soient dans le milieu de la conservation ou dans le domaine artistique, dans les musées ou dans les archives. In order to rescue a damaged photographic object, preventive or conservative actions are needed. Knowing the specific characteristics of different types of damage is crucial. A damage atlas can provide these characteristics. With this atlas the damage can be recognised and appropriate actions can be taken. This damage atlas offers a first attempt to such a characterisation in the field of photography. The damage atlas contains images and the necessary information about damage on photographic material. The atlas with special annotations about the terminology and the grade of the damage is meant for everybody who works with photographic material, as well in museums as in archives.

  8. Radiation damage of structural materials

    International Nuclear Information System (INIS)

    Koutsky, J.; Kocik, J.

    1994-01-01

    Maintaining the integrity of nuclear power plants (NPP) is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for reactor pressure vessels (RPV) and Zr-Nb alloys for fuel element cladding. The book is divided into seven main chapters, with the exception of the opening one and the chapter providing phenomenological background for the subject of radiation damage. Chapters 3-6 are devoted to RPV steels and chapters 7-9 to zirconium alloys, analyzing their radiation damage structure, changes of mechanical properties due to neutron irradiation as well as factors influencing the degree of their performance degradation. The recovery of damaged materials is also discussed. Considerable attention is paid to a comparison of VVER-type and western-type light-water materials

  9. Radiation damage of structural materials

    CERN Document Server

    Koutsky, Jaroslav

    1994-01-01

    Maintaining the integrity of nuclear power plants is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for RPV and Zr-Nb alloys for fuel element cladding. The book is divided into 7 main chapters, with the exception of the opening one and the chapter providing a phenomenological background for the subject of radiation damage. Ch

  10. Nondestructive characterization of materials damage

    International Nuclear Information System (INIS)

    Dobmann, G.

    1999-01-01

    The paper discusses two examples of application of NDT for early detection of materials damage, or ageing effects. The first case shows the potential of micromagnetic testing techniques for early detection of hydrogen-induced stress corrosion cracking in pipework. Pipe specimens made of steel X20Cr13, which differed in materials state induced by various heat treatments, were exposed to corrosive attack induced in a closed cycle by simultaneous rinsing with NACE solution and stress application through stamp impact. Various micromagnetic testing parameters were measured at the specimens' outside surface during the annealing period. Further, fatigue experiments were made with specimen sets made of steel 1.4541, under various mechanical and temperature stresses (room temperature and 300 C), for measuring the remanent magnetization of the cylindrical fatigue test blocks (equal geometry) cut out of the specimens, in order to conclude information on the martensite content and the fatigue effects. (Orig./CB) [de

  11. Genetic engineering: frost damage trial halted.

    Science.gov (United States)

    Budiansky, S

    The University of California at Berkeley has announced the postponement of a planned experiment involving the field testing of bacteria genetically engineered to reduce frost damage to crops. The action came after Jeremy Rifkin, who had earlier filed suit against the National Institutes of Health after its Recombinant DNA Advisory Committee had approved the experiment, threatened to seek a temporary restraining order against the university to halt the experiment.

  12. Radiation induced genetic damage in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  13. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  14. Radiation damages in superconducting materials

    International Nuclear Information System (INIS)

    Heinz, W.; Seibt, E.

    1978-01-01

    Radiation damage investigations of technical superconductors are reported and discussed with respect to their main properties like critical current jsub(c), transition temperature Tsub(c), upper critical field Bsub(c2), pinning and annealing behaviour. Ordered A15 type alloys (like Nb 3 Sn and V 3 Ga) show significant reductions of all critical parameters above a threshold of about 2x10 21 m -2 with 50 MeV deuterons corresponding to 2x10 22 neutrons/m 2 (Esub(n)>0.1 MeV). Pure metals and disordered B1 type alloys (like Nb or NbTi) show only a small linear decrease in critical parameters (except Bsub(c2) of niobium). Experimental results are compared with theoretical calculations. (author)

  15. Genetic Damage Induced by Accidental Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Beatriz Pérez-Cadahía

    2006-01-01

    Full Text Available Petroleum is one of the main energy sources worldwide. Its transport is performed by big tankers following some established marine routes. In the last 50 years a total amount of 37 oil tankers have given rise to great spills in different parts of the world, Prestige being the last one. After the accident, a big human mobilisation took place in order to clean beaches, rocks and fauna, trying to reduce the environmental consequences of this serious catastrophe. These people were exposed to the complex mixture of compounds contained in the oil. This study aimed at determine the level of environmental exposure to volatile organic compounds (VOC, and the possible damage induced on the population involved in the different cleaning tasks by applying the genotoxicity tests sister chromatid exchanges (SCE, micronucleus (MN test, and comet assay. Four groups of individuals were included: volunteers (V, hired manual workers (MW, hired high-pressure cleaner workers (HPW and controls. The higher VOC levels were associated with V environment, followed by MW and lastly by HPW, probably due to the use of high-pressure cleaners. Oil exposure during the cleaning tasks has caused an increase in the genotoxic damage in individuals, the comet assay being the most sensitive biomarker to detect it. Sex, age and tobacco consumption have shown to influence the level of genetic damage, while the effect of using protective devices was less noticeable than expected, perhaps because the kind used was not the most adequate.

  16. Radiation damage in organic materials

    International Nuclear Information System (INIS)

    Campbell, F.J.

    1981-01-01

    A surprising number of electrical components and seals are listed as being inside the containment building of a nuclear power plant. The types of radiation and their interaction with organic materials lead to a dosimetry discussion, and then a brief description of the chemical mechanisms which predominate in typical organic materials follows. Relative stability of polymer structures and the types of additives that contribute stabilization to the basic polymer matrix in formulated compounds are reviewed. However, the emphasis must now be directed toward the need to consider the total environment of nuclear plant service on the degradation of these materials if maximum reliability is to be achieved. The degradation mechanisms may be strongly affected by the dose-rate/oxidation effect. Temperature, steam and physical stress, when applied concurrently with the radiation field, can also influence the amount of absorbed dose required to produce a given change in the property being tested. Determining the degree of these influences and developing standardized test procedures to evaluate them have become the objective of several prominent research programs and international committee efforts. (author)

  17. Characterization and damage evaluation of advanced materials

    Science.gov (United States)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested

  18. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  19. Radiation damage calculations for compound materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1989-01-01

    Displacement damage calculations can be performed for 40 elements in the energy range up to 20 MeV with the SPECTER computer code. A recent addition to the code, called SPECOMP, can intermix atomic recoil energy distributions for any four elements to calculate the proper displacement damage for compound materials. The calculations take advantage of the atomic recoil data in the SPECTER libraries, which were determined by the DISCS computer code, using evaluated neutron cross section and angular distribution data in ENDF/B-V. Resultant damage cross sections for any compound can be added to the SPECTER libraries for the routine calculation of displacements in any given neutron field. Users do not require access to neutron cross section files. Results are presented for a variety of fusion materials and a new ceramic superconductor material. Future plans and nuclear data needs are discussed. 11 refs., 6 figs., 1 tab

  20. Radiation damage in barium fluoride detector materials

    International Nuclear Information System (INIS)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF 2 , both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF 2 they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with 60 C0 gamma rays. Doses of 10 6 rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF 2 develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials

  1. Damage evolution during fatigue in structural materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Petrenec, Martin

    2012-01-01

    Roč. 1, August (2012), s. 3-12 ISSN 2211-8128. [International Congress on Metallurgy and Materials - SAM/CONAMET 2011 /11./. Rosario, 18.10.2011-21.10.2011] R&D Projects: GA ČR GA106/09/1954 Institutional support: RVO:68081723 Keywords : cyclic plasticity * crack nucleation * crack growth * fatigue damage Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  3. Radiation damage calculations for compound materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1990-01-01

    This paper reports on the SPECOMP computer code, developed to calculate neutron-induced displacement damage cross sections for compound materials such as alloys, insulators, and ceramic tritium breeders for fusion reactors. These new calculations rely on recoil atom energy distributions previously computed with the DISCS computer code, the results of which are stored in SPECTER computer code master libraries. All reaction channels were considered in the DISCS calculations and the neutron cross sections were taken from ENDF/B-V. Compound damage calculations with SPECOMP thus do not need to perform any recoil atom calculations and consequently need no access to ENDF or other neutron data bases. The calculations proceed by determining secondary displacements for each combination of recoil atom and matrix atom using the Lindhard partition of the recoil energy to establish the damage energy

  4. Genetics 101 --The Hereditary Material of Life

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Genetics 101 Genetics 101 — The Hereditary Material of Life Past Issues / Summer 2013 Table of Contents Genetics is the study of heredity, the process in ...

  5. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  6. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  7. Salvaging and Conserving Water Damaged Photographic Materials

    Science.gov (United States)

    Suzuki, Ryuji

    Degradation of water damaged photographic materials is discussed; the most vulnerable elements are gelatin layers and silver image. A simple and inexpensive chemical treatment is proposed, consisting of a bath containing a gelatin-protecting biocide and a silver image protecting agent. These ingredients were selected among those used in manufacturing of silver halide photographic emulsions or processing chemicals. Experiments confirmed that this treatment significantly reduced oxidative attacks to silver image and bacterial degradation of gelatin layers. The treated material was also stable under intense light fading test. Method of hardening gelatin to suppress swelling is also discussed.

  8. Possible genetic damage from diagnostic x irradiation. A review

    International Nuclear Information System (INIS)

    Withrow, T.J.; Andersen, F.A.; Yao, K.T.S.; Stratmeyer, M.E.

    1980-08-01

    Although it is known that x irradiation is capable of producing mutations and chromosomal abnormalities in experimental systems, there is little or no direct evidence of such phenomena in humans. This report reviews some human genetic diseases and chromosomal abnormalities as well as the evidence for x-ray induced mutations and chromosomal abnormalities in experimental systems. The examination of these areas reveals that spontaneous chromosomal abnormalities and genetic diseases are associated with the same type of DNA damage that x irradiation produces in experimental systems. Therefore, it is concluded that genetic radiation damage in humans may mainfest itself as an increase in the spontaneous genetic diseases rather than as any unique disease

  9. Implementation of an anisotropic damage material model using general second order damage tensor

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Mori, K.; Wisselink, H.H.; Pietrzyk, M.; Kusiak, J.; Meinders, Vincent T.; ten Horn, Carel; Majta, J.; Hartley, P.; Lin, J.

    2010-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the

  10. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  11. Mesoscopic analysis of drying shrinkage damage in a cementitious material

    DEFF Research Database (Denmark)

    Moonen, P.; Pedersen, R.R.; Simone, A.

    2008-01-01

    Concrete and cement-based materials exhibit shrinkage when exposed to drying. Structural effects and inhomogeneity of material properties adverse free shrinkage, hereby inducing stress concentrations and possibly damage. In this contribution, the magnitude of shrinkage- induced damage during...... temperatures are considered: 35 °C and 50 °C. Significantly more micro-damage and higher internal stresses are found for the latter, revealing the importance of drying shrinkage damage, even at laboratory scale....

  12. Metamict state radiation damage in crystalline materials

    International Nuclear Information System (INIS)

    Haaker, R.F.; Ewing, R.C.

    1979-01-01

    Metamict minerals provide an excellent basis for the evaluation of long-term radiation damage effects, particularly such changes in physical and chemical properties as microfracturing, hydrothermal alteration, and solubility. This paper summarizes pertinent literature on metamictization and proposes experiments that are critical to the elucidation of structural controls on radiation damage in crystalline phases

  13. Characteristic of fretting damage in metal material

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Zhi, F.

    1988-10-01

    The fretting fatigue experiment of LC4 high strength aluminum alloy is described. An SEM examination of the fractology and morphology of fretting damage is carried out as well as an EDAX analysis of the chemical composition of fretting particles. The results show that many loose oxide particles were produced and accumulated in the fretting damage region. 10 references.

  14. Damage and failure processes in structural materials

    International Nuclear Information System (INIS)

    Embury, J.D.

    1993-01-01

    At large plastic strains consideration must be given not only to the descriptions of work hardening and texture evolution but also to the process of damage accumulation and the documentation of the various modes of failure which may terminate the plastic history. In this presentation consideration is given first to documenting the various modes of failure and their dependence on stress state. It is then shown that damage accumulation can be studied in a quantitative manner by using model systems in conjunction with FEM calculations. Finally consideration is given to complex forming processes such as ironing to show how studies of damage initiation and accumulation relate to practical engineering problems. (orig.)

  15. Laser Induced Damage in Optical Materials: 1980.

    Science.gov (United States)

    1981-10-01

    conference organization. As many of you have experienced, the printed proceedings of these Laser Damage Symposia in our personal libraries are...responsible person or agency. I look forward to our continued relationship. Finally, let me thank the organizers of this Symposium. They have done a...the professional operation of the Symposium and Ms. Susie Rivera and Ms. Sheila Aaker for their part in the preparation and publication of the

  16. Protective effects of vitamin C against gamma-ray induced wholly damage and genetic damage

    International Nuclear Information System (INIS)

    Fu Chunling; Jiang Weiwei; Zhang Ping; Chen Xiang; Zhu Shengtao

    2000-01-01

    Objective: Protective effects of supplemental vitamin C against 60 Co-gamma-ray induced wholly damage and genetic damage was investigated in mice. Method: Mice were divided into normal control group, irradiation control group and vitamin C experimental group 1,2,3 (which were orally given vitamin C 15, 30, 45 mg/kg.bw for 10 successive days respectively prior to gamma-ray irradiation). Micronuclei in the bone marrow polychromatophilic erythrocytes in each group of mice were examined and the 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Supplemental vitamin C prior to gamma-rays irradiation can significantly decrease bone marrow PECMN rate of mice and increase 30 day survival rate and prolong average survival time. The protection factor is 2.09. Conclusion: Vitamin C has potent protective effects against gamma irradiation induced damage in mice. In certain dose range, vitamin C can absolutely suppress the gamma-rays induced genetic damage in vivo

  17. Minimizing material damage using low temperature irradiation

    Science.gov (United States)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  18. Minimizing material damage using low temperature irradiation

    International Nuclear Information System (INIS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-01-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to −80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use. - Highlights: ► A study is performed to quantify low temperature irradiation effects on polymer materials and BIs. ► Low temperature irradiation alters the balance of cross-linking and chain scissoning in polymers. ► Low temperatures provide radioprotection for BIs. ► Benefits of low temperatures are application specific and must be considered when dose setting.

  19. A nonlinear CDM based damage growth law for ductile materials

    Science.gov (United States)

    Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar

    2018-02-01

    A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.

  20. A 3D Orthotropic Elastic Continuum Damage Material Model

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-08-01

    A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

  1. Request from radiation damage evaluation in materials

    International Nuclear Information System (INIS)

    Fukuya, Koji; Kimura, Itsuro

    2003-01-01

    Radiation transport calculations in a PWR using cross-section data sets based on JENDL3.2 showed that the calculated neutron fluence agreed well with the dosimeter measurements and that the fast neutron flux and dpa rate differed within 10% from to those calculated using ENDF/B-IV and ENDF/B-VI based data sets. Calculations of helium generation in structural materials in the PWR using ENDF/B-VI showed that the dominant source of helium is the (n, α) reaction of 59 Ni and that the calculated helium content agreed with the measurements. For accurate estimation of radiation field from a material viewpoint, it is desirable to construct proper cross-section libraries, which have a proper energy group structure and contain sufficient elements including 59 Ni as an indispensable element. (author)

  2. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  3. Biomarkers of genetic damage in human populations exposed to pesticides

    International Nuclear Information System (INIS)

    Aiassa, Delia; Manas, Fernando; Bosch, Beatriz; Gentile, Natalia; Bernardi, Natali; Gorla, Nora

    2012-01-01

    The effect of pesticides on human, animal and environmental health has been cause of concern in the scientific community for a long time. Numerous studies have reported that pesticides are not harmless and that their use can lead to harmful biological effects in the medium and long term, in exposed human and animals, and their offspring. The importance of early detection of genetic damage is that it allows us to take the necessary measures to reduce or eliminate the exposure to the deleterious agent when damage is still reversible, and thus to prevent and to diminish the risk of developing tumors or other alterations. In this paper we reviewed the main concepts in the field, the usefulness of genotoxicity studies and we compiled studies performed during the last twenty years on genetic monitoring of people occupationally exposed to pesticides. we think that genotoxicity tests, including that include chromosomal aberrations, micronucleus, sister chromatid exchanges and comet assays, should be considered as essential tools in the implementation of complete medical supervision for people exposed to potential environmental pollutants, particularly for those living in the same place as others who were others have already developed some type of malignancy. This action is particularly important at early stages to prevent the occurrence of tumors, especially from environmental origins.

  4. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    Science.gov (United States)

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  6. Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials

    Science.gov (United States)

    Amri, A. El; Yakhloufi, M. H. El; Khamlichi, A.

    2017-05-01

    The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.

  7. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  8. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  9. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  10. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  11. Heavy ion linear accelerator for radiation damage studies of materials.

    Science.gov (United States)

    Kutsaev, Sergey V; Mustapha, Brahim; Ostroumov, Peter N; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238 U 50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  12. Radiation damage in A-15 materials: EXAFS studies

    International Nuclear Information System (INIS)

    Knapp, G.S.; Kampwirth, R.T.; Georgopoulos, P.; Brown, B.S.

    1980-01-01

    EXAFS measurements are useful in determining the local atomic environment of a particular element in a solid. Since there has been some controversy about the nature of the defects produced in A-15 materials by radiation damage, such studies were carried out on some A-15 compounds, V 3 Ga which was damaged by neutrons, as well as Nb 3 Ge damaged by 2.5 MeV a particles. In the V 3 Ga sample, site exchange disorder seems to be the most important result of the neutron damage with less than 20% of the vanadium atoms on wrong sites. However, in the Nb 3 Ge samples in addition to site exchange disorder, an unusual splitting of the first near-neighbor distance between the Ge and Nb is found. This splitting, approximately 0.2 A, may explain the large Debye Waller factors observed by Burbank et al

  13. Mechanical Behaviour of Materials Volume II Fracture Mechanics and Damage

    CERN Document Server

    François, Dominique; Zaoui, André

    2013-01-01

    Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydogen embrittlement and to environment assisted cracking, chapter VIII...

  14. Damage detection in composite materials using Lamb wave methods

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos

    2002-04-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.

  15. Formability prediction for AHSS materials using damage models

    Science.gov (United States)

    Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara

    2017-05-01

    Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.

  16. Formability prediction for AHSS materials using damage models

    International Nuclear Information System (INIS)

    Amaral, R.; Miranda, Sara; Santos, Abel D.; José, César de Sá

    2017-01-01

    Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches. (paper)

  17. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  18. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  19. Grinding damage assessment for CAD-CAM restorative materials.

    Science.gov (United States)

    Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S

    2017-03-01

    To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Characterization of the damage produced on different materials surfaces

    International Nuclear Information System (INIS)

    Dellavale Clara, Hector Damian

    2004-01-01

    In the present work the characterization techniques of surfaces ULOI and RIMAPS have been applied on laboratory samples made from aluminium, stainless steel and material based on fiberglass.The resultant surfaces of, chemical etching with corrosive agents Keller and Tucker, mechanic damage from the wear and tear of abrasive paper and sandrubbing with alumina particles, are analyzed to different level of damage.The systematic application of the above mentioned techniques is carried out with the objective of finding information, which allows to characterize the superficial damage, both in its incipient state as in the extreme situation revealed by the presence of etch pits. Important results have been obtained, in the characterization of the incipient stage of the chemical etching, using the curves of the normalized area.In addition, it was possible to verify the capacity of the techniques in the early detection of the preferential directions generated by the etch pits

  1. Damage by radiation in structural materials of BWR reactor vessels

    International Nuclear Information System (INIS)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2002-01-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA Mark III Salazar reactor and separately with Ni +3 ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A 2 ). (Author)

  2. Fast Neutron Damage Studies on NdFeB Materials

    CERN Document Server

    Spencer, James; Baldwin, A; Boussoufi, Moe; Pellet, David; Volk, James T; Wolf, Zachary

    2005-01-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas over the life of the facility. Although the linacs will be superconducting, there are still many potential uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the radiation damage situation for rare earth permanent magnet materials was presented at PAC2003 and our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC2004 where the damage appeared proportional to the distances between the effective operating points and Hc. Here we have extended those doses and included more commercial samples together with the induced radioactivities associated with their respective dopants. Hall probe data for the external induction distributions are compared with vector magnetizatio...

  3. Surface finish and subsurface damage in polycrystalline optical materials

    Science.gov (United States)

    Shafrir, Shai Negev

    We measure and describe surface microstructure and subsurface damage (SSD) induced by microgrinding of hard metals and hard ceramics used in optical applications. We examine grinding of ceramic materials with bonded abrasives, and, specifically, deterministic microgrinding (DMG). DMG, at fixed nominal infeed rate and with bound diamond abrasive tools, is the preferred technique for optical fabrication of ceramic materials. In DMG material removal is by microcracking. DMG provides cost effective high manufacturing rates, while attaining higher strength and performance, i.e., low level of subsurface damage (SSD). A wide range of heterogeneous materials of interest to the optics industry were studied in this work. These materials include: A binderless tungsten carbide, nonmagnetic Ni-based tungsten carbides, magnetic Co-based tungsten carbides, and, in addition, other hard optical ceramics, such as aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (Al2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). These materials are all commercially available. We demonstrate that spots taken with magnetorheological finishing (MRF) platforms can be used for estimating SSD depth induced by the grinding process. Surface morphology was characterized using various microscopy techniques, such as: contact interferometer, noncontact white light interferometer, light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The evolution of surface roughness with the amount of material removed by the MRF process, as measured within the spot deepest point of penetration, can be divided into two stages. In the first stage the induced damaged layer and associated SSD from microgrinding are removed, reaching a low surface roughness value. In the second stage we observe interaction between the MRF process and the material's microstructure as MRF exposes the subsurface without introducing new damage. Line scans taken parallel to the MR

  4. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  5. Remarks on the mathematical description of materials damage by irradiation

    International Nuclear Information System (INIS)

    Steinbach, E.

    1987-01-01

    In describing radiation damage processes in materials, the chemical rate theory proves to be the most effective mathematical method. The applicability, and even the validity, of this theory, which has been successfully applied in many other scientific fields, have been questioned by some authors. After rigorous mathematical analysis of the relevant rate equations and the corresponding self-consistent calculation of sink strengths, the main criticisms on this subject can be disproved

  6. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  7. Investigations into radiation damages of reactor materials by computer simulation

    International Nuclear Information System (INIS)

    Bronnikov, V.A.

    2004-01-01

    Data on the state of works in European countries in the field of computerized simulation of radiation damages of reactor materials under the context of the international projects ITEM (European Database for Multiscale Modelling) and SIRENA (Simulation of Radiation Effects in Zr-Nb alloys) - computerized simulation of stress corrosion when contact of Zr-Nb alloys with iodine are presented. Computer codes for the simulation of radiation effects in reactor materials were developed. European Database for Multiscale Modelling (EDAM) was organized using the results of the investigations provided in the ITEM project [ru

  8. Radiation damage and materials performance in irradiation environment

    International Nuclear Information System (INIS)

    Singh, B.N.

    2009-01-01

    Collisions of energetic projectile particles with host atoms produce atomic displacements in the target materials. Subsequently, some of these displacements are transformed into lattice defects and survive in the form of single defects and of defect clusters. Depending on the ambient temperature, these defects and their clusters diffuse, interact, annihilate, segregate and accumulate in various forms and are responsible for the evolution of the irradiation-induced microstructure. Naturally, both physical and mechanical properties and thereby the performance and lifetime of target materials are likely to be determined by the nature and the magnitude of the accumulated defects and their spatial dispositions. The defect accumulation, microstructural evolution and the resulting materials response gets very complicated particularly under the reactor operational conditions. The complication arises from the fact that the materials used in the structural components will experience concurrently generation of defects produced by the flux of neutrons and generation of dislocations due to plastic deformation. In other words, the defect accumulation will have to be considered under the conditions of two interactive reaction kinetics operating simultaneously. Both materials and experimental variables are likely to affect the damage accumulation and thereby the materials performance. Experimental and theoretical results pertaining to effects of major materials and experimental variables on materials performance will be briefly examined. (au)

  9. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1981-01-01

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  10. Damage analysis and fundamental studies for fusion reactor materials development

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.

    1991-09-01

    The philosophy of the program at the University of California Santa Barbara has been to develop a fundamental understanding of both the basic damage processes and microstructural evolution that take place in a material during neutron irradiation and the consequent dimensional and mechanical property changes. This fundamental understanding can be used in conjunction with empirical data obtained from a variety of irradiation facilities to develop physically-based models of neutron irradiation effects in structural materials. The models in turn can be used to guide alloy development and to help extrapolate the irradiation data base (expected to be largely fission reactor based) to the fusion reactor regime. This philosophy is consistent with that of the national and international programs for developing structural materials for fusion reactors

  11. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  12. Characterization of genetic miscoding lesions caused by postmortem damage

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Hansen, Anders J; Willerslev, Eske

    2002-01-01

    The spectrum of postmortem damage in mitochondrial DNA was analyzed in a large data set of cloned sequences from ancient human specimens. The most common forms of damage observed are two complementary groups of transitions, termed "type 1" (adenine-->guanine/thymine-->cytosine) and "type 2...

  13. Characterization of Structure and Damage in Materials in Four Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, I. M. [Univ. of Illinois, Urbana, IL (United States); Schuh, C. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vetrano, J. S. [U.S. Department of Energy, Washington, DC (United States); Browning, N. D. [Univ. of California, Davis, CA (United States); Field, D. P. [Washington State Univ., Pullman, WA (United States); Jensen, D. J. [Technical Univ. of Denmark, Roskilde (Denmark); Miller, M. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, I. [Darmouth College, Hanover, NH (United States); Dunand, D. C. [Northwestern Univ., Evanston, IL (United States); Dunin-Borkowski, R. [Technical Univ. of Denmark, Lyngby (Denmark); Kabius, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, T. [Cameca Instruments Corp., Madison, WI (United States); Lozano-Perez, S. [Univ. of Oxford (United Kingdom); Misra, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rohrer, G. S. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, A. D. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Taheri, M. [Drexel Univ., Philadelphia, PA (United States); Thompson, G. B. [Univ. of Alabama, Tuscaloosa, AL (United States); Uchic, M. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Wang, X. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Was, G. [Univ. of Michigan, Ann Arbor, MI (United States)

    2010-09-30

    The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

  14. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    Science.gov (United States)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  15. Basic aspects of spallation radiation damage to materials

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States); Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The nature of radiation effects, as learned from investigations using reactor neutron irradiations, is reviewed, and its relevance to spallation radiation damage to materials in accelerator-driven neutron sources is discussed. Property changes upon irradiation are due to (1) displaced atoms, producing vacancy and interstitial defect clusters, which cause radiation hardening and embrittlement; (2) helium production, the helium then forming bubbles, which engenders high-temperature grain-boundary fracture; and (3) transmutations, which means that impurity concentrations are introduced. Methods for analyzing displacement production are related, and recent calculations of displacement cross sections using SPECTER and LAHET are described, with special reference to tungsten, a major candidate for a target material in accelerator-driven neutron systems.

  16. Damage mechanisms and metallic materials development in multiphase flow

    International Nuclear Information System (INIS)

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  17. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  18. Radiation damage in materials. Primary knock-on atom energy analyses of cascade damage

    International Nuclear Information System (INIS)

    Sekimura, Naoto

    1995-01-01

    To understand cascade damage formation as a function of primary recoil energy, thin foils of gold were irradiated with 20 - 400 keV self-ions to 1.0 x 10 14 ions/m 2 at 300 K. Yield of groups of vacancy clusters saturated at ion energy higher than 100 keV. Number of clusters in a group had variation even from the same energy ions. Size distribution of the clusters was not strongly dependent on number of clusters in a group and ion energy. Density of vacancy clusters in a group formed near the specimen surface was calibrated to estimate vacancy cluster formation in neutron-irradiated material. A model was proposed to predict distribution of defect clusters in the irradiated materials based on a primary recoil spectrum. Examples of recomposed distribution of vacancy clusters in a group in irradiated gold were compared with the measured data. (author)

  19. Radiation damage calculations for the APT materials test program

    International Nuclear Information System (INIS)

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-01-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons (∼1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV

  20. Human Genetics. Informational and Educational Materials, Vol. I, No. 1.

    Science.gov (United States)

    National Clearinghouse for Human Genetic Diseases (DHEW/PHS), Rockville, MD.

    This catalogue, prepared by the National Clearinghouse for Human Genetic Diseases, provides educational and informational materials on the latest advances in testing, diagnosing, counseling, and treating individuals with a concern for genetic diseases. The materials include books, brochures, pamphlets, journal articles, audio cassettes,…

  1. SPECTER-ANL, Neutron Damage for Material Irradiation

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of program or function: SPECTER calculates spectral- averaged displacements, recoil spectra, gas production, and total damage energy (Kerma) for 41 pure elements using ENDF/B-V derived cross sections. The user need only specify a neutron energy spectrum. Because SPECTER does not handle compounds, SPECOMP was developed to determine displacement damage for alloys, insulators, and breeder materials. 2 - Method of solution: In SPECTER elastic scattering is treated exactly including angular distributions from ENDF/B-V. Inelastic scattering calculations consider both discrete and continuous nuclear level distributions. Multiple (n,xn) reactions use a Monte Carlo technique to derive the recoil distributions. The (n,d) and (n,t) reactions are treated as (n,p) and (n, 3 He) as (n, 4 He). The neutron-gamma reaction and subsequent beta-decay are also included, using a new treatment of gamma-gamma coincidences, angular correlations, beta-neutrino correlations and the incident neutron energy. The Lindhard model was used to compute the energy available for nuclear displacement at each recoil energy. SPECOMP reads the required files from SPECTER, computes secondary displacement functions for each combination of recoil and matrix atom, and then integrates over recoil energy to find the net displacement cross section at each neutron energy. Damage due to neutron, gamma-ray and beta decay events is then added in and the results are summed to obtain the total dpa cross section. 3 - Restrictions on the complexity of the problem: The DISCS computer code was used to process ENDF/B-V data for 41 pure elements for use with SPECTER-ANL. SPECOMP can use any combination of four elements in a single run

  2. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    Science.gov (United States)

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation

  3. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    Directory of Open Access Journals (Sweden)

    Lin Chao

    2016-01-01

    Full Text Available Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington

  4. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    International Nuclear Information System (INIS)

    Hansma, P K; Turner, P J; Ruoff, R S

    2007-01-01

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials

  5. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    Energy Technology Data Exchange (ETDEWEB)

    Hansma, P K [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Turner, P J [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111 (United States)

    2007-01-31

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials.

  6. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  7. Acoustic damage detection in laser-cut CFRP composite materials

    Science.gov (United States)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  8. Radiation displacement damage estimates for a radionuclide waste stabilization material

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1977-01-01

    Estimates of the number of atomic displacements produced in pollucite by the radioactive decay of Cs-134 are made. Pollucite is a candidate material for radionuclide waste stabilization, while Cs-134 is one of the radionuclide products which would be chemically bound in the pollucite lattice. At the maximum concentration of Cs-134 in pollucite, assuming a threshold displacement energy of 15.0 eV, the displacement rate is estimated to be 4.3 x 10 12 atoms/cm 3 /second which includes all atomic species in the pollucite lattice. It was found that most of the displacements, 85 percent, were caused by elastic scattering of photoelectrons and Compton electrons which are products of γ-ray interactions in the material. Most of the remaining displacements are caused by elastic scattering of β-particles. Recoil energies of the Ba daughter product are insufficient to cause displacement. Atomic displacements of nearest neighbors, atoms within one lattice spacing of the decay site, are estimated to be 2.7 x 10 6 atoms/cm 3 /second. These estimates provide a starting point for assessing the long term stability of pollucite to radiation damage

  9. The effect of dithiothreitol on radiation-induced genetic damage in Arabidopsis thaliana (L) Heynh

    International Nuclear Information System (INIS)

    Dellaert, L.M.W.

    1980-01-01

    A study was made on the effect of dithiothreitol (DTT; present during irradiation) on M 1 ovule sterility, M 2 embryonic lethals, M 2 chlorophyll mutants and M 2 viable mutants induced with fast neutrons or X-rays in Arabidopsis thaliana. DTT provides considerable protection against both fast-neutron and X-ray induced genetic damage. However, a higher protection was observed against M 1 ovule sterility, than against embryonic lethals, chlorophylls and viable mutants. This implies a significant DTT-induced spectral shift (0.01 < p < 0.05), i.e. a shift in the relative frequencies of the different genetic parameters. This spectral shift is explained on the basis of a specific DTT protection against radiation-induced strand breaks, and by differences in the ratio strand breaks/base damage for the genetic parameters concerned, i.e. a higher ratio for ovule sterility than for the other parameters. The induction of the genetic damage by ionizing radiation, either with or without DTT, is described by a mathematical model, which includes both strand breaks and base damage. The model shows that the resolving power of a test for a 'mutation'spectral shift depends on the relative values of the strandbreak reduction factor of -SH compounds and on the ratio strand breaks/base damage of the genetic parameters. For each genetic parameter the DTT damage reduction factor (DRF) is calculated per irradiation dose, and in addition the average (over-all doses) ratio strand breaks/base damage. (orig.)

  10. Radiation damage related to fusion-reactor materials

    International Nuclear Information System (INIS)

    Brimhall, J.L.

    1982-03-01

    Three reasons why the fusion irradiation environment could produce different damage microstructure will be discussed: (1) the primary damage state induced by a higher energy primary knock-on-spectra; (2) increased helium generation due to high eta, α cross sections; and (3) pulsed operation of the irradiation environment. Examples of the microstructural damage caused by each of the above will be given

  11. Issues related to the use of genetic material and information.

    Science.gov (United States)

    Giarelli, E; Jacobs, L A

    2000-04-01

    To review issues regarding the use of genetic materials and information. Professional literature, regional and federal legislation. An analysis is provided of the relationship among advances in genetic technology, use of genetic material and information, and the development of laws that protect the interests of donors, researchers, and insurers. Rapid technological achievements have generated complex questions that are difficult to answer. The Human Genome Project began and the scientific discoveries were put to use before adequate professional and public debate on the ethical, legal, social, and clinical issues. The term "proper use" of genetic material and information is not defined consistently. An incomplete patchwork of protective state and federal legislation exists. Many complicated issues surround the use and potential misuse of genetic material and information. Rapidly advancing technology in genetics makes it difficult for regulations that protect individuals and families to keep pace. Oncology nurses need to recognize their role as change agents, understand genetic technology, and advocate for patients by participating in the debate on the proper use and prevention of misuse of genetic material and information.

  12. Radition-induced genetic damage in plutella xylostella

    International Nuclear Information System (INIS)

    Ismail bin Bahari; Mahani binti Mohamad

    1993-01-01

    Radiation-induced chromosomal aberrations in progenies of irradiated Plutella xylostella was determined in a F1 sterility study. A total of 4 types of crosses (irradiated males against unirradiated females, irradiated females against unirradiated males, both parents irradiated and normal) were made following gamma irradiation at the pupal stage. Testes squash preparations made from F1 male larvae revealed 3 main types of chromosomal abberations induced by doses of 100, 150 and 200 Gy. Results obtained indicate the possibility of using chromosome translocations as the genetic marker

  13. Damage identification on spatial Timoshenko arches by means of genetic algorithms

    Science.gov (United States)

    Greco, A.; D'Urso, D.; Cannizzaro, F.; Pluchino, A.

    2018-05-01

    In this paper a procedure for the dynamic identification of damage in spatial Timoshenko arches is presented. The proposed approach is based on the calculation of an arbitrary number of exact eigen-properties of a damaged spatial arch by means of the Wittrick and Williams algorithm. The proposed damage model considers a reduction of the volume in a part of the arch, and is therefore suitable, differently than what is commonly proposed in the main part of the dedicated literature, not only for concentrated cracks but also for diffused damaged zones which may involve a loss of mass. Different damage scenarios can be taken into account with variable location, intensity and extension of the damage as well as number of damaged segments. An optimization procedure, aiming at identifying which damage configuration minimizes the difference between its eigen-properties and a set of measured modal quantities for the structure, is implemented making use of genetic algorithms. In this context, an initial random population of chromosomes, representing different damage distributions along the arch, is forced to evolve towards the fittest solution. Several applications with different, single or multiple, damaged zones and boundary conditions confirm the validity and the applicability of the proposed procedure even in presence of instrumental errors on the measured data.

  14. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  15. Nondestructive characterization of materials damage; Zerstoerungsfreie Charakterisierung von Werkstoffschaedigung

    Energy Technology Data Exchange (ETDEWEB)

    Dobmann, G. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, IZFP, Saarbruecken (Germany)

    1999-08-01

    The paper discusses two examples of application of NDT for early detection of materials damage, or ageing effects. The first case shows the potential of micromagnetic testing techniques for early detection of hydrogen-induced stress corrosion cracking in pipework. Pipe specimens made of steel X20Cr13, which differed in materials state induced by various heat treatments, were exposed to corrosive attack induced in a closed cycle by simultaneous rinsing with NACE solution and stress application through stamp impact. Various micromagnetic testing parameters were measured at the specimens` outside surface during the annealing period. Further, fatigue experiments were made with specimen sets made of steel 1.4541, under various mechanical and temperature stresses (room temperature and 300 C), for measuring the remanent magnetization of the cylindrical fatigue test blocks (equal geometry) cut out of the specimens, in order to conclude information on the martensite content and the fatigue effects. (Orig./CB) [Deutsch] In diesem Beitrag werden zwei Beispiele der ZFP zur Frueherkennung von Werkstoffschaedigung und Alterungserscheinungen diskutiert. Zum einen wurde das Potential mikromagnetischer Pruefverfahren zur Frueherkennung wasserstoffinduzierter, auch kathodische Spannungsrisskorrosion genannt (HISCC, hydrogene induced stress corrosion cracking), an Rohrleitungen nachgewiesen. Rohrproben unterschiedlicher Waermebehandlungszustaende der Stahlguete X20Cr13 wurden durch gleichzeitiges Spuelen mit NACE-Loesung in einem geschlossenen Kreislauf und Beaufschlagen einer Spannung durch Stempeldruck dem Korrosionsangriff ausgesetzt. Waehrend der Auslagerung wurden verschiedene mikromagnetische Pruefgroessen an der Aussenseite der Rohrproben aufgenommen. Zum anderen wurden an Probensaetzen der Stahlqualitaet 1.4541 Ermuedungsexperimente bei unterschiedlichen mechanischen und Temperaturbelastungen (bei Raumtemperatur und 300 C) durchgefuehrt. Das Ziel war die Messung der

  16. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  17. Radiation damage in diatomic materials at high doses

    International Nuclear Information System (INIS)

    Hobbs, L.W.; Hughes, A.E.

    1975-10-01

    Radiation effects in diatomic materials can differ structurally from those in metals because of the need to take into account different displacement rates on the two sublattices and the inevitable stoichiometric implications; in most diatomic insulators the anion species has the greater displacement cross section. Anion point defect stabilisation in heavily-irradiated (0.1 to 10 dpa) diatomic insulators has been studied using radiolysis of alkali and alkaline earth halides. A temperatures > 0.3 Tsub(m), all anion defects are mobile and can aggregate. Aggregation of anion interstitials results in creation of perfect dislocation loops without the need for primary cation displacements; simultaneous formation of substitutional anion molecular centres provides the necessary cation interstitials. Aggregation of anion vacancies leads to formation of metallic inclusions of the cation species, in some cases in an ordered array, which is the analogue, on a single sublattice, to the void lattice in metals. Availability of sinks for both anion interstitials and anion vacancies yields defect growth kinetics similar to those observed during formation of voids in irradiated metals, and a very high level of damage (approximately 10%) can be sustained in the lattice. The width of the temperature region concerned is much narrower, however, due to the possibility of recombination of aggregated or re-emitted anion vacancies with mobile or dispersed anion molecular defects; the latter can also aggregate to form fluid anion molecular inclusions and so complete the decomposition of the solid into separate phases of its constituent elements. (author)

  18. The History of Patenting Genetic Material.

    Science.gov (United States)

    Sherkow, Jacob S; Greely, Henry T

    2015-01-01

    The US Supreme Court's recent decision in Association for Molecular Pathology v. Myriad Genetics, Inc. declared, for the first time, that isolated human genes cannot be patented. Many have wondered how genes were ever the subjects of patents. The answer lies in a nuanced understanding of both legal and scientific history. Since the early twentieth century, "products of nature" were not eligible to be patented unless they were "isolated and purified" from their surrounding environment. As molecular biology advanced, and the capability to isolate genes both physically and by sequence came to fruition, researchers (and patent offices) began to apply patent-law logic to genes themselves. These patents, along with other biological patents, generated substantial social and political criticism. Myriad Genetics, a company with patents on BRCA1 and BRCA2, two genes critical to assessing early-onset breast and ovarian cancer risk, and with a particularly controversial business approach, became the antagonist in an ultimately successful campaign to overturn gene patents in court. Despite Myriad's defeat, some questions concerning the rights to monopolize genetic information remain. The history leading to that defeat may be relevant to these future issues.

  19. Radiation and transposon-induced genetic damage in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Balter, H.; Griffith, C.S.; American Museum of Natural History, New York; Margulies, L.

    1992-01-01

    The interaction of X-ray-induced and transposon-induced damage was investigated in P-M hybrid dysgenesis in Drosophila melanogaster. X-ray dose-response of 330-1320 rad was monitored for sterility, fecundicity and partial X/Y chromosome loss among F 2 progeny derived from dysgenic cross of M strain females xP strain males (cross A) and its reciprocal (cross B), using a weaker and the standard Harwich P strain subline. The synergistic effect of P element activity and X-rays on sterility was observed only in cross A hybrids and the dose-response was nonlinear in hybrids derived from the strong standard reference Harwich subline, H W . This finding suggests that lesions induced by both mutator systems which produce the synergistic effects are 2-break events. Effect of increasing dose on the decline of fecundicity was synergistic, but linear, in hybrids of either subline. There was no interaction evident and thus no synergism in X/Y nondisjunction and partial Y chromosome loss measured by the loss of the B s marker alone or together with the y + marker. Interaction was detected in the loss of the y + marker alone from the X and Y chromosomes. The possible three-way interaction of X-rays (660 rad), post-replication repair deficiency and P elements mobility was assessed by measuring transmission distortion in dysgenic males derived from the Π 2 P strain. (author). 38 refs.; 5 tabs

  20. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Lorenzo, Y.; Karlsen, A.; Carlsen, M. H.; Novosadová, Vendula; Blomhoff, R.; Vodička, Pavel; Collins, A. R.

    2014-01-01

    Roč. 16, APR 2014 (2014), s. 66-73 ISSN 1568-7864 R&D Projects: GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : DNA damage * DNA repair capacity * diet Subject RIV: EB - Genetics ; Molecular Biology; EI - Biotechnology ; Bionics (BTO-N) Impact factor: 3.111, year: 2014

  1. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: evidence of vertical transmission of DNA damage.

    Science.gov (United States)

    Barranger, A; Akcha, F; Rouxel, J; Brizard, R; Maurouard, E; Pallud, M; Menard, D; Tapie, N; Budzinski, H; Burgeot, T; Benabdelmouna, A

    2014-01-01

    Pesticides represent a major proportion of the chemical pollutants detected in French coastal waters and hence a significant environmental risk with regards to marine organisms. Commercially-raised bivalves are particularly exposed to pollutants, among them pesticides, as shellfish farming zones are subject to considerable pressure from agricultural activities on the mainland. The aims of this study were to determine (1) the genotoxic effects of diuron exposure on oyster genitors and (2) the possible transmission of damaged DNA to offspring and its repercussions on oyster fitness. To investigate these points, oysters were exposed to concentrations of diuron close to those detected in the Marennes-Oleron Basin (two 7-day exposure pulses at 0.4 and 0.6 μg L(-1)) during the gametogenesis period. Genomic abnormalities were characterized using two complementary approaches. The Comet assay was applied for the measurement of early and reversible primary DNA damage, whereas flow cytometry was used to assess the clastogenic and aneugenic effect of diuron exposure. Polar Organic Chemical Integrative Samplers (POCIS) were used in exposed and assay tanks to confirm the waterborne concentration of diuron reached during the experiment. The results obtained by the Comet assay clearly showed a higher level of DNA strand breaks in both the hemocytes and spermatozoa of diuron-exposed genitors. The transmission of damaged genetic material to gamete cells could be responsible for the genetic damage measured in offspring. Indeed, flow cytometry analyses showed the presence of DNA breakage and a significant decrease in DNA content in spat from diuron-exposed genitors. The transmission of DNA damage to the offspring could be involved in the negative effects observed on offspring development (decrease in hatching rate, higher level of larval abnormalities, delay in metamorphosis) and growth. In this study, the vertical transmission of DNA damage was so highlighted by subjecting oyster

  2. Self-Healing Structural Materials for Damage Tolerant Aerospace Vehicles

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed  effort describes how to develop novel lightweight, self-healing systems where self-repair is induced by the forces imparted by the damage event itself....

  3. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  4. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  5. Prediction of material damage in orthotropic metals for virtual structural testing

    OpenAIRE

    Ravindran, S.

    2010-01-01

    Models based on the Continuum Damage Mechanics principle are increasingly used for predicting the initiation and growth of damage in materials. The growing reliance on 3-D finite element (FE) virtual structural testing demands implementation and validation of robust material models that can predict the material behaviour accurately. The use of these models within numerical analyses requires suitable material data. EU aerospace companies along with Cranfield University and other similar resear...

  6. Modeling of material properties of piezoelectric ceramics taking into account damage development under static compression

    International Nuclear Information System (INIS)

    Mizuno, M; Nishikata, T; Okayasu, M

    2013-01-01

    We have carried out static compression tests in the poling direction for PZT ceramics and evaluated the material properties by measuring the resonance and anti-resonance frequencies and electrostatic capacity at regular intervals. Then the variation in the material properties up to fracture was clarified. Also, the development of internal damage was also clarified quantitatively by evaluating a damage variable on the basis of the continuum damage mechanics. The damage variable was calculated from the ratio of the elastic coefficient to its initial value. In the present paper, the development of internal damage was formulated as an evolution equation of the damage variable. In the formulation, a threshold stress leading to the onset of damage was considered. Moreover, the variation in material properties was related to the damage variable and formulated as material functions of the damage variable. The development of internal damage and the variation in material properties were simulated by the equations proposed in the present paper and the validity of the equations was verified by comparing the predictions with experimental results. (paper)

  7. Irradiation damage behavior of low alloy steel wrought and weld materials

    International Nuclear Information System (INIS)

    Stofanak, R.J.; Poskie, T.J.; Li, Y.Y.; Wire, G.L.

    1993-01-01

    A study was undertaken to evaluate the irradiation damage response of several different types of low alloy steel: vintage type ASTM A302 Grade B (A302B) plates and welds containing different Ni and Cu concentrations, 3.5% Ni steels similar to ASTM A508 Class 4, welds containing about 1% Ni (similar to type 105S), and 3.5% Ni steels with ''superclean'' composition. All materials were irradiated at several different irradiation damage levels ranging from 0.0003 to 0.06 dpa at 232C (450F). Complete Charpy V-notch impact energy transition temperature curves were generated for all materials before and after irradiation to determine transition temperature at 4IJ (30 ft-lb) or 47J (35 ft-lb) and the upper shelf energy. Irradiation damage behavior was measured by shift in Charpy 41J or 47J transition temperature (ΔTT4 41J or ΔTT 47J ) and lowering of upper shelf Charpy energy at a given irradiation damage level. It was found that chemical composition greatly influenced irradiation damage behavior; highest irradiation damage (greatest ΔTT) was found in an A302B type weld containing 1.28% Ni and 0.20% Cu while the least damage was found in 3.5% Ni, 0.05% Cu, superclean wrought materials. Combination of Ni and Cu was found to affect irradiation damage behavior at higher irradiation damage levels in the A302B welds where the 1.28% Ni, 0.20% Cu weld showed more damage than a 0.60% Ni, 0.31% Cu weld. For the 3.5% Ni steels, fabrication influenced irradiation behavior in that a silicon (Si) killed material showed greater irradiation damage than a low silicon material. In general, the 3.5% Ni materials with low copper showed less irradiation damage than the A302B materials

  8. Influence of intensity fluctuations on laser damage in optical materials

    International Nuclear Information System (INIS)

    Koldunov, M.F.; Manenkov, A.A.; Pocotilo, I.L.

    1995-01-01

    A study is reported of the influence of temporal fluctuations of laser radiation on the development of thermal explosion of absorbing inclusions and on the statistical properties of the laser induced damage in transparent dielectrics. A fluctuation time scale in which the fluctuations affect the thermal explosion of inclusions is established. An analysis is made of the conditions ensuring control of temporal fluctuations of laser radiation so as to eliminate their influence on the experimental statistical relationships governing laser damage associated with the distribution of absorbing inclusions in the bulk and on the surface of a sample

  9. Epigenetic and genetic factors in the cellular response to radiations and DNA-damaging chemicals

    International Nuclear Information System (INIS)

    Williams, J.R.; D'Arpa, P.

    1981-01-01

    DNA-damaging agents are widely used as therapeutic tools for a variety of disease states. Many such agents are considered to produce detrimental side effects. Thus, it is important to evaluate both therapeutic efficacy and potential risk. DNA-damaging agents can be so evaluated by comparison to agents whose therapeutic benefit and potential hazards are better known. We propose a framework for such comparison, demonstrating that a simple transformation of cytotoxicity-dose response patterns permits a facile comparison of variation between cells exposed to a single DNA-damaging agent or to different cytotoxic agents. Further, by transforming data from experiments which compare responses of 2 cell populations to an effects ratio, different patterns for the changes in cytotoxicity produced by epigenetic and genetic factors were compared. Using these transformations, we found that there is a wide variation (a factor of 4) between laboratories for a single agent (UVC) and only a slightly larger variation (factor of 6) between normal cell response for different types of DNA-damaging agents (x-ray, UVC, alkylating agents, crosslinking agents). Epigenetic factors such as repair and recovery appear to be a factor only at higher dose levels. Comparison in the cytotoxic effect of a spectrum of DNA-damaging agents in xeroderma pigmentosum, ataxia telangiectasia, and Fanconi's anemia cells indicates significantly different patterns, implying that the effect, and perhaps the nature, of these genetic conditions are quite different

  10. Genetic and environmental influences on oxidative damage assessed in elderly Danish twins

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Ribel-Madsen, Rasmus; Henriksen, Trine

    2011-01-01

    Previous studies have shown an association between oxidative stress and various diseases in humans including cancer, cardiovascular disease, diabetes, and chronic respiratory disease. To what extents this damage is determined by genetic and environmental factors is unknown. In a classical twin...... of oxidative stress were closely correlated (r=0.60-0.84). In conclusion, we demonstrated in a large population of elderly Danish twins that "whole-body" oxidative damage to nucleic acids and lipids is predominantly determined by potentially modifiable nongenetic factors....

  11. The protective effect of hypoxia and dithiothreitol on X-ray-induced genetic damage in Arabidopsis

    International Nuclear Information System (INIS)

    Sree Ramulu, K.; Veen, J.H. van der

    1987-01-01

    A study was made on the protective effect of hypoxia and dithiothreitol (DTT) on X-ray-induced ovule sterility and embryonic lethality in Arabidopsis. Both hypoxia and DTT gave a pronounced and additive reduction of radiation-induced genetic damage. The reduction was significantly higher for ovule sterility than for embryonic lethals. It is suggested that non-fertilized ovules contain a higher ratio of strand breaks/other damage than embryonic lethals do, for hypoxia and DTT are known specifically to give a reduction of strand breaks. (Auth.)

  12. Experimental data available for radiation damage modelling in reactor materials

    International Nuclear Information System (INIS)

    Wollenberger, H.

    Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants

  13. Comet assay to determine genetic damage by the use of ivermectin in zebu cows (Bos taurus indicus

    Directory of Open Access Journals (Sweden)

    Donicer Montes-Vergara

    2017-05-01

    Full Text Available Objective. The objective of the work was evaluate the damage genetic caused by the use of ivermectin (IVM in cows zebu to concentrations of 1% and 3.15% through the test comet. Material and methods. 15 cows, were taken with age between 3 and 4 years old, average weight of 350 kg, body condition between 3 and 3.5. Three experimental groups with five animals per group, which were exposed to the concentration of IVM to 1% to 3.15% more group control (without application of IVM were used. Animal blood sample was performed by venipuncture jugular or medial flow with vacutainer® needle, extracting 8 ml of blood. The blood samples it was collected at 9, 18 and 27 days post-treatment. Results. The display of the comets is made by using fluorescence microscope, the cells were evaluated by means of visual log and the Comet image software. Evidenced the presence of nuclei with DNA migration in all analyzed plates. The values of classification of comets indicate cells with high levels of damage (grade 3: cells with high damage. The rate of DNA damage of the treatment to 1% to 3.15% was significant, to relate to the control group. Conclusions. The results obtained in this study demonstrate the likely genotoxic potential of the use of IVM in cattle.

  14. Study on influence of vibration behavior of composite material damage by holography

    Science.gov (United States)

    Guo, Linfeng; Zhao, Zhimin; Gao, Mingjuan; Zhuang, Xianzhong

    2006-01-01

    Composite material has been applied widely in aeronautics, astronautics and some other fields due to their high strength, light weight and antifatigue and etc. But in the application, composite material may be destroyed or damaged, which may have impact on its further applications. Therefore, study on the influence of behavior of composite material damage becomes a hot research. In this paper, the common composite material for aircraft is used as the test object, and a study is conducted to investigate the influence of vibration behavior of composite material damage. The authors adopt the method of light-carrier wave and time-average holography. Compared the interference fringes of composite materials before and after damage, the width of the interference fringes of hologram of the damaged composite material is narrower than that of the fringes before. It means that the off-plane displacement of each point on the test object is larger than before. Based on the elastic mechanics theory, the off-plane displacement is inverse to the bending stiffness, and the bending stiffness of the test object will decrease after it is damaged. In other words, the vibration property of the composite material changes after damages occur. The research results of the paper show that the results accord with the analysis of theory.

  15. Cumulative genetic damage in children exposed to preconception and intrauterine radiation

    International Nuclear Information System (INIS)

    Bross, I.D.; Natarajan, N.

    1980-01-01

    Using a mathematical model and newly developed computer software, the data from the Tri-State Leukemia Survey involving different combinations of radiation exposures to the father and mother prior to conception and to the mother during pregnancy were analyzed. The hypothesis that radiation exposure produces genetic damage which may be expressed in the child both as indicator disease and as leukemia was tested. The genetic damage was estimated in terms of the proportion affected by a given exposure. The relative risk of leukemia and certain other indicator diseases among those affected could then be estimated. The results show that there are at least two distinguishable risk groups, one group with lower (one or two exposures); and the other group with higher (two or three) radiation exposures

  16. Multi-physics modeling of multifunctional composite materials for damage detection

    Science.gov (United States)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  17. Thermomechanics of damageable materials under diffusion: modelling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2015-01-01

    Roč. 66, č. 6 (2015), s. 3535-3572 ISSN 0044-2275 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : visco-elastic porous solids * incomplete damage * diffusion driven by chemical-potential gradient Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007/s00033-015-0566-2

  18. ITER transient consequences for material damage: modelling versus experiments

    International Nuclear Information System (INIS)

    Bazylev, B; Janeschitz, G; Landman, I; Pestchanyi, S; Loarte, A; Federici, G; Merola, M; Linke, J; Zhitlukhin, A; Podkovyrov, V; Klimov, N; Safronov, V

    2007-01-01

    Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed

  19. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Molecular evaluation of genetic variability of wheat elite breeding material

    Directory of Open Access Journals (Sweden)

    Brbaklić Ljiljana

    2009-01-01

    Full Text Available Estimation of genetic variability of breeding material is essential for yield improvement in wheat cultivars. Modern techniques based on molecular markers application are more efficient and precise in genetic variability evaluation then conventional methods. Variability of 96 wheat cultivars and lines was analyzed using four microsatellite markers (Gwm11, Gwm428, Psp3200, Psp3071. The markers were chosen according to their potential association with important agronomical traits indicated in the literature. Total of 31 alleles were detected with maximum number of alleles (11 in Xgwm11 locus. The highest polymorphism information content (PIC value (0,831 was found in the locus Xpsp3071. The genotypes were grouped into three subpopulations based on their similarity in the analyzed loci. The results have indicated wide genetic variability of the studied material and possibility of its application in further breeding process after validation of marker-trait association. .

  1. Spontaneous genetic damage in the tegu lizard (Tupinambis merianae): the effect of age.

    Science.gov (United States)

    Schaumburg, Laura G; Poletta, Gisela L; Siroski, Pablo A; Mudry, Marta D

    2014-05-15

    Several studies indicate that certain factors such as age, sex or nutritional status among others, may affect the level of DNA damage, both induced and spontaneous, so it is very important to consider them for a more accurate interpretation of the findings. The aim of this study was to analyze the influence of age, sex, and nest of origin on spontaneous genetic damage of Tupinambis merianae determined by the comet assay (CA) and the micronucleus (MN) test, in order to improve reference data for future in vivo studies of xenobiotics exposure in this species. Sixty-five tegu lizards of three different ages: newborns (NB), juveniles (JUV) and adults (AD), both sexes and from different nests of origin were used. Blood samples were collected from the caudal vein of all animals and the MN test and CA were applied on peripheral blood erythrocytes to determine basal frequency of MN (BFMN) and basal damage index (BDI). The comparison between age groups showed statistically significant differences in the BFMN and BDI (p0.05). A weak negative relationship was found only between BFMN and weight of NB tegu lizard (p=0.014; R(2)=0.245). Basal values of genetic damage obtained with both biomarkers in the tegu lizard evidenced that age is an intrinsic factor that should be taken into account to avoid misunderstanding of the results in future biomonitoring studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Damage thresholds of thin film materials and high reflectors at 248 nm

    International Nuclear Information System (INIS)

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.

    1982-01-01

    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings

  3. CISM Course on Damage and Fracture of Disordered Materials

    CERN Document Server

    Mier, Jan

    2000-01-01

    The principal objective of this book is to relate the random distributions of defects and material strength on the microscopic scale with the deformation and residual strength of materials on the macroscopic scale. To reach this goal the authors considered experimental, analytical and computational models on atomic, microscopic and macroscopic scales.

  4. Damage of multilayer polymer materials under creep loading

    Czech Academy of Sciences Publication Activity Database

    Zouhar, Michal; Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2011-01-01

    Roč. 465, - (2011), s. 153-156 ISSN 1013-9826 R&D Projects: GA ČR GA106/09/0279; GA ČR GC101/09/J027 Institutional research plan: CEZ:AV0Z20410507 Keywords : CMOD * material interface * creep * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  5. Associations between Fungal Species and Water-Damaged Building Materials

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Frisvad, Jens Christian; Søndergaard, Ib

    2011-01-01

    melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins...

  6. Damage analysis and fundamental studies for fusion reactor materials development

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.

    1993-01-01

    During this period work has encompassed: (a) development of electropotential drop techniques to monitor the growth of cracks in steel specimens for a variety of specimen geometries; (b) micromechanical modeling of fracture using finite element calculations of crack and notch-tip stress and strain fields; (3) examining helium effects on radiation damage in austenitic and ferritic stainless steels; (4) analysis of the degradation of the mechanical properties of austenitic stainless steels for the purpose of assessing the feasibility of using these steels in ITER; (5) development of an integrated approach to integrity assessment; and (6) development of advanced methods of measuring fracture properties

  7. Genetic damages in radiation workers of radiology centers in Bushehr port

    Directory of Open Access Journals (Sweden)

    Gholamreza Khamisipour

    2004-09-01

    Full Text Available Unstable genetic aberrations might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation.The frequency of these aberrations was estimated in peripheral lymphocytes from hospital workers in Bushehr Port, occupationally exposed to low levels of ionizing radiation (54 subjects and age and sex matched controls. A total of 34 (23 males & 11 females subjects had unstable genetic aberrations (50 chromosomal-type & 31 chromatid type but only 7 subjects in control group had unstable genetic aberrations. When compared with controls, exposed workers showed a significant increase in structural chromosomal-type aberrations (p<0.001 OR=11 chromosomal exchange being the most frequent alteration. Chromatid deletion (18 cases and ring chromosome (4 cases were seen only in exposed group. There was no association between smoking status, sex, age, level of education or working years. The increased frequencies of chromosomal damage in radiation workers, indicate conducting cytogenetic analysis in parallel to physical dosimetry in the working place.

  8. ATM directs DNA damage responses and proteostasis via genetically separable pathways.

    Science.gov (United States)

    Lee, Ji-Hoon; Mand, Michael R; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W; Richards, Alicia L; Coon, Joshua J; Paull, Tanya T

    2018-01-09

    The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Amoebae and other protozoa in material samples from moisture-damaged buildings

    International Nuclear Information System (INIS)

    Yli-Pirilae, T.; Kusnetsov, Jaana; Haatainen, Susanna; Haenninen, Marja; Jalava, Pasi; Reiman, Marjut; Seuri, Markku; Hirvonen, Maija-Riitta; Nevalainen, Aino

    2004-01-01

    Mold growth in buildings has been shown to be associated with adverse health effects. The fungal and bacterial growth on moistened building materials has been studied, but little attention has been paid to the other organisms spawning in the damaged materials. We examined moist building materials for protozoa, concentrating on amoebae. Material samples (n=124) from moisture-damaged buildings were analyzed for amoebae, fungi, and bacteria. Amoebae were detected in 22% of the samples, and they were found to favor cooccurrence with bacteria and the fungi Acremonium spp., Aspergillus versicolor, Chaetomium spp., and Trichoderma spp. In addition, 11 seriously damaged samples were screened for other protozoa. Ciliates and flagellates were found in almost every sample analyzed. Amoebae are known to host pathogenic bacteria, such as chlamydiae, legionellae, and mycobacteria and they may have a role in the complex of exposure that contributes to the health effects associated with moisture damage in buildings

  10. Self-repairing of material damage. Sonsho wo jiko shufuku yokushisuru zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, S [National Research Inst. for Metals, Tsukuba (Japan)

    1994-07-01

    In order to control the damage like crack or void formed during the use of structural material by the material itself, it is required to self-detect the damage, to self-judge the state of damage, and to self-control or self-repair the damage finally. Based on the parameter of length, the repair and control is classified into the 1mm-scale functional fine wire and thin film utilization type, 1[mu]m-scale microcapsule type, and 1nm-scale trace element utilization type. For the damage repair and control of functional fine wire and thin film utilization type, the damage is repaired and controlled by pasting thin film or by embedding fine wire of functional material, such as shape memory alloy, Ti-Ni, and piezoelectric ceramics PZT (lead zirconate titanate), on the material surface or inside the material. For the damage repair and control of microcapsule type, is illustrated the control mechanism of high temperature fatigue crack propagation by Y2O3 particles dispersed in the Fe-20Cr alloy. Furthermore, the formation mechanism of self-repairing film by the trace element is also illustrated. 13 refs., 5 figs.

  11. Preparation of the Jaws Damaged Parts from Composite Biopolymers Materials

    Directory of Open Access Journals (Sweden)

    Riyam A. Al-husseini

    2017-10-01

    Full Text Available Composite materials composing of fusing two materials or more are disaccorded in mechanical and physical characteristics, The studied the effect of changing in the reinforcement percentage by Hydroxyapatite Prepared nano world via the size of the nanoscale powder manufacturing manner chemical precipitation and microwave powders were two types their preparations have been from natural sources: the first type of eggshells and the other from the bones of fish in mechanical Properties which include the tensile strength, elastic modulus, elongation, hardness and tear for composite material consisting of Silicone rubber (SIR reinforced by (µ-n-HA, after strengthening silicone rubber Protect proportions (5,10,15,20 wt% of Article achieved results that increase the additive lead to increased hardness while tougher and modulus of elasticity decreases with added as shown in the diagrams.

  12. Fast neutron Damage Studies on NdFeB Materials

    OpenAIRE

    Anderson, S.; Spencer, J.; Wolf, Z.; Boussoufi, M.; Baldwin, A.; Pellett, D.; Volk, J.

    2005-01-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and gamma’s over the life of the facility. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at the P...

  13. Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials

    International Nuclear Information System (INIS)

    DesAutels, G. Logan; Finet, Marc; Ristich, Scott; Whitaker, Matt; Brewer, Chris; Juhl, Shane; Walker, Mark; Powers, Peter

    2008-01-01

    Semi-insulating and conducting SiC crystalline transparent substrates were studied after being processed by femtosecond (fs) laser radiation (780 nm at 160 fs). Z-scan and damage threshold experiments were performed on both SiC bulk materials to determine each sample's nonlinear and threshold parameters. 'Damage' in this text refers to an index of refraction modification as observed visually under an optical microscope. In addition, a study was performed to understand the damage threshold as a function of numerical aperture. Presented here for the first time, to the best of our knowledge, are the damage threshold, nonlinear index of refraction, and nonlinear absorption measured values

  14. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    Science.gov (United States)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  15. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  16. Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures

    CERN Document Server

    Schwalbe, Karl-Heinz; Cornec, Alfred

    2013-01-01

    This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.

  17. A frictional contact problem with wear involving elastic-viscoplastic materials with damage and thermal effects

    Directory of Open Access Journals (Sweden)

    Abdelmoumene Djabi

    2015-05-01

    Full Text Available We consider a mathematical problem for quasistatic contact between a thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the thermo-elasticviscoplastic with damage constitutive law for the material. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and the heat equation for the temperature. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

  18. Computer simulation of radiation damage in HTGR elements and structural materials

    International Nuclear Information System (INIS)

    Gann, V.V.; Gurin, V.A.; Konotop, Yu.F.; Shilyaev, B.A.; Yamnitskij, V.A.

    1980-01-01

    The problem of mathematical simulation of radiation damages in material and items of HTGR is considered. A system-program complex IMITATOR, intended for imitation of neutron damages by means of charged particle beams, is used. Account of material composite structure and certain geometry of items permits to calculate fields of primary radiation damages and introductions of reaction products in composite fuel elements, microfuel elements, their shells, composite absorbing elements on the base of boron carbide, structural steels and alloys. A good correspondence of calculation and experimental burn-out of absorbing elements is obtained, application of absorbing element as medium for imitation experiments is grounded [ru

  19. Reduction of damage threshold in dielectric materials induced by negatively chirped laser pulses

    International Nuclear Information System (INIS)

    Louzon, E.; Henis, Z.; Pecker, S.; Ehrlich, Y.; Fisher, D.; Fraenkel, M.; Zigler, A.

    2005-01-01

    The threshold fluence for laser induced damage in wide band gap dielectric materials, fused silica and MgF 2 , is observed to be lower by up to 20% for negatively (down) chirped pulses than for positively (up) chirped, at pulse durations ranging from 60 fs to 1 ps. This behavior of the threshold fluence for damage on the chirp direction was not observed in semiconductors (silicon and GaAs). Based on a model including electron generation in the conduction band and Joule heating, it is suggested that the decrease in the damage threshold for negatively chirped pulse is related to the dominant role of multiphoton ionization in wide gap materials

  20. Fusion reactor materials program plan. Section 2. Damage analysis and fundamental studies

    International Nuclear Information System (INIS)

    1978-07-01

    The scope of this program includes: (1) Development of procedures for characterizing neutron environments of test facilities and fusion reactors, (2) Theoretical and experimental investigations of the influence of irradiation environment on damage production, damage microstructure evolution, and mechanical and physical property changes, (3) Identification and, where appropriate, development of essential nuclear and materials data, and (4) Development of a methodology, based on damage mechanisms, for correlating the mechanical behavior of materials exposed to diverse test environments and projecting this behavior to magnetic fusion reactor (MFR) environments. Some major problem areas are addressed

  1. Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials

    International Nuclear Information System (INIS)

    Soong, Ken

    2011-01-01

    The accelerating gradient in a laser-driven dielectric accelerating structure is often limited by the laser damage threshold of the structure. For a given laser-driven dielectric accelerator design, we can maximize the accelerating gradient by choosing the best combination of the accelerator's constituent material and operating wavelength. We present here a model of the damage mechanism from ultrafast infrared pulses and compare that model with experimental measurements of the damage threshold of bulk silicon. Additionally, we present experimental measurements of a variety of candidate materials, thin films, and nanofabricated accelerating structures.

  2. Radiation damage of the construction materials, Phase I, Part I- Radiation damage of the construction steels

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1962-10-01

    The objective of this task was testing the mechanical properties of stainless steels having different grain size. Being an important material used mainly for reactor vessel construction stainless steel will be exposed to neutron flux in the RA reactor for testing

  3. Fast Neutron Damage Studies on NdFeB Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.; Spencer, J.; Wolf, Z.; /SLAC; Baldwin, A.; Pellett, D.; Boussoufi, M.; /UC, Davis

    2005-05-17

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and {gamma}'s over the life of the facility [1]. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at PAC03 [2]. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC04 [3]. We have extended the doses, included other manufacturer's samples, and measured induced radioactivities which are discussed in detail.

  4. Alpha damage in non-reference waste form matrix materials

    International Nuclear Information System (INIS)

    Burnay, S.G.

    1987-05-01

    Although bitumen is the matrix material currently used for European α-bearing intermediate level waste streams, polymer and polymer-modified cement matrices could have advantages over bitumen for such wastes. Two organic matrix systems have been studied - an epoxide resin, and an epoxide modified cement. Alpha irradiations were carried out by incorporating 241 Am at approx. 0.9 Ci/l. Comparisons have been made with unirradiated material and with materials which had been γ-irradiated to the same dose as the α-irradiated samples. Measurements were made of dimensional changes, mechanical properties and the leaching behaviour of 241 Am and 137 Cs. A limited amount of swelling (< 3%) was observed in α-irradiated epoxide resin; none was observed in the epoxide modified cement. Gamma irradiation to 300 kGy has no significant effect on the mechanical properties of either system. However, alpha irradiation to the same dose produced significant changes in flexural strength, an increase for the polymer and a decrease for the polymer-cement. Leaching in these systems was found to be a diffusion-controlled process; alpha irradiation to approx. 250 kGy has little effect on the leaching behaviour of either system. (author)

  5. Optimal filter design with progressive genetic algorithm for local damage detection in rolling bearings

    Science.gov (United States)

    Wodecki, Jacek; Michalak, Anna; Zimroz, Radoslaw

    2018-03-01

    Harsh industrial conditions present in underground mining cause a lot of difficulties for local damage detection in heavy-duty machinery. For vibration signals one of the most intuitive approaches of obtaining signal with expected properties, such as clearly visible informative features, is prefiltration with appropriately prepared filter. Design of such filter is very broad field of research on its own. In this paper authors propose a novel approach to dedicated optimal filter design using progressive genetic algorithm. Presented method is fully data-driven and requires no prior knowledge of the signal. It has been tested against a set of real and simulated data. Effectiveness of operation has been proven for both healthy and damaged case. Termination criterion for evolution process was developed, and diagnostic decision making feature has been proposed for final result determinance.

  6. Damage functions generation for polyatomic materials irradiated in test reactors

    International Nuclear Information System (INIS)

    Alberman, A.; Lesueur, D.

    1987-06-01

    Neutron exposure parameters in polyatomic materials is of great importance for fusion technology programs. The COMPOSI code computes the number of displaced atoms of sub-lattice ''j'' induced by one atom of sub-lattice ''i'' either by direct collision or through intermediate knocked atom. The code uses Lindhard equations; it is solved by iterative process. The atomic displacements cross-sections, as a function of neutron energy are derived by folding previous results with ''i'' type PKA. Moreover the COMPOSI code may include recoils from charged particles e.g.: Alpha + Triton from Li 6 capture in Li Al 0 2 . These responses in various spectra are discussed [fr

  7. Effect of cadmium on genetic toxicity and protection of cortex acanthopanasia radicis against genetic damage induced by cadmium

    International Nuclear Information System (INIS)

    Liu Bing; Pang Huimin; Chen Minyi

    1999-01-01

    Objective and Methods: The test of sperm aberration and micronucleus of bone marrow cells in mice were used to detect the mutagenicity of cadmium and anti-mutagenicity of Cortex Acanthopanasia Radicis (CAR) on germ cell and somatic cell. Kunming mice were divided randomly into four groups: normal saline control group (NS): MMC control group (MMC 1.0 mg/kg); Cd-mutate group (1/5 LD 50 ), 17.6 mg/kg); CAR anti-mutate group (CAR 1,2,4 g/kg + Cd). Ridit test and x 2 were used to evaluate the statistical significance of the date. Results: The experiment demonstrated that Chinese medicine CAR can significantly decrease sperm aberration and micronuclei frequencies induced by Cd (P<0.01). Conclusion: As an anti-mutagen CAR has practical value in occupational protection against genetic damage induced by Cd

  8. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  10. Determining the Radiation Damage Effect on Glovebox Glove Material

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Balkey, J.J.; Andrade, R.M.

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate 239 Pu and 238 Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  11. Determining the Radiation Damage Effect on Glovebox Glove Material.

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, M. E. (Michael E.); Balkey, J. J. (James J.); Andrade, R.M. (Rose M.)

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate {sup 239}Pu and {sup 238}Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  12. Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials

    NARCIS (Netherlands)

    Gutiérrez, M.A.; Borst, R. de

    1999-01-01

    This study presents some recent results on damage evolution in quasi-brittle materials including stochastic imperfections. The material strength is described as a random field and coupled to the response. The most probable configurations of imperfections leading to failure are sought by means of an

  13. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  14. Action of the chlorophyllin before genetic damage induced by gamma radiation in germinal cells of Drosophila

    International Nuclear Information System (INIS)

    Moreno B, R.

    2004-01-01

    The chlorophyllin (CHLN) is a porphyrin of nutritious grade and soluble in water, derived of the chlorophyll. It has been reported that this pigment is a good anti mutagen since it reduces the damage to the DNA caused by physical or chemical agents of direct or indirect action. Their anti carcinogenic action has also been demonstrated when it is administered itself during the induced post-initiation phase by aflatoxins and heterocyclic amines. However in the last decade it has been reported that it also has promoter activity against the genetic damage induced by diverse agents like the alkyl ants of direct and indirect action, the gamma radiation and some heterocyclic amines. This effect has been observed in testing systems like Salmonella, Drosophila, rainbow trout and rodents. In the mouse spermatogonia it has been reported that it reduces the damage to the DNA but with the test of lethal dominant in Drosophila increment the damage induced by gamma radiation. The present study consisted on evaluating the effect of the CHLN in the line germinal masculine of Drosophila by means of the lethal recessive test bound to the sex (LRLS) with the stump Muller 5 and a litters system. Its were pretreated wild males with CHLN and 24 h later were irradiated with 0, 10, 20 and 40 Gy of gamma radiation immediately later were crossed with virgin females of the stump Basc and at 72 h the male was transferred to a cultivation media with three new virgin females, this process repeated three times until completing 3 litters. The F1 it was crossed among itself and in the F2 it was analysed the presence or absence of lethals. The results indicated that the CHLN per se incremented the basal frequency of damage due to the pigment can act as an agent that is inserted to the ADN causing pre mutagenic leisure. Nevertheless with the groups treated with the different doses of gamma radiation the CHLN does not present any protector action, neither promoter except in the litter I of the group

  15. Handbook of damage mechanics nano to macro scale for materials and structures

    CERN Document Server

    2015-01-01

    This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.

  16. Damage detection in laminar thermoplastic composite materials by means of embedded optical fibers

    Directory of Open Access Journals (Sweden)

    Kojović Aleksandar M.

    2006-01-01

    Full Text Available This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers. Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before

  17. Radiation Damage Studies of Materials and Electronic Devices Using Hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Pellett, David; Baldwin, Andrew; Gallagher, Garratt; Olson, David; Styczinski, Marshall

    2014-05-14

    We have irradiated NdFeB permanent magnet samples from different manufacturers and with differing values of coercivity and remanence using stepped doses of 1 MeV equivalent neutrons up to a fluence of 0:64 1015n=cm2 to evaluate effects on magnetization and B field distributions. The samples with high coercivity, irradiated in open circuit configurations, showed no or minimal effects when compared with unirradiated samples, whereas the lower coercivity magnets suffered significant losses of magnetization and changes in the shapes of their field patterns. One such magnet underwent a fractional magnetization loss of 13.1% after a fluence of 0:59 1015 n=cm2. This demagnetization was not uniform. With increasing fluence, B field scans along the centerlines of the pole faces revealed that the normal component of B decreased more near the midpoint of the scan than near the ends. In addition, a fit to the curve of overall magnetization loss with fluence showed a significant deviation from linearity. The results are discussed in light of other measurements and theory. The high coercivity materials appear suitable for use in accelerator applications subject to irradiation by fast neutrons such as dipoles where the internal demagnetizing field is comparable to or less than that of the open circuit samples tested in this study.

  18. A modified bonded-interface technique with improved features for studying indentation damage of materials

    International Nuclear Information System (INIS)

    Low, I.M.

    1998-01-01

    A modified 'bonded-interface' technique with improved features for studying contact damage of ceramic (Al 2 O 3 graded Al 2 TiO 5 /Al 2 O 3 , Ti 3 SiC 2 ) and non-ceramic (epoxy, tooth) materials is developed and compared with the conventional method. This technique enables the surface damage around and below an indentor to be studied. When used in conjunction with Nomarski illumination and atomic force microscopy, this technique can reveal substantial information on the topography of indentation surface damage. In particular, it is ideal for monitoring the evolution of deformation-micro fracture damage of quasi-plastic materials. The technique is much less sophisticated, less time consuming, and user-friendly. It does not require a highly experience user to be proficient in the procedure. When compared with the conventional tool- clamp method, this modified technique gives similar, if not, identical results. Copyright (1998) Australasian Ceramic Society

  19. A Simulation Model for Tensile Fracture Procedure Analysis of Graphite Material based on Damage Evolution

    International Nuclear Information System (INIS)

    Zhao Erqiang; Ma Shaopeng; Wang Hongtao

    2014-01-01

    Graphite material is generally easy to be damaged by the widely distributed micro-cracks when subjects to load. For numerically analyzing of the structure made of graphite material, the influences of the degradation of the material in damaged areas need to be considered. In this paper, an axial tension test method is proposed to obtain the dynamic damage evolution rule of the material. Using the degradation rule (variation of elastic modulus), the finite element model is then constructed to analyze the tensile fracture process of the L-shaped graphite specimen. An axial tension test of graphite is performed to obtain the stress-strain curve. Based on the variation of the measured curve, the damage evolution rule of the material are fitted out. A simulation model based on the above measured results is then constructed on ABAQUS by user subroutine. Using this simulation model, the tension failure process of L-shaped graphite specimen with fillet are simulated. The calculated and experimental results on fracture load are in good agreement. The damage simulation model based on the stress-strain curve of axial tensile test can be used in other tensile fracture analysis. (author)

  20. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  1. Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material

    Science.gov (United States)

    Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E.

    2015-11-01

    A technique for numerical analysis of the thermoviscoelastoplastic deformation of thin compound shells made of a damageable material in which a fracture front propagates is described. A procedure for automatic variation in the step of integration of the kinetic damage equation is developed. A two-layer cylindrical shell cooling by convection and subjected to internal pressure and tensile force is analyzed as an example. The numerical data are presented and analyzed

  2. Impacts of damage production and accumulation on materials performance in irradiation environment

    DEFF Research Database (Denmark)

    Singh, B.N.

    1998-01-01

    and needs to be extended to temperatures below stage V and to materials of practical interests. This requires, however, that the information regarding the effects of alloying elements and impurity atoms on the nature of the primary damage state are available from molecular dynamics and kinetic Monte Carlo...... the damage accumulation, irradiation hardening and the loss of ductility. The recently developed production bias model together with one-dimensional glide of interstitial clusters produced in the cascades has been shown to describe the damage accumulation at temperatures above stage V for pure metals...... type of simulations. (C) 1998 Elsevier Science B.V. All rights reserved....

  3. Active investigation of material damage under load using micro-CT

    Science.gov (United States)

    Navalgund, Megha; Zunjarrao, Suraj; Mishra, Debasish; Manoharan, V.

    2015-03-01

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT's capability as a gauge to quantitatively estimate the extent of damage & understand the propagation of damage in PMC composites while the component is under stress.

  4. Active investigation of material damage under load using micro-CT

    International Nuclear Information System (INIS)

    Navalgund, Megha; Mishra, Debasish; Manoharan, V.; Zunjarrao, Suraj

    2015-01-01

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress

  5. Active investigation of material damage under load using micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Navalgund, Megha, E-mail: megha.navalgund@ge.com; Mishra, Debasish; Manoharan, V. [NDE Lab, GE Global Research - Bangalore (India); Zunjarrao, Suraj [Composites Material Behavior Lab, GE Global Research-Bangalore (India)

    2015-03-31

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress.

  6. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  7. Upgrading of highly elapsed degradation damage evaluation of structural materials for the light water reactors

    International Nuclear Information System (INIS)

    Katada, Yasuyuki; Matsushima, Shinobu; Sato, Shunji

    1998-01-01

    In this study, for degradation of structural materials in accompanying with highly yearly lapse of the nuclear power plants, it was an aim to elucidate interaction between material degradation and degradation under high hot water environment. And, another aims consisted in intention of expansion protection and recovery evaluation of damage due to laser processing method and so on for welded portion showing extreme material degradation and in preparation of damage region diagram based on the obtained data. In this fiscal year, on interaction between materials and environmental degradation, it was found that as stress corrosion cracking of materials hardened by shot peening shows a resemble shapes of stress-strain curve in CERT and CLRT, shapes of load-time curve were much different. On comparison of the SP material and non-processing material, as peak current showing activity of newly created surface shows no difference, re-passivation of the SP material was found to be too late. And, on recovery evaluation of material degradation damage, as it was found that constant melt depth was essential to evaluate corrosion, a condition preparation aimed for melt depth of more than 1 mm. As only small amount of bubbles were observed at molten metal part on YAG laser processing, it was found that many small bubbles scatter at thermal effect part. (G.K.)

  8. Maritime Transport of Environmentally Damaging Materials - A Balance Between Absolute Freedom and Strict Prohibition

    Directory of Open Access Journals (Sweden)

    Thaqal S. Al-Ajmi

    2007-06-01

    Full Text Available This study is intended to balance the rights of free navigation in all of its forms whether in the high seas or in the territorial waters of other States by resorting to the right of innocent passage and right of transit passage, which is enjoyable by all States and the obligation to protect the environment from any damaging materials as imposed upon all States at the same time, when such damaging materials are shipped from one State to another via seas or oceans. According to this study, which presented many evidence from international law and regional and even national practice, the obligation to protect the environment supersedes the right of free navigation, therefore restricting the right to ship or transport materials that could cause damage to the environment.

  9. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  10. Quality control in the application of flow cytometric assays of genetic damage due to environmental contaminants

    International Nuclear Information System (INIS)

    McCreedy, C.D.; Jagoe, C.H.; Brisbin, I.L. Jr.; Wentworth, R.W.; Dallas, C.E.

    1995-01-01

    Clinical technologies, such as flow cytometry, are increasingly adopted by environmental toxicologists to identify resource damage associated with exposure to xenobiotics. One application of flow cytometry allows the rapid determination of the DNA content of large numbers of individual cells, and can be used to detect aneuploidy or other genetic abnormalities. The laboratory has used this methodology in studies of genetic toxicology of fish, birds, arid mammals exposed to organic pollutants, metals and radionuclides, However, without appropriate quality controls, false positive results and other artifacts can arise from sample handling and preparations, inter and intra-individual variations, instrument noise and other sources. The authors describe the routine measures this laboratory employs to maintain quality control of genomic DNA analysis, including the control of staining conditions, machine standardization, pulse-width doublet discrimination, and, in particular, the use of internal controls and the use of time as a cytometric parameter. Neglect of these controls can produce erroneous results, leading to conclusions of genetic abnormalities when none are present. Conversely, attention to these controls, routinely used in clinical settings, facilitates the interpretation of flow cytometric data and allows the application of this sensitive indicator of genotoxic effects to a variety of environmental problems

  11. Study of radiation damage in solid materials by simulating physical processes

    International Nuclear Information System (INIS)

    Pinnera Hernandez, Ibrahin

    2006-12-01

    Nowadays the damage induced by different types of radiation in advanced materials is widely studied. Especially those materials involved in experiments and developing of new technologies, such as high critical temperature superconductors, semiconductors, metals. These materials are the basis constituents of radiation detectors, particle accelerators, etc. One way of studying this kind of damage is through the determination of the displacements per atom (dpa) induced by the radiation in these materials. This magnitude is one of the measures of the provoked radiation damage. On this direction, the present thesis deals with the study of two types of materials through mathematical simulation of physical processes taking place in the radiation transport. Ceramic superconductor Yba 2 Cu 3 O 7-x and metal Fe are the selected materials. The energy range of the incident gamma radiation goes from a few keV to 15 MeV. The MCNPX version 2.6b is used to determine the physical magnitudes required to calculate the distribution of displacements per atom within these materials, using an algorithm implemented for this purpose. Finally, a comparison between the obtained dpa profiles and the corresponding of energy deposition by radiation in these same materials and the possible linear dependence between both quantities is discussed. (Author)

  12. First wall material damage induced by fusion-fission neutron environment

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@nrcki.ru

    2016-11-01

    Highlights: • The highest damage and gas production rates are experienced within the first wall materials of a hybrid fusion-fission system. • About ∼2 times higher dpa and 4–5 higher He appm are expected compared to the values distinctive for a pure fusion system at the same DT-neutron wall loading. • The specific nuclear heating may be increased by a factor of ∼8–9 due to fusion and fission neutrons radiation capture in metal components of the first wall. - Abstract: Neutronic performance and inventory analyses were conducted to quantify the damage and gas production rates in candidate materials when used in a fusion-fission hybrid system first wall (FW). The structural materials considered are austenitic SS, Cu-alloy and V- alloys. Plasma facing materials included Be, and CFC composite and W. It is shown that the highest damage rates and gas particles production in materials are experienced within the FW region of a hybrid similar to a pure fusion system. They are greatly influenced by a combined neutron energy spectrum formed by the two-component fusion-fission neutron source in front of the FW and in a subcritical fission blanket behind. These characteristics are non-linear functions of the fission neutron source intensity. Atomic displacement damage production rate in the FW materials of a subcritical system (at the safe subcriticality limit of ∼0.95 and the neutron multiplication factor of ∼20) is almost ∼2 times higher compared to the values distinctive for a pure fusion system at the same 14 MeV neutron FW loading. Both hydrogen (H) and helium (He) gas production rates are practically on the same level except of about ∼4–5 times higher He-production in austenitic and reduced activation ferritic martensitic steels. A proper simulation of the damage environment in hybrid systems is required to evaluate the expected material performance and the structural component residence times.

  13. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  14. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  15. Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods

    Science.gov (United States)

    Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe

    2008-05-01

    Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.

  16. Analytical and numerical analysis of frictional damage in quasi brittle materials

    Science.gov (United States)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  17. Wear and damage of articular cartilage with friction against orthopedic implant materials.

    Science.gov (United States)

    Oungoulian, Sevan R; Durney, Krista M; Jones, Brian K; Ahmad, Christopher S; Hung, Clark T; Ateshian, Gerard A

    2015-07-16

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wear and Damage of Articular Cartilage with Friction Against Orthopaedic Implant Materials

    Science.gov (United States)

    Oungoulian, Sevan R.; Durney, Krista M.; Jones, Brian K.; Ahmad, Christopher S.; Hung, Clark T.; Ateshian, Gerard A.

    2015-01-01

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. PMID:25912663

  19. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  20. SANITY OF CORN GRAINS AS A FUNCTION OF GENETIC MATERIAL

    Directory of Open Access Journals (Sweden)

    L. F. Oliveira

    2018-02-01

    Full Text Available Diseases that occur in corn crops can cause great losses to farmers and consumers of its product and derivatives. So, was evaluated the sanity of maize grains in different genetic materials. The grains used were obtained from the crop of 2014/2015 on a farm in the city of Sorriso, State of Mato Grosso. For this, grain samples were collected from hybrids P3630H, 30F53YH, P2830H, and P3844H. The standard test ("Blotter Test" allowed noticing the incidence of Aspergillus sp., Fusarium sp. and Penicillium sp. Data were submitted to analysis of variance and Scott-Knott test at 5% probability. In treatments with the resistant genetic material the genus with the highest incidence was Penicillium sp. (82%, followed by Fusarium sp. (68.75% and Aspergillus sp. (15.25%. The hybrid with the lower incidence of Fusarium sp. was P2830H (59%. The hybrid with greater resistance to Aspergillus sp. and Penicillium sp. was P3844H (5 and 55%, respectively. The most susceptible hybrid to pathogens Aspergillus sp., Fusarium sp. and Penicillium sp. was 30F53YH (37, 79 and 94%, respectively. For the better sanitary quality of grains, based on the observed data, it is recommended to use the hybrid P2830H

  1. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    Science.gov (United States)

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  2. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  3. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  4. A Naive-Bayes classifier for damage detection in engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Addin, O. [Laboratory of Intelligent Systems, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.edu.my; Mahdi, E. [Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Othman, M. [Department of Communication Technology and Networks, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2007-07-01

    This paper is intended to introduce the Bayesian network in general and the Naive-Bayes classifier in particular as one of the most successful classification systems to simulate damage detection in engineering materials. A method for feature subset selection has also been introduced too. The method is based on mean and maximum values of the amplitudes of waves after dividing them into folds then grouping them by a clustering algorithm (e.g. k-means algorithm). The Naive-Bayes classifier and the feature sub-set selection method were analyzed and tested on two sets of data. The data sets were conducted based on artificial damages created in quasi isotopic laminated composites of the AS4/3501-6 graphite/epoxy system and ball bearing of the type 6204 with a steel cage. The Naive-Bayes classifier and the proposed feature subset selection algorithm have been shown as efficient techniques for damage detection in engineering materials.

  5. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    International Nuclear Information System (INIS)

    BAER, MELVIN R.; DRUMHELLER, D.S.; MATHESON, E.R.

    1999-01-01

    The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample

  6. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  7. Costs for insurance of civil responsibility for nuclear damage during transportation of nuclear materials

    International Nuclear Information System (INIS)

    Amelina, M.E.; Arsent'ev, S.V.; Molchanov, A.S.

    2009-01-01

    The article considers the method of calculation of rates for insurance of civil responsibility for nuclear damage during transportation of nuclear materials, which can minimize the insurer's costs for this type of insurance in situation when there is no statistics available and it is not possible to calculate the insurance rate by the traditional means using the probability theory

  8. Status of neutron dosimetry and damage analysis for the fusion materials program

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1979-01-01

    The status of neutron flux and spectral measurements is described for fusion material irradiations at reactor, T(d,n), Be(d,n), and spallation neutron sources. Such measurements are required for the characterization of an irradiation in terms of displacement damage, gas and transmutant production. Emphasis is placed on nuclear data deficiencies with specific recommendations for cross section measurements and calculations

  9. Fundamental principles of the cyclic behaviour and the fatigue damage for metallic materials

    International Nuclear Information System (INIS)

    Vogt, J.B.

    2001-01-01

    The aim of this paper is a pedagogic presentation of the basic concepts concerning the cyclic behaviour and the fatigue damage of metallic materials in order to offer a better understand of mechanisms. The following aspects are taking into account: the fatigue fracture, the cyclic accommodation, the dislocations structures, the surface and bulk cracks and the influence of the medium. (A.L.B.)

  10. Description of scattering material behaviour and damage in inelastic materials; Beschreibung von streuendem Materialverhalten und von Schaedigung bei inelastischen Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Pensky, H.M.H.

    2000-07-01

    For realistic numerical simulations of the stress-strain behaviour of structures, models are necessary which describe elastic-inelastic and scattering material behaviour. The developed models simulate elastic, viscoplastic and anisotropic damage material phenomena. An approach is proposed for covering stochastic material beahviour by correspondingly distributed parameters of the deterministic material model. Numerical simulations of biaxial material tests and structural tests demonstrate the range of applicability. (orig.) [German] Die realitaetsnahe numerische Simulation des Spannungs-Verformungsverhaltens von Bauteilen erfordert Modelle zur Beschreibung inelastischen und streuenden Materialverhaltens. Die hier entwickelten Modelle beschreiben elastische, viskoplastische und anisotrope Schaedigungsphaenomene des Materialverhaltens. Desweiteren wird ein Konzept vorgestellt, mit dem streuendes Materialverhalten mit streuenden Materialparametersaetzen deterministischer Stoffmodelle beschreibbar ist. Numerische Simulationen von Werkstoff- und Bauteilversuchen veranschaulichen den Anwendungsbereich der Modelle. (orig.)

  11. DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Li, Zhaoling; Liu, Zhihong; Chen, Ruijuan; Li, Xiaojun; Tai, Peidong; Gong, Zongqiang; Jia, Chunyun; Liu, Wan

    2015-09-01

    Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants. © 2015 SETAC.

  12. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M. [Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille (France); Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A. [Laser Research Center, Vilnius University, Saulétekio aléja 10, LT-10223 Vilnius (Lithuania)

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  13. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  14. Damage assessment of composite plate structures with material and measurement uncertainty

    Science.gov (United States)

    Chandrashekhar, M.; Ganguli, Ranjan

    2016-06-01

    Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problem in damage assessment. A recently developed C0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data.

  15. A systematic approach to the radiation damage problem in reactor materials

    International Nuclear Information System (INIS)

    Bullough, R.; Eyre, B.L.; Kulcinski, G.L.

    1976-09-01

    To assess the suitability of a material for use as a core component in a fast reactor or for the first wall in a fusion reactor, it is necessary to know the irradiation damage behaviour of the material outside the usual materials testing data domain. In the present paper a strategy is proposed based on a closely co-ordinated programme of experimental and theoretical research. The aim of this strategy is the systematic construction of a physically based model of the evolving damage structures. This would then allow both the necessary extrapolations of the data to the desired conditions to be achieved in a reliable fashion and provide a rational basis for the development of low swelling alloys for the two nuclear systems. (author)

  16. Evaluation of fatigue damage of pressure vessel materials by observation of microstructures

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1994-01-01

    As the important factor as the secular change mode of pressure vessel materials, there is fatigue damage. In USA, there is the move to use LWRs by extending their life, and it becomes necessary to show the soundness of the structures of machinery and equipment for long period. For exactly evaluating the soundness of the structures of machinery and equipment, it is important to clarify the degree of secular deterioration of the materials. In this report, by limiting to the fatigue damage of LWR pressure vessel steel, the method of grasping the change of microstructure and the method of estimating the degree of fatigue damage from the change of microstructure are shown. The change of microstructure arising in materials due to fatigue advances in the following steps, namely, the multiplication of dislocations, the tangling of dislocations, the formation of cell structure, the turning of cells, the formation of microcracks, the growth of cracks and fracture. In the case of pressure vessel steel, due to the quenching and tempering, the cell structure is formed from the beginning, and the advance of fatigue is recognized as the increase of the turning angle of cell structures. The detection of fatigue damage by microstructure is reported. (K.I.)

  17. Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark

    2002-07-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.

  18. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  19. Damage of first wall materials in fusion reactors under nonstationary thermal effects

    International Nuclear Information System (INIS)

    Maslaev, S.A.; Platonov, Yu.M.; Pimenov, V.N.

    1991-01-01

    The temperature distribution in the first wall of a fusion reactor was calculated for nonstationary thermal effects of the type of plasma destruction or the flow of 'running electrons' taking into account the melting of the surface layer of the material. The thickness of the resultant damaged layer in which thermal stresses were higher than the tensile strength of the material is estimated. The results were obtained for corrosion-resisting steel, aluminium and vanadium. Flowing down of the molten layer of the material of the first wall is calculated. (author)

  20. Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material

    Science.gov (United States)

    Lyapin, A. A.; Chebakov, M. I.; Dumitrescu, A.; Zecheru, G.

    2015-07-01

    The nonlinear static problem of FEM modeling of a damaged pipeline repaired by a composite material and subjected to internal pressure is considered. The calculation is carried out using plasticity theory for the pipeline material and considering the polymeric filler and the composite wrap. The level of stresses in various zones of the structure is analyzed. The most widespread alloy used for oil pipelines is selected as pipe material. The contribution of each component of the pipeline-filler-wrap system to the level of stresses is investigated. The effect of the number of composite wrap layers is estimated. The results obtained allow one to decrease the costs needed for producing test specimens.

  1. Acoustic Research on the Damage Mechanism of Carbon Fiber Composite Materials

    Science.gov (United States)

    Wang, Bing; Liu, Yanlei; Sheng, Shuiping

    This thesis involves the study about different processes including the tensile fracture, inter-layer tear or avulsion, as well as the interlaminar shear or split regarding carbon fiber composite materials with the aid of acoustic emission technique. Also, various acoustic emission signals that are released by composite samples in the process of fracture are analyzed. As is indicated by the test results, different acoustic emissive signals that are released by carbon fiber layers in various stages of damage and fracture bear different characteristics. Acoustic detection can effectively monitor the whole stage of elastic deformation, the damage development, and even the accumulation process while figuring out in an efficient manner about the internal activities of the composites, plus the diverse types of damages. In addition, its fabulous application value lies in its relevant structural evaluation as well as the evaluation of integrity with regard to carbon fiber composite.

  2. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  3. ANALYTICAL MODEL OF DAMAGED AIRCRAFT SKIN BONDED REPAIRS ASSUMING THE MATERIAL PROPERTIES DEGRADATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The search of optimal variants for composite repair patches allows to increase the service life of a damaged air- plane structure. To sensibly choose the way of repair, it is necessary to have a computational complex to predict the stress- strain condition of "structure-adhesive-patch" system and to take into account the damage growth considering the material properties change. The variant of the computational complex based on inclusion method is proposed.For calculation purposes the repair bonded joint is divided into two areas: a metal plate with patch-shaped hole and a "patch-adhesive layer-skin" composite plate (inclusion.Calculation stages:Evaluation of the patch influence to the skin stress-strain condition, stress distribution between skin and patch in the case of no damage. Calculation of the stress-strain condition is performed separately for the skin with hole and for the inclusion; solutions are coupled based on strain compatibility.Definition of the damage growth parameters at new stress-strain condition due to bonded patch existence. Skincrack stress intensity factors are found to identify the crack growth velocity. Patch is modelled as a set of "springs" bridging the crack.Degradation analysis of elasticity properties for the patch material.Repair effectiveness is evaluated with respect to crack growth velocity reduction in the initial material in compari- son with the case of the patch absence.Calculation example for the crack repair effectiveness depending on number of loading cycles for the 7075-T6 aluminum skin is given. Repair patches are carbon-epoxy, glass-epoxy and boron-epoxy material systems with quasi- isotropic layup and GLARE hybrid metal-polymeric material.The analysis shows the high effectiveness of the carbon-epoxy patch. Due to low stiffness, the glass-epoxy patchdemonstrates the least effectiveness. GLARE patch containing the fiberglass plies oriented across the crack has the same effectiveness as the carbon and

  4. Introduction of damage in an elasto-plastic model for unsaturated geo-materials

    International Nuclear Information System (INIS)

    Le Pense, S.; Pouya, A.; Gatmiri, B.

    2012-01-01

    Document available in extended abstract form only. During the excavation of nuclear waste repository galleries, the surrounding soil is suspected to undergo structural changes as well as modification of its stress state. The desaturation due to ventilation of galleries during this stage makes it necessary to consider the unsaturated state of the host geo-material. The decompression occurring after the excavation leads to a modification of the stress state. The purpose of our work is to develop a mechanical model to simulate the non-linear stress-strain behaviour of geo-materials which will have to contain radioactivity of nuclear waste for a very long time. Two irreversible phenomena can explain the non-linear behaviour of geo-materials. Plasticity leads to irrecoverable strains. Damage, linked to the appearance and extension of microcracks, results in a deterioration of elastic and hydraulic properties. We will present here the bases of a new model coupling damage and plasticity for the stress-strain behaviour of unsaturated geo-materials. This model should be thermodynamically consistent and use only a reasonable number of parameters. Based on the work of Houlsby, (Houlsby 1997), we choose to use as constitutive variables for unsaturated soils Bishop's stress and suction. This choice as the advantage to allow for continuity at the transition between saturated and unsaturated states. Damage is taken into account by defining a damaged constitutive stress, which is similar to the effective stress principle defined by Kachanov (Kachanov 1958). A simple damage criterion is proposed and an associative flow rule is assumed. We choose to follow the principle of strain equivalence defined by Lemaitre (Lemaitre 1996). This leads to the following elasticity law giving the damaged constitutive stress as a function of elastic strain. If non-linear elasticity is considered, a pressure-dependent bulk modulus and a constant shear modulus can be chosen in order to fit

  5. Calculations on displacement damage and its related parameters for heavy ion bombardment in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1975-04-01

    The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage. (auth.)

  6. Calculations on displacement damage and its related parameters for heavy ion bombardment in reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Sone, K; Shiraishi, K

    1975-04-01

    The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage.

  7. Potential Damage to Modern Building Materials from 21st Century Air Pollution

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2010-01-01

    Full Text Available The evolution of damage to building materials has been estimated for the 21st century, with a particular focus on aluminum, zinc, copper, plastic, paint, and rubber in urban areas. We set idealized air pollution and climates to represent London and Prague across the period 1950–2100. Environmental parameters were used to estimate future recession, corrosion, and loss of properties through published damage or dose-response functions. The 21st century seems to provide a less aggressive environment for stone and metals than recent times. Improvements in air quality are the most relevant drivers for this amelioration. Changes in climate predicted for the 21st century do not alter this picture. On the other hand, polymeric materials, plastic, paint, and rubber might show slightly increased rates of degradation, to some extent the result of enhanced oxidant concentrations, but also the possibility of contributions from more solar radiation.

  8. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project

  9. Group constant preparation for the estimate of neutron induced damage in structural materials

    International Nuclear Information System (INIS)

    Panini, G.C.

    1996-01-01

    Neutron heating (kerma), displacement per atom cross sections (DPA), gas and γ-ray production are important parameters for the estimate of the damage produced by neutron induced nuclear reactions in the structural materials. The NJOY System for Nuclear Data Processing has been extensively used in order to compute the above quantities; here the theory, the algorithms and the connected problems are described. (author). 6 refs, 3 tabs

  10. A Multidisciplinary Approach to Health Monitoring and Materials Damage Prognosis for Metallic Aerospace Systems

    Science.gov (United States)

    2013-03-01

    50 signals were used from Figure 24. Fatigue damage classification in an aluminum lug joint specimen using PZT sensor data without and with...modeling, the single fatigue crack is assumed to be non-breathing during the deformation of the beam. The surface-bonded piezoceramic ( PZT ) actuator...25. Beam with a single fatigue crack under PZT actuation and temperature variations. 20 beam through material expansionis negligible compared

  11. Frost induced damages within porous materials - from concrete technology to fuel cells technique

    Science.gov (United States)

    Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika

    2017-12-01

    Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.

  12. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    Science.gov (United States)

    2011-09-01

    builds on current understanding of fault modes in composites. This paper investigates faults in laminated ply composites. Such structures mainly...experiments where intermittent ground truth and in-situ characteristics are collected. Growth patterns are analyzed for damage types typical of laminated ...2: [0/902/45/-45/90], and Layup 3: [902/45/-45]2. Torayca T700G uni-directional carbon- prepreg material was used for 15.24 cm x 25.4 cm coupons with

  13. Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This research presents a novel method to asses a crack growing/damage event in composite material, in polymer, or in structural adhesive using Fibre Bragg Grating (FBG) sensors embedded in the host material, and its application in to a composite material structure: Wind Turbine Trailing Edge....... A Structure-Material-Sensor Finite Element Method (FEM) model was developed to simulate the Fibre Bragg Grating sensor output response, when embedded in a host material (Composite material, polymer or adhesive), during a crack growing/damage event. This Structure-Material-Sensor model provides a tool...

  14. Analysis of displacement damage in materials in nuclear fusion facilities (DEMO, IFMIF and TechnoFusion)

    International Nuclear Information System (INIS)

    Mota, F.; Vila, R.; Ortiz, C.; Garcia, A.; Casal, N.; Ibarra, A.; Rapisarda, D.; Queral, V.

    2011-01-01

    Present pathway to fusion reactors includes a rigorous material testing program. To reach this objective, irradiation facilities must produce the displacement damage per atom (dpa), primary knock-on atom (PKA) spectrum and gaseous elements by transmutation reactions (He, H) as closely as possible to the ones expected in the future fusion reactors (as DEMO).The irradiation parameters (PKA spectra and damage function) of some candidate materials for fusion reactors (Al 2 O 3 , SiC and Fe) have been studied and then, the suitability of some proposed experimental facilities, such as IFMIF and TechnoFusion, to perform relevant tests with these materials has been assessed.The following method has been applied: neutron fluxes present in different irradiation modules of IFMIF have been calculated by the neutron transport McDeLicious code. In parallel, the energy differential cross sections of PKA have been calculated by using the NJOY code. After that, the damage generated by the PKA spectra was analyzed using the MARLOWE code (binary collision approximation) and custom analysis codes. Finally, to analyze the ions effects in different irradiation conditions in the TechnoFusion irradiation area, the SRIM and Marlowe codes have been used. The results have been compared with the expected ones for a DEMO HCLL reactor.

  15. Analysis of displacement damage in materials in nuclear fusion facilities (DEMO, IFMIF and TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Mota, F., E-mail: fernando.mota@ciemat.es [Laboratorio Nacional de Fusion por Confinamiento Magnetico-CIEMAT, 28040 Madrid (Spain); Vila, R.; Ortiz, C.; Garcia, A.; Casal, N.; Ibarra, A.; Rapisarda, D.; Queral, V. [Laboratorio Nacional de Fusion por Confinamiento Magnetico-CIEMAT, 28040 Madrid (Spain)

    2011-10-15

    Present pathway to fusion reactors includes a rigorous material testing program. To reach this objective, irradiation facilities must produce the displacement damage per atom (dpa), primary knock-on atom (PKA) spectrum and gaseous elements by transmutation reactions (He, H) as closely as possible to the ones expected in the future fusion reactors (as DEMO).The irradiation parameters (PKA spectra and damage function) of some candidate materials for fusion reactors (Al{sub 2}O{sub 3}, SiC and Fe) have been studied and then, the suitability of some proposed experimental facilities, such as IFMIF and TechnoFusion, to perform relevant tests with these materials has been assessed.The following method has been applied: neutron fluxes present in different irradiation modules of IFMIF have been calculated by the neutron transport McDeLicious code. In parallel, the energy differential cross sections of PKA have been calculated by using the NJOY code. After that, the damage generated by the PKA spectra was analyzed using the MARLOWE code (binary collision approximation) and custom analysis codes. Finally, to analyze the ions effects in different irradiation conditions in the TechnoFusion irradiation area, the SRIM and Marlowe codes have been used. The results have been compared with the expected ones for a DEMO HCLL reactor.

  16. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    Science.gov (United States)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  17. Radiation damage and redeposited-layer formation on plasma facing materials in the TRIAM-1M

    International Nuclear Information System (INIS)

    Hirai, Takeshi; Tokunaga, Kazutoshi; Fujiwara, Tadashi; Yoshida, Naoaki; Itoh, Satoshi

    1997-01-01

    As an aim to obtain some informations of material damage at long time discharge and redeposited-layer formed by scrape off layer (SOL), two collector probe experiments were conducted by using Tokamak of Research Institute for Applied Mechanics (TRIAM-IM). As a result, radiation damage due to charge exchange neutral particles of more than 2 MeV high energy component flying from plasma was observed. And in either experiment, redeposited-layer formation due to deposite of impurity atoms in the plasma could be observed. In the first experiment, a redeposited-layer with fine crystalline particles was observed, which was formed to contain multi-component system of Fe, Cr and Ni and light elements O and C. And, in the second experiment, a redeposited-layer grain-grown in which main component was Mo was observed. Surface modification of plasma facing material such as above-mentioned damage induction, redeposited-layer formation, and so on, was thought to much affect deterioration of materials and recycling of hydrogen. (G.K.)

  18. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    Science.gov (United States)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  19. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  20. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  1. Crack phantoms: localized damage correlations and failure in network models of disordered materials

    International Nuclear Information System (INIS)

    Zaiser, M; Moretti, P; Lennartz-Sassinek, S

    2015-01-01

    We study the initiation of failure in network models of disordered materials such as random fuse and spring models, which serve as idealized representations of fracture processes in quasi-two-dimensional, disordered material systems. We consider two different geometries, namely rupture of thin sheets and delamination of thin films, and demonstrate that irrespective of geometry and implementation of the disorder (random failure thresholds versus dilution disorder) failure initiation is associated with the emergence of typical localized correlation structures in the damage patterns. These structures (‘crack phantoms’) exhibit well-defined characteristic lengths, which relate to the failure stress by scaling relations that are typical for critical crack nuclei in disorder-free materials. We discuss our findings in view of the fundamental nature of failure processes in materials with random microstructural heterogeneity. (paper)

  2. Factors affecting the exchange of genetic material between Nordic and US Holstein populatons

    DEFF Research Database (Denmark)

    Buch, L H; Sørensen, A C; Lassen, J

    2009-01-01

    in the simulation study, especially the genetic correlations between traits. A more similar relative weighting of the index traits across populations did not change total genetic gain in the Nordic Holstein population. The possibility of exchanging genetic material with the US Holstein population led...

  3. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  4. Spatially distributed damage detection in CMC thermal protection materials using thin-film piezoelectric sensors

    Science.gov (United States)

    Kuhr, Samuel J.; Blackshire, James L.; Na, Jeong K.

    2009-03-01

    Thermal protection systems (TPS) of aerospace vehicles are subjected to impacts during in-flight use and vehicle refurbishment. The damage resulting from such impacts can produce localized regions that are unable to resist extreme temperatures. Therefore it is essential to have a reliable method to detect, locate, and quantify the damage occurring from such impacts. The objective of this research is to demonstrate a capability that could lead to detecting, locating and quantifying impact events for ceramic matrix composite (CMC) wrapped tile TPS via sensors embedded in the TPS material. Previous research had shown a correlation between impact energies, material damage state, and polyvinylidene fluoride (PVDF) sensor response for impact energies between 0.07 - 1.00 Joules, where impact events were located directly over the sensor positions1. In this effort, the effectiveness of a sensor array is evaluated for detecting and locating low energy impacts on a CMC wrapped TPS. The sensor array, which is adhered to the internal surface of the TPS tile, is used to detect low energy impact events that occur at different locations. The analysis includes an evaluation of signal amplitude levels, time-of-flight measurements, and signal frequency content. Multiple impacts are performed at each location to study the repeatability of each measurement.

  5. A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials

    Science.gov (United States)

    Nettles, A. T

    2000-01-01

    As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.

  6. Characterization of damaging in apatitic materials irradiated with heavy ions and thermally annealed

    International Nuclear Information System (INIS)

    Tisserand, R.

    2004-12-01

    Some minerals belonging to the family of apatite are seen to be potential candidates for use as conditioning matrices or transmutation targets for high level nuclear waste management. Indeed, studies of natural nuclear reactors (Oklo) highlighted the strong ability of these minerals to anneal irradiation damage. In order to determine the global behaviour of these materials, we performed a fundamental study on the evolution of irradiation damage induced by various heavy ions in two apatites: a natural phospho-calcic fluor-apatite from Durango and a synthetic sintered mono-silicated fluor-apatite, called britholite. The damage in these materials was measured by using channelling R.B.S. and X-ray diffraction respectively and by determining an amorphization effective radius Re. The results revealed a similar behaviour for both apatites according to the electronic energy deposit at the entrance of the material. In addition, the effect of an isothermal annealing at 300 C was quantified on a mono-silicated britholite previously irradiated with Kr ions. We highlighted in this case the return of the lattice parameters to their initial values, followed by a partial and slow rebuilding of the crystalline lattice versus the annealing time. Finally, we followed the changes in the morphology of etch pits in the Durango fluor-apatite after acid dissolution as a function of the energy deposit by the ions. We showed that the influence of crystallography leads quickly to opening angles close to 30 degrees. The calculation of etching velocities within the irradiated material highlighted that there is a range of deposit energy where the velocity ratio increases strongly before becoming constant. (author)

  7. Three dimensional imaging of damage in structural materials using high resolution micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, J.-Y. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: jean-yves.buffiere@insa-lyon.fr; Proudhon, H. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Ferrie, E. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Ludwig, W. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Maire, E. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Cloetens, P. [ESRF Grenoble (France)

    2005-08-15

    This paper presents recent results showing the ability of high resolution synchrotron X-ray micro-tomography to image damage initiation and development during mechanical loading of structural metallic materials. First, the initiation, growth and coalescence of porosities in the bulk of two metal matrix composites have been imaged at different stages of a tensile test. Quantitative data on damage development has been obtained and related to the nature of the composite matrix. Second, three dimensional images of fatigue crack have been obtained in situ for two different Al alloys submitted to fretting and/or uniaxial in situ fatigue. The analysis of those images shows the strong interaction of the cracks with the local microstructure and provides unique experimental data for modelling the behaviour of such short cracks.

  8. Three dimensional imaging of damage in structural materials using high resolution micro-tomography

    International Nuclear Information System (INIS)

    Buffiere, J.-Y.; Proudhon, H.; Ferrie, E.; Ludwig, W.; Maire, E.; Cloetens, P.

    2005-01-01

    This paper presents recent results showing the ability of high resolution synchrotron X-ray micro-tomography to image damage initiation and development during mechanical loading of structural metallic materials. First, the initiation, growth and coalescence of porosities in the bulk of two metal matrix composites have been imaged at different stages of a tensile test. Quantitative data on damage development has been obtained and related to the nature of the composite matrix. Second, three dimensional images of fatigue crack have been obtained in situ for two different Al alloys submitted to fretting and/or uniaxial in situ fatigue. The analysis of those images shows the strong interaction of the cracks with the local microstructure and provides unique experimental data for modelling the behaviour of such short cracks

  9. Damage Characterization and Real-Time Health Monitoring of Aerospace Materials Using Innovative NDE Tools

    Science.gov (United States)

    Matikas, Theodore E.

    2010-07-01

    The objective of this work is to characterize the damage and monitor in real-time aging structural components used in aerospace applications by means of advanced nondestructive evaluation techniques. Two novel experimental methodologies are used in this study, based on ultrasonic microscopy and nonlinear acoustics. It is demonstrated in this work that ultrasonic microscopy can be successfully utilized for local elastic property measurement, crack-size determination as well as for interfacial damage evaluation in high-temperature materials, such as metal matrix composites. Nonlinear acoustics enables real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonharmonic solid, the fundamental wave distorts as it propagates, and therefore the second and higher harmonics of the fundamental frequency are generated. Measurements of the amplitude of these harmonics provide information on the coefficient of second- and higher-order terms of the stress-strain relation for a nonlinear solid. It is shown in this article that the material bulk nonlinear parameter for metallic alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters, such as velocity and attenuation.

  10. Contributions of each isotope in structural material on radiation damage in a hybrid reactor

    International Nuclear Information System (INIS)

    Günay, Mehtap

    2016-01-01

    In this study, the fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. In this study, salt-heavy metal mixtures consisting of 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UO_2, 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% NpO_2, and 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UCO were used as fluids. In this study, the effect on the radiation damage of spent fuel-grade (SFG)-PuO_2, UO_2, NpO_2 and UCO contents was investigated in the structural material of a designed fusion–fission hybrid reactor system. In the designed hybrid reactor system were investigated the effect on the radiation damage of the selected fluid according to each isotopes of structural material in the structural material for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library

  11. Acoustic emission: A useful tool for damage evaluation in composite materials

    Science.gov (United States)

    Mouzakis, Dionysios E.; Dimogianopoulos, Dimitrios G.

    2018-02-01

    High performance composites for aviation-related structures are prone to constant aging by environmental agents. Previous data from our work reported on the stiffening behaviour of glass fibre polyester composites used in the manufacturing of wind turbine blades. Airplanes from such composites are already on service nowadays. This justifies the detailed study of the exposure of high performance materials to environmental conditions such as varying temperature, humidity, ultraviolet radiation, in order to assess the impact of these important aging factors on their mechanical behaviour. The dramatic changes in the dynamic mechanical response of polymer matrix carbon fibre composites upon exposure to acceleration aging has been assessed in the present study. In order to assess the synergistic effect action of temperature and humidity on composites subjected to changes of temperature from -35 to +40 °C and humidity variations from behaviour of the aged materials. All tests were run both for aged and pristine materials for comparison purposes. Three point bending testing was performed in both static as well as in Dynamic mechanical analysis, for a range of temperatures and frequencies. Acoustic Emission damage detection was also performed during the three point bending test both in static and dynamic mode. The aged materials had gained in dynamic stiffness. In addition, that, the gain in the storage moduli, was accompanied by a decrease in the material damping ability, as determined by the tanδ parameter. In the final stages of the study, impact testing was performed on both pristine and aged specimens. The experimentally recorded force/time signals were utilized for concluding on the specimens' condition, by means of signal based damage detection methodologies. Effort was invested in utilizing signal analysis in order to get comparative aging-related information on the tested specimens in order to ultimately validate results of mechanical testing.

  12. Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability.

    Science.gov (United States)

    Wang, Liming; Urata, Chihiro; Sato, Tomoya; England, Matt W; Hozumi, Atsushi

    2017-09-26

    Superhydrophobic coatings/materials are important for a wide variety of applications, but the majority of these man-made coatings/materials still suffer from poor durability because of their lack of self-healing ability. Here, we report novel superhydrophobic materials which can quickly self-heal from various severe types of damage. In this study, we used poly(dimethylsiloxane) (PDMS) infused with two liquids: trichloropropylsilane, which reacts with ambient moisture to self-assemble into grass-like microfibers (named silicone micro/nanograss) on the surfaces and low-viscosity silicone oil (SO), which remains within the PDMS matrices and acts as a self-healing agent. Because of the silicone micro/nanograss structures on the PDMS surfaces and the effective preserve/protection system of a large quantity of SO within the PDMS matrices, our superhydrophobic materials showed quick superhydrophobic recovery under ambient conditions (within 1-2 h) even after exposure to plasma (24 h), boiling water, chemicals, and outside environments. Such an ability is superior to the best self-healing superhydrophobic coatings/materials reported so far.

  13. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    International Nuclear Information System (INIS)

    Bibik, V; Galeeva, A

    2015-01-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows. (paper)

  14. Evaluation of surface fractal dimension of carbon for plasma-facing material damaged by hydrogen plasma

    International Nuclear Information System (INIS)

    Nishino, Nobuhiro

    1997-01-01

    The surface structure of the plasma facing materials (PFM) changes due to plasma-surface interaction in a nuclear fusion reactor. Usually B 4 C coated graphite block are used as PFM. In this report, the surface fractal was applied to study the surface structure of plasma-damaged PFM carbon. A convenient flow-type adsorption apparatus was developed to evaluate the surface fractal dimension of materials. Four branched alkanol molecules with different apparent areas were used as the probe adsorbates. The samples used here were B 4 C coated isotopic graphite which were subjected to hydrogen plasma for various periods of exposure. The monolayer capacities of these samples for alkanols were determined by applying BET theory. The surface fractal dimension was calculated using the monolayer capacities and molecular areas for probe molecules and was found to increase from 2 to 3 with the plasma exposure time. (author)

  15. Advanced materials for control of post-earthquake damage in bridges

    International Nuclear Information System (INIS)

    Shrestha, Kshitij C; Saiidi, M Saiid; Cruz, Carlos A

    2015-01-01

    This paper presents analytical modeling to study the seismic response of bridge systems with conventional and advanced details. For validation, a 33 m quarter-scale model of a four-span bridge incorporating innovative materials and details seismically tested on the shake tables at the University of Nevada, Reno was taken. The bridge specimen involved use of advanced materials and details to reduce damage at plastic hinges and minimize residual displacements. A three-dimensional, nonlinear model incorporating the response of the innovative materials was developed to study the bridge response using the finite-element software OpenSees. Existing finite-element formulations were used to capture the response of the advanced materials used in the bridge. The analytical model was found to be able to reproduce comparable bent displacements and bent shear forces within reasonable accuracy. The validated model was further used to study different types of bridges under suite of scaled bi-directional near-fault ground motions. Comparisons were made on behavior of five different bridge types, first conventional reinforced concrete bridge, second post-tensioned column bridge, third bridge with elastomeric rubber elements at the plastic hinge zone, fourth bridge with nickel–titanium superelastic shape memory alloy (SMA) reinforcing bar and fifth bridge with CuAlMn superelastic SMA reinforcing bar. Both the SMA used bridges also utilized engineered cementitious composite element at the plastic hinge zone. The results showed effectiveness of the innovative interventions on the bridges in providing excellent recentering capabilities with minimal damage to the columns. (paper)

  16. Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks.

    Science.gov (United States)

    Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R

    2011-12-01

    This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.

  17. Estimation of irradiation-induced material damage measure of FCM fuel in LWR core

    International Nuclear Information System (INIS)

    Lee, Kyung-Hoon; Lee, Chungchan; Park, Sang-Yoon; Cho, Jin-Young; Chang, Jonghwa; Lee, Won Jae

    2014-01-01

    An irradiation-induced material damage measure on tri-isotropic (TRISO) multi-coating layers of fully ceramic micro-encapsulated (FCM) fuel to replace conventional uranium dioxide (UO 2 ) fuel for existing light water reactors (LWRs) has been estimated using a displacement per atom (DPA) cross section for a FCM fuel performance analysis. The DPA cross sections in 47 and 190 energy groups for both silicon carbide (SiC) and graphite are generated based on the molecular dynamics simulation by SRIM/TRIM. For the selected FCM fuel assembly design with FeCrAl cladding, a core depletion analysis was carried out using the DeCART2D/MASTER code system with the prepared DPA cross sections to evaluate the irradiation effect in the Korean OPR-1000. The DPA of the SiC and IPyC coating layers is estimated by comparing the discharge burnup obtained from the MASTER calculation with the burnup-dependent DPA for each coating layer calculated using DeCART2D. The results show that low uranium loading and hardened neutron spectrum compared to that of high temperature gas-cooled reactor (HTGR) result in high discharge burnup and high fast neutron fluence. In conclusion, it can be seen that the irradiation-induced material damage measure is noticeably increased under LWR operating conditions compared to HTGRs. (author)

  18. Thermal coupling and damage mechanisms of laser radiation on selected materials

    International Nuclear Information System (INIS)

    Schwirzke, F.; Jenkins, W.F.; Schmidt, W.R.

    1983-01-01

    High power laser beams interact with targets by a variety of thermal, impulse, and electrical effects. Energy coupling is considerably enhanced once surface electrical breakdown occurs. The laser heated plasma then causes surface damage via thermal evaporation, ion sputtering, and unipolar arcing. While the first two are purely thermal and mechanical effects, the last one, unipolar arcing, is an electrical plasma-surface interaction process which leads to crater formation, usually called laser-pitting, a process which was often observed but not well understood. Unipolar arcing occurs when a plasma of sufficiently high electron temperature interacts with a surface. Without an external voltage applied, many electrical micro-arcs burn between the surface and the plasma, driven by local variations of the sheath potential with the surface acting as both the cathode and anode. Laser induced unipolar arcing represents the most damaging and non-uniform plasma-surface interaction process since the energy available in the plasma concentrates towards the cathode spots. This causes cratering of the materials surface. The ejection of material in the form of small jets from the craters leads to ripples in the critical plasma density contour. This in turn contributes to the onset of plasma instabilities, small scale magnetic field generation and laser beam filamentation. The ejection of a plasma jet from the unipolar arc crater also causes highly localized shock waves to propagate into the target, softening it in the process. Thus, local surface erosion by unipolar arcing is much more severe than for uniform energy deposition

  19. A coupled interface-body nonlocal damage model for the analysis of FRP strengthening detachment from cohesive material

    Directory of Open Access Journals (Sweden)

    J. Toti

    2011-10-01

    Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.

  20. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  1. Recent developments in neutron dosimetry and radiation damage calculations for fusion-materials studies

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1983-01-01

    This paper is intended as an overview of activities designed to characterize neutron irradiation facilities in terms of neutron flux and energy spectrum and to use these data to calculate atomic displacements, gas production, and transmutation during fusion materials irradiations. A new computerized data file, called DOSFILE, has recently been developed to record dosimetry and damage data from a wide variety of materials test facilities. At present data are included from 20 different irradiations at fast and mixed-spectrum reactors, T(d,n) 14 MeV neutron sources, Be(d,n) broad-spectrum sources, and spallation neutron sources. Each file entry includes activation data, adjusted neutron flux and spectral data, and calculated atomic displacements and gas production. Such data will be used by materials experimenters to determine the exposure of their samples during specific irradiations. This data base will play an important role in correlating property changes between different facilities and, eventually, in predicting materials performance in fusion reactors. All known uncertainties and covariances are listed for each data record and explicit references are given to nuclear decay data and cross sections

  2. Laser damage study of material of the first wall of target chamber of the future laser Megajoule

    International Nuclear Information System (INIS)

    Dubern, Christelle

    1999-01-01

    Study on damage of carbon-like, boron carbide, and stainless steel materials by ultraviolet laser light, has been carried out at CEA/CESTA in France. This work was performed to help designing and dimensioning the target chamber of the future Laser MegaJoule (LMJ) facility to be used for Inertial Confinement Fusion research. The study revealed that depending the laser fluence, the considered materials were ablated in different manners. lt was demonstrated that at low fluence, damage of carbon-like and boron carbide occurs through a thermal-mechanical mechanism resulting in sputtering of material. At higher fluence, damage was driven by a thermal mechanism, dissipating heat inside material until phase change developed. For stainless steel material, failures were the result of heat absorption associated to physical changes only. To explain and validate the proposed mechanisms, theoretical and experimental works were performed and satisfactory results came out. (author) [fr

  3. Effect of ultraviolet curing wavelength on low-k dielectric material properties and plasma damage resistance

    Energy Technology Data Exchange (ETDEWEB)

    Marsik, Premysl, E-mail: marsik@physics.muni.c [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Urbanowicz, Adam M. [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Verdonck, Patrick [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); De Roest, David; Sprey, Hessel [ASM Belgium, Kapeldreef 75, 3001 Leuven (Belgium); Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2011-03-31

    A set of SiCOH low dielectric constant films (low-k) has been deposited by plasma enhanced chemical vapor deposition using variable flow rates of the porogen (sacrificial phase) and matrix precursors. During the deposition, two different substrate temperatures and radio frequency power settings were applied. Next, the deposited films were cured by the UV assisted annealing (UV-cure) using two industrial UV light sources: a monochromatic UV source with intensity maximum at {lambda} = 172 nm (lamp A) and a broadband UV source with intensity spectrum distributed below 200 nm (lamp B). This set of various low-k films has been additionally exposed to NH{sub 3} plasma (used for the CuO{sub x} reduction during Cu/low-k integration) in order to evaluate the effect of the film preparation conditions on the plasma damage resistance of low-k material. Results show that the choice of the UV-curing light source has significant impact on the chemical composition of the low-k material and modifies the porogen removal efficiency and subsequently the material porosity. The 172 nm photons from lamp A induce greater changes to most of the evaluated properties, particularly causing undesired removal of Si-CH{sub 3} groups and their replacement with Si-H. The softer broadband radiation from lamp B improves the porogen removal efficiency, leaving less porogen residues detected by spectroscopic ellipsometry in UV range. Furthermore, it was found that the degree of bulk hydrophilization (plasma damage) after NH{sub 3} plasma exposure is driven mainly by the film porosity.

  4. Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1986-01-01

    This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, the authors assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen

  5. A methodology for the economic assessment of material damage caused by SO2 and NOx emissions in Europe

    International Nuclear Information System (INIS)

    Mayerhofer, P.; Weltschev, M.; Trukenmueller, A.; Friedrich, R.

    1995-01-01

    Damage to materials causes high economic losses in Europe. A large part of this damage can be attributed to the emissions caused by the energy and the transport sector. In the paper, the procedure for the economic assessment of material damages caused by SO 2 and NO x emissions in Europe is described. Model and data requirements are outlined, and gaps and uncertainties of the quantification are discussed. Two types of results are presented. First, the marginal (additional) costs of damage to material caused by an additional power plant are assessed. The analysis covers plants with different technologies. Results for the fossil power plants are in the range of 0.0062 to 0.12 mECU/kWh. In addition, the total economic material damage due to the present air pollution was assessed. It is in the range of 2.9 to 5.3 x 10 9 ECU/year. However, the analysis has many uncertainties. Most noteworthy are the material inventories and partially the damage functions and input data. 15 refs., 1 fig., 1 tab

  6. Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 Reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-06-01

    This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen

  7. Activity of the protector chlorophyllin or promoter of the genetic damage induced by the 1,2 dimethyl hydrazine

    International Nuclear Information System (INIS)

    Guerrero M, M.G.

    2004-01-01

    The chlorophyllin (CHLN) it is a porphyrin of soluble nutritious grade in water, derived of the chlorophyll that includes in their structure a copper atom. It has been reported that this pigment can act as anti mutagen, reducing the damage to the DNA caused by physical or chemical agents of direct or indirect action. Their anti carcinogen action has also been studied during the initiation phase induced for carcinogen as the aflatoxins and heterocyclic amines. In contrast the reports have increased on a probable promoter activity of the CHLN on the induced genetic damage. This effect was seen for the first time before the damage induced by alkylating agents in Salmonella. Recently it has been observed with the damage induced by gamma radiation, ENU and CrO 3 in somatic cells of the wing of Drosophila and in the induction of tumors for 1,2-dimethylhydrazine (DMH) in mice. Presently study is evaluated the protective effect or promoter of the CHLN before the genetic damage induced by 1,2-dimethylhydrazine, by means of the bioassay mutation and somatic recombination (SMART) in the wing of Drosophila melanogaster. Its were pretreated with CHLN or SAC to transheterocygotes larvas for two locus of the chromosome three mwh+/+flr 3 ; later on they are retarded the chronic treatment with DMH 0, 1, 2 and 3 days. It was measured the toxicity and the speed of development of the treated individuals. The wings of those adults that emerged were analyzed to register the number and the size of stains. The results indicated: differences in the viability of the individuals of the groups SAC + DMH vs CHLN + DMH only in the treated immediately after the pretreatment (DRT-0) that the CHLN doesn't modify the rate of the treated individuals development. The results of somatic mutation indicated that the CHLN has a protective effect only immediately after the pretreatment (DRT-0) however in DRT-1, 2 and 3 showed a promoter effect of genetic damage. (Author)

  8. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei

    2016-05-17

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  9. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan

    2016-01-01

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  10. Assessment of Extent and Degree of Thermal Damage to Polymeric Materials in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N. J.

    1984-02-01

    Thermal damage to susceptible materials in accessible regions of the TMI-2 reactor building shows damage-distribution patterns that indicate non-uniform intensity of exposure. No clear explanation for non-uniformity is found in existing evidence; e.g., in some regions a lack of thermally susceptible materials frustrates analysis. Elsewhere, burned materials are present next to materials that seem similar but appear unscathed-leading to conjecture that the latter materials preferentially absorb water vapor during periods of high local steam concentration. Most of the polar crane pendant shows heavy burns on one half of its circumferential surface. This evidence suggests that the polar crane pendant side that experienced heaviest burn damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Tests and simple heat-transfer calculations based on pressure and temperature records from the accident show that the atmosphere inside the reactor building was probably 8% hydrogen in air, a value not inconsistent with the extent of burn damage. Burn-pattern geography indicates uniform thermal exposure in the dome volume to the 406-ft level (about 6 ft below the polar crane girder), partial thermal exposure in the volume between the 406- and 347-ft levels as indicated by the polar crane cable, and lack of damage to most thermally susceptible materials in the west quadrant of the reactor building; some evidence of thermal exposure Is seen in the free volume between the 305- and 347-ft levels. (author)

  11. Analysis and evaluation of atom level composition variation and property change due to materials irradiation damage

    International Nuclear Information System (INIS)

    Furuya, Kazuo; Takeguchi, Masaki; Mitsuishi, Kazuki; Song Menhi; Saito, Tetsuya

    2000-01-01

    This study aims at general elucidation of atom level composition variation due to radiation damage and property change accompanied with this under intending to stressing application of the in-situ analysis and evaluation apparatus on material radiation damage. Then, by using the electron energy loss spectroscopy (EELS) capable of showing a power in composition analysis at microscopic region, measurement of EELS on crystal structure change after heat treatment of Xe precipitation was carried out under parallel of its high resolution observation. As a result, a precipitation with less than 30 nm in diameter was observed on a specimen inserted at 473 K. Xe precipitates in crystalline state began to change at 623 K, to be perfectly gassy state at 773 K. In an energy filter image (EFI) using low loss of Xe, distribution of crystalline and non-crystalline Xe was observed. In EELS, peaks at 14.6 and 15.3 eV were observed in 300 and 773 K, respectively, which were thought to be plasmon. And, difference of peak position at the core loss was thought to reflex difference of Xe state at 300 and 773 K. (G.K.)

  12. Surface damage of TFTR protective plate candidate materials by energetic D+ irradiation

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1979-01-01

    Experiments were conducted to determine the surface damage of ATJ graphite, V, Cu, and Type 316 stainless steel under 60-keV D + irradiation. The irradiations were conducted in the pulsed mode. For a total accumulated dose of 8.1 x 10 18 ions/cm 2 , blisters were readily seen for Cu surfaces, but no blisters were observed on Type 316 stainless steel and vanadium surfaces. For the case of ATJ graphite, the surface damage was observed in the form of ridges and grooves. In the case of copper, many large blisters with diameters ranging from 3.5 μm to 46 μm are observed in addition to some small ones (average diameter approx. 2 μm. The blister density of the large blisters is the highest in the case of copper (1.1 x 10 5 blisters/cm 2 ). These observations of blister formation are related to the differences in the premeability of deuterium in these materials. An examination of the cross section of the ridges in fractured samples of graphite indicates that they are not hollow. The mechanisms of formation of these ridges is not clear at present. 1 figure

  13. Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials

    Science.gov (United States)

    Sengezer, Engin C.; Seidel, Gary D.

    2016-04-01

    The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.

  14. Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Fridh, Katja; Johannesson, Björn

    2015-01-01

    Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting measureme...

  15. Compilation of radiation damage test data. Pt. 2. Thermoset and thermoplastic resins, composite materials

    International Nuclear Information System (INIS)

    Tavlet, M.; Fontaine, A.; Schoenbacher, H.

    1998-01-01

    This catalogue summarizes radiation damage test data on thermoplastic and thermoset resins and composites. Most of them are epoxy resins used as insulator for magnet coils. Many results are also given for new engineering thermoplastics which can be used either for their electrical properties or for their mechanical properties. The materials have been irradiated either in a 60 Co source, up to integrated absorbed doses between 200 kGy and a few megagrays, at dose rates of the order of 1 Gy/s, or in a nuclear reactor at dose rates of the order of 50 Gy/s, up to doses of 100 MGy. The flexural strength, the deformation and the modulus of elasticity have been measured on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commissions. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  16. Compilation of radiation damage test data. Pt. 2. Thermoset and thermoplastic resins, composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Tavlet, M; Fontaine, A; Schoenbacher, H

    1998-05-18

    This catalogue summarizes radiation damage test data on thermoplastic and thermoset resins and composites. Most of them are epoxy resins used as insulator for magnet coils. Many results are also given for new engineering thermoplastics which can be used either for their electrical properties or for their mechanical properties. The materials have been irradiated either in a {sup 60}Co source, up to integrated absorbed doses between 200 kGy and a few megagrays, at dose rates of the order of 1 Gy/s, or in a nuclear reactor at dose rates of the order of 50 Gy/s, up to doses of 100 MGy. The flexural strength, the deformation and the modulus of elasticity have been measured on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commissions. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  17. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  18. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    Science.gov (United States)

    Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.

    2017-10-01

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.

  19. Modification of radiation induced genetic damage and impaired DNA synthesis by thiourea treatment in Solanum incanum L

    International Nuclear Information System (INIS)

    Kumar, Girish

    1991-01-01

    Modification of induced genetic damage after exposure to LD 50 and LD 90 doses of 60 Co gamma-irradiation on dormant seeds of Solanum incanum L. by pre- and post-treatments of thiourea was investigated. Thiourea pre-treatment reduced cellular lesions, growth injury and the death of seedlings, while post-treatment increased lethality. Incorporation of 3 H-tymidine into DNA fraction gradually increased with 10 -4 to 10 -2 M thiourea treatment when applied before irradiation. Post-treatment of the thiourea, on the other hand, not only showed poor labelling of DNA but also delayed its synthesis. (author)

  20. Primary Radiation Damage in Materials. Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in Cascade Defect Production Efficiency and Mixing Effects

    International Nuclear Information System (INIS)

    Nordlund, Kai; Sand, Andrea E.; Granberg, Fredric; Zinkle, Steven J.; Stoller, Roger; Averback, Robert S.; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J.; Willaime, Francois; Dudarev, Sergei; Simeone, David

    2015-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Multi-scale Modelling of Fuels and Structural Materials for Nuclear Systems (WPMM) was established in 2008 to assess the scientific and engineering aspects of fuels and structural materials, aiming at evaluating multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation, and related topics. It also provides member countries with up-to-date information, shared data, models and expertise. The WPMM Expert Group on Primary Radiation Damage (PRD) was established in 2009 to determine the limitations of the NRT-dpa standard, in the light of both atomistic simulations and known experimental discrepancies, to revisit the NRT-dpa standard and to examine the possibility of proposing a new improved standard of primary damage characteristics. This report reviews the current understanding of primary radiation damage from neutrons, ions and electrons (excluding photons, atomic clusters and more exotic particles), with emphasis on the range of validity of the 'displacement per atom' (dpa) concept in all major classes of materials with the exception of organics. The report also introduces an 'athermal recombination-corrected dpa' (arc-dpa) relation that uses a relatively simple functional to address the well-known issue that 'displacement per atom' (dpa) overestimates damage production in metals under energetic displacement cascade conditions, as well as a 'replacements-per-atom' (rpa) equation, also using a relatively simple functional, that accounts for the fact that dpa is understood to severely underestimate actual atom relocation (ion beam mixing) in metals. (authors)

  1. Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials

    International Nuclear Information System (INIS)

    Palaniappan, J; Wang, H; Ogin, S L; Thorne, A; Reed, G T; Tjin, S C

    2005-01-01

    A comparison is made between conventional (i.e. uniform) and chirped optical fibre Bragg gratings (FBGs) for the detection of matrix cracking damage in composite materials. Matrix cracking damage is generally the first type of visible damage to develop under load in the off-axis plies of laminated composites and is generally the precursor of more serious damage mechanisms, particularly delamination. The detection of this type of damage is thus important, particularly in aerospace applications. Using a uniform FBG, characteristic changes develop in the reflected spectrum which can be used to identify crack development in the composite. The additional advantage of using a chirped grating is that the crack position can also be located

  2. Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures

    CERN Document Server

    Garion, Cedric

    2003-01-01

    Ductile materials (like stainless steel or copper) show at cryogenic temperatures three principal phenomena: serrated yielding (discontinuous in terms of dsigma/depsilon), plastic strain-induced phase transformations and evolution of ductile damage. The present paper deals exclusively with the two latter cases. Thus, it is assumed that the plastic flow is perfectly smooth. Both in the case of damage evolution and for the gamma-alpha prime phase transformation, the principal mechanism is related to the formation of plastic strain fields. In the constitutive modeling of both phenomena, a crucial role is played by the accumulated plastic strain, expressed by the Odqvist parameter p. Following the general trends, both in the literature concerning the phase transformation and the ductile damage, it is assumed that the rate of transformation and the rate of damage are proportional to the accumulated plastic strain rate. The gamma-alpha prime phase transformation converts the initially homogenous material to a two-p...

  3. The study of sub-surface damage distributions during grinding process on different abrasion materials

    Science.gov (United States)

    Kuo, Ching-Hsiang; Huang, Chien-Yao; Yu, Zong-Ru; Shu, Shyu-Cheng; Chang, Keng-Shou; Hsu, Wei-Yao

    2017-10-01

    The grinding process is the primary technology for curvature generation (CG) on glass optics. The higher material removal rate (MRR) leads to deeper sub-surface damage (SSD) on lens surface. The SSD must be removed by following lapping and polishing processes to ensure the lens quality. However, these are not an easy and an efficient process to remove the SSD from ground surface directly for aspheric surfaces with tens or hundreds microns departure from bestfit- sphere (BFS). An efficient fabrication procedure for large aspheric departure on glass materials must be considered. We propose 3-step fabrication procedures for aspheric surface with larger departure. 1st step is to generate a specific aspheric surface with depth less than 10 μm of SSD residual. 2nd step is to remove SSD and keep the aspheric form by using Zeeko polisher with higher MRR pad. Final step is to figure and finish the aspheric surface by using QED MRF machine. In this study, we focus on the 1st step to investigate the residual depth of SSD after grinding process on different abrasion materials. The materials of tested part are fused silica, S-NPH2, and S-PHM52. The cross grinding would be configured and depth of SSD/surface roughness would be evaluated in this study. The characteristic of SSD could be observed after etching by confocal microscope. The experimental results show the depth of SSD below 31.1 μm with #400 grinding wheel. And the near 10 μm depth of SSD would be achieved with #1,000 grinding wheel. It means the aspherization polishing on large parts with large departure from best fit sphere would be replaced. The fabrication of large aspheric part would be efficient.

  4. Radiation genetic studies in garden pea. Part 2. Caffeine potentiation and chromosome damage

    International Nuclear Information System (INIS)

    Kaul, M.L.H.

    1979-01-01

    The effect of 1.5x10 -2 M caffeine post-treatments over the chromosome damage induced by 4kR X-ray 1.5x10 -2 M Maleic hydrazide (MH) and N-Nitroso-N-urethane (NMU) treatments in the root top cells of a normal and trigenic leaf mutant of Pisum sativum was studied. While MH and NMU produced S-dependent effects, X-rays induced non-delayed S-independent effects. These effects got potentiated by caffeine treatments. With MH, the potentiation occurred when the cells got exposed to caffeine during S-phase and with X-rays, it occurred when the irradiated cells are treated in G 2 or prophase stage. The caffeine potentiation of chromosome damage produced by MH was similar in the roots exposed to caffeine at 16 and 31degC but with NMU, the potentiation was lower at 31 than at 16degC. If the inhibitory effect of caffeine on gap filling process of the damaged DNA is the molecular mechanism responsible for caffeine potentiation of reproductive death it may be the mechanism responsible for the observed chromosome damage in MH treated cells exposed to caffeine during G 1 and S phase. But the X-irradiated cells are insensitive to caffeine at such phases. In these cells caffeine probably acts as an inhibitor of the photoreactivating enzymes for binding sites or with the substrate in the irradiated cells post-treated during G 2 and prophase. However, temperature independence of caffeine potentiation is not compatible with eithr of the above two views. Compared to the normal genotype, the trigenic mutant exhibited an increased chromosomal damage, but not the potentiation. Probably mutant genes reduce the resistance of a genome against mutagenic action, consequently enhance the suseptibility to chromosome damage. (author)

  5. Recent developments of continuous damage approaches for the analysis of material behavior under fatigue-creep loading

    International Nuclear Information System (INIS)

    Bui-Quoc, T.

    1982-01-01

    A review is presented with an analysis of some recent methods proposed in the literature for predicting failure of materials under a cumulative damage effect due either to fatigue, to creep, or to fatigue-creep combinations. This review is focused on the continuous damage concepts because of their possibilities of application for a wide range of testing conditions. A discussion of the potential of each damage concept is made by examining the correlation between the resulting expressions and available experimental data. The paper also points out particularities encountered in the interpretation of some of the concepts reviewed

  6. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  7. Evaluation of gamma radiation induced genetic damage in the fish Cyprinus carpio using comet assay

    International Nuclear Information System (INIS)

    Praveen Kumar, M.K.; Shyama, S.K.; Bhagat, S.S.; Chaubey, R.C.

    2013-01-01

    Radionuclides released from various sources including the industries, as well as, accidental release during a nuclear disaster can contaminate inland water bodies. Suitable bio-monitoring methods/biomarkers are the need of the day to assess the impact of high/low levels of radiation exposure in aquatic environment. Fishes are very important as a group of ecologically and commercially important non-human biota and are often used as a bioindicators of aquatic pollution. Present work was carried out to assess the genotoxic effect of gamma radiation on fresh water fish Cyprinus carpio (common carp) in vivo using comet assay. Fishes were irradiated with 2, 4, 6, 8 and 10 Gy of gamma rays using a teletherapy machine and comet assay was performed on nucleated erythrocytes after 24, 48 and 72 h of irradiation . A significant increase in % tail DNA was observed at all the doses of gamma radiation as compared to controls indicating radiation induced DNA damage in a dose-dependent manner. Maximum % tail DNA was observed at 24 h which gradually declined till 72 h, in a time-dependent manner. This decrease in damage may indicate repair of the damaged DNA and or loss of heavily damaged cells, over a period of time. The study reveals that the comet assay may be used as a sensitive and rapid method to detect genotoxicity of gamma radiation and other environmental pollutants in sentinel species. (author)

  8. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B.

    2006-01-01

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A 3 (CMA 3 )-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA 3 -staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission

  9. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC)

    Science.gov (United States)

    Patra, Subir; Banerjee, Sourav

    2017-01-01

    Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz) scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy. PMID:29258256

  10. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2017-12-01

    Full Text Available Material state awareness of composites using conventional Nondestructive Evaluation (NDE method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy.

  11. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  12. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    International Nuclear Information System (INIS)

    Phillpot, Simon; Tulenko, James

    2011-01-01

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  13. Assessment of thermal damage to polymeric materials by hydrogen deflagration in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-05-01

    Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. Simple hydrogen-fire-exposure tests and heat transfer calculations duplicate the degree of damage found on inspected materials from the containment building. These data support estimated 8% pre-fire hydrogen concentration predictions based on various hydrogen production mechanisms

  14. [Ophthalmological opinions for liability affairs material damage (Part I) (author's transl)].

    Science.gov (United States)

    Burggraf, H

    1979-02-01

    German law abides anyone reponsible for the damage he or she has caused to another person's property or corporal integrity. This includes all medical costs directed towards the restitution of health as well as economical damage in direct consequence of the corporal damage. An ophthalmological expert is to state his opinion therefore in accordance with the specific conditions of every individual case and not just according to general charts. Financial compensation is only granted for the actual results of damage inquestion. Prior damage and disability have to be remarked but not to justify a financial compensation. The question of smart-money is dealt with in Part II.

  15. Damage evaluation system for materials used in fossil thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Sakai, Shinsuke [Tokyo Univ. (Japan); Tomita, Akira [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Koyama, Teruo [Babcock Hitachi K.K., Tokyo (Japan); Sakurai, Shigeo; Kawasaki, Yoshiya [Hitachi Ltd., Ibaraki (Japan)

    1998-11-01

    The summary of this research paper is as follows: The fundamental design of the damage evaluation system is carried out based on the basic concept. Prototype systems for boilers and turbines have been constructed: (a) Boiler: (I) Evaluation part: Outer surface of the primary pendant superheater tube; (II) Damage mode: Creep; (III) Damage evaluation method: Hardness measurement method; (b) Turbine: (I) Evaluation part: Inner surface at the center bore of high pressure turbine rotor; (II) Damage mode: Creep; (III) Damage evaluation method: Electric potential method. (orig./MM)

  16. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    OpenAIRE

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to de...

  17. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    Science.gov (United States)

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P comet assay appears more specific for detecting oxidative DNA damage induced by genotoxicants exposure, and the application of comet assay will be expanded. The endonuclease

  18. Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation (PMMD)

    International Nuclear Information System (INIS)

    Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy B.; Malik, Shah

    2009-01-01

    There are approximately 440 operating reactors in the global nuclear power plant (NPP) fleet with an average age greater than 20 years and design lives of 30 or 40 years. The United States is currently implementing license extensions of 20 years on many plants, and consideration is now being given to the concept of 'life-beyond-60', license extension from 60 to 80 years and potentially longer. In almost all countries with NPPs, authorities are looking at some form of license renewal program. In support of NPP license renewal over the past decade, various national and international programs have been initiated. This paper discusses stressor-based prognostics and its role as part of emerging trends in Proactive Management of Materials Degradation (PMMD) applied to nuclear power plant structures, systems and components (SSC). The paper concisely explains the US Nuclear Regulatory Commission's (NRC) program in PMMD, the basic principles of PMMD and its relationship to advanced diagnostics and prognostics. It then provides an assessment of the state of maturity for diagnostic and prognostic technologies, including NDE and related technologies for damage assessment, and the current trend to move from condition-based maintenance to on-line monitoring for advanced diagnostics and stressor-based prognostics. This development in technology requires advances in sensors; better understanding of what and how to measure within a nuclear power plant; enhanced data interrogation, communication and integration; new prediction models for damage/aging evolution; system integration for real-world deployments and quantification of uncertainties in what are inherently ill-posed problems. Stressor-based analysis is based upon understanding which stressor characteristics (e.g., pressure transients) provide a percussive indication that can be used for mapping subsequent damage due to a specific degradation mechanism. The resulting physical damage and the associated decrease in asset

  19. A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station.

    Science.gov (United States)

    Gandhi, Gursatej; Kaur, Gurpreet; Nisar, Uzma

    2015-01-01

    Mobile phone base stations facilitate good communication, but the continuously emitting radiations from these stations have raised health concerns. Hence in this study, genetic damage using the single cell gel electrophoresis (comet) assay was assessed in peripheral blood leukocytes of individuals residing in the vicinity of a mobile phone base station and comparing it to that in healthy controls. The power density in the area within 300 m from the base station exceeded the permissive limits and was significantly (p = 0.000) higher compared to the area from where control samples were collected. The study participants comprised 63 persons with residences near a mobile phone tower, and 28 healthy controls matched for gender, age, alcohol drinking and occupational sub-groups. Genetic damage parameters of DNA migration length, damage frequency (DF) and damage index were significantly (p = 0.000) elevated in the sample group compared to respective values in healthy controls. The female residents (n = 25) of the sample group had significantly (p = 0.004) elevated DF than the male residents (n = 38). The linear regression analysis further revealed daily mobile phone usage, location of residence and power density as significant predictors of genetic damage. The genetic damage evident in the participants of this study needs to be addressed against future disease-risk, which in addition to neurodegenerative disorders, may lead to cancer.

  20. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

  1. Damage behavior of REE-doped W-based material exposed to high-flux transient heat loads

    International Nuclear Information System (INIS)

    Shi, Jing; Luo, Lai–Ma; Lin, Jin–shan; Zan, Xiang; Zhu, Xiao–yong; Xu, Qiu; Wu, Yu–Cheng

    2016-01-01

    Pure W and W-Lu alloys were prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technology. The performance and relevant damage mechanism of W-(0%, 2%, 5%, 10%) Lu alloys under transient heat loads were investigated using a laser beam heat load test to simulate the transient events in future nuclear fusion reactors. Scanning electron microscopy was used to observe the morphologies of the damaged surfaces and energy dispersive X-ray spectroscopy was used to conduct composition analysis. Damages to the surface such as cracks, pits, melting layers, Lu-rich droplets, and thermal ablation were observed. A mass of dense fuzz-like nanoparticles formed on the outer region of the laser-exposed area. Recrystallization, grain growth, increased surface roughness, and material erosion were also observed. W-Lu samples with low Lu content demonstrated better thermal performance than pure W, and the degree of damage significantly deteriorated under repetitive transient heat loads.

  2. Studies of the repair of radiation-induced genetic damage in drosophila. Annual progress report

    International Nuclear Information System (INIS)

    Genetic characteristics of mutagen-sensitive mutants linked to the X chromosome were studied. These mutants increase loss and nondisjunction of chromosomes in female meiosis and are sensitive to radiation and mutagens. A study of chemical characteristics of the mutant suggested the existence of two separate forms of postreplication repair. One pathway is not caffeine sensitive and does not require recombination related functions; the second pathway appears to be caffeine sensitive and probably shares functions involved in meiotic recombination

  3. Damage analysis of TRIGA MARK II Bandung reactor tank material structure

    International Nuclear Information System (INIS)

    Soedardjo; Sumijanto

    2000-01-01

    Damage of Triga Mark II Bandung reactor tank material structure has been analyzed. The analysis carried out was based on ultrasonic inspection result in 1996 and the monthly reports of reactor operation by random data during 1988 up to 1995. Ultrasonic test data had shown that thinning processes on south and west region of reactor out side wall at upper part of water level had happened. Reactor operation data had shown the demineralized water should be added monthly to the reactor and bulk shielding water tank. Both reactor and bulk shielding tank are shielded by concrete of Portland type I cement consisting of CaO content about 58-68 %. The analysis result shows that the reaction between CaO and seepage water from bulk shielding wall had taken place and consequently the reactor out sidewall surroundings became alkaline. Based on Pourbaix diagram, the aluminum reactor tank made of aluminum alloy 6061 T6 would be corroded easily at pH equal an greater than 8.6. The passive layer AI 2 O 3 aluminum metal surface would be broken due to water reaction taken place continuously at high pH and produces hydrogen gas. The light hydrogen gas would expand the concrete cement and its expanding power would open the passive layer of aluminum metal upper tank. The water sea pages from adding water into reactor tank could indicate the upper water level tank corrosion is worse than the lower water level tank. (author)

  4. Probabilistic approaches applied to damage and embrittlement of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Vincent, L.

    2012-01-01

    The present study deals with the long-term mechanical behaviour and damage of structural materials in nuclear power plants. An experimental way is first followed to study the thermal fatigue of austenitic stainless steels with a focus on the effects of mean stress and bi-axiality. Furthermore, the measurement of displacement fields by Digital Image Correlation techniques has been successfully used to detect early crack initiation during high cycle fatigue tests. A probabilistic model based on the shielding zones surrounding existing cracks is proposed to describe the development of crack networks. A more numeric way is then followed to study the embrittlement consequences of the irradiation hardening of the bainitic steel constitutive of nuclear pressure vessels. A crystalline plasticity law, developed in agreement with lower scale results (Dislocation Dynamics), is introduced in a Finite Element code in order to run simulations on aggregates and obtain the distributions of the maximum principal stress inside a Representative Volume Element. These distributions are then used to improve the classical Local Approach to Fracture which estimates the probability for a microstructural defect to be loaded up to a critical level. (author) [fr

  5. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    Science.gov (United States)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  6. Privacy and Property? Multi-level Strategies for Protecting Personal Interests in Genetic Material

    OpenAIRE

    Laurie, Graeme

    2003-01-01

    The paper builds on earlier medico-legal work by Laurie on privacy in relation to genetic material. In this chapter, the author discusses not only Laurie's views as 'pro-privacy' but the limitations of privacy, particularly once information, genetic or otherwise, enters a public sphere. The article draws on cases and laws in the UK, continental Europe, and the US, to provide a comparative view in suggesting an alternative approach to privacy.

  7. Continuous Influx of Genetic Material from Host to Virus Populations.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2016-02-01

    Full Text Available Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86 can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69 belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.

  8. Paraoxonase-1 genetic polymorphisms and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides

    International Nuclear Information System (INIS)

    Singh, Satyender; Kumar, Vivek; Thakur, Sachin; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Ichhpujani, Rattan Lal; Rai, Arvind

    2011-01-01

    Human paraoxonase 1 (PON1) is a lipoprotein-associated enzyme involved in the detoxification of organophosphate pesticides (OPs) by hydrolyzing the bioactive oxons. Polymorphisms of the PON1 gene are responsible for variation in the expression and catalytic activity of PON1 enzyme. In the present study, we have determined (a) the prevalence of two common PON1 polymorphisms, (b) the activity of PON1 and acetylcholinesterase enzymes, and (c) the influence of PON1 genotypes and phenotypes variation on DNA damage in workers exposed to OPs. We examined 230 subjects including 115 workers exposed to OPs and an equal number of normal healthy controls. The results revealed that PON1 activity toward paraoxon (179.19 ± 39.36 vs. 241.52 ± 42.32 nmol/min/ml in controls) and phenylacetate (112.74 ± 17.37 vs. 134.28 ± 25.49 μmol/min/ml in controls) was significantly lower in workers than in control subjects (p 192 QR (Gln/Arg) and PON1 55 LM (Leu/Met) in workers and control subjects (p > 0.05). The PON1 activity toward paraoxonase was found to be significantly higher in the R/R (Arg/Arg) genotypes than Q/R (Gln/Arg) and lowest in Q/Q (Gln/Gln) genotypes in both workers and control subjects (p 55 LM (Leu/Met), PON1 activity toward paraoxonase was observed to be higher in individuals with L/L (Leu/Leu) genotypes and lowest in individuals with M/M (Met/Met) genotypes in both groups (p < 0.001). No influence of PON1 genotypes and phenotypes was seen on the activity of acetylcholinesterase and arylesterase. The DNA damage was observed to be significantly higher in workers than in control subjects (p < 0.05). Further, the individuals who showed least paraoxonase activity i.e., those with (Q/Q [Gln/Gln] and M/M [Met/Met]) genotypes showed significantly higher DNA damage compared to other isoforms in workers exposed to OPs (p < 0.05). The results indicate that the individuals with PON1 Q/Q and M/M genotypes are more susceptible toward genotoxicity. In conclusion, the study suggests

  9. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  10. Personal exposure to PM2.5, genetic variants and DNA damage: a multi-center population-based study in Chinese.

    Science.gov (United States)

    Chu, Minjie; Sun, Chongqi; Chen, Weihong; Jin, Guangfu; Gong, Jianhang; Zhu, Meng; Yuan, Jing; Dai, Juncheng; Wang, Meilin; Pan, Yun; Song, Yuanchao; Ding, Xiaojie; Guo, Xuejiang; Du, Mulong; Xia, Yankai; Kan, Haidong; Zhang, Zhengdong; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing

    2015-06-15

    Exposure to particulate matter (e.g., PM2.5) may result in DNA damage, a major culprit in mutagenesis and environmental toxicity. DNA damage levels may vary among individuals simultaneously exposed to PM2.5, however, the genetic determinants are still unclear. To explore whether PM2.5 exposure and genetic variants contribute to the alteration in DNA damage, we recruited 328 subjects from three independent cohorts (119 from Zhuhai, 123 from Wuhan and 86 from Tianjin) in southern, central and northern China with different PM2.5 exposure levels. Personal 24-h PM2.5 exposure levels and DNA damage levels of peripheral blood lymphocytes were evaluated. Genotyping were performed using Illumina Human Exome BeadChip with 241,305 single nucleotide variants (SNVs). The DNA damage levels are consistent with the PM2.5 exposure levels of each cohort. A total of 35 SNVs were consistently associated with DNA damage levels among the three cohorts with pooled P values less than 1.00×10(-3) after adjustment for age, gender, smoking status and PM2.5 exposure levels, of which, 18 SNVs together with gender and PM2.5 exposure levels were independent factors contributing to DNA damage. Gene-based test revealed 3 genes significantly associated with DNA damage levels (P=5.11×10(-3) for POLH, P=2.88×10(-3) for RIT2 and P=2.29×10(-2) for CNTN4). Gene ontology (GO) analyses indicated that the identified variants were significantly enriched in DNA damage response pathway. Our findings highlight the importance of genetic variation as well as personal PM2.5 exposure in modulating individual DNA damage levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Damage Identification of Trusses with Elastic Supports Using FEM and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nam-Il Kim

    2013-01-01

    Full Text Available The computationally efficient damage identification technique for truss structures with elastic supports is proposed based on the force method. To transform the truss with supports into the equivalent free-standing model without supports, the novel zero-length dummy members are employed. General equilibrium equations and kinematic relations, in which the reaction forces and the displacements at the elastic supports are taken into account, are clearly formulated. The compatibility equations, in terms of forces in which the flexibilities of elastic supports are considered, are explicitly presented using the singular value decomposition (SVD technique. Both member and reaction forces are simultaneously and directly obtained. Then, all nodal displacements including constrained nodes are back calculated from the member and reaction forces. Next, the microgenetic algorithm (MGA is used to properly identify the site and the extent of multiple damages in truss structures. In order to verify the superiority of the current study, the numerical solutions are presented for the planar and space truss models with and without elastic supports. The numerical results indicate that the computational effort required by this study is found to be significantly lower than that of the displacement method.

  12. Direct Index Method of Beam Damage Location Detection Based on Difference Theory of Strain Modal Shapes and the Genetic Algorithms Application

    Directory of Open Access Journals (Sweden)

    Bao Zhenming

    2012-01-01

    Full Text Available Structural damage identification is to determine the structure health status and analyze the test results. The three key problems to be solved are as follows: the existence of damage in structure, to detect the damage location, and to confirm the damage degree or damage form. Damage generally changes the structure physical properties (i.e., stiffness, mass, and damping corresponding with the modal characteristics of the structure (i.e., natural frequencies, modal shapes, and modal damping. The research results show that strain mode can be more sensitive and effective for local damage. The direct index method of damage location detection is based on difference theory, without the modal parameter of the original structure. FEM numerical simulation to partial crack with different degree is done. The criteria of damage location detection can be obtained by strain mode difference curve through cubic spline interpolation. Also the genetic algorithm box in Matlab is used. It has been possible to identify the damage to a reasonable level of accuracy.

  13. FISH as A method for detection of radiation Induced genetic damage

    International Nuclear Information System (INIS)

    Lakatosova, M.; Holeckova, B.

    2006-01-01

    Fluorescence in situ hybridization (FISH) has been considered as a suitable method for rapid and easy detection of chromosome aberrations. In contrast to the standard conventional staining procedure, this technique enables the detection and specification of stable chromosomal re-arrangements, which are compatible with cellular division and thus, they could be transmitted from common ancestral to next cell generations. FISH chromosome - specific painting probes have been effectively applied for the detection of chromosomal damage after exposure to radiation. During last years, several specific fluorescent labeled probes were performed that allowed precise detection of centromeres, sub-telomeres or other regions (sequences) in genome. Our paper deals with describing of different types of FISH probes and their possibilities for application in radiobiology. (authors)

  14. Effect of damage on water retention and gas transport properties geo-materials: Application to geological storage of radioactive waste

    International Nuclear Information System (INIS)

    M'Jahad, S.

    2012-01-01

    In the context of geological disposal of radioactive waste, this work contributes to the characterization of the effect of diffuse damage on the water retention and gas transfer properties of concrete (CEM I and CEM V) selected by Andra, Callovo-Oxfordian argillite (host rock) and argillite / concrete interfaces. This study provides information on the concrete microstructure from Mercury porosimetry intrusion and water retention curves: each concrete has a distinct microstructure, CEM I concrete is characterized by a significant proportion of capillary pores while CEM V concrete has a large proportion of C-S-H pores. Several protocols have been developed in order to damage concrete. The damage reduces water retention capacity of CEM I concrete and increases its gas permeability. Indeed, gas breakthrough pressure decreases significantly for damaged concrete, and this regardless of the type of concrete. For argillite, the sample mass increases gradually at RH = 100%, which creates and increases damage in the material. This reduces its ability to retain water. Otherwise, water retention and gas transport properties of argillite are highly dependent of its initial water saturation, which is linked to its damage. Finally, we observed a clogging phenomenon at the argillite/concrete interfaces, which is first mechanical and then hydraulic (and probably chemical) after water injection. This reduces the gas breakthrough pressure interfaces. (author)

  15. Atomic structure from large-area, low-dose exposures of materials: A new route to circumvent radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.C., E-mail: jannik.meyer@univie.ac.at; Kotakoski, J.; Mangler, C.

    2014-10-15

    Beam-induced structural modifications are a major nuisance in the study of materials by high-resolution electron microscopy. Here, we introduce a new approach to circumvent the radiation damage problem by a statistical treatment of large, noisy, low-dose data sets of non-periodic configurations (e.g. defects) in the material. We distribute the dose over a mixture of different defect structures at random positions and with random orientations, and recover representative model images via a maximum likelihood search. We demonstrate reconstructions from simulated images at such low doses that the location of individual entities is not possible. The approach may open a route to study currently inaccessible beam-sensitive configurations. - Highlights: • A new approach to circumvent radiation damage. • Statistical treatment of large noisy data sets. • Analysis of radiation sensitive material defects.

  16. Experimental study of discontinuous plastic flow, phase transformation and micro-damage evolution in ductile materials at cryogenic temperatures

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, S

    2009-01-01

    The present Thesis deals with three low temperature phenomena occurring in ductile materials subjected to mechanical loads: serrated yielding, plastic strain induced γ-α’ phase transformation and evolution of micro-damage: - the Thesis explains the physical mechanisms governing each phenomenon at the micro and macroscopic levels; - the document describes in detail the advanced laboratory equipment needed for cryogenic experiments; - the results of tests carried out with unique precision and focused on serrated yielding and evolution of micro-damage (the observations were made with different strain rates and with the use of different materials) are presented; - validation of suitable kinetic laws and identification of parameters for tested materials is carried out.

  17. Induction of lethal and genetic damage by vacuum-ultraviolet (163 nm) irradiation of aqueous suspensions of yeast cells

    International Nuclear Information System (INIS)

    Ito, T.; Kobayashi, K.

    1976-01-01

    Yeast cells suspended in distilled water were irradiated with monochromatic 163 nm photons by immersing a specially designed discharge tube into the suspension. This was thought to be a useful means of investigating in vivo effects of radiation-induced water radicals on well cells in the complete absence of ionic species, since 163 nm photons can dissociate water only via excitation. These experiments showed that the water radicals (excluding e/sub aq/ - ) exerted both lethal and genetic (gene-conversion) effects quite potently, and the characteristic protection against these effects was observable when 2-mercaptoethanol or, in particular, p-aminobenzoic acid, a specific scavenger for OH radicals, was added to the medium prior to irradiation. Nearly complete protection from both lethal and genetic effects was observed in some cases with p-aminobenzoic acid. These results establish unequivocally that the OH radical, and not the hydrogen atom (H radical), possesses the damaging potency in the cell. Comparisons with γ-ray experiments revealed several differences between 163 nm photons and γ rays in the protective actions of radical scavengers, which may be attributable to reactive species other than OH radicals produced by the γ rays

  18. Damage Simulation in Composite Materials: Why It Matters and What Is Happening Currently at NASA in This Area

    Science.gov (United States)

    McElroy, Mack; de Carvalho, Nelson; Estes, Ashley; Lin, Shih-yung

    2017-01-01

    Use of lightweight composite materials in space and aircraft structure designs is often challenging due to high costs associated with structural certification. Of primary concern in the use of composite structures is durability and damage tolerance. This concern is due to the inherent susceptibility of composite materials to both fabrication and service induced flaws. Due to a lack of general industry accepted analysis tools applicable to composites damage simulation, a certification procedure relies almost entirely on testing. It is this reliance on testing, especially compared to structures comprised of legacy metallic materials where damage simulation tools are available, that can drive costs for using composite materials in aerospace structures. The observation that use of composites can be expensive due to testing requirements is not new and as such, research on analysis tools for simulating damage in composite structures has been occurring for several decades. A convenient approach many researchers/model-developers in this area have taken is to select a specific problem relevant to aerospace structural certification and develop a model that is accurate within that scope. Some examples are open hole tension tests, compression after impact tests, low-velocity impact, damage tolerance of an embedded flaw, and fatigue crack growth to name a few. Based on the premise that running analyses is cheaper than running tests, one motivation that many researchers in this area have is that if generally applicable and reliable damage simulation tools were available the dependence on certification testing could be lessened thereby reducing overall design cost. It is generally accepted that simulation tools if applied in this manner would still need to be thoroughly validated and that composite testing will never be completely replaced by analysis. Research and development is currently occurring at NASA to create numerical damage simulation tools applicable to damage in

  19. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation

    International Nuclear Information System (INIS)

    Aguilar M, M.

    2005-01-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  20. Genetic similarity among commercial oil palm materials based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    Diana Arias

    2012-08-01

    Full Text Available Microsatellite markers are used to determine genetic similarities among individuals and might be used in various applications in breeding programs. For example, knowing the genetic similarity relationships of commercial planting materials helps to better understand their responses to environmental, agronomic and plant health factors. This study assessed 17 microsatellite markers in 9 crosses (D x P of Elaeis guineensis Jacq. from various commercial companies in Malaysia, France, Costa Rica and Colombia, in order to find possible genetic differences and/or similarities. Seventy-seven alleles were obtained, with an average of 4.5 alleles per primer and a range of 2-8 amplified alleles. The results show a significant reduction of alleles, compared to the number of alleles reported for wild oil palm populations. The obtained dendrogram shows the formation of two groups based on their genetic similarity. Group A, with ~76% similarity, contains the commercial material of 3 codes of Deli x La Mé crosses produced in France and Colombia, and group B, with ~66% genetic similarity, includes all the materials produced by commercial companies in Malaysia, France, Costa Rica and Colombia

  1. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  2. Neutron radiation damage studies in the structural materials of a 500 ...

    Indian Academy of Sciences (India)

    UTTIYOARNAB SAHA

    2018-02-23

    Feb 23, 2018 ... data library evaluated by the USA, ENDF/B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data .... energy available for damage production after correct- ...... is a normalization factor such that.

  3. Chesapeake Bay fish–osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage

    Science.gov (United States)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Karouna-Reiner, Natalie K.; Erickson, Richard A.; Ottinger, Mary Ann

    2016-01-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p′-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p′-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population.

  4. Genetic damage from diagnostic radiation: a critique of the Bross and Natarajan study

    International Nuclear Information System (INIS)

    Oppenheim, B.E.

    1979-01-01

    Bross and Natarajan have presented the hypothesis that low-dose fetal irradiation in the range of 0.5 to 5.0 rads confines its damage to 1% of the irradiated subjects and that for this affected group there is a 5000% increase in the risk of leukemia as compared with unexposed subjects. Earlier studies have indicated an increased risk of leukemia of approximately 50% following such radiation, so this hypothesis would suggest that for the affected group the radiation is 100 times more dangerous than previously suspected. Bross and Natarajan claimed that their arguments established clear prima facie evidence that exposure to the low levels of ionizing radiation can produce a drastically increased risk of leukemia. Bross and associates constructed dosage response curves for the 1-rad range, from which they concluded that the hazards of exposure in this range are an order of magnitude greater than currently estimated. On this basis, Bross has appeared before a US Senate committee to call for elaborate restrictions on the use of diagnostic x-rays. He has also presented his findings at a public meeting sponsored by the Nuclear Regulatory Commission to gain popular support for his contentions regarding low-level radiadion. The analysis of adult exposure by Bross et al that appeared in a recent issue of the American Journal of Public Health received a thorough critique in the same issue. The analysis of fetal exposure appearing in the Journal has not been adequately examined, since published criticism has been limited to two letters to the editor. In view of the serious nature of their contentions and the much stricter regulation of radiation exposure that would follow should they be judged correct, it is important that certain previously unreported deficiencies in the Bross and Natarajan study be brought to public attention. These will be presented in the form of five criticisms

  5. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  6. A comparison of atom and ion induced SSIMS - evidence for a charge induced damage effect in insulator materials

    International Nuclear Information System (INIS)

    Brown, A.; Berg, J.A. van den; Vickerman, J.C.

    1985-01-01

    A static secondary ion mass spectrometry (SSIMS) study of two very low conductivity materials, polystyrene and niobium pentoxide, using on the one hand a primary ion beam with electron neutralisation, and on the other, atom bombardment, shows that whilst the initial spectra obtained were quite similar, subsequent damage effects were much greater under ion impact conditions. For an equivalent flux density the half-life of the polystyrene surface structure was four times longer under atom bombardment. Significant reduction of the niobium surface was observed under ion bombardment whereas an equivalent atom flux had little apparent effect on the surface oxidation state. These data suggest that the requirement to dissipate the charge delivered to the sample by the primary ion beam contributes significantly to the damage mechanisms in electrically insulating materials. (author)

  7. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    Kim, Kwang Soo; Kim, Sang Tae

    1993-01-01

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(a eff ) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(E N ) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  8. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    Science.gov (United States)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  9. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  10. Laser-induced damage of materials in bulk, thin-film, and liquid forms

    International Nuclear Information System (INIS)

    Natoli, Jean-Yves; Gallais, Laurent; Akhouayri, Hassan; Amra, Claude

    2002-01-01

    Accurate threshold curves of laser-induced damage (7-ns single shot at 1.064 μm) are measured in bulk and at the surfaces of optical components such as substrates, thin films, multilayers, and liquids. The shapes and the slopes of the curves are related to the spot size and to the densities of the nanodefects that are responsible for damage. First, these densities are reported for bulk substrates. In surfaces and films the recorded extrinsic and intrinsic threshold curves permit the discrimination of the effects of microdefects and nanodefects. In all cases the density of nanocenters is extracted by means of a phenomenological approach. Then we test liquids and mixtures of liquids with controlled defect densities. The results emphasize the agreement between measurement and prediction and demonstrate the validity of the presence of different kinds of nanocenter as the precursors of laser damage

  11. Consultants Group Meeting on Genetic Sexing and Population Genetics of Screwworms. Working Material

    International Nuclear Information System (INIS)

    2000-01-01

    A Thematic Plan on SIT for Screwworms developed in 1999 by IPC and TC identified certain R and D bottlenecks to the expansion of this technology into new agricultural areas. This consultant's meeting was held to review these conclusions and to advise the Agency on the need, or otherwise, of initiating a CRP to address the bottlenecks identified in the Thematic Plan. In 2001 it is expected that the New World Screwworm, Cochliomyia hominivorax, will have been eradicated from all of Central America, including Panama where a sterile release barrier will be established to prevent re-invasion from South America. This barrier will need to be maintained indefinitely with its associated costs. The use of an all-male strain in the production facility would have very positive impact on the cost/benefit analysis of the programme. The Director of the Screwworm Programme in Central America made this point very strongly during the Thematic Plan discussions and at a subsequent technical meeting in Tuxtla Gutierrez. Interest to expand the programme into South America is now being shown by certain countries in the region where the economic feasibility of implementing an SIT programme might depend on producing sterile flies more economically and here again the use of a genetic sexing strain could play an important role. For the Old World Screwworm, Chrysomya bezziana the Australian authorities have just completed a successful small field trial of the SIT in Malaysia and it is proposed that more extensive field tests be carried out in the region. For both the New World Screwworm in South America and the Old World Screwworm, in Asia there is virtually no information regarding the population structure in relation to the implementation of an SIT programme. Is the Old World Screwworm a single species over its very wide distribution and are the populations of New World Screwworm in South America the same as in Central America and related to each other? Are the populations isolated? These

  12. Ion-irradiation-induced damage in nuclear materials: Case study of a-SiO2 and MgO

    International Nuclear Information System (INIS)

    Bachiller-Perea, Diana

    2016-01-01

    One of the most important challenges in Physics today is the development of a clean, sustainable, and efficient energy source that can satisfy the needs of the actual and future society producing the minimum impact on the environment. For this purpose, a huge international research effort is being devoted to the study of new systems of energy production; in particular, Generation IV fission reactors and nuclear fusion reactors are being developed. The materials used in these reactors will be subjected to high levels of radiation, making necessary the study of their behavior under irradiation to achieve a successful development of these new technologies. In this thesis two materials have been studied: amorphous silica (a-SiO 2 ) and magnesium oxide (MgO). Both materials are insulating oxides with applications in the nuclear energy industry. High-energy ion irradiations have been carried out at different accelerator facilities to induce the irradiation damage in these two materials; then, the mechanisms of damage have been characterized using principally Ion Beam Analysis (IBA) techniques. One of the challenges of this thesis was to develop the Ion Beam Induced Luminescence or iono-luminescence (which is not a widely known IBA technique) and to apply it to the study of the mechanisms of irradiation damage in materials, proving the power of this technique. For this purpose, the iono-luminescence of three different types of silica (containing different amounts of OH groups) has been studied in detail and used to describe the creation and evolution of point defects under irradiation. In the case of MgO, the damage produced under 1.2 MeV Au + irradiation has been characterized using Rutherford backscattering spectrometry in channeling configuration and X-ray diffraction. Finally, the iono-luminescence of MgO under different irradiation conditions has also been studied.The results obtained in this thesis help to understand the irradiation-damage processes in materials

  13. The effect on radiation damage of structural material in a hybrid system by using a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Günay, Mehtap; Şarer, Başar; Kasap, Hızır

    2014-01-01

    Highlights: • The effects of some fluids on gas production rates in structural material were investigated. • The MCNPX-2.7.0 Monte Carlo code was used for three-dimensional calculations. • It was found that biggest contribution to gas production rates comes from Fe isotope of the. • The desirable values for 5% SFG-PuO 2 with respect to radiation damage were specified. - Abstract: In this study, the molten salt-heavy metal mixtures 99–95% Li20Sn80-1-5% SFG-Pu, 99–95% Li20Sn80-1-5% SFG-PuF4, 99-95% Li20Sn80-1-5% SFG-PuO2 were used as fluids. The fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The parameters of radiation damage are proton, deuterium, tritium, He-3 and He-4 gas production rates. In this study, the effects of the selected fluid on the radiation damage, in terms of individual as well as total isotopes in the structural material, were investigated for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent version of the MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library

  14. Evaluation of the potential inhibitor of Ix (Pp-Ix) protoporphyrin of the genetic damage induced by gamma rays administered to different dose reasons in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Flores A, J. A.

    2016-01-01

    Ionizing radiation can damage in DNA directly or indirectly by free radicals (Rl), characterized by unstable and highly reactive. To avoid damage by Rl the cell has endogenous antioxidants such as Sod, Cat, GSH or exogenous as some vitamins, but if with these mechanisms does not reach the cell homeostasis, the consequence may be the generation of chronic-disease degenerative such as cancer. This study was conducted in order to test the inhibitory role of Rl protoporphyrin Ix (Pp-Ix), induced by 20 Gy of gamma rays administered at different dose ratios using the assay of somatic mutation and recombination in the Drosophila wing. The results indicated that 20 Gy delivered at a rate of low dose (6.659 Gy/h), caused elevated frequencies of genetic damage (p <0.001), compared with those that induced a high dose reason (1111.42 Gy/h) in larvae of 48 h old. The difference is probably due to an indirect damage by Rl; when this hypothesis was approved with the possible inhibitor role of Pp-Ix (0.69 m M), damage was increased with the two reasons of tested doses. This result may be due to: 1) the Pp-Ix is not a good inhibitor of Rl, 2) the difference in the frequency of mutation found with both dose reasons, not due to Rl so that this compound did not reduce the genetic damage, and 3) that Pp-Ix acts as pro oxidant. (Author)

  15. Certified reference materials - beech leaves and spruce needles - for the quality control in monitoring damage in forests by acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maier, E A; Griepink, B [Commission of the European Communities, Brussels (Belgium). Community Bureau of Reference; Muntau, H [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    1989-12-01

    The chemical determination of various elements in leaves or needles allows to establish the damage caused by acid deposition. To control the quality of such determinations the Community Bureau of Reference (BCR) produced two Certified Reference Materials: Beech leaves (CRM No. 100) and Spruce needles (CRM No. 101). After a careful preparation procedure, a homogeneity study and a long term stability study, the materials were certified for: Cl, N, P and S in CRM No. 100, Al, Ca, Cl, Mg, Mn, N, P, S and Zn in CRM No. 101. Indicative values on the content of 19 majors and trace elements are also reported. (orig.).

  16. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    International Nuclear Information System (INIS)

    Scheider, Ingo; Cornec, Alfred; Schwalbe, Karl-Heinz

    2009-01-01

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  17. Overview of workshop on 'Evaluation of simulation techniques for radiation damage in the bulk of fusion first wall materials'

    International Nuclear Information System (INIS)

    Leffers, T.; Singh, B.N.; Green, W.V.; Victoria, M.

    1984-05-01

    The main points and the main conclusions of a workshop held June 27-30 1983 at Interlaken, Switzerland, are reported. There was general agreement among the participants that ideal simulation, providing unambiguous information about the behaviour of the first wall material, is at present out of reach. In this situation the route to follow is to use the existing simulation facilities in a concerted effort to understand the damage accumulation processes and thereby create the background for prediction or appropriate simulation of the behaviour of the first wall material. (Auth.)

  18. Overview of Workshop on Evaluation of Simulation Techniques for Radiation Damage in the Bulk of Fusion First Wall Materials

    DEFF Research Database (Denmark)

    Leffers, Torben; Singh, Bachu Narain; Green, W.V.

    1984-01-01

    of reach. In this situation the route to follow is to use the existing simulation facilities in a concerted effort to understand the damage accumulation processes and thereby create the background for prediction or appropriate simulation of the behaviour of the first wall material.......The main points and the main conclusions of a workshop held June 27–30 1983 at Interlaken, Switzerland, are reported. There was general agreement among the participants that ideal simulation, providing unambiguous information about the behaviour of the first wall material, is at present out...

  19. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, Ingo; Cornec, Alfred [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Schwalbe, Karl-Heinz

    2009-12-19

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  20. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mo [Univ. of California, Irvine, CA (United States); Nakshatrala, Kalyana [Univ. of Houston, TX (United States); William, Kasper [Univ. of Houston, TX (United States); Xi, Yungping [Univ. of Colorado, Boulder, CO (United States)

    2017-02-08

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels of protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.

  1. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Numerical study of the EDZ by a thermo-hydro-mechanical damage model dedicated to unsaturated geo-materials

    International Nuclear Information System (INIS)

    Arson, Chloe; Gatmiri, Behrouz

    2010-01-01

    involved in the transfer model in the intact state. A specific algorithm has been written in order to implement the 'THHMD' model in 'Θ-Stock' Finite Element code. In the brittle domain, the increment of damage-associated stress has a non-linear expression, and is thus computed iteratively. The final algorithm encompasses three interwoven loops, and two convergence criteria. Due to the couplings between the constitutive laws, the computation of the residual vector requires specific dynamic storage variables. Simulations of laboratory tests have already provided a numerical validation of the mechanical aspect of the model. This article presents the results of more complex simulations, aimed at studying the effects of a decreasing thermal loading on an unsaturated host geo-material. The numerical response of the algorithm is first checked in the elastic domain, by comparing the numerical results to experimental data. Parametric studies are then performed with the same materials endowed with non zero damage parameter. This approach enables the study of damage trends in various loading conditions, with various parameter combinations. A heating laboratory test performed on unsaturated bentonite samples has been simulated with the 'THHMD' model. The satisfactory results obtained in elasticity in the experimental conditions justify a parametric study on damage. The rigidity to mechanical tensile strains (g M ) has been varied for a given heating power on the one hand, and the power of the heating source has been varied with a fixed gM parameter on the other hand. In both cases, damage trends are in full agreement with the physical expectations. In accordance with the assumptions of the model, the thermal loading generates isotropic tensile strains, and consequently, isotropic damage. Damage grows with the rigidity to tensile strains g M and with the heating power. An in situ heating test has been reproduced by a one-dimensional axisymmetric

  3. Plastic strain induced damage evolution and martensitic transformation in ductile materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C.; Skoczen, B.T.

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behavior at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of these irreversible phenomena, associated with the dissipation of plastic power, are included into the constitutive model of stainless steels at cryogenic temperatures. The model is tested on the thin-walled corrugated shells (known as bellows expansion joints) used in the interconnections of the Large Hadron Collider, the new proton storage ring being constructed at present at CERN

  4. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  5. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    International Nuclear Information System (INIS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  6. Research status on radiation damage in nuclear materials and recommendations for IAEA activities. Technical report

    International Nuclear Information System (INIS)

    Caro, Alfredo; Caro, Magdalena

    2002-03-01

    This report addresses the synergy between the continuous progress of parallel computing and the spectacular advances in the theoretical framework that describes materials. Together, they contributed to significantly advance our comprehension of materials properties like mechanical behavior. It also highlights its impact on nuclear technology, as it provides physical insight into the complex processes responsible for the degradation of structural materials under neutron irradiation

  7. Damage detection in carbon composite material typical of wind turbine blades using auto-associative neural networks

    Science.gov (United States)

    Dervilis, N.; Barthorpe, R. J.; Antoniadou, I.; Staszewski, W. J.; Worden, K.

    2012-04-01

    The structure of a wind turbine blade plays a vital role in the mechanical and structural operation of the turbine. As new generations of offshore wind turbines are trying to achieve a leading role in the energy market, key challenges such as a reliable Structural Health Monitoring (SHM) of the blades is significant for the economic and structural efficiency of the wind energy. Fault diagnosis of wind turbine blades is a "grand challenge" due to their composite nature, weight and length. The damage detection procedure involves additional difficulties focused on aerodynamic loads, environmental conditions and gravitational loads. It will be shown that vibration dynamic response data combined with AANNs is a robust and powerful tool, offering on-line and real time damage prediction. In this study the features used for SHM are Frequency Response Functions (FRFs) acquired via experimental methods based on an LMS system by which identification of mode shapes and natural frequencies is accomplished. The methods used are statistical outlier analysis which allows a diagnosis of deviation from normality and an Auto-Associative Neural Network (AANN). Both of these techniques are trained by adopting the FRF data for normal and damage condition. The AANN is a method which has not yet been widely used in the condition monitoring of composite materials of blades. This paper is trying to introduce a new scheme for damage detection, localisation and severity assessment by adopting simple measurements such as FRFs and exploiting multilayer neural networks and outlier novelty detection.

  8. Analysis of Proton Induced Material Damage Using the DPA Cross-sections Based on NRT and BCA-MD Models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-O; Roh, Gyuhong; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The level of radiation induced material damage is mainly quantified by using the unit of Displacements Per Atom (DPA), and particularly, the displacement cross-section is used for characterizing/analyzing the radiation damage from incident neutrons and charged particles. Not long ago, the standard Norgett-Robinson-Torrens (NRT) model had been applied to produce the nuclear data due to its simplicity and implementation in commonly used codes, such as NJOY and MCNP codes. However, the evaluations based on NRT model represent the severe disagreement with experimental data and more accurate calculations. Hence, the evaluations with existing and new nuclear data are performed/compared in this study. It is assumed that a high energy proton beam is directly moved to the target, and a series of calculations are performed by using MCNPX code. The proton induced material damage is evaluated by using the displacement cross-sections, and the effect of nuclear data on the evaluation is specifically analyzed with MCNPX code. First, there is significant difference between the nuclear data from existing and new models, and the new evaluated data is generally lower than the existing one. Second, the position of maximum DPA is slightly differed with the position of maximum energy deposition, and the evaluation using new evaluated data is lower about 2 times than the other.

  9. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    Science.gov (United States)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  10. Materials properties utilization in a cumulative mechanical damage function for LMFBR fuel pin failure analysis

    International Nuclear Information System (INIS)

    Jacobs, D.C.

    1977-01-01

    An overview is presented of one of the fuel-pin analysis techniques used in the CRBRP program, the cumulative mechanical damage function. This technique, as applied to LMFBR's, was developed along with the majority of models used to describe the mechanical properties and environmental behavior of the cladding (i.e., 20 percent cold-worked, 316 stainless steel). As it relates to fuel-pin analyses the Cumulative Mechanical Damage Function (CDF) continually monitors cladding integrity through steady state and transient operation; it is a time dependent function of temperature and stress which reflects the effects of both the prior mechanical history and the variations in mechanical properties caused by exposure to the reactor environment

  11. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  12. Damage measurement of structural material by electron backscatter diffraction. Quantification of measurement quality toward standardization of measurement procedure

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2011-01-01

    Several attempts have been made to assess the damage induced in materials by crystal orientation distributions identified using electron backscatter diffraction (EBSD). In particular, the local misorientation, which is the misorientation between neighboring measurement points, was shown to correlate well with the degree of material damage such as plastic strain, fatigue and creep. However, the damage assessments conducted using the local misorientations were qualitative rather than quantitative. The local misorientation can be correlated theoretically with physical parameters such as dislocation density. However, the error in crystal orientation measurements makes quantitative evaluation of the local misorientation difficult. Furthermore, the local misorientation depends on distance between the measurement points (step size). For a quantitative assessment of the local misorientation, the error in the crystal orientation measurements must be reduced or the degree of error must be shown quantitatively. In this study, first, the influence of the quality of measurements (accuracy of measurements) and step size on the local misorientation was investigated using stainless steel specimens damaged by tensile deformation or fatigue. By performing the crystal orientation measurements with different conditions, it was shown that the quality of measurement could be represented by the error index, which was previously proposed by the author. Secondly, a filtering process was applied in order to improve the accuracy of crystal orientation measurements and its effect was investigated using the error index. It was revealed that the local misorientations obtained under different measurement conditions could be compared quantitatively only when the error index and the step size were almost or exactly the same. It was also shown that the filtering process could successfully reduce the measurement error and step size dependency of the local misorientations. By applying the filtering

  13. Experimental Investigation of Widespread Delamination Damage to Composite Materials Caused by Radiant Heating

    Science.gov (United States)

    2013-06-30

    Rev. E) 2002. 7. RM-3002 Bismaleimide (BMI) Prepreg , Product Information, Renegade Materials Corporation, Revision Date: 16-May-2012 KOA 16... prepregs /polyimide- prepregs . Renegade Materials Corporation Website, Accessed June 20, 2013. 9. Shen, C. and G.S. Springer, “Moisture Absorption and

  14. Calculation of parameters of the original state of material radiation damage

    International Nuclear Information System (INIS)

    Krasnoshtanov, V.F.; Kevorkyan, Yu.R.; Eremin, Yu.P.; Belousov, G.G.

    1974-01-01

    The program ''Sample'' for evaluating the parameters of the initial state of radiation damage in samples irradiated by neutrons of different energies is described in this paper. Within the framework of this study, a program is elaborated for calculating the spectrum and density of initially knocked-on atoms in cylinder and parallelepiped-shaped samples, as well as in plates of various thickness. The model incorporated into the program is based on the Monte-Carlo method. In considering the neutron-to-atom interaction account is taken of the elastic scattering anisotropy and the process of inelastic scattering. This program is used to study the radiation damage states in iron samples irradiated by neutrons of different energies. A computer handled this program is based on sequential sampling of random values with a predetermined distribution law. The algorithm of the neutron's walk through a medium forms the basis of the ''Sample'' program. This program permits calculating, for a particular sample geometry, the initially knocked-on atom density and spectrum, as well as the density of the displacements due to the monoenergetic neutrons isotropically incident on the sample surface. The program also enables calculation of the static computation error. The block diagram of the ''Sample'' program and its text written in FORTRAN are presented. Also given is the dependence of the displacement density normalized with respect to the unit flux on the neutron energy for a parallelepiped-shaped sample. The neutron flux is determined by the number of collisions. The contribution of various energetic groups of initially knocked-on atoms into the radiation damage of a sample depending on the neutron energy is shown

  15. Frictional contact problems for electro-viscoelastic materials with long-term memory, damage, and adhesion

    Directory of Open Access Journals (Sweden)

    Tedjani Hadj Ammar

    2014-10-01

    Full Text Available We consider a quasistatic contact problem between two electro-viscoelastic bodies with long-term memory and damage. The contact is frictional and is modelled with a version of normal compliance condition and the associated Coulomb's law of friction in which the adhesion of contact surfaces is taken into account. We derive a variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, a classical existence and uniqueness result on parabolic inequalities, and Banach fixed point theorem.

  16. Damaging process of graphite - new model and its impact on degradation of materials performance

    International Nuclear Information System (INIS)

    Tanabe, T.; Muto, S.

    1999-01-01

    The most widely accepted model for development of defect structure in neutron irradiated graphite has been such that following the first production of a pair of an interstitial and vacancy, di-interstitials and vacancies are formed and their subsequent growth would result in the production of an interstitial plane or loop in-between the basal planes and vacancy clusters, respectively, which could cause the loss of thermal conductivity and dimensional change. Recently we have claimed that the formation of vacancy clusters and growth of the interstitial planes are not necessarily a unique interpretation of the damaging process. Instead, the damaging process is described by orientational disordering within the basal planes, i.e. fragmentation into small crystallites and rotation of their crystalline axes, change of stacking order and elongation of the interplanar spacing. The orientational disordering within the basal planes proceeds coordinately over a few layers with their layered correlation maintained. This process accompanies changes in bonding nature producing 5 member- and 7 member-atomic rings as appeared in fullerenes. This is so to speak ''self-restoring or reconstruction'' to maintain resonance bonds as strict as possible without the formation of dangling bonds. This paper reviews irradiation effects in graphite such as increase of hydrogen retention, loss of thermal conductivity and dimensional change on the bases of our new model, taking account of the changes of the bonding nature in irradiated graphite. (orig.)

  17. The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials.

    Science.gov (United States)

    Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason

    2015-11-01

    The conventional CaCl 2 -H 2 O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl 2 -H 2 O phase diagram. This study shows that the Ca(OH) 2 present in a hydrated portland cement can interact with CaCl 2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH) 2 -CaCl 2 -H 2 O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl 2 solution as the temperature changes. Specifically, the Ca(OH) 2 can react with CaCl 2 and H 2 O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl 2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).

  18. Laser shocks: A tool for experimental simulation of damage into materials

    Energy Technology Data Exchange (ETDEWEB)

    Boustie, M.; Cuq Lelandais, J. P.; Berthe, L.; Ecault, R. [Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France); CEA-DAM Valduc, 21120 Is-sur-Tille (France); Laboratoire Procedes et Ingenierie en Mecanique et Materiaux (CNRS), Arts et Metiers ParisTech, 151 bd de l' Hopital, 75013 PARIS (France); Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France)

    2012-07-30

    High power laser irradiation of solids results in a strong shock wave propagation, driving very high amplitude pressure loadings with very short durations. These particular characteristics offer the possibility to study the behaviour of matter under extreme dynamic conditions in continuity with what is possible with the conventional generators of shock (launchers of projectiles, explosives). An advantage of laser shocks is a possible recovery of the shocked samples presenting the metallurgical effects of the shock in most cases. We introduce the principle of the laser shock generation, the characterization of these shocks, the principal mechanisms and effects associated with their propagation in the solids. We show how laser shocks can be a laboratory tool for simulating shock effects at ultra high strain rate, providing a high in information experimental layout for validation of damage modelling on an extended strain rate range compared to conventional shock generators. New data have been obtained with ultra short femtosecond range irradiation. Experimental data gathered through post mortem observation, time resolved velocity measurement are shown along with numerical associated simulations, showing the possibility to predict the damage behaviour of metallic targets under extreme strain rate up to 10{sup 8} s{sup -1}.

  19. Self-Healing Structural Materials for Damage Tolerant Aerospace Vehicles: Mechanoresponsive healing polymers

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials that are capable of puncture healing upon impact show great promise for space exploration applications wherein an internal breach caused by micrometeoroid...

  20. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  1. Creep damage in welds of X 20 CrMoV 12 1 steel. Part 2 - Studies of long term service exposed material and damage data base and calculation of damage distribution and damage resistance; Krypskador i svetsar av X 20 CrMoV 12 1 staal. Etapp 2 - Studier av lingtidspiverkat material och skadedatabas samt berakning av skadefordelning och skadetilighet

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Borggreen, Kjeld; Weilin Zang; Nilsson, Henrik; Samuelson, Aake

    2004-09-01

    The present project has been consisted of the following pieces of work on welds of X20 CrMoV 12 1: Analysis of, by use of replica testing, creep damage development in 368 welds in 11 Danish high pressure steam lines with operation up to 200,000 h. Metallographic investigations of four welds from a retired live steam line with approximately 182 000 h in operation. - Evaluation of the influence of the two most common etching methods on the interpretation of creep cavitation. Analysis of the time security of the material, i.e. influence of enhanced temperature or stress on creep life time. Finite element simulations of the creep behaviour of X20 welds where effects of HAZ creep properties, system stresses and degree of multiaxiality in the rupture criterion are studied. In addition a literature study on publications of creep life time in X20 steel was performed in a first, already reported part of the project. The results of the comprehensive replica testing and the metallographic investigations show clear-cut that welds of this material have an excellently long creep life that indeed will reach 200,000 h. The creep damage at that time is in general very limited. The typical creep life for welds of X20 can be evaluated to at least 250,000 h. The reason for that it is not possible to evaluate an even longer creep life is the fact that creep testing and finite element simulations show that creep elongation and creep damage will accelerate considerably later in the creep life than some low alloy steels. In the worst case this acceleration could start already just after 200,000 h. It is also demonstrated that welds of the X20 steel can stand system stresses much better than low alloy steels. Recommendations for how and when inspections and testing of welds of the current material should be performed have been issued. They have been adapted to the findings in the project. The recommendations can, as long as severe damage is absent, allow for longer inspection intervals

  2. New concept of damage evaluation method for core internal materials considering radiation induced stress relaxation (1). Experiments and modeling of radiation effects

    International Nuclear Information System (INIS)

    Miwa, Yukio; Kondo, Keietsu; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-01-01

    In order to build the new concept of material damage evaluation method, synergistic effect of radiation and residual stress on material degradation was estimated experimentally, and the effect of radiation induced stress relaxation on retardation of material degradation was observed. (author)

  3. Standard practice for determining damage-Based design Stress for fiberglass reinforced plastic (FRP) materials using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice details procedures for establishing the direct stress and shear stress damage-based design values for use in the damage-based design criterion for materials to be used in FRP vessels and other composite structures. The practice uses data derived from acoustic emission examination of four-point beam bending tests and in-plane shear tests (see ASME Section X, Article RT-8). 1.2 The onset of lamina damage is indicated by the presence of significant acoustic emission during the reload portion of load/reload cycles. "Significant emission" is defined with historic index. 1.3 Units - The values stated in inch-pound units are to be regarded as standard. The values given in brackets are mathematical conversions to SI units which are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health pr...

  4. Diamond Particle Detector Properties during High Fluence Material Damage Tests and their Future Applications for Machine Protection in the LHC

    CERN Document Server

    Burkart, F; Borburgh, J; Dehning, B; Di Castro, M; Griesmayer, E; Lechner, A; Lendaro, J; Loprete, F; Losito, R; Montesano, S; Schmidt, R; Wollmann, D; Zerlauth, M

    2013-01-01

    Experience with LHC machine protection (MP) during the last three years of operation shows that the MP systems sufficiently protect the LHC against damage in case of failures leading to beam losses with a time constant exceeding 1ms. An unexpected fast beam loss mechanism, called UFOs [1], was observed, which could potentially quench superconducting magnets. For such fast losses, but also for better understanding of slower losses, an improved understanding of the loss distribution within a bunch train is required [2]. Diamond particle detectors with bunch-by-bunch resolution and high dynamic range have been developed and successfully tested in the LHC and in experiments to quantify the damage limits of LHC components. This paper will focus on experience gained in use of diamond detectors. The properties of these detectors were measured during high-fluence material damage tests in CERN’s Hi-RadMat facility. The results will be discussed and compared to the cross-calibration with FLUKA simulations. Future app...

  5. Characterization and Modeling of Neutron and Gamma-Ray Radiation Damage in Silicon Carbide Semi-Conductor Materials and Silica Optical Fibers at Cryogenic Temperature

    Data.gov (United States)

    National Aeronautics and Space Administration — When radiation is incident upon a material, it can knock atoms within the lattice out of their proper positions. However, this damage can often be overcome because...

  6. Neutron spectra calculation in material in order to compute irradiation damage

    International Nuclear Information System (INIS)

    Dupont, C.; Gonnord, J.; Le Dieu de Ville, A.; Nimal, J.C.; Totth, B.

    1982-01-01

    This short presentation will be on neutron spectra calculation methods in order to compute the damage rate formation in irradiated structure. Three computation schemes are used in the French C.E.A.: (1) 3-dimensional calculations using the line of sight attenuation method (MERCURE IV code), the removal cross section being obtained from an adjustment on a 1-dimensional transport calculation with the discrete ordinate code ANISN; (2) 2-dimensional calculations using the discrete ordinates method (DOT 3.5 code), 20 to 30 group library obtained by collapsing the 100 group a library on fluxes computed by ANISN; (3) 3-dimensional calculations using the Monte Carlo method (TRIPOLI system). The cross sections which originally came from UKNDL 73 and ENDF/B3 are now processed from ENDF B IV. (author)

  7. Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials

    International Nuclear Information System (INIS)

    Maeda, N.; Uchida, M.; Ohta, Y.; Yoshida, K.

    1996-01-01

    Positron annihilation line-shape analysis is sufficiently sensitive to detect microstructural defects such as vacancies and dislocations. We are developing a portable positron annihilation system and applying this technique to fatigue damage in type 316 stainless steel and SA508 low alloy steel. The positron annihilation technique was found to be sensitive in the early fatigue life, i.e. up to 10% of the fatigue life, but showed little sensitivity in later stages of the fatigue life in type 316 stainless steel and SA508 low alloy steel. Type 316 stainless steel a higher positron annihilation sensitivity than that of SA508. It was considered that the amount of dislocation density change in the stainless steel was greater than that in the low alloy steel, because the initial microstructure contained a low dislocation density because of the solution heat treatment for the type 316 stainless steel. (orig.)

  8. Insects feeding on cadavers as an alternative source of human genetic material

    Directory of Open Access Journals (Sweden)

    Rafał Skowronek

    2015-03-01

    Full Text Available In some criminal cases, the use of classical sources of human genetic material is difficult or even impossible. One solution may be the use of insects, especially blowfly larvae which feed on corpses. A recent review of case reports and experimental studies available in biomedical databases has shown that insects can be a valuable source of human mitochondrial and genomic deoxyribonucleic acid (DNA, allowing for an effective analysis of hypervariable region (HVR sequences and short tandem repeat (STR profiles, respectively. The optimal source of human DNA is the crop (a part of the gut of active third-instar blowfly larvae. Pupae and insect faeces can be also used in forensic genetic practice instead of the contents of the alimentary tract.

  9. Damage monitoring of aircraft structures made of composite materials using wavelet transforms

    Science.gov (United States)

    Molchanov, D.; Safin, A.; Luhyna, N.

    2016-10-01

    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  10. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...... driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...

  11. Modelling of pavement materials on steel decks using the five-point bending test: Thermo mechanical evolution and fatigue damage

    International Nuclear Information System (INIS)

    Arnaud, L; Houel, A

    2010-01-01

    This paper deals with the modelling of wearing courses on steel orthotropic decks such as the Millau viaduct in France. This is of great importance when dealing with durability: due to the softness of such a support, the pavement is subjected to considerable strains that may generate top-down cracks in the layer at right angles of the orthotropic plate stiffeners and shear cracks at the interface between pavement and steel. Therefore, a five-point bending fatigue test was developed and improved since 2003 at the ENTPE laboratory, to test different asphalt concrete mixes. This study aims at modelling the mechanical behavior of the wearing course throughout the fatigue test by a finite element method (Comsol Multiphysics software). Each material - steel, sealing sheet, asphalt concrete layer - is considered and modelled. The modelling of asphalt concrete is complex since it is a heterogeneous material, a viscoelastic medium and it thermosensitive. The actual characteristics of the asphalt concrete (thermo physical parameter and viscoelastic complex modulus) are determined experimentally on cylindrical cores. Moreover, a damage law based on Miner's damage is included in the model. The modelling of the fatigue test leads to encouraging results. Finally, results from the model are compared to the experimental data obtained from the five-point bending fatigue test device. The experimental data are very consistent with the numerical simulation.

  12. Multi-scale modelling of thermal shock damage in refractory materials

    NARCIS (Netherlands)

    Özdemir, I.

    2009-01-01

    Refractories are high-temperature resistant materials used extensively in many engineering structures and assemblies in a wide spectrum of applications ranging from metallurgical furnace linings to thermal barrier coatings. Such structures are often exposed to severe thermal loading conditions in

  13. Genetic relationship of organic bases of the quinoline and isoquinoline series from lignite semicoking tars with the initial biological material

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Podshibyakin, S.I.; Domogatskii, V.V.; Shvykin, A.Y.; Shavyrina, O.A.; Chilachava, K.B. [Leo Tolstoy State Pedagog University, Tula (Russian Federation)

    2002-07-01

    The genetic relationship of quinoline and isoquinoline compounds present in semicoking tars of Kimovsk lignites (near-Moscow fields) with the initial vegetable material is discussed. Transformation pathways of the native compounds in the course of lignite formation are suggested.

  14. Inert materials for the GFR fuel. Characterizations, chemical interactions and irradiation damage

    International Nuclear Information System (INIS)

    Audubert, Fabienne; Carlot, Gaoelle; Lechelle, Jacques; David, Laurent; Gomes, Severine

    2005-01-01

    In the framework of an extensive R and D Program on GFR fuel, studies on inert materials have been performed at the French Atomic Energy Commission (CEA). The inert materials would be associated with the fuel with the aim of featuring an efficient barrier to radiotoxic species with regard to the cooling circuit of the reactor. Potential matrices identified for dispersion fuels or particles fuels are SiC, TiN, ZrN, ZrC, TiC. Physical microstructural and thermal properties have been determined in order to evaluate elaboration process effects. The evolution under irradiation of thermal properties (such as conductivity, diffusivity) of the materials has been studied using heavy ions to simulate fission product irradiation. After irradiation, scanning thermal microscopy is used to investigate the thermal degradation of the materials. Thermal conductivity variations were obtained on TiC irradiated with krypton ion at an energy of 86 MeV and a fluence of 5.10 15 ions.cm -2 . They are quantified at 19 W.m -1 .K -1 . On other materials such as SiC, ZrC, TiN, no thermal conductivity contrast was shown. Reactivity between the inert matrix (SiC or TiN) and the fuel (U, Pu)N have been evaluated on powders and on ceramic samples in contact by a thermal treatment under several atmospheres. It was shown that SiC reacts with (U, Pu)N in various atmospheres making secondary phases as PuSi 2 , USi 2 , U 20 Si 16 C 3 . TiN behaviour seems to be better: the only reactivity which may take place would be a variation of the nitrogen stoichiometry in TiN and (U, Pu)N at the interface. (author)

  15. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  16. Correlating TEM images of damage in irradiated materials to molecular dynamics simulations

    International Nuclear Information System (INIS)

    Schaeublin, R.; Caturla, M.-J.; Wall, M.; Felter, T.; Fluss, M.; Wirth, B.D.; Diaz de la Rubia, T.; Victoria, M.

    2002-01-01

    TEM image simulations are used to couple the results from molecular dynamics (MD) simulations to experimental TEM images. In particular we apply this methodology to the study of defects produced during irradiation. MD simulations have shown that irradiation of FCC metals results in a population of vacancies and interstitials forming clusters. The limitation of these simulations is the short time scales available, on the order of 100 s of picoseconds. Extrapolation of the results from these short times to the time scales of the laboratory has been difficult. We address this problem by two methods: we perform TEM image simulations of MD simulations of cascades with an improved technique, to relate defects produced at short time scales with those observed experimentally at much longer time scales. On the other hand we perform in situ TEM experiments of Au irradiated at liquid-nitrogen temperatures, and study the evolution of the produced damage as the temperature is increased to room temperature. We find that some of the defects observed in the MD simulations at short time scales using the TEM image simulation technique have features that resemble those observed in laboratory TEM images of irradiated samples. In situ TEM shows that stacking fault tetrahedra are present at the lowest temperatures and are stable during annealing up to room temperature, while other defect clusters migrate one dimensionally above -100 deg. C. Results are presented here

  17. The materials concept in German light water reactors. A contribution to plant safety, economic performance and damage prevention

    International Nuclear Information System (INIS)

    Ilg, Ulf

    2008-01-01

    Major decisions taken as early as in the planning and construction phases of nuclear power plants may influence overall plant life. Component quality at the beginning of plant life is determined very much also by a balanced inclusion of the 'design, choice of materials, manufacturing and inspection' elements. One example of the holistic treatment of design, choice of material, and manufacture of important safety-related components in pressurized water reactors is the reactor pressure vessel (RPV) in which the ferritic compound tubes, with inside claddings, for the control rod drive nozzles are screwed into the vessel top. Also the choice of Incoloy 800 for the steam generator tubes, and the design of the main coolant pipes with inside claddings as seamless pipe bends / straight pipes with integrated nozzles connected to mixed welds with austenitic pipes are other special design features of the Siemens/KWU plants. A demonstrably high quality standard by international comparison to this day has been exhibited by the austenitic RPV internals of boiling water reactors, which were made of a low-carbon Nb-stabilized austenitic steel grade by optimum manufacturing technologies. The same material is used for backfitting austenitic pipes. Reliable and safe operation of German nuclear power plants has been demonstrated for more than 4 decades. One major element in this performance is the materials concept adopted in Germany also in the interest of damage prevention. (orig.)

  18. Development of damage evaluation method on the brittle materials for constructions using microscopic structural dynamics and probability theory

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1997-01-01

    The conventional stress analysis evaluation of the ceramic apparatuses is due to a perfect model of continuous mechanical materials. Such approximate and simplified treatment is thought to be unsufficient with the following two reasons. At first, because of changes of materials mechanical properties with manufacturing conditions and presence of limit in experimentalismic understanding, establishment of quantitative guideline for improvement of materials and structures and general understanding of thermo-mechanical property change due to neutron radiation becomes difficult. The second, because of statistical change of mechanical property and others containing fracture condition at various loading types, judgement standard of conventional deterministic evaluation is apt to be conservative and causes inferior performance and economics of the constructions under their using conditions. Therefore, in this study, following two basic approaches are planned; 1) Preparation of material deformation and fracture model considering correlation between microscopic/mesoscopic damage and macroscopic behavior, and 2) Improvement of the finite element method calculation due to parallel treatment for soundness and reliability evaluation of the construction. (G.K.)

  19. Nondestructive indication of fatigue damage and residual lifetime in ferromagnetic construction materials

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kovářík, O.; Vértesy, G.; Kadlecová, Jana

    2014-01-01

    Roč. 25, č. 6 (2014), "065601-1"-"065601-10" ISSN 0957-0233. [International Symposium on Measurement Technology and Intelligent Instruments /11./ (ISMTII). Aachen, 01.07.2013-03.07.2013] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic nondestructive evaluation * ferromagnetic construction materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.433, year: 2014

  20. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Science.gov (United States)

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  1. DART, a BCA code to assess and compare primary irradiation damage in nuclear materials submitted to neutron and ion flux - 02002

    International Nuclear Information System (INIS)

    Luneville, L.; Simeone, D.

    2016-01-01

    When a material is subjected to a flux of high-energy particles, its constituent atoms can be knocked from their equilibrium positions with a wide range of energies, depending on the exact nature of the collision. The spectrum of damage energy, derived from the exact knowledge of the recoil spectra for each nuclear reaction occurring in the solid, constitutes a vital data set required for understanding how materials evolve under irradiation. The knowledge of such damage energy is relevant to compare the impact of different facilities on the structural behavior and relevant properties of materials. The DART code was developed for two distinct reasons: the first one was a correct determination of the Primary Knocked on Atoms (PKA) spectrum from reliable cross section data libraries and the second was a crude estimation of the damage energy induced by different irradiations. This last term can be a quick estimation of radiation damage produced in the same material by different nuclear plants and particle accelerators. Based on the Binary Collision Approximation, this code allows computing the primary spectra produced by neutrons, ions and electrons as well as the damage energy deposited by these particles in a poly atomic material. It is then a tool to compare radiation damage induced in nuclear reactors as well as in ion beam facilities. This brief paper is followed by the slides of the presentation

  2. Experimental Study of Plasma-Surface Interaction and Material Damage Relevant to ITER Type I Elms

    International Nuclear Information System (INIS)

    Makhlai, V.A.; Bandura, A.N.; Byrka, O.V. and others; Landman, I.; Neklyudov, I.M.

    2006-01-01

    The paper presents experimental investigations of main features of plasma surface interaction and energy transfer to the material surface in dependence on plasma heat loads. The experiments were performed with QSPA repetitive plasma pulses of the duration of 0.25 ms and the energy density up to 2.5 MJ/m 2 . Surface morphology of the targets exposed to QSPA plasma screams is analyzed. Relative contribution of the Lorentz force and plasma pressure gradient to the resulting surface profile is discussed. development of cracking on the tungsten surface and swelling of the surface are found to be in strong dependence on initial temperature of the target

  3. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material (DNA). Initial assessment of plant DNA adducts as biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, S.D.; Clauss, T.W.; Fellows, R.J.; Cataldo, D.A.

    1995-08-01

    Genetic damage to deoxyribonucleic acid (DNA) has long been suspected of being a fundamental event leading to cancer. A variety of causal factors can result in DNA damage including photodimerization of base pairs, ionizing radiation, specific reaction of DNA with environmental pollutants, and nonspecific oxidative damage caused by the action of highly reactive oxidizing agents produced by metabolism. Because organisms depend on an unadulterated DNA template for reproduction, DNA repair mechanisms are an important defense for maintaining genomic integrity. The objective of this exploratory project was to evaluate the potential for TNT to form DNA adducts in plants. These adducts, if they exist in sufficient quantities, could be potential biomarkers of munitions exposure. The ultimate goal is to develop a simple analytical assay for the determination of blomarkers that is indicative of munitions contamination. DNA repair exists in dynamic equilibrium with DNA damage. Repair mechanisms are capable of keeping DNA damage at remarkably low concentrations provided that the repair capacity is not overwhelmed.

  4. Nest materials as a source of genetic data for avian ecological studies

    Science.gov (United States)

    Pearce, J.M.; Fields, R.L.; Scribner, K.T.

    1997-01-01

    We examined the utility of feathers and egg shell membranes, deposited in the nests of Spectacled Eiders (Somateria fischeri), as a source of DNA for genetic studies at both the population and individual level. The potential for feather DNA contamination as a result of female behavioral interactions (e.g. nest parasitism), reuse of nest sites from previous years, or other unknown occurrences was acknowledged and specifically tested. DNA was successfully extracted from both feathers and egg shell membranes and waterfowl microsatellite loci were used to construct individual genotypes. We found no difference in the genotypes obtained from nest feathers or blood of the incubating female. Detection of nest feather contamination was possible with as little as one feather when samples from multiple females were intentionally mixed. Triplicate DNA extractions from 33 nests provided a means of detecting contamination in 3 nests. Egg membranes proved a viable source of offspring DNA and can contribute valuable data to investigations of parentage when assayed jointly with maternal feather DNA. Nest materials provide an efficient, non-invasive method of genetic sampling that can be readily incorporated into field research. However, the natural history traits and mating strategies of a species must be considered during sample collection to identify the possible sources of nest materials (e.g., paternal, maternal, parasite, etc.). Specific experiments should also be designed to test sampling assumptions.

  5. Ancient DNA in historical parchments - identifying a procedure for extraction and amplification of genetic material.

    Science.gov (United States)

    Lech, T

    2016-05-06

    Historical parchments in the form of documents, manuscripts, books, or letters, make up a large portion of cultural heritage collections. Their priceless historical value is associated with not only their content, but also the information hidden in the DNA deposited on them. Analyses of ancient DNA (aDNA) retrieved from parchments can be used in various investigations, including, but not limited to, studying their authentication, tracing the development of the culture, diplomacy, and technology, as well as obtaining information on the usage and domestication of animals. This article proposes and verifies a procedure for aDNA recovery from historical parchments and its appropriate preparation for further analyses. This study involved experimental selection of an aDNA extraction method with the highest efficiency and quality of extracted genetic material, from among the multi-stage phenol-chloroform extraction methods, and the modern, column-based techniques that use selective DNA-binding membranes. Moreover, current techniques to amplify entire genetic material were questioned, and the possibility of using mitochondrial DNA for species identification was analyzed. The usefulness of the proposed procedure was successfully confirmed in identification tests of historical parchments dating back to the 13-16th century AD.

  6. Feasibility study on diagnosis of material damage using bulk wave mixing technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Seok; Cho, Youn Ho [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

  7. Novel Method to Characterize and Model the Multiaxial Constitutive and Damage Response of Energetic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshige, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rabbi, Md Fazle [Univ. of Texas, El Paso, TX (United States); Kaneshige, Michael J. [Univ. of Texas, El Paso, TX (United States); Mach, Robert [Univ. of Texas, El Paso, TX (United States); Catzin, Carlos A. [Univ. of Texas, El Paso, TX (United States); Stewart, Calvin M. [Univ. of Texas, El Paso, TX (United States)

    2017-12-01

    Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacements and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.

  8. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    Science.gov (United States)

    El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.

    2015-12-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.

  9. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    International Nuclear Information System (INIS)

    Amri, A El; Haddou, M E Y; Hanafi, I; Khamlichi, A

    2015-01-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations. (paper)

  10. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    Science.gov (United States)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical

  11. Single cell gel electrophoresis as a tool to assess genetic damage in Heleobia cf. australis (Mollusca: Gastropoda as sentinel for industrial and domestic pollution in Montevideo bay (Uruguay

    Directory of Open Access Journals (Sweden)

    Silvia Villar

    2015-09-01

    Full Text Available AbstractThe knowledge of the extent of DNA damage in aquatic organisms in polluted areas is an important issue because contamination may alter their health at sublethal levels. Although molluscs have been widely used to monitor water pollution, there are no records of in vivo genotoxicity studies. Heleobia cf. australis, is distributed in almost all Uruguayan coastal ecosystems, including highly polluted sites. The comet assay is a damage genetic biomarker based on the migration of negatively charged DNA fragments produced by mutagenic agents in individual cells. Live individuals were collected in the Montevideo Bay (impacted area and Laguna Garzón (control to analyze the presence of mutagenic agents in the former site through comet assay. Cells from organisms of the impacted area showed significantly higher levels of genetic damage than those obtained in the control population, measured by percentage of DNA in the tail. Although preliminary, this approach supports the idea that H. cf. australis could be used as a sentinel to evaluate the presence of mutagenic agents in estuarine environments, alerting to the impact of contamination in its early stages.

  12. Cellular and genetic effects and recovery of heat-damaged cells of Saccharomyces cerevisiae by low intensity electromagnetic radiation at 915 MHz

    International Nuclear Information System (INIS)

    Sheikh, I.H.

    1984-01-01

    Studies were conducted on two genetically well known strains of Saccharomyces cerevisiae (Wild Type) and repair deficient mutant (UVS). Results obtained showed clear genetic difference between normal and mutants based on UV sensitivity, percent survival at elevated temperatures and high intensity electromagnetic radiation. At the cellular level, both strains showed a consistent increase in the recovery rate of heat damaged cells when exposed to low intensity FMR as compared to sham (non irradiated cells) at 915 MHz. The percent recovery of wild type was higher than mutant. At the molecular level, the uptake of tritiated uridine into thermally damaged cells which were recovered by low level EMR was significantly higher than sham. Total RNA isolated from irradiated cells and sham showed visible differences in the intensity of RNA bands. Gross quantitative analyses suggest more RNA production in radiation recovered cells as compared to sham. Results presented in this dissertation provide conclusive evidence that low level microwave radiation can be used in the recovery of heat damaged cells

  13. Action of the chlorophyllin on the genetic damage induced by gamma radiation in germinal cells of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Cruces, M.P.; Pimentel, A.E.; Moreno, A.; Moreno, R.

    2003-01-01

    The obtained results using somatic cells, they have evidenced that the chlorophyllin (CHLN) it can act inhibiting or increasing the damage caused by different mutagens. The objective of this investigation is to evaluate the effect of the CHLN on the damage induced by gamma radiation in germinal cells of Drosophila. Two tests were used, the lost of the X chromosome and the conventional test of lethal recessive bound to the sex (LRLS); both with a system of litters. The obtained results in both essays, indicated that the CHLN doesn't reduce the damage induced by the gamma radiation in none of the cellular monitored states. (Author)

  14. Deuterium ion irradiation damage and deuterium trapping mechanism in candidate stainless steel material (JPCA2) for fusion reactor

    International Nuclear Information System (INIS)

    Ashizuka, Norihiro; Kurita, Takaaki; Yoshida, Naoaki; Fujiwara, Tadashi; Muroga, Takeo

    1987-01-01

    An improved austenitic stainless steel (JPCA), a candidate material for fusion reactor, is irradiated at room temperature with deuterium ion beams. Desorption spectra of deuterium gas is measured at various increased temperatures and defects formed under irradiation are observed by transmission electron microscopy to determine the mechanism of the thermal release of deuteriums and the characteristics of irradiation-induced defects involved in the process. In the deuterium deportion spectra observed, five release stages are found to exist at 90 deg C, 160 deg C, 220 deg C, 300 deg C and 400 deg C, referred to as Stage I, II, III, IV and V, respectively. Stage I is interpreted as representing the release of deuteriums trapped in point defects (presumably vacancies) formed under irradiation. The energy of desorption from the trapping sites is estimated at 0.8 eV. Stage II is concluded to be associated with the release of deuteriums trapped in a certain kind of existing defects. Stage III involves the release of deuteriums that are trapped in dislocations, dislocation loops or dislocated portions of stacking fault tetrahedra. This release occurs significantly in processed materials and other materials irradiated with high energy ion beams that may cause cascade damage. Stage IV is interpreted in terms of thermal decomposition of small deuterium clusters. Stage V is associated with the decomposition of rather large deuterium clusters grown on the {111} plane. (Nogami, K.)

  15. The Market Gate of Miletus: damages, material characteristics and the development of a compatible mortar for restoration

    Science.gov (United States)

    Siegesmund, Siegfried; Middendorf, Bernhard

    2008-12-01

    The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.

  16. Genetic polymorphisms and possible gene-gene interactions in metabolic and DNA repair genes: Effects on DNA damage

    Czech Academy of Sciences Publication Activity Database

    Naccarati, Alessio; Souček, P.; Štětina, R.; Haufroid, V.; Kumar, R.; Vodičková, Ludmila; Trtková, K.; Dušinská, M.; Hemminki, K.; Vodička, Pavel

    2006-01-01

    Roč. 593, 1-2 (2006), s. 22-31 ISSN 0027-5107 R&D Projects: GA ČR GA310/03/0437 Institutional research plan: CEZ:AV0Z5039906 Keywords : Single-strand breaks * Genetic polymorphisms * Metabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.111, year: 2006

  17. Scoping of material damage with FISPACT-II and different nuclear data libraries: transmutation, activation, and PKAs

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Sublet, J.-Ch.

    2016-01-01

    The uncertainty associated with nuclear data, and the simulated predictions of transmutation, activation, and primary damage events derived from them, is not only that derived based on the quantified errors in a particular nuclear library. Uncertainty also manifests in comparisons between different libraries – if they do not produce the same results, then, since it often impossible to know a priori which library is best, predicted results must be considered to have an uncertainty (at least) as much as the variation between libraries. Of course, this situation is further complicated by the fact that it is not always possible, or practical, to produce results with multi-libraries. There is thus a need, within the nuclear data community, to assess different libraries, and make recommendations about the best choice of library for particular applications, in this case material science

  18. A preliminary study on radiation damage effect in ceramics composite materials as innovative basic research using the HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Baba, Shinichi; Aihara, Jun; Arai, T.; Hayashi, K.; Ishino, S.

    1999-01-01

    An innovative basic research concerning with the basic science and applied technology is planned using the High Temperature Engineering Test Reactor (HTTR), which provides the advantage of not only a high temperature irradiation field above 400degC but also a large irradiation space. The first irradiation experiment is to be performed in 2001. Many research themes with a wide variety of scientific and technological interests are proposed as the innovative basic research. For the purpose of demonstration of scientific feasibility and advantages in the HTTR irradiation, several research themes have been being conducted as the preliminary studies. In this paper the outline of the innovative basic research is described, and the preliminary study on the radiation damage mechanism of ceramic composite materials is presented. (author)

  19. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S.; Pestchanyi, S.E.; Bazylev, B.N [Forschungszentrum Karlsruhe (Germany). Inst. for Pulsed Power and Microwave Technology; Safronov, V.M. [Troitsk Inst. for Innovation and Fusion Research (TRINITI) (Russian Federation); Garkusha, I.E. [Kharkov Inst. of Physics and Technology (KIPT) (Ukraine). Inst. of Plasma Physics

    2004-08-01

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 10{sup 2} MJ/m{sup 2} on a time scale {tau} of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q {approx} 3MJ/m{sup 2} and {tau}{approx}0.3 ms; deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q=10-30MJ/m{sup 2} and {tau} = 0.03-0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  20. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Science.gov (United States)

    Landman, I. S.; Pestchanyi, S. E.; Safronov, V. M.; Bazylev, B. N.; Garkusha, I. E.

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 102 MJ/m 2 on a time scale Ïä of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q âe 1/4 3 MJ/m2 and Ïä âe 1/4 0.3 ms, deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q = 10–30 MJ/m2 and Ïä = 0.03–0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  1. The prediction of creep damage in type 347 weld metal. Part I: the determination of material properties from creep and tensile tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In the case of the time fraction approach the rupture strength is used to calculate creep damage, whereas creep ductility is used in the ductility exhaustion approach. In part I of this paper the methods that are used to determine these material properties are applied to some creep and constant strain rate tests on a Type 347 weld metal. In addition, new developments to the ductility exhaustion approach are described which give improved predictions of creep damage at failure in these tests. These developments use reverse modelling to determine the most appropriate creep damage model as a function of strain rate, stress and temperature. Hence, the new approach is no longer a ductility exhaustion approach but is a true creep damage model

  2. Genetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Childs, J.D.

    1980-01-01

    The genetic material in living organisms is susceptible to damage from a wide variety of causes including radiation exposure. Most of this damage is repaired by the organism; the residual damage and damage which is not correctly repaired can lead to genetic changes such as mutations. In lower organisms, most offspring carry an unaltered copy of the genetic information that was present in the parental organism, most of the genetic changes which do occur are not caused by natural background radiation, and the increase in frequency of genetic changes after irradiation at low-dose rates is directly proportional to total radiation dose. The same principles appear to be valid in mammals and other higher organisms. About 105 out of every 1000 humans born suffer from some genetic or partly-genetic condition requiring medical attention at some time. It has been estimated that approximately 1 person in every 2000 born carry a deleterious genetic mutation that was caused by the continued exposure of many generations of our ancestors to natural background radiation. On the same basis, it is predicted that the incidence of genetic diseases would be increased to 106 per 1000 in the children and grandchildren of radiation workers who were exposed to 1 rem per year commencing at age 18. However, there was no detectable change in the health and fitness of mice whose male ancestors were repeatedly exposed to high radiation doses up to 900 rem per generation. (auth)

  3. Detecting un-authorized genetically modified organisms (GMOs) and derived materials.

    Science.gov (United States)

    Holst-Jensen, Arne; Bertheau, Yves; de Loose, Marc; Grohmann, Lutz; Hamels, Sandrine; Hougs, Lotte; Morisset, Dany; Pecoraro, Sven; Pla, Maria; Van den Bulcke, Marc; Wulff, Doerte

    2012-01-01

    Genetically modified plants, in the following referred to as genetically modified organisms or GMOs, have been commercially grown for almost two decades. In 2010 approximately 10% of the total global crop acreage was planted with GMOs (James, 2011). More than 30 countries have been growing commercial GMOs, and many more have performed field trials. Although the majority of commercial GMOs both in terms of acreage and specific events belong to the four species: soybean, maize, cotton and rapeseed, there are another 20+ species where GMOs are commercialized or in the pipeline for commercialization. The number of GMOs cultivated in field trials or for commercial production has constantly increased during this time period. So have the number of species, the number of countries involved, the diversity of novel (added) genetic elements and the global trade. All of these factors contribute to the increasing complexity of detecting and correctly identifying GMO derived material. Many jurisdictions, including the European Union (EU), legally distinguish between authorized (and therefore legal) and un-authorized (and therefore illegal) GMOs. Information about the developments, field trials, authorizations, cultivation, trade and observations made in the official GMO control laboratories in different countries around the world is often limited, despite several attempts such as the OECD BioTrack for voluntary dissemination of data. This lack of information inevitably makes it challenging to detect and identify GMOs, especially the un-authorized GMOs. The present paper reviews the state of the art technologies and approaches in light of coverage, practicability, sensitivity and limitations. Emphasis is put on exemplifying practical detection of un-authorized GMOs. Although this paper has a European (EU) bias when examples are given, the contents have global relevance. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Taking into account of the aging and the damage in the size determination of composite materials structures

    International Nuclear Information System (INIS)

    Mercier, J.

    2006-11-01

    The aim of this study was to better understand the aging of glass fibres-epoxy composites exposed to humid conditions and loading so as to predict its effects on the lifetimes of composite structures. Water diffusion was first experimentally investigated by gravimetric method to determine water sorption kinetics for different humid conditions. A Fickian model of diffusion could describe the results obtained. Specimens, saturated at different levels, were mechanically characterised. Decreases of mechanical properties as a function of water uptake were revealed by tensile tests. Damage by cracking and the coupling with humidity were then studied. Differences between reversible and irreversible changes in properties were revealed and analysed in detail. A predictive model taking into account effects due to water and/or mechanical loading is proposed, using finite element method. As a first step, in modelling the diffusion process, the non-uniform water distribution across the composite are determined for any conditions (temperature, humidity, aging time). The resulting mechanical properties of the material, as a function of the absorbed water concentration, are determined in each point. Then, diffusion/mechanic coupled calculation allows to determine material global properties from properties at each point. It is then possible to predict continuous evolution of rigidity during aging time, at all stages of water absorption and matrix cracking, for any condition (temperature, humidity, thickness, mechanical loading level). (author)

  5. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms.

    Science.gov (United States)

    Bagryantseva, Yana; Novotna, Bozena; Rossner, Pavel; Chvatalova, Irena; Milcova, Alena; Svecova, Vlasta; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2010-11-10

    DNA integrity was investigated in the lymphocytes of 50 bus drivers, 20 garagemen and 50 controls using the comet assay with excision repair enzymes. In parallel, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 15-F(2t)-isoprostane levels in the urine and protein carbonyl levels in the plasma were assessed as markers of oxidative damage to DNA, lipids and proteins. Exposure to carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and volatile compounds was measured by personal samplers for 48 and 24h, respectively, before the collection of biological specimens. Both exposed groups exhibited a higher levels of DNA instability and oxidative damage to biological macromolecules than the controls. The incidence of oxidized lesions in lymphocyte DNA, but not the urinary levels of 8-oxodG, correlated with exposure to benzene and triglycerides increased this damage. Oxidative damage to lipids and proteins was associated with exposure to cPAHs and the lipid peroxidation levels positively correlated with age and LDL cholesterol, and negatively with vitamin C. The carriers of at least one variant hOGG1 (Cys) allele tended to higher oxidative damage to lymphocyte DNA than those with the wild genotype, while XPD23 (Gln/Gln) homozygotes were more susceptible to the induction of DNA strand breaks. In contrast, GSTM1 null variant seemed to protect DNA integrity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka.

    Science.gov (United States)

    Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio

    2015-09-01

    The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.

  7. The effect of ultrasound and its combination with radiation on the genetic material of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Silhankova, L.; Malkova-Kadlecova, Z.; Studlarova, Z.

    1978-01-01

    Ultrasonic radiation at 20 kHz with intensity 35 W/cm 2 and amplitude 15 to 25 μm applied to a diploid strain of Saccharomyces cerevisiae was found to act as a weak mutagen with maximum efficiency at the 20% survival of the cells. Under these conditions, the frequency of reversion of the suppressible allele ilv1-92 increased ten times, the frequency of mitotic gene conversion four times. Doses leading to survivals lower than 20% led to a slight increase in the frequency of cytoplasmic respiration-deficient mutants. Submutagenic doses applied immediately after γ or UV irradiation did not substantially increase the effect of these physical agents on the genetic material of the yeast strain investigated. Application of ultrasound prior to UV radiation did not considerably influence the effect of the UV radiation either. (author)

  8. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    Science.gov (United States)

    Shimizu, Katsuhiko

    2018-05-15

    Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, 2D fabrics, and 3D materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk.

  9. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1 with DNA damage response genes.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Flap endonuclease 1 (FEN1 is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.

  10. Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage

    International Nuclear Information System (INIS)

    Dobmann, G.; Kroening, M.; Theiner, W.; Willems, H.; Fiedler, U.

    1995-01-01

    In recent years, nondestructive testing techniques for materials characterization have been developed in Germany under the sponsorship of the Ministry of Research and Development, as part of the Reactor Safety Research Programme, in order to provide techniques for PSI and ISI that are sensitive and reliable, in particular with respect to the prediction of strength and toughness. As ferritic steels (pressure vessels and pipelines in the primary circuit) are of special interest, R and D was concentrated on micromagnetic techniques which are sensitive to the microstructure and its changes under service and/or repair conditions. In order to characterize microstructural states superimposed by residual stresses in an unambiguous way, numerical modelling was applied using advanced tools of mathematical approximation theory, i.e. multiregression algorithms and neural networks.For the detection of early creep damage in fossil power plant applications, i.e. micropores and their subsequent development to linked pores and microcracks, besides the micromagnetic techniques an ultrasonic technique was also applied and optimized for in situ applications on components such as pipe bends. Whereas the ultrasonic technique is sensitive to pore concentrations as small as about 0.2%, the parameters of the micromagnetic techniques are mainly influenced by temperature- and load-induced microstructural changes occurring in service, dependent on the steel quality. The techniques are applied at two pipe bends (steel grades 14MoV63 and X20CrMoV121) loaded under near practical conditions during seven inspection intervals between 2048h and 21000h to evaluate the progress of damage. (orig.)

  11. Ground water pollution by arsenic and its effects on health. Involvement of metabolic methylation in arsenic-induced genetic damage and tumorigenesis; Muki hiso no mechiru ka taisha to idenshi shogaisei narabini shuyo yuhatsusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K. [Nihon Univ., Tokyo (Japan)] Okada, S. [Shizuoka Prefecture (Japan)

    1997-07-10

    Drinking water contamination has become a worldwide problem. It is pointed out that re-evaluation of genetic damage with carcinogen is considered as an important problem particularly arsenic`s effects on health. To explain the genetic damage development mechanism of arsenic compound, results of the research conducted on the action of arsenic compound which develops during metabolic methylation process and inorganic arsenic are explained in this paper. The results of the study are summarized as follows. Arsenic genetic damage mutation is caused by dimethyl arsenic in main metabolism than inorganic arsenic. Lung DNA damage is induced by the interaction of O2 and arsenic peroxide radical. Dimethyl arsenic shows very important effect on lung cancer formation process which is induced based on 4-nitroquinoline-1-oxide (4NQO). It not only promotes lung cancer but it also plays an important role in malignant tumor`s mutation. 25 refs., 2 figs.

  12. Comparison of DNA Damage and Apoptosis Induced By Silver Nanoparticle-containing Dressing Materials During Wound Healing.

    Science.gov (United States)

    Choi, Young Suk; Gwak, Heui-Chul; Park, Jae Keun; Lim, Ji Yun; Yeo, Eui Dong; Park, Eunseok; Kim, Junyong; Lee, Young Koo

    2018-04-13

    than products A-C. Dressing materials containing AgNP have an antimicrobial effect. However, the authors observed that some AgNP dressings induced DNA damage and apoptosis. Although AgNP dressings did not cause significant acute apoptotic effects, they should be examined for cytotoxic effects in chronic wounds and should be used with caution when treating chronic wounds and those with low bacteria counts.

  13. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Battersby, C.; Dickson, R.; Jennings, R.; Kimmons, J.; Kozlowski, M. R.; Maricle, S.; Mouser, R.; Runkel, M.; Schwartz, S.; Sheehan, L. M.; Weinzapfel, C.

    1998-01-01

    The Laser Program at LLNL has developed automated facilities for damage testing optics up to 1 meter in diameter. The systems were developed to characterize the statistical distribution of localized damage performance across large-aperture National Ignition Facility optics. Full aperture testing is a key component of the quality assurance program for several of the optical components. The primary damage testing methods used are R:1 mapping and raster scanning. Automation of these test methods was required to meet the optics manufacturing schedule. The automated activities include control and diagnosis of the damage-test laser beam as well as detection and characterization of damage events

  14. Evaluation by instrumented indentation of the damage caused by gamma radiation on polymeric materials; Avaliacao por indentacao instrumentada dos danos causados pela radiacao gama em materiais polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.P.; Azevedo, E.C.; Miquelin, C.A.; Soboll, D.S., E-mail: helunica@yahoo.com.b [Universidade Tecnologica Federal do Parana (DAFIS/UTFPR), Curitiba, PR (Brazil). Dept. Academico de Fisica

    2010-07-01

    Several materials with densities close to water are used as phantoms in dosimetry. Such materials are damaged because they are exposed to radiation, the surface layers suffer the largest changes. This damage can be assessed by instrumented indentation. This paper investigates the variations in hardness and elastic modulus of samples of polymethyl-methacrylate, polyvinyl chloride, polyacetal and polypropylene before and after being irradiated with gamma radiation dose 500 Gy, using a Nanoindeter XP, with applied loads between 1 mN and 400 mN. The results are discussed correlating the variations in the mechanical properties of polymers with their applications. (author)

  15. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  16. Progress report on research and development work 1991 of the Institute of Genetics and Toxicology of Fissionable Materials, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    The present annual report describes the results of research work done by the Institute of Genetics and Toxicology of Fissionable Materials (IGT) in 1991. The following eight subjects were dealt with: genetic repair; genetic regulation; biological carcinogenesis; molecular genetics of eukaryontic genes; genetic mouse models for human illnesses; radiation toxicology of actinides; molecular and cellular environmental toxicology, and in vivo fractionation and speciation of actinides. (MG) [de

  17. Bilingual Cancer Genetic Education Modules for the Deaf Community: Development and Evaluation of the Online Video Material.

    Science.gov (United States)

    Boudreault, Patrick; Wolfson, Alicia; Berman, Barbara; Venne, Vickie L; Sinsheimer, Janet S; Palmer, Christina

    2018-04-01

    Health information about inherited forms of cancer and the role of family history in cancer risk for the American Sign Language (ASL) Deaf community, a linguistic and cultural community, needs improvement. Cancer genetic education materials available in English print format are not accessible for many sign language users because English is not their native or primary language. Per Center for Disease Control and Prevention recommendations, the level of literacy for printed health education materials should not be higher than 6th grade level (~ 11 to 12 years old), and even with this recommendation, printed materials are still not accessible to sign language users or other nonnative English speakers. Genetic counseling is becoming an integral part of healthcare, but often ASL users are not considered when health education materials are developed. As a result, there are few genetic counseling materials available in ASL. Online tools such as video and closed captioning offer opportunities for educators and genetic counselors to provide digital access to genetic information in ASL to the Deaf community. The Deaf Genetics Project team used a bilingual approach to develop a 37-min interactive Cancer Genetics Education Module (CGEM) video in ASL with closed captions and quizzes, and demonstrated that this approach resulted in greater cancer genetic knowledge and increased intentions to obtain counseling or testing, compared to standard English text information (Palmer et al., Disability and Health Journal, 10(1):23-32, 2017). Though visually enhanced educational materials have been developed for sign language users with multimodal/lingual approach, little is known about design features that can accommodate a diverse audience of sign language users so the material is engaging to a wide audience. The main objectives of this paper are to describe the development of the CGEM and to determine if viewer demographic characteristics are associated with two measurable aspects of

  18. Genetic resources as initial material for developing new soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    В. М. Кір’ян

    2016-12-01

    Full Text Available Purpose. To estimate genetic resources collection of soft winter wheat plants (new collection accessions of Ustymivka Experimental Station for Plant Production and select initial material for breeding of adaptive, productive and qualitative soft winter wheat varieties. Methods. Field experiment, laboratory testing. Results. The authors pre- sented results of study of over 1000 samples of gene pool of soft winter wheat from 25 countries during 2001–2005 in Ustymivka Experimental Station for Plant Production of Plant Production Institute nd. a. V. Ya. Yuriev, NAAS of Ukraine for a complex of economic traits. More than 400 new sources with high adaptive properties were selected that combine traits of high productivity and high quality of grain, early ripening, resistance to biotic and abiotic fac- tors (the assessment of samples for 16 valuable traits is given. The selected material comes from various agro-cli- matic zones, including zones of unsustainable agriculture. Conclusions. Recommended sources of traits that have breeding value will allow to enrich high-quality assortment of wheat and considerably accelerate breeding process du- ring development of new soft winter wheat varieties.

  19. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su; Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk

    2016-01-01

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats

  20. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    Science.gov (United States)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  1. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  2. An integrative study of the genetic, social and environmental determinants of chronic kidney disease characterized by tubulointerstitial damages in the North Central Region of Sri Lanka.

    Science.gov (United States)

    Nanayakkara, Shanika; Senevirathna, S T M L D; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Gunarathne, E D L; Yan, Junxia; Hitomi, Toshiaki; Muso, Eri; Komiya, Toshiyuki; Harada, Kouji H; Liu, Wanyang; Kobayashi, Hatasu; Okuda, Hiroko; Sawatari, Hideyuki; Matsuda, Fumihiko; Yamada, Ryo; Watanabe, Takao; Miyataka, Hideki; Himeno, Seiichiro; Koizumi, Akio

    2014-01-01

    Previous investigations on chronic kidney disease of unknown etiology characterized by tubulointerstitial damages (CKDu) in the North Central Region (NCR) of Sri Lanka have supported the involvement of social, environmental and genetic factors in its pathogenesis. We conducted a social-environmental-and-genetic epidemiology study on a male population in NCR to investigate the genetic and environmental contributors. We recruited 311 case-series patients and 504 control candidates. Of the 504 control candidates, 218 (43%) were eliminated because of the presence of hypertension, proteinuria, high HbA1c, high serum creatinine or high alpha-1 microglobulin in urine. None of 18 metals measured (μg//) in urine, including Cd, As and Pb, showed significantly higher concentrations in cases compared with controls. As speciation results showed that 75-80% of total urinary As was in the form of arsenobetaine, which is non-toxic to humans. None of the metal concentrations in drinking water samples exceeded guideline values. A genome-wide association study (GWAS) was conducted to determine the genetic contributors. The GWAS yielded a genome-wide significant association with CKDu for a single nucleotide polymorphism (SNP; rs6066043; p=5.23 × 10(-9) in quantitative trait locus analysis; p=3.73 × 10(-9) in dichotomous analysis) in SLC13A3 (sodium-dependent dicarboxylate transporter member 3). The population attributable fraction and odds ratio for this SNP were 50% and 2.13. Genetic susceptibility was identified as the major risk factor for CKDu. However, 43% of the apparently healthy male population suffers from non-communicable diseases, suggesting their possible influence on CKDu progression.

  3. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  4. Modeling of the fatigue damage accumulation processes in the material of NPP design units under thermomechanical unstationary effects. Estimation of spent life and forecast of residual life

    International Nuclear Information System (INIS)

    Kiriushin, A.I.; Korotkikh, Yu.G.; Gorodov, G.F.

    2002-01-01

    Full text: The estimation problems of spent life and forecast of residual life of NPP equipment design units, operated at unstationary thermal force loads are considered. These loads are, as a rule, unregular and cause rotation of main stress tensor platforms of the most loaded zones of structural elements and viscoelastic plastic deformation of material in the places of stresses concentrations. The existing engineering approaches to the damages accumulation processes calculation in the material of structural units, their advantages and disadvantages are analyzed. For the processes of fatigue damages accumulation a model is proposed, which allows to take into account the unregular pattern of deformation multiaxiality of stressed state, rotation of main platforms, non-linear summation of damages at the loading mode change. The model in based on the equations of damaged medium mechanics, including the equations of viscoplastic deformation of the material and evolutionary equations of damages accumulation. The algorithms of spent life estimation and residual life forecast of the controlled equipment and systems zones are made on the bases of the given model by the known real history of loading, which is determined by real model of NPP operation. The results of numerical experiments on the basis of given model for various processes of thermal force loads and their comparison with experimental results are presented. (author)

  5. Molecular genetics

    International Nuclear Information System (INIS)

    Kubitschek, H.E.

    1975-01-01

    Progress is reported on studies on the nature and action of lethal and mutagenic lesions in DNA and the mechanisms by which these are produced in bacteria by ionizing radiation or by decay of radioisotopes incorporated in DNA. Studies of radioisotope decay provide the advantages that the original lesion is localized in the genetic material and the immediate physical and chemical changes that occur at decay are known. Specific types of DNA damage were related to characteristic decay properties of several radioisotopes. Incorporated 125 I, for example, induces a double-stranded break in DNA with almost every decay, but causes remarkably little damage of any other kind to the DNA. (U.S.)

  6. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage.

    Science.gov (United States)

    Northwood, Ewen; Fisher, John

    2007-08-01

    The wear of the biomaterial/cartilage interface is vital for the development of innovative chondroplasty therapies. The aim of this study was to investigate potential chondroplasty biomaterials when sliding against natural articular cartilage under uniaxial reciprocating and multi-directional rotation/reciprocating motions. Three biphasic hydrogels were compared to articular cartilage (negative control) and stainless steel (positive control). Friction was measured by means of a simple geometry friction and wear simulator. All tests were completed in 25% bovine serum at 20 degrees C. Mechanical alterations to the surface structure were quantified using surface topography. Articular cartilage produced a constant friction value of 0.05 (confidence interval=0.015) with and without rotation. Stainless steel against articular cartilage produced an increase in friction over time resulting in a peak value of 0.7 (confidence interval=0.02) without rotation, increasing to 0.88 (confidence interval=0.03) with rotation. All biphasic hydrogels produced peak friction values lower than the positive control and demonstrated no difference between uni- and multi-directional motion. Degradation of the opposing cartilage surface showed a significant difference between the positive and negative controls, with the greater cartilage damage when sliding against stainless steel under uni-directional motion. The lower friction and reduction of opposing cartilage surface degradation with the potential chondroplasty biomaterials can be attributed to their biphasic properties. This study illustrated the importance of biphasic properties within the tribology of cartilage substitution materials and future work will focus on the optimisation of biphasic properties such that materials more closely mimic natural cartilage.

  7. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, J.

    1988-09-01

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate result previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.

  8. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Goricar, Katja; Erculj, Nina; Zadel, Maja; Dolzan, Vita

    2012-01-01

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  9. Analysis of the ways to decrease residual stresses on heat exchanging tubes and steam generator collector surfaces for reducing the material corrosion damage

    International Nuclear Information System (INIS)

    Stepanov, G.V.; Kharchenko, V.V.; Shatco, A.A.; Dranchenko, V.V.; Titov, V.F.

    1994-01-01

    Computer simulations have been carried out to analyze the effect of heat exchanger tube pressing forming process into a steam generator collector, on its residual stresses and strains. The program takes into consideration kinetic process peculiarities, material non-linear rheological properties, separate deformation of tubes and collectors in the presence of a clearance and their contact interaction, damage and crack appearance. 4 figs

  10. Application of a Genetic Algorithm and a Neural Network for the Discovery and Optimization of New Solid Catalytic Materials

    Czech Academy of Sciences Publication Activity Database

    Rodemerck, U.; Baerns, M.; Holeňa, Martin; Wolf, D.

    2004-01-01

    Roč. 223, - (2004), s. 168-174 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z1030915 Keywords : genetic algorithm * neural network * catalytic materials Subject RIV: BA - General Mathematics Impact factor: 1.497, year: 2004

  11. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material.

    Science.gov (United States)

    Lazari, Priscilla Cardoso; de Carvalho, Marco Aurélio; Del Bel Cury, Altair A; Magne, Pascal

    2018-05-01

    analysis (log-rank post hoc test at α=.05 for pairwise comparisons). None of the tested specimen withstood all 140 000 cycles. All specimens without a ferrule were affected by an initial failure phenomenon (wide gap at the lingual margin between the core foundation restoration/crown assembly and the root). NfPfP, NfPt, and NfPtB had similar survival (29649 to 30987 mean cycles until initial failure). NfPfB outperformed NfPt and NfPtB. None of the post-and-core foundation restoration materials were able to match the performance of the ferrule group FPf (72667 cycles). In all groups, 100% of failures were catastrophic. The survival of extensively damaged endodontically treated incisors without a ferrule was slightly improved by the use of a fiber post with a bulk-fill composite resin core foundation restoration. However, none of the post-and-core techniques was able to compensate for the absence of a ferrule. The presence of the posts always adversely affected the failure mode. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011).

    Science.gov (United States)

    Vijayalaxmi; Prihoda, Thomas J

    2012-12-12

    Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More

  13. Biosafety Procedure for Safe Handling of Genetically Modified Plant Materials in Bio Design Facility

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin; Affrida Abu Hassan; Mohd Zaid Hassan; Rusli Ibrahim

    2015-01-01

    Bio Design Facility is the specifically designed glass house for propagation, screening and analysis of high quality plant varieties developed through biotechnology or a combination of nuclear technology and biotechnology. High quality plant varieties especially genetically modified plants (GMO) require a special glass house facility for propagation and screening to isolate them from cross-pollinating with wild type varieties in surrounding ecosystem, and for carrying out evaluation of possible risks of the plants to human, animal and environment before they are proven safe for field trials or commercial release. This facility which was developed under the Ninth Malaysia Plan is classified as the Plant Containment Level 2 and is compliance with the bio safety regulations and guidance for the safe release of GMO according to Malaysian Bio safety Act 2007. Bio Design Facility is fully operational since 2010 and in 2012, it has also been certified as the glass house for post-entry quarantine by The Department of Agriculture. This paper summarizes the bio safety procedure for a safe, controlled and contained growing and evaluation of GMO in Bio Design Facility. This procedure covers the physical (containment and equipment's) and operational (including responsibility, code of practice, growing, decontamination and disposal of plant materials, emergency and contingency plan) aspects of the facility. (author)

  14. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Science.gov (United States)

    Li, Zhou Fang; Liang, Yi Min; Lau, Pui Ngan; Shen, Wei; Wang, Dai Kui; Cheung, Wing Tai; Xue, Chun Jason; Poon, Lit Man; Lam, Yun Wah

    2013-01-01

    Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  15. Genetic algorithm based approach to investigate doped metal oxide materials: Application to lanthanide-doped ceria

    Science.gov (United States)

    Hooper, James; Ismail, Arif; Giorgi, Javier B.; Woo, Tom K.

    2010-06-01

    A genetic algorithm (GA)-inspired method to effectively map out low-energy configurations of doped metal oxide materials is presented. Specialized mating and mutation operations that do not alter the identity of the parent metal oxide have been incorporated to efficiently sample the metal dopant and oxygen vacancy sites. The search algorithms have been tested on lanthanide-doped ceria (L=Sm,Gd,Lu) with various dopant concentrations. Using both classical and first-principles density-functional-theory (DFT) potentials, we have shown the methodology reproduces the results of recent systematic searches of doped ceria at low concentrations (3.2% L2O3 ) and identifies low-energy structures of concentrated samarium-doped ceria (3.8% and 6.6% L2O3 ) which relate to the experimental and theoretical findings published thus far. We introduce a tandem classical/DFT GA algorithm in which an inexpensive classical potential is first used to generate a fit gene pool of structures to enhance the overall efficiency of the computationally demanding DFT-based GA search.

  16. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    Science.gov (United States)

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  17. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Directory of Open Access Journals (Sweden)

    Zhou Fang Li

    Full Text Available Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  18. Diffusional mass transport phenomena in the buffer material and damaged zone of a borehole wall in an underground nuclear fuel waste vault

    International Nuclear Information System (INIS)

    Page, S.; Cheung, S.C.H.

    1983-06-01

    The effects of the geometry of the borehole and the characteristics of the damaged borehole rock wall on the movement of the radionuclides from an underground nuclear waste vault have been studied. The results show that radionuclide transport will occur mainly through the buffer into the damaged zone of the borehole wall. As the degree of facturing of the damaged zone increases, the total radionuclide flux will increase up to a limit which can be approximated by a one-dimensional radial diffusion model. For large degrees of fracturing of the damaged zone, an increase in the radial buffer material thickness will decrease the total flux, whereas, for small degrees of fracturing, an increase in the radial buffer thickness may slightly increase the total flux. Increasing the vertical buffer thickness will significantly decrease the total flux when the degree of fracturing of the damaged zone is small. An increase in the vertical extent of the damaged zone will cause an increase in total flux

  19. Radiation damage of the construction materials, Phase I, Part I- Radiation damage of the construction steels; Radijaciono ostecenje konstrukcionih materijala, I faza, I deo, Radijaciono ostecenje konstrukcionih celika

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of the Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-10-15

    The objective of this task was testing the mechanical properties of stainless steels having different grain size. Being an important material used mainly for reactor vessel construction stainless steel will be exposed to neutron flux in the RA reactor for testing.

  20. Fatigue damage evolution in quasi-unidirectional non-crimp fabric based composite materials for wind turbine blades

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    scales, the 3D x-ray computer tomography technique is used non-destructive to observe the fatigue damage evolution on the fiber and bundle scale. Those observations are then linked to the larger scales through mechanical testing of representative volumes of the non-crimp fabric bundle structure....... Numerically, those non-crimp fabric bundle structures extracted from the 3D x-ray scans can be used in a multi-scale based finite element models used for understanding the parameters controlling the fatigue damage evolutions. During tensiontension fatigue testing, the damage mechanism is shown...

  1. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  2. Helium production for 0.8-2.5 GeV proton induced spallation reactions, damage induced in metallic window materials

    International Nuclear Information System (INIS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.; Tishchenko, V.; Enke, M.; Filges, D.; Goldenbaum, F.; Neef, R.-D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Letourneau, A.; Boehm, A.; Galin, J.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    Production cross-sections for neutrons and charged particles as well as excitation energy distributions in spallation reactions were measured recently by the NESSI-collaboration and have been employed to test different intra nuclear cascade models and the subsequent evaporation. The INCL/GEMINI code, which describes best the experimental data has been employed to calculate the damage cross-sections in Fe and Ta as well as the He/dpa ratio as a function of proton energy. For the same amount of neutron production in a typical target of a spallation neutron source the proton beam induced radiation damage in an Fe window is shown to decrease almost linearly with proton energy. For heavier materials such as Ta a similar decrease of the radiation damage is found only for energies above about 3 GeV

  3. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    Science.gov (United States)

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  4. Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach

    OpenAIRE

    Paulo A.L.D. Nunes; Margaretha Breil; Gretel Gambarelli

    2005-01-01

    The paper focuses on the economic assessment of damages caused by high water in the city of Venice. In particular, we focus our attention on a valuation exercise that addresses the estimation of monetary, short period, on-site damages due to high water events on the different business activities located in Venice. On-site damages include both mitigation costs, which refer to all types of financial expenditure undergone to avert physical and material damages caused by flooding, and remediation...

  5. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  6. The use of premature chromosome condensation to study in interphase cells the influence of environmental factors on human genetic material

    Directory of Open Access Journals (Sweden)

    Vasiliki I. Hatzi

    2006-01-01

    Full Text Available Nowadays, there is a constantly increasing concern regarding the mutagenic and carcinogenic potential of a variety of harmful environmental factors to which humans are exposed in their natural and anthropogenic environment. These factors exert their hazardous potential in humans' personal (diet, smoking, pharmaceuticals, cosmetics and occupational environment that constitute part of the anthropogenic environment. It is well known that genetic damage due to these factors has dramatic implications for human health. Since most of the environmental genotoxic factors induce arrest or delay in cell cycle progression, the conventional analysis of chromosomes at metaphase may underestimate their genotoxic potential. Premature Chromosome Condensation (PCC induced either by means of cell fusion or specific chemicals, enables the microscopic visualization of interphase chromosomes whose morphology depends on the cell cycle stage, as well as the analysis of structural and numerical aberrations at the G1 and G2 phases of the cell cycle. The PCC has been successfully used in problems involving cell cycle analysis, diagnosis and prognosis of human leukaemia, assessment of interphase chromosome malformations resulting from exposure to radiation or chemicals, as well as elucidation of the mechanisms underlying the conversion of DNA damage into chromosomal damage. In this report, particular emphasis is given to the advantages of the PCC methodology used as an alternative to conventional metaphase analysis in answering questions in the fields of radiobiology, biological dosimetry, toxicogenetics, clinical cytogenetics and experimental therapeutics.

  7. Biomarkers of environmental genotoxicity: comparison of genetic damage induced in Trad-SH cells and human lymphocytes

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The report presents some of the results of genotoxicity of the environmental agents studied in somatic cells of Tradescantia and show similarity between responses of the Tradescantia stamen hair cells (Trad-SH) and human blood cells to the physical and chemical mutagens. In the studies in vitro chromosome aberrations (CA) and sister chromatid exchanges (SCE) were applied to evaluate genotoxicity of pesticides. For comparison of genotoxic effectiveness of agrochemicals with other chemicals, there are also presented results of the genotoxicity of well-known mutagens (EMS, X-rays). The results confirm that in the environment a chemical pollution might cause higher genetic risk than radiation. Trad-SH assay was applied for in situ monitoring of the ambient air mutagenicity caused by benzene and petroleum associated compounds. The studies showed that gene mutation frequencies were slightly dependent on the distance from the petroleum work center. Results of measures of the cell cycle factor have shown also that the chemical pollutants in the air played also an important role in physiological cellular processes. The similarity of the Trad-SH and human blood cells responses to the physical and chemical mutagens showed that the gene mutations in Tradescantia present a simple and sensitive model, which can be very useful in biological monitoring

  8. Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response.

    Science.gov (United States)

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young; Heo, In-Beom; Kim, Young Hwan; Yu, Jae-Hyuk

    2016-10-04

    Aspergillus fumigatus reproduces and infects host by forming a high number of small asexual spores (conidia). The velvet proteins are global transcriptional regulators governing the complex process of conidiogenesis in this fungus. Here, to further understand the velvet-mediated regulation, we carried out comparative proteomic analyses of conidia of wild type (WT) and three velvet mutants (ΔveA, ΔvelB and ΔvosA). Cluster analysis of 184 protein spots showing at least 1.5-fold differential accumulation between WT and mutants reveal the clustering of WT- ΔveA and ΔvelB-ΔvosA. Among 43 proteins identified by Nano-LC-ESI-MS/MS, 23 including several heat shock proteins showed more than two-fold reduction in both the ∆velB and ∆vosA conidia. On the contrary, three proteins exhibited more than five-fold increase in ∆veA only, including the putative RNA polymerase II degradation factor DefA. The deletion of defA resulted in a reduced number of conidia and restricted colony growth. In addition, the defA deletion mutant conidia showed hypersensitivity against the DNA damaging agents NQO and MMS, while the ΔveA mutant conidia were more resistant against to NQO. Taken together, we propose that VeA controls protein level of DefA in conidia, which are dormant and equipped with multiple layers of protection against environmental cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Creation of Polyurethane Injection Materials, Their Pilot-industrial Production, Development and Industrial Introduction of the Technology of Strengthening and Restoring the Operability of Damaged Constructions and Buildings

    Directory of Open Access Journals (Sweden)

    Marukha, V.І.

    2015-01-01

    Full Text Available Polyurethane and foam polyurethane fluid injection materials not conceding foreign analogues and technology technology of restoration and strengthening the operability of concrete and reinforced concrete structures and buildings damaged by cracks were developed. Normative and technical documentation on the injection materials and technological processes was created. The diagnosticrestoring complex for implementing the above technologies was designed, installed and utilized at the construction sites. The equipment is designed and manufactured; the technology of the research and industrial production of «A» and «B» components of injecting polyurethane materials is designed and developed. The pilot-scale batch is manufactured. Technological processes of preparation and application of the «A» and «B» componentsof the injecting materials in industrial conditions are worked out and implemented.

  10. Damage analysis of ceramic boron absorber materials in boiling water reactors and initial model for an optimum control rod management

    International Nuclear Information System (INIS)

    Schulz, W.

    2000-01-01

    Operating experience has proved so far that BWR control rods cannot be used for the total reactor life time as originally presumed, but instead has to be considered as a consumable article. After only few operating cycles, the mechanism of absorber failure has been shown to be neutron induced boron carbide swelling and stress cracking of the absorber tubes, followed by erosion of the absorber material. In the case that operation of such a control rod is continued in control cells, this can lead to an increase of the local power density distribution in the core and, under certain conditions, can even cause fuel rod damage. A non destructive testing method has been developed called 'UNDERWATER NEUTRON RADIOGRAPHY' applicable for any BWR control rod. 'Lead-control rods' being radiographed are used to evaluate their actual nuclear worth by the help of a special analytical procedure developed and verified by the author. Nuclear worth data plotted against bum up history data will allow to create an 'EMPIRIC MODEL'. This model includes the basic idea of operating control rods of a certain design first in a control position up to a target fluence limited to an amount just below the appearance of control rod washout. Afterwards they have to be moved in a shut down position to work therefor the total remaining holding period. The initial model is applicable to any CR-design as long as sufficient measuring-data and thus data about the nuclear worth are available. The results of these experiences are extrapolated to the whole reactor holding period. After modelling no further measurements of this particular control rod type are necessary in any reactor. The second focal point is to provide an APPROXIMATION EQUATION. By knowing the absorber radius, B 4 C density and absorber enclosure data an engineer will calculate reliably the working life of any control rod design on control position. indicated as maximum allowable neutron fluence margin until absorber wash-out starts. This

  11. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  12. Development and pilot evaluation of novel genetic educational materials designed for an underserved patient population.

    Science.gov (United States)

    Lubitz, Rebecca Jean; Komaromy, Miriam; Crawford, Beth; Beattie, Mary; Lee, Robin; Luce, Judith; Ziegler, John

    2007-01-01

    Genetic counseling for BRCA1 and BRCA2 mutations involves teaching about hereditary cancer, genetics and risk, subjects that are difficult to grasp and are routinely misunderstood. Supported by a grant from the Avon Foundation, the UCSF Cancer Risk Program started the first genetic testing and counseling service for a population of traditionally underserved women of varied ethnic and social backgrounds at the San Francisco General Hospital (SFGH). Informed by educational theory and clinical experience, we devised and piloted two simplified explanations of heredity and genetic risk, with the aim of uncovering how to best communicate genetics and risk to this underserved population. A "conventional" version comprised pictures of genes, pedigrees, and quantitative representations of risk. A "colloquial" pictorial version used an analogy of the "information book" of genes, family stories and vignettes, and visual representations of risk, without using scientific words such as genes or chromosomes. A verbal narrative accompanied each picture. We presented these modules to four focus groups of five to eight women recruited from the SFGH Family Practice Clinic. Overall, women preferred a picture-based approach and commented that additional text would have been distracting. The majority of women preferred the colloquial version because it was easier to understand and better conveyed a sense of comfort and hope. We conclude that simplicity, analogies, and familiarity support comprehension while vignettes, family stories, and photos of real people provide comfort and hope. These elements may promote understanding of complex scientific topics in healthcare, particularly when communicating with patients who come from disadvantaged backgrounds.

  13. Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (1). Material surface improvement

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Wakui, Takashi; Kogawa, Hiroyuki; Shoubu, Takahisa; Takeuchi, Hirotsugu; Kawai, Masayoshi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed in the world. Proton beams will be used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. Bubble collapse behavior was observed by using a high-speed video camera, as well as simulated numerically. Localized impact due to cavitation bubble collapse was quantitatively estimated through comparison between numerical simulation and experiment. A novel surface treatment technique that consists of carburizing and nitriding processes was developed and the treatment condition was optimized to mitigate the pitting damage due to localized impacts. (author)

  14. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA

    International Nuclear Information System (INIS)

    Venema, J.; Mullenders, L.H.; Natarajan, A.T.; van Zeeland, A.A.; Mayne, L.V.

    1990-01-01

    Cells from patients with Cockayne syndrome (CS) are hypersensitive to UV-irradiation but have an apparently normal ability to remove pyrimidine dimers from the genome overall. We have measured the repair of pyrimidine dimers in defined DNA sequences in three normal and two CS cell strains. When compared to a nontranscribed locus, transcriptionally active genes were preferentially repaired in all three normal cell strains. There was no significant variation in levels of repair between various normal individuals or between two constitutively expressed genes, indicating that preferential repair may be a consistent feature of constitutively expressed genes in human cells. Neither CS strain, from independent complementation groups, was able to repair transcriptionally active DNA with a similar rate and to the same extent as normal cells, indicating that the genetic defect in CS lies in the pathway for repair of transcriptionally active DNA. These results have implications for understanding the pleiotropic clinical effects associated with disorders having defects in the repair of DNA damage. In particular, neurodegeneration appears to be associated with the loss of preferential repair of active genes and is not simply correlated with reduced levels of overall repair

  15. Refinement of Foam Backfill Technology for Expedient Airfield Damage Repair- Phase I: Laboratory Evaluation of Foam Materials

    Science.gov (United States)

    2016-11-01

    trend is expected, because the foam materials are primarily composed of the same compounds ; only minor differences in the formula- tions are present...process. Fracture of this nature may be expected during use of this material in the field. ERDC TR-16-16 33 Figure 22. Foam-iT! SLOW specimens...Slow were produced with flat bottoms. However, this material was fairly brittle, as indicated by the fracturing observed on one of the specimens shown

  16. Genetically modified crops and the “food crisis”: discourse and material impacts

    NARCIS (Netherlands)

    Glover, D.; Stone, G.D.

    2011-01-01

    A surge of media reports and rhetorical claims depicted genetically modified (GM) crops as a solution to the ‘global food crisis’ manifested in the sudden spike in world food prices during 2007–08. Broad claims were made about the potential of GM technologies to tackle the crisis, even though the

  17. Developing a Material Response Model of Biopolymer-Stabilized Regolith to Predict Micrometeorite Damage of ISRU Habitat Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed space technology research aims to investigate the micrometeorite impact performance of Regolith Biocomposite (RBC), an innovative in-situ material...

  18. Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model

    Directory of Open Access Journals (Sweden)

    Mojtaba Salehi

    2013-03-01

    Full Text Available In recent years, the explosion of learning materials in the web-based educational systems has caused difficulty of locating appropriate learning materials to learners. A personalized recommendation is an enabling mechanism to overcome information overload occurred in the new learning environments and deliver suitable materials to learners. Since users express their opinions based on some specific attributes of items, this paper proposes a hybrid recommender system for learning materials based on their attributes to improve the accuracy and quality of recommendation. The presented system has two main modules: explicit attribute-based recommender and implicit attribute-based recommender. In the first module, weights of implicit or latent attributes of materials for learner are considered as chromosomes in genetic algorithm then this algorithm optimizes the weights according to historical rating. Then, recommendation is generated by Nearest Neighborhood Algorithm (NNA using the optimized weight vectors implicit attributes that represent the opinions of learners. In the second, preference matrix (PM is introduced that can model the interests of learner based on explicit attributes of learning materials in a multidimensional information model. Then, a new similarity measure between PMs is introduced and recommendations are generated by NNA. The experimental results show that our proposed method outperforms current algorithms on accuracy measures and can alleviate some problems such as cold-start and sparsity.

  19. Protective or damage promoting effect of calcium carbonate layers on the surface of cement based materials in aqueous environments

    International Nuclear Information System (INIS)

    Schwotzer, M.; Scherer, T.; Gerdes, A.

    2010-01-01

    Cement based materials permanently exposed to aggressive aqueous environments are subject to chemical changes affecting their durability. However, this holds also for tap water that is considered to be not aggressive to cementitious materials, although in that case a formation of covering layers of CaCO 3 on the alkaline surfaces is commonly supposed to provide protection against reactive transport processes. Thus, investigations of the structural and chemical properties of the material/water interface were carried out in laboratory experiments and case studies to elucidate the consequences of surface reactions for the durability of cement based materials exposed to tap water. Focused Ion Beam investigations revealed that a protective effect of a CaCO 3 covering layer depends on its structural properties, which are in turn affected by the hydro-chemical conditions during crystallization. Surface precipitation of CaCO 3 can trigger further chemical degradation, if the required calcium is supplied by the pore solution of the material.

  20. Introgression of genetic material from Zea mays ssp. Mexicana into cultivated maize was facilitated by tissue culture

    International Nuclear Information System (INIS)

    Wang, L.; Gu, X.; Qu, M.; Luan, J.; Zhang, J.

    2012-01-01

    Zea mays ssp. mexicana, a wild relative of cultivated maize (Z. mays ssp. mays), is a useful gene resource for maize breeding. In this study, two populations were generated by conventional breeding scheme (population I) or tissue culture regime (population II), respectively, to introgress genetic material of Z. mays ssp. mexicana into maize. Karyotype analysis showed that the arm ratios of 10 pairs of chromosomes in parent maize Ye515 and derivative lines from 2 different populations with 26% and 38% chromosome variation frequencies, respectively. Alien chromatin was detected in the root tip cells of progeny plants through genomic in situ hybridization (GISH). There were 3.3 chromosomes carrying alien chromatin on average in population I and 6.5 in population II. The hybridization signals were located mainly at the terminal or sub terminal regions of the chromosomes and the sizes were notably variant among lines. Based on those results, it is concluded that the introgression of genetic material from Z. mays ssp. mexicana into cultivated maize was facilitated by tissue culture, and subsequently some excellent materials for maize breeding were created. (author)

  1. Laser Induced Damage in Optical Materials: 1983. Symposium on Optical Materials for High Power Lasers (15th). Held in Boulder, Colorado on 14-16 November 1983

    Science.gov (United States)

    1985-11-01

    cross porro resonator and achieved perfor­ mance as high as 45 mJ/pulse output energy in a 20 ns pulse width at a 20 Hz repetition rate without damage to...at 1.064, 0.532 and 0.355 ~m......................... 128 L. D. Merkle, N. Koumvakalis, and M. Bass Bulk Absorption Measurements Using Prism ...surface and bulk values. A promising technique proposed this year employs a prism -shaped sample (normal incidence at the front or entrant surface

  2. Damage analysis and fundamental studies for fusion reactor materials development for the period March 1, 1991--February 28, 1994. Final report

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.

    1995-01-01

    The philosophy of the program at the University of California Santa Barbara has been to develop a fundamental understanding of both the basic damage processes and microstructural evolution that take place in a material during neutron irradiation and the consequent dimensional and mechanical property changes. This fundamental understanding can be used in conjunction with empirical data obtained from a variety of irradiation facilities to develop physically-based models of neutron irradiation effects in structural materials. The models in turn can be used to guide alloy development and to help extrapolate the irradiation data base to the fusion reactor regime. This philosophy is consistent with that of the national and international programs for developing structural materials for fusion reactors. During this period work has encompassed: (1) analysis of the degradation of the mechanical properties of austenitic stainless steels for the purpose of assessing the feasibility of using these steels in ITER; (2) examining helium effects on radiation damage in austenitic and ferritic stainless steels; (3) development and application of electropotential drop techniques to monitor the growth of cracks in steel specimens for a variety of specimen geometries (4) development of advanced methods of measuring fracture properties; (5) combining micromechanical modeling of fracture with finite element calculations of crack and notch-tip stress and strain fields to predict failure; (6) developing a data base on flow and fracture properties of ferritic steels. Each of these activities is described in more detail below and in greater detail in the attached publications

  3. Reduction of radiation damage on organic material at very low object temperatures in an electron microscope with supraconductive lenses

    International Nuclear Information System (INIS)

    Knapek, E.

    1981-01-01

    As a result of this study, the increase in structure conservation by cooling the object to very low temperatures (cryoprotection) as compared with the conditions at room temperature was higher than the values at low temperatures reached so far by one to two orders of magnitude. The experiments carried out with an electron microscope with supraconductive lenses (SLEM) showed, depending of the organic substance, that in tests with an electron diffraction of about 4.2 K the reduction of radiation damage as compared with room temperature was by a factor between 30 and 350. (orig./PW) [de

  4. The role of radiation damage on retention and temperature intervals of helium and hydrogen detrapping in structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine); Ruzhytskyi, V.V.; Voyevodin, V.N.; Kopanets, I.E.; Karpov, S.A.; Nikitin, A.V. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine)

    2013-11-15

    An experimental study of hydrogen/deuterium behavior in ferritic–martensitic stainless steels EP-450 (Cr13Mo2NbVB), EP-852 (Cr13Mo2VS), and RUSFER-EK-181 (Fe12Cr2WVTaB) is presented. The effect of displacement damage (dpa) resulting from irradiation with helium, hydrogen, and argon ions on features of deuterium detrapping and retention in steels was studied using ion implantation, nuclear reaction depth profiling, and thermal desorption spectrometry techniques. Numerical simulation on the basis of the continuum rate theory was applied for obtaining thermodynamic parameters of deuterium trapping and desorption in steels.

  5. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    Science.gov (United States)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  6. Construction of computational program of aging in insulating materials for searching reversed sequential test conditions to give damage equivalent to simultaneous exposure of heat and radiation

    International Nuclear Information System (INIS)

    Fuse, Norikazu; Homma, Hiroya; Okamoto, Tatsuki

    2013-01-01

    Two consecutive numerical calculations on degradation of polymeric insulations under thermal and radiation environment are carried out to simulate so-called reversal sequential acceleration test. The aim of the calculation is to search testing conditions which provide material damage equivalent to the case of simultaneous exposure of heat and radiation. At least following four parameters are needed to be considered in the sequential method; dose rate and exposure time in radiation, as well as temperature and aging time in heating. The present paper discusses the handling of these parameters and shows some trial calculation results. (author)

  7. Long-Term Strength of a Thick-Walled Pipe Filled with an Aggressive Medium, with Account for Damageability of the Pipe Material and Residual Strength

    Science.gov (United States)

    Piriev, S. A.

    2018-01-01

    This paper describes the study of scattered fracture of a thick-walled pipe filled with an aggressive medium, which creates uniform pressure on the inner surface of the pipe. It is assumed that the aggressive medium affects only the value of instantaneous strength. Damageability is described by an integral operator of the hereditary type. The problem is solved with allowance for residual strength of the pipe material behind the fracture front. Numerical calculation is carried out, and relationships between the fracture front coordinate and time for various concentrations of the aggressive medium and residual strength behind the fracture front are constructed.

  8. Features of RAPTA-SFD code modelling of chemical interactions of basic materials of the WWER active zone in accident conditions with severe fuel damage

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Sokolov, N.B.; Salatov, A.V.; Nechaeva, O.A.; Andreyeva-Andrievskaya, L.N.; Vlasov, F.Yu.

    1996-01-01

    A brief description of RAPTA-SFD code intended for computer simulations of WWER-type fuel elements (simulator or absorber element) in conditions of accident with severe damage of fuel. Presented are models of chemical interactions of basic materials of the active zone, emphasized are special feature of their application in carrying out of the CORA-W2 experiment within the framework of International Standard Problem ISP-36. Results obtained confirm expediency of phenomenological models application. (author). 6 refs, 7 figs, 1 tab

  9. Multi-Axial Damage Index and Accumulation Model for Predicting Fatigue Life of CMC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The fatigue life of CMCs must be well characterized for the safe and reliable use of these materials as integrated TPS components. Existing fatigue life prediction...

  10. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    International Nuclear Information System (INIS)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-01-01

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR–RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 ± 2.15 vs. 6.24 ± 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: ► Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. ► Workers exposed to some OPs demonstrated increased DNA damage. ► CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. ► Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  11. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyender [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Kumar, Vivek [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Vashisht, Kapil; Singh, Priyanka [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Banerjee, Basu Dev, E-mail: banerjeebd@hotmail.com [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Jain, Sudhir Kumar [Centre for Epidemiology and Parasitic Diseases, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Rai, Arvind [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India)

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  12. EFFECT OF DISINFECTANTS BASED ON POTASSIUM PERSULFATE, HYDROGEN PEROXIDE, GLUTARALDEHYDE AND QUATERNARY AMMONIUM COMPOUNDS ON THE GENETIC MATERIAL OF THE PATHOGEN BACTERIA SPECIFIC TO MEAT PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    V. N. Afonyushkin

    2016-01-01

    Full Text Available Abstract The changes in bacterial genetic material under the action of different biocidal products have been investigated. It was confirmed by PCR and genetic engineering that biocidal product Ecocid was able to remove both chromosomal and plasmid DNA, either isolated or contained within the bacterial cells. Using a disinfectant that destroys DNA on the surfaces of meat production equipment is a promising measure to prevent horizontal transfer of unwanted genetic material, such as bacterial genes associated with the resistance to antibiotics, or genes of toxin production.

  13. Testing of the fuel element - radiation damage of the construction materials of the fuel element and reactor core; Ispitivanje gorivnog elementa - radijaciono ostecenje konstrukcionih materijala gorivnog elementa i jezgra reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report covers the following: review of present radiation damage testing of stainless steels and zircaloy-2 used in heavy water reactors; plan of experiments for irradiation of of these materials.

  14. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  15. Laser-induced damage thresholds of bulk and coating optical materials at 1030  nm, 500  fs.

    Science.gov (United States)

    Gallais, Laurent; Commandré, Mireille

    2014-02-01

    We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crystals. The samples were tested in comparable conditions at 1030 nm, 375 to 600 fs, under single-pulse irradiation. A large number of different samples prepared by different deposition techniques have been tested, involving classical materials used in the fabrication of optical thin film components (Ag, AlF3, Al2O3, HfO2, MgF2, Nb2O5, Pt, Sc2O3, SiO2, Ta2O5, Y2O3, and ZrO2) and their combination with codeposition processes. Their behaviors are compared with the surfaces of bulk materials (Al2O3, BaF2, CaF2, Ge, KBr, LiF, MgF2, NaCl, Quartz, Si, ZnS, ZnSe, and different silica glasses). Tabulated values of results are presented and discussed.

  16. A novel method for the transport and analysis of genetic material from polyps and zooxanthellae of scleractinian corals.

    Science.gov (United States)

    Crabbe, M James C

    2003-08-29

    We have developed a new simple method for transport, storage, and analysis of genetic material from the corals Agaricia agaricites, Dendrogyra cylindrica, Eusmilia ancora, Meandrina meandrites, Montastrea annularis, Porites astreoides, Porites furcata, Porites porites, and Siderastrea siderea at room temperature. All species yielded sufficient DNA from a single FTA card (19 microg-43 ng) for subsequent PCR amplification of both coral and zooxanthellar DNA. The D1 and D2 variable region of the large subunit rRNA gene (LSUrDNA) was amplified from the DNA of P. furcata and S. siderea by PCR. Electrophoresis yielded two major DNA bands: an 800-base pair (bp) DNA, which represented the coral ribosomal RNA (rRNA) gene, and a 600-bp DNA, which represented the zooxanthellar srRNA gene. Extraction of DNA from the bands yielded between 290 microg total DNA (S. siderea coral DNA) and 9 microg total DNA (P. furcata zooxanthellar DNA). The ability to transport and store genetic material from scleractinian corals without resort to laboratory facilities in the field allows for the molecular study of a far wider range and variety of coral sites than have been studied to date.

  17. Damage analysis: damage function development and application

    International Nuclear Information System (INIS)

    Simons, R.L.; Odette, G.R.

    1975-01-01

    The derivation and application of damage functions, including recent developments for the U.S. LMFBR and CTR programs, is reviewed. A primary application of damage functions is in predicting component life expectancies; i.e., the fluence required in a service spectrum to attain a specified design property change. An important part of the analysis is the estimation of the uncertainty in such fluence limit predictions. The status of standardizing the procedures for the derivation and application of damage functions is discussed. Improvements in several areas of damage function development are needed before standardization can be completed. These include increasing the quantity and quality of the data used in the analysis, determining the limitations of the analysis due to the presence of multiple damage mechanisms, and finally, testing of damage function predictions against data obtained from material surveillance programs in operating thermal and fast reactors. 23 references. (auth)

  18. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi

    2014-01-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  19. Disruption simulation experiments in a pulsed plasma accelerator - energy absorption and damage evolution on plasma facing materials

    International Nuclear Information System (INIS)

    Bolt, H.; Barabash, V.; Gervash, A.; Linke, J.; Lu, L.P.; Ovchinnikov, I.; Roedig, M.

    1995-01-01

    Plasma accelerators are used as test beds for disruption simulation experiments on plasma facing materials, because the incident energy fluxes and the discharge duration are of similar order as those expected during disruptions in ITER. The VIKA facility was used for the testing of materials under incident energies up to 5 kJ/cm 2 . Different carbon materials, SiC, stainless steel, TZM and tungsten have been tested. From the experimental results a scaling of the ablation with incident energy density was derived. The resulting ablation depth on carbon materials is roughly 2 μm per kJcm -2 of incident energy density. For metals this ablation is much higher due to the partial loss of the melt layer from splashing. For stainless steel an ablation depth of 9.5 μm per kJcm -2 was determined. The result of a linear scaling of the ablation depth with incident energy density is consistent with a previous calorimetric study. (orig.)

  20. Finite element simulations and experiments to determine the residual damage of a CFRP composite material after ballistic impacts

    NARCIS (Netherlands)

    Herlaar, K.; Jagt-Deutekom, M. van der

    2005-01-01

    The use of lightweight systems is essential for future combat systems. More and more steel structures are replaced by composite structures. This also influences the vulnerability of the platform. A finite element material model is created in Autodyn of the carbon fiber reinforced plastic (CFRP)

  1. A novel approach towards fatigue damage prognostics of composite materials utilizing SHM data and stochastic degradation modeling

    NARCIS (Netherlands)

    Loutas, T.; Eleftheroglou, N.

    2016-01-01

    A prognostic framework is proposed in order to estimate the remaining useful life of composite materials under fatigue loading based on acoustic emission data and a sophisticated Non Homogenous Hidden Semi Markov Model. Bayesian neural networks are also utilized as an alternative machine learning

  2. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  3. Irradiation damage

    International Nuclear Information System (INIS)

    Howe, L.M.

    2000-01-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization

  4. Synthesis, growth and characterization of o-phenylinediaminium benzilate: An SHG material with high laser damage threshold for NLO applications

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-02-01

    An organic molecular charge transfer complex salt, o-phenylenediaminium benzilate was synthesized and single crystals grown by slow solvent evaporation solution growth technique in methanol at ambient temperature. The grown crystal was subjected to Single crystal XRD analysis to establish the molecular structure. The molecular structure was further confirmed by 1H and 13C NMR spectral studies. The formation of the charge transfer complex salt was confirmed by UV-VIS spectroscopic technique. To identify the optical transmittance window and lower wavelength cut-off, the crystal was subjected to UV-Vis-NIR transmission spectral studies. The presence of various functional groups in the salt crystal was confirmed by FT-IR spectroscopic technique. Photoluminescence study was carried out to explore its efficiency towards device fabrications. The TG and DTA thermal analyses were simultaneously carried out to establish the thermal stability of the crystal. The dielectric studies of the grown crystal were executed at different temperatures as a function of frequency to investigate its electrical properties. The SHG efficiency of the crystal was determined using the modified Kurtz and Perry powder technique and its value was found to be 1.98 times that of the KDP crystal. Laser damage threshold value was measured using Nd:YAG laser. The mechanical stability of the title crystal was established employing Vickers micro hardness tester.

  5. Optimal design of nanoplasmonic materials using genetic algorithms as a multiparameter optimization tool.

    Science.gov (United States)

    Yelk, Joseph; Sukharev, Maxim; Seideman, Tamar

    2008-08-14

    An optimal control approach based on multiple parameter genetic algorithms is applied to the design of plasmonic nanoconstructs with predetermined optical properties and functionalities. We first develop nanoscale metallic lenses that focus an incident plane wave onto a prespecified, spatially confined spot. Our results illustrate the mechanism of energy flow through wires and cavities. Next we design a periodic array of silver particles to modify the polarization of an incident, linearly polarized plane wave in a desired fashion while localizing the light in space. The results provide insight into the structural features that determine the birefringence properties of metal nanoparticles and their arrays. Of the variety of potential applications that may be envisioned, we note the design of nanoscale light sources with controllable coherence and polarization properties that could serve for coherent control of molecular, electronic, or electromechanical dynamics in the nanoscale.

  6. A multi-scale methodology to model damage, deformation and ignition of highly-filled energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivier, G. [Paris Univ., Paris (France). LMT Cachan; CEA Le Ripault, Monts (France); Trumel, H. [CEA Le Ripault, Monts (France); Hild, F. [Paris Univ., Paris (France). LMT Cachan

    2009-07-01

    The kinetic energy that occurs when energetic materials are impacted can be converted to heat through dissipative deformation processes while the macroscopic temperature remains unaffected. In this study, a thermodynamics-based approach was used to model the elasto-plastic behaviour that occurs during the deformation process of microstructures. Macroscopic material was modelled as a statistical distribution of unit cells containing a crack grain embedded in an elastic mortar-like matrix. A mesoscopic unit cell model was also developed under confined shear. The study demonstrated that stored energy is a non-negligible part of the total energy of the system, and that stored energy can be released during the unloading process. It was concluded that the mesoscopic analysis of the cracked cell demonstrates that continuum thermodynamics can be used to predict hot spots induced by friction. 7 refs., 7 figs.

  7. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  8. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    International Nuclear Information System (INIS)

    Hassanein, Ahmed

    2015-01-01

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  9. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  10. Programmed cellular response to ionizing radiation damage

    International Nuclear Information System (INIS)

    Crompton, N.E.A.

    1998-01-01

    Three forms of radiation response were investigated to evaluate the hypothesis that cellular radiation response is the result of active molecular signaling and not simply a passive physicochemical process. The decision whether or not a cell should respond to radiation-induced damage either by induction of rescue systems, e.g. mobilization of repair proteins, or induction of suicide mechanisms, e.g. programmed cell death, appears to be the expression of intricate cellular biochemistry. A cell must recognize damage in its genetic material and then activate the appropriate responses. Cell type is important; the response of a fibroblast to radiation damage is both quantitatively and qualitatively different form that of a lymphocyte. The programmed component of radiation response is significant in radiation oncology and predicted to create unique opportunities for enhanced treatment success. (orig.)

  11. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  12. Superelastic Ball Bearings: Materials and Design to Avoid Mounting and Dismounting Brinell Damage in an Inaccessible Press-Fit Application-. I ; Design Approach

    Science.gov (United States)

    Dellacorte, Christopher; Howard, S. Adam

    2015-01-01

    Ball bearings require proper fit and installation into machinery structures (onto shafts and into bearing housings) to ensure optimal performance. For some applications, both the inner and outer race must be mounted with an interference fit and care must be taken during assembly and disassembly to avoid placing heavy static loads between the balls and races otherwise Brinell dent type damage can occur. In this paper, a highly dent resistant superelastic alloy, 60NiTi, is considered for rolling element bearing applications that encounter excessive static axial loading during assembly or disassembly. A small (R8) ball bearing is designed for an application in which access to the bearing races to apply disassembly tools is precluded. First Principles analyses show that by careful selection of materials, raceway curvature and land geometry, a bearing can be designed that allows blind assembly and disassembly without incurring raceway damage due to ball denting. Though such blind assembly applications are uncommon, the availability of bearings with unusually high static load capability may enable more such applications with additional benefits, especially for miniature bearings.

  13. The comparison of two continuum damage mechanics-based material models for formability prediction of AA6082 under hot stamping conditions

    Science.gov (United States)

    Shao, Z.; Li, N.; Lin, J.

    2017-09-01

    The hot stamping and cold die quenching process has experienced tremendous development in order to obtain shapes of structural components with great complexity in automotive applications. Prediction of the formability of a metal sheet is significant for practical applications of forming components in the automotive industry. Since microstructural evolution in an alloy at elevated temperature has a large effect on formability, continuum damage mechanics (CDM)-based material models can be used to characterise the behaviour of metals when a forming process is conducted at elevated temperatures. In this paper, two sets of unified multi-axial constitutive equations based on material’s stress states and strain states, respectively, were calibrated and used to effectively predict the thermo-mechanical response and forming limits of alloys under complex hot stamping conditions. In order to determine and calibrate the two material models, formability tests of AA6082 using a developed novel biaxial testing system were conducted at various temperatures and strain rates under hot stamping conditions. The determined unified constitutive equations from experimental data are presented in this paper. It is found that both of the stress-state based and strain-state based material models can predict the formability of AA6082 under hot stamping conditions.

  14. Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm

    International Nuclear Information System (INIS)

    Yang, Ming-Der; Lin, Min-Der; Lin, Yu-Hao; Tsai, Kang-Ting

    2017-01-01

    Highlights: • An effective envelope energy performance model (BEM) was developed. • We integrated NSGA-II with the BEM to optimize the green building envelope. • A tradeoff plan of green building design for three conflict objectives was obtained. • The optimal envelope design efficiently reduced the construction cost of green building. - Abstract: To realize the goal of environmental sustainability, improving energy efficiency in buildings is a major priority worldwide. However, the practical design of green building envelopes for energy conservation is a highly complex optimization problem, and architects must make multiobjective decisions. In practice, methods such as multicriteria analyses that entail capitalizing on possibly many (but in nearly any case limited) alternatives are commonly employed. This study investigated the feasibility of applying a multiobjective optimal model on building envelope design (MOPBEM), which involved integrating a building envelope energy performance model with a multiobjective optimizer. The MOPBEM was established to provide a reference for green designs. A nondominated sorting genetic algorithm-II (NSGA-II) was used to achieve a tradeoff design set between three conflicting objectives, namely minimizing the envelope construction cost (ENVCOST), minimizing the envelope energy performance (ENVLOAD), and maximizing the window opening rate (WOPR). A real office building case was designed using the MOPBEM to identify the potential strengths and weaknesses of the proposed MOPBEM. The results showed that a high ENVCOST was expended in simultaneously satisfying the low ENVLOAD and high WOPR. Various designs exhibited obvious cost reductions compared with the original architects' manual design, demonstrating the practicability of the MOPBEM.

  15. Activity of the protector chlorophyllin or promoter of the genetic damage induced by the 1,2 dimethyl hydrazine; Actividad de la clorofilina protectora o promotora del dano genetico inducido por la 1,2 dimetil hidrazina

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero M, M G

    2004-07-01

    The chlorophyllin (CHLN) it is a porphyrin of soluble nutritious grade in water, derived of the chlorophyll that includes in their structure a copper atom. It has been reported that this pigment can act as anti mutagen, reducing the damage to the DNA caused by physical or chemical agents of direct or indirect action. Their anti carcinogen action has also been studied during the initiation phase induced for carcinogen as the aflatoxins and heterocyclic amines. In contrast the reports have increased on a probable promoter activity of the CHLN on the induced genetic damage. This effect was seen for the first time before the damage induced by alkylating agents in Salmonella. Recently it has been observed with the damage induced by gamma radiation, ENU and CrO{sub 3} in somatic cells of the wing of Drosophila and in the induction of tumors for 1,2-dimethylhydrazine (DMH) in mice. Presently study is evaluated the protective effect or promoter of the CHLN before the genetic damage induced by 1,2-dimethylhydrazine, by means of the bioassay mutation and somatic recombination (SMART) in the wing of Drosophila melanogaster. Its were pretreated with CHLN or SAC to transheterocygotes larvas for two locus of the chromosome three mwh+/+flr{sup 3}; later on they are retarded the chronic treatment with DMH 0, 1, 2 and 3 days. It was measured the toxicity and the speed of development of the treated individuals. The wings of those adults that emerged were analyzed to register the number and the size of stains. The results indicated: differences in the viability of the individuals of the groups SAC + DMH vs CHLN + DMH only in the treated immediately after the pretreatment (DRT-0) that the CHLN doesn't modify the rate of the treated individuals development. The results of somatic mutation indicated that the CHLN has a protective effect only immediately after the pretreatment (DRT-0) however in DRT-1, 2 and 3 showed a promoter effect of genetic damage. (Author)

  16. Activity of the protector chlorophyllin or promoter of the genetic damage induced by the 1,2 dimethyl hydrazine; Actividad de la clorofilina protectora o promotora del dano genetico inducido por la 1,2 dimetil hidrazina

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero M, M.G

    2004-07-01

    The chlorophyllin (CHLN) it is a porphyrin of soluble nutritious grade in water, derived of the chlorophyll that includes in their structure a copper atom. It has been reported that this pigment can act as anti mutagen, reducing the damage to the DNA caused by physical or chemical agents of direct or indirect action. Their anti carcinogen action has also been studied during the initiation phase induced for carcinogen as the aflatoxins and heterocyclic amines. In contrast the reports have increased on a probable promoter activity of the CHLN on the induced genetic damage. This effect was seen for the first time before the damage induced by alkylating agents in Salmonella. Recently it has been observed with the damage induced by gamma radiation, ENU and CrO{sub 3} in somatic cells of the wing of Drosophila and in the induction of tumors for 1,2-dimethylhydrazine (DMH) in mice. Presently study is evaluated the protective effect or promoter of the CHLN before the genetic damage induced by 1,2-dimethylhydrazine, by means of the bioassay mutation and somatic recombination (SMART) in the wing of Drosophila melanogaster. Its were pretreated with CHLN or SAC to transheterocygotes larvas for two locus of the chromosome three mwh+/+flr{sup 3}; later on they are retarded the chronic treatment with DMH 0, 1, 2 and 3 days. It was measured the toxicity and the speed of development of the treated individuals. The wings of those adults that emerged were analyzed to register the number and the size of stains. The results indicated: differences in the viability of the individuals of the groups SAC + DMH vs CHLN + DMH only in the treated immediately after the pretreatment (DRT-0) that the CHLN doesn't modify the rate of the treated individuals development. The results of somatic mutation indicated that the CHLN has a protective effect only immediately after the pretreatment (DRT-0) however in DRT-1, 2 and 3 showed a promoter effect of genetic damage. (Author)

  17. Session V: Management of Radioactive Waste and Damaged Fuel. Session V-A: Generation and Management of Materials and Waste

    International Nuclear Information System (INIS)

    Blommaert, W.; Cheng Hui

    2013-01-01

    Mitigation of the Chernobyl accident consequences stressed the attention on the huge volumes and the variety of wastes resulting from the accident (almost all long- lived and alfa containing radioactive waste). The accident and the mitigation of the consequences clearly demonstrated the level of unpreparedness for such accident, the absence of experience in the management of huge amounts of contaminated materials, as well as the lack of storage /disposal capacity. This resulted in a ''not organized storage for not organized waste''. Hence, large amounts of contaminated materials are being stored under conditions that do not fully comply with present international safety requirements. During mitigation and clean-up operations after the Chernobyl accident, disposal facilities were constructed. Some of them are located in areas with high water table and hence (potentially) result in contamination of groundwater. For this reason some of them will require re-disposal, requiring itself a comprehensive safety assessment. On the other hand, the Chernobyl accident resulted, during the early phase of the accident, in the creation of a special governmental ''brainstorming'' commission on the decision making process, with a clear allocation of responsibilities and with full power. Later on, considered options for the management of different ''Chernobyl'' waste types (solid, liquid, fuel,) were provided in the National Policy and Strategy. Attention was drawn to the fact that pre-operational work is a time and cost consuming process. Up to now there is no decision on geological disposal. The development of facilities on the ''Vector site'' in the exclusion zone of Chernobyl is going on. The Vector operation covers retrieval operation of radioactive waste, characterization activities, processing activities, transport and storage/disposal of the radioactive waste in the exclusion zone. National legislation does not take into account the peculiarity of the ''Chernobyl'' waste and

  18. Genetics of the Steller's Sea Cow (Hydrodamalis gigas): A Study of Ancient Bone Material

    Science.gov (United States)

    Crerar, Lorelei D.

    Georg Wilhelm Steller was born 100 years before Darwin in 1709 and he was part of a vast exploration fifty years before Lewis and Clark explored America. Steller was important to the study of marine mammals because he was the only naturalist to see and describe the great northern sea cow ( Hydrodamalis gigas). Knowledge of an extinct population can be used to aid the conservation of a current population. Extraction of DNA from this extinct animal was performed in order to determine the population structure of the Steller's sea cow. A test was also developed that can definitively state whether or not a random bone sample came from H. gigas. This test could be used by the Fish and Wildlife Service (FWS) and the National Oceanic and Atmospheric Administration (NOAA) to examine material distributed in the North Pacific to determine whether samples are legally traded extinct Steller's sea cow or illegally traded extant marine mammal species protected under the Marine Mammal Protection Act (MMPA).

  19. 3D cellular automata finite element (CAFE) modelling and experimental observation of damage in quasi-brittle nuclear materials: Indentation of a SiC-SiC-fibre ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo Mora, Luis; Mostafavi, Mahmoud; Marrow, T. James; Khoshkhou, Danial; Connolly, Brian; Reinhard, Christina; Atwood, Robert; Zhao, Shuang

    2015-01-01

    Cellular automata integrated with finite elements (CAFE) have been used to develop a method to account for the effect of microstructure on quasi-brittle damage development. The microstructure is simulated explicitly by subdividing a finite element into smaller cells. A heterogeneous structure is created from key cells (seeds) using defined characteristics; the influence of the initial finite element mesh is effectively removed during the development of the microstructure. Graded microstructures, textures, particle anisotropy and multiple phases can be readily simulated, such as those in composites and porous materials. A mesh-free framework has been developed to compute the damage development through the microstructure, using cellular automata. With this method, we can study the development of discontinuous cracking and damage coalescence, and its sensitivity to microstructure. Experiments have been carried out to observe the three-dimensional development of damage, using high-resolution synchrotron X-ray computed tomography and digital volume correlation to observe Hertzian indentation of a SiC-SiC fibre composite, quantifying damage by measurement of the displacement fields within the material. The results demonstrate the applicability of the modelling strategy to damage development, and show how model input data may be obtained from small specimen tests, which could be performed at elevated temperatures with irradiated materials. (authors)

  20. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    Science.gov (United States)

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  1. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  2. Institute of Genetics and of Toxicology of Fissile Materials. Progress report on research and development work in 1992

    International Nuclear Information System (INIS)

    1993-03-01

    In the year under report, the institute's scope of investigations comprised the seven topics surveyed in the following together with the most recent research results obtained. These were genetic repair and genetic regulation mechanisms, biologic carcinogenesis, molecular genetics of eukaryotic genes, genetic mouse models of human disorders, toxicology of radioactive and non-radioactive heavy metals as well as environmental toxicology at the molecular and cellular levels. (orig./MG) [de

  3. Electron damage in organic crystals

    International Nuclear Information System (INIS)

    Howitt, D.G.; Thomas, G.

    1977-01-01

    The effects of radiation damage in three crystalline organic materials (l-valine, cytosine, copper phthalocyanine) have been investigated by electron microscopy. The degradation of these materials has been found to be consistent with a gradual collapse of their crystal structures brought about by ionization damage to the comprising molecules. It is inferred that the crystallinity of these materials is destroyed by ionizing radiation because the damaged molecules cannot be incorporated into the framework of their original structures. (author)

  4. Action of the chlorophyllin before genetic damage induced by gamma radiation in germinal cells of Drosophila; Accion de la clorofilina ante el dano genetico inducido por radiacion gamma en celulas germinales de Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Moreno B, R

    2004-07-01

    The chlorophyllin (CHLN) is a porphyrin of nutritious grade and soluble in water, derived of the chlorophyll. It has been reported that this pigment is a good anti mutagen since it reduces the damage to the DNA caused by physical or chemical agents of direct or indirect action. Their anti carcinogenic action has also been demonstrated when it is administered itself during the induced post-initiation phase by aflatoxins and heterocyclic amines. However in the last decade it has been reported that it also has promoter activity against the genetic damage induced by diverse agents like the alkyl ants of direct and indirect action, the gamma radiation and some heterocyclic amines. This effect has been observed in testing systems like Salmonella, Drosophila, rainbow trout and rodents. In the mouse spermatogonia it has been reported that it reduces the damage to the DNA but with the test of lethal dominant in Drosophila increment the damage induced by gamma radiation. The present study consisted on evaluating the effect of the CHLN in the line germinal masculine of Drosophila by means of the lethal recessive test bound to the sex (LRLS) with the stump Muller 5 and a litters system. Its were pretreated wild males with CHLN and 24 h later were irradiated with 0, 10, 20 and 40 Gy of gamma radiation immediately later were crossed with virgin females of the stump Basc and at 72 h the male was transferred to a cultivation media with three new virgin females, this process repeated three times until completing 3 litters. The F1 it was crossed among itself and in the F2 it was analysed the presence or absence of lethals. The results indicated that the CHLN per se incremented the basal frequency of damage due to the pigment can act as an agent that is inserted to the ADN causing pre mutagenic leisure. Nevertheless with the groups treated with the different doses of gamma radiation the CHLN does not present any protector action, neither promoter except in the litter I of the group

  5. Damage Tolerant Lightweight Armor Materials

    National Research Council Canada - National Science Library

    Nemat-Nasser, S

    2003-01-01

    To develop a fundamental understanding and quantitative assessment of the dynamic response and failure modes of highly heterogeneous and anisotropic composites of ceramics, cermets, metals, and fiber...

  6. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  7. Synthesis and stabilization of oxide-based colloidal suspensions in organic media: application in the preparation of hybrids organic-inorganic materials for very high laser damage threshold coatings

    International Nuclear Information System (INIS)

    Marchet, N.

    2008-02-01

    Multilayer coatings are widely used in optic and particular in the field of high power laser on the components of laser chains. The development of a highly reflective coating with a laser damage resistance requires the fine-tuning of a multilayer stack constituted by a succession alternated by materials with low and high refractive index. In order to limit the number of layers in the stack, refractive indexes must be optimized. To do it, an original approach consists in synthesizing new organic-inorganic hybrid materials satisfying the criteria of laser damage resistance and optimized refractive index. These hybrid materials are constituted by nano-particles of metal oxides synthesized by sol-gel process and dispersed in an organic polymer with high laser damage threshold. Nevertheless, this composite system requires returning both compatible phases between them by chemical grafting of alc-oxy-silanes or carboxylic acids. We showed that it was so possible to disperse in a homogeneous way these functionalized nano-particles in non-polar, aprotic solvent containing solubilized organic polymers, to obtain time-stable nano-composite solutions. From these organic-inorganic hybrid solutions, thin films with optical quality and high laser damage threshold were obtained. These promising results have permitted to realize highly reflective stacks, constituted by 7 pairs with optical properties in agreement with the theoretical models and high laser damage threshold. (author)

  8. Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard

    International Nuclear Information System (INIS)

    Mishima, J.; Ayer, J.E.

    1981-09-01

    The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity

  9. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Superelastic Ball Bearings: Materials and Design to Avoid Mounting and Dismounting Brinell Damage in an Inaccessible Press-fit Application-. II; Detailed Analysis

    Science.gov (United States)

    Howard, S. Adam; Dellacorte, Christopher

    2015-01-01

    Rolling element bearings utilized in precision rotating machines require proper alignment, preload, and interference fits to ensure overall optimum performance. Hence, careful attention must be given to bearing installation and disassembly procedures to ensure the above conditions are met. Usually, machines are designed in such a way that bearings can be pressed into housings or onto shafts through the races without loading the rolling elements. However, in some instances, either due to limited size or access, a bearing must be installed or removed in such a way that the load path travels through the rolling elements. This can cause high contact stresses between the rolling elements and the races and introduces the potential for Brinell denting of the races. This paper is a companion to the Part I paper by the authors that discusses material selection and the general design philosophy for the bearing. Here, a more in-depth treatment is given to the design of a dent-resistant bearing utilizing a superelastic alloy, 60NiTi, for the races. A common bearing analysis tool based on rigid body dynamics is used in combination with finite element simulations to design the superelastic bearing. The primary design constraints are prevention of denting and avoiding the balls riding over the edge of the race groove during a blind disassembly process where the load passes through the rolling elements. Through an iterative process, the resulting bearing geometry is tailored to improve axial static load capability compared to a deep-groove ball bearing of the same size. The results suggest that careful selection of materials and bearing geometry can enable blind disassembly without damage to the raceways, which is necessary in the current application (a compressor in the International Space Station Environmental Control and Life Support System), and results in potential design flexibility for other applications, especially small machines with miniature bearings.

  11. A Juridical Insight of Brave New World: The Eugenics Found on the Selection Criteria of Genetic Material for the Assisted Human Reproduction

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Alban

    2016-06-01

    Full Text Available Following the teachings of the “Law in the Literature” movement, as well as the method of the Phemenological Hermeneutics, the present essay intends to discuss the eugenics content present in the abstract criteria for donating genetic material in Brazil. In order to present this problem clearly for the reader, the novel Brave New World, from Aldous Huxley, will be used as an example. Opportunely, it will deal with the recent situation regarding the investigation of the London Sperm Bank donators’ politics, in which important debates related to the genetic selection aiming for avoiding congenital diseases appear.

  12. A study of the potential influence of frame coolant distribution on the radiation-induced damage of HCLL-TBM structural material

    International Nuclear Information System (INIS)

    Chiovaro, P.; Di Maio, P.A.; Oliveri, E.; Vella, G.

    2007-01-01

    Within the European Fusion Technology Programme, the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept is one of the two EU lines to be developed for a Long Term fusion reactor, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be implemented in ITER. The HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a steel supporting frame, actively cooled by pressurized water. That supporting frame has been designed to house two different TBMs, providing two cavities separated by a dividing plate 20 cm thick. As the nuclear response of HCLL-TBM might vary accordingly to the supporting frame configuration and composition, at the Department of Nuclear Engineering of the University of Palermo, a parametric study has been launched to investigate such an influence. Previous works dealt with the dependence of the nuclear response of HCLL-TBM on the configuration of a homogeneous frame, the present one has been focused on the investigation of the potential influence of coolant distribution within the frame on the radiation-induced damage of HCLL-TBM structural material. To this purpose, a detailed parametric study of the HCLL-TBM nuclear response has been performed by means of 3D-Monte Carlo neutronic analyses to asses both the rates of displacements per atom and helium production within the structural material. A semi-heterogeneous model of the supporting frame, assuming a realistic coolant distribution, and a 3D heterogeneous model of the HCLL-TBM, taking into account 9% Cr martensitic steel (Z 10 CDV Nb 9-1) as structural material, have been set-up. Both the two models have been inserted into the existing 3D ITER-FEAT one, simulating realistically the reactor lay-out up to the cryostat and providing for a proper D-T neutron source. The analyses have been performed by means of the MCNP-4C code, running a large number of histories for each one of them in such a way that results obtained are affected by statistical

  13. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  14. The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans

    Czech Academy of Sciences Publication Activity Database

    Shing, R.; Šrám, Radim; Binková, Blanka; Kalina, I.; Popov, T. A.; Georgieva, T.; Garte, S.; Taioli, E.; Farmer, P. B.

    2007-01-01

    Roč. 620, - (2007), s. 83-92 ISSN 0027-5107 Grant - others:EU(GB) 2000-00091; EU(GB) G0100873 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : air pollution * PAHs * oxidative DNA damage Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  15. Evaluation of Genetic DNA damage in the agricultural workers exposed to combined action of pesticides in Jonia area of Barpeta district of Assam

    OpenAIRE

    Dr. Ranjit Hazarika; Purbajyoti Deka

    2017-01-01

    Abstract— The use of pesticide is increasing day by day and it causes a serious concern to the human health, especially some pesticides causes’ deleterious effect causing Cancer. Genotoxicity test has a special significance because it is one of the tests for cancer research and risk assessment. The sprayer has more risk because they directly cause in contact with pesticides. Pesticides may affect the DNA of the body cells of the sprayer and known to cause DNA damage. In this case control stud...

  16. Development of Certified Matrix-Based Reference Material as a Calibrator for Genetically Modified Rice G6H1 Analysis.

    Science.gov (United States)

    Yang, Yu; Li, Liang; Yang, Hui; Li, Xiaying; Zhang, Xiujie; Xu, Junfeng; Zhang, Dabing; Jin, Wujun; Yang, Litao

    2018-04-11

    The accurate monitoring and quantification of genetically modified organisms (GMOs) are key points for the implementation of labeling regulations, and a certified reference material (CRM) acts as the scaleplate for quantifying the GM contents of foods/feeds and evaluating a GMO analytical method or equipment. Herein we developed a series of CRMs for transgenic rice event G6H1, which possesses insect-resistant and herbicide-tolerant traits. Three G6H1 CRMs were produced by mixing seed powders obtained from homozygous G6H1 and its recipient cultivar Xiushui 110 at mass ratios of 49.825%, 9.967%, and 4.986%. The between-bottle homogeneity and within-bottle homogeneity were thoroughly evaluated with consistent results. The potential DNA degradation in transportation and shelf life were evaluated with an expiration period of at least 12 months. The property values of three CRMs (G6H1 a , G6H1 b , G6H1 c ) were given as (49.825 ± 0.448) g/kg, (9.967 ± 1.757) g/kg, and (4.986 ± 1.274 g/kg based on mass fraction ratio, respectively. Furthermore, the three CRMs were characterized with values of (5.01 ± 0.08)%, (1.06 ± 0.22)%, and (0.53 ± 0.11)% based on the copy number ratio using the droplet digital PCR method. All results confirmed that the produced G6H1 matrix-based CRMs are of high quality with precise characterization values and can be used as calibrators in GM rice G6H1 inspection and monitoring and in evaluating new analytical methods or devices targeting the G6H1 event.

  17. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  18. Genetic effects from internally deposited radionuclides

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    It was learned in the late 1920's that ionizing radiation could produce genetic effects such as gene mutations and chromosome aberrations. However, at least until 1945, the focus on interest in radiation protection was primarily on somatic effects manifested in the individual exposed. Studies of the genetic effects of radiation using drosophila, however, refocused attention on effects transmitted to the exposed individuals offspring and concern over fallout in the 1950's resulted in efforts to estimate the genetic effects from exposure of human populations to internally deposited radionuclides. No human populations have been identified with burdens of internally deposited radioactive materials which have been shown to produce evidence of transmissible genetic damage. As a result, the research approach has been one in which macromolecular, cellular, and whole animal genetic studies have been combined to estimate genetic effects on humans following the deposition of radioactive materials in the body. The purpose of this report is to update the information available from animal and cellular experiments that relates genetic effects to deposited activity and dose from internally deposited radioactive materials

  19. In vivo evaluation of the genetic toxicity of Rubus niveus Thunb. (Rosaceae) extract and initial screening of its potential chemoprevention against doxorubicin-induced DNA damage.

    Science.gov (United States)

    Tolentino, Flora; Araújo, Priscila Alves de; Marques, Eduardo de Souza; Petreanu, Marcel; Andrade, Sérgio Faloni de; Niero, Rivaldo; Perazzo, Fábio F; Rosa, Paulo César Pires; Maistro, Edson Luis

    2015-04-22

    Rubus niveus Thunb. plant belongs to Rosaceae family and have been used traditionally to treat wounds, burns, inflammation, dysentery, diarrhea and for curing excessive bleeding during menstrual cycle. The present study was undertaken to investigate the in vivo genotoxicity of Rubus niveus aerial parts extract and its possible chemoprotection on doxorubicin (DXR)-induced DNA damage. In parallel, the main phytochemicals constituents in the extract were determined. The animals were exposed to the extract for 24 and 48 h, and the doses selected were 500, 1000 and 2000 mg/kg b.w. administered by gavage alone or prior to DXR (30 mg/kg b.w.) administered by intraperitoneal injection. The endpoints analyzed were DNA damage in bone marrow and peripheral blood cells assessed by the alkaline alkaline (pH>13) comet assay and bone marrow micronucleus test. The results of chemical analysis of the extract showed the presence of tormentic acid, stigmasterol, quercitinglucoronide (miquelianin) and niga-ichigoside F1 as main compounds. Both cytogenetic endpoints analyzed showed that there were no statistically significant differences (p>0.05) between the negative control and the treated groups with the two higher doses of Rubus niveus extract alone, demonstrating absence of genotoxic and mutagenic effects. Aneugenic/clastogenic effect was observed only at 2000 mg/kg dose. On the other hand, in the both assays and all tested doses were observed a significant reduction of DNA damage and chromosomal aberrations in all groups co-treated with DXR and extract compared to those which received only DXR. These results indicate that Rubus niveus aerial parts extract did not revealed any genotoxic effect, but presented some aneugenic/clastogenic effect at higher dose; and suggest that it could be a potential adjuvant against development of second malignant neoplasms caused by the cancer chemotherapic DXR. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Analysis of the concept of informed consent concerning the use of genetic material according to the European Convention on Bioethics and in other solutionsm – Propositions for broad consent for future genetic research from the point of view of the activity of the Biobank

    Directory of Open Access Journals (Sweden)

    Rafał Patryn

    2017-09-01

    The presented proposition of consent with a terminal premise is to be applied eventually to legal and formal aspects of the collecting of genetic material. It is a possible solution which would clarify the issue of informed consent, and may be implemented in the regulations of the Convention as well as constitute a self-contained legislative solution to this matter. For example, Polish law in its current form, without the ratification of the Bioethical Convention, allows the collecting of material for genetic testing for determination of the risk of genetic defects in common genetic material from people who are planning to have a child.