WorldWideScience

Sample records for genetic interactions show

  1. Analysis of genetic interaction networks shows that alternatively spliced genes are highly versatile.

    Science.gov (United States)

    Talavera, David; Sheoran, Ritika; Lovell, Simon C

    2013-01-01

    Alternative splicing has the potential to increase the diversity of the transcriptome and proteome. Where more than one transcript arises from a gene they are often so different that they are quite unlikely to have the same function. However, it remains unclear if alternative splicing generally leads to a gene being involved in multiple biological processes or whether it alters the function within a single process. Knowing that genetic interactions occur between functionally related genes, we have used them as a proxy for functional versatility, and have analysed the sets of genes of two well-characterised model organisms: Caenorhabditis elegans and Drosophila melanogaster. Using network analyses we find that few genes are functionally homogenous (only involved in a few functionally-related biological processes). Moreover, there are differences between alternatively spliced genes and genes with a single transcript; specifically, genes with alternatively splicing are, on average, involved in more biological processes. Finally, we suggest that factors other than specific functional classes determine whether a gene is alternatively spliced.

  2. Structural similarity of genetically interacting proteins

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2008-07-01

    Full Text Available Abstract Background The study of gene mutants and their interactions is fundamental to understanding gene function and backup mechanisms within the cell. The recent availability of large scale genetic interaction networks in yeast and worm allows the investigation of the biological mechanisms underlying these interactions at a global scale. To date, less than 2% of the known genetic interactions in yeast or worm can be accounted for by sequence similarity. Results Here, we perform a genome-scale structural comparison among protein pairs in the two species. We show that significant fractions of genetic interactions involve structurally similar proteins, spanning 7–10% and 14% of all known interactions in yeast and worm, respectively. We identify several structural features that are predictive of genetic interactions and show their superiority over sequence-based features. Conclusion Structural similarity is an important property that can explain and predict genetic interactions. According to the available data, the most abundant mechanism for genetic interactions among structurally similar proteins is a common interacting partner shared by two genetically interacting proteins.

  3. Interactive Genetic Algorithms with Fitness Adjustment

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-song; GONG Dun-wei; HAO Guo-sheng; ZHANG Yong

    2006-01-01

    Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user's preference mechanisms. Characteristics of the two noises are presented aiming at the application of interactive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual's fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm's performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises.

  4. Dolphin shows and interaction programs: benefits for conservation education?

    Science.gov (United States)

    Miller, L J; Zeigler-Hill, V; Mellen, J; Koeppel, J; Greer, T; Kuczaj, S

    2013-01-01

    Dolphin shows and dolphin interaction programs are two types of education programs within zoological institutions used to educate visitors about dolphins and the marine environment. The current study examined the short- and long-term effects of these programs on visitors' conservation-related knowledge, attitude, and behavior. Participants of both dolphin shows and interaction programs demonstrated a significant short-term increase in knowledge, attitudes, and behavioral intentions. Three months following the experience, participants of both dolphin shows and interaction programs retained the knowledge learned during their experience and reported engaging in more conservation-related behaviors. Additionally, the number of dolphin shows attended in the past was a significant predictor of recent conservation-related behavior suggesting that repetition of these types of experiences may be important in inspiring people to conservation action. These results suggest that both dolphin shows and dolphin interaction programs can be an important part of a conservation education program for visitors of zoological facilities.

  5. Intracortical bone remodeling variation shows strong genetic effects.

    Science.gov (United States)

    Havill, L M; Allen, M R; Harris, J A K; Levine, S M; Coan, H B; Mahaney, M C; Nicolella, D P

    2013-11-01

    Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7-33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61-82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48-75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk.

  6. Greenlandic Inuit show genetic signatures of diet and climate adaptation

    DEFF Research Database (Denmark)

    Fumagalli, Matteo; Moltke, Ida; Grarup, Niels

    2015-01-01

    The indigenous people of Greenland, the Inuit, have lived for a long time in the extreme conditions of the Arctic, including low annual temperatures, and with a specialized diet rich in protein and fatty acids, particularly omega-3 polyunsaturated fatty acids (PUFAs). A scan of Inuit genomes......, with the effect on height replicated in Europeans. By analyzing membrane lipids, we found that the selected alleles modulate fatty acid composition, which may affect the regulation of growth hormones. Thus, the Inuit have genetic and physiological adaptations to a diet rich in PUFAs....

  7. [Interactions between genetics and environment].

    Science.gov (United States)

    Vineis, P

    1998-01-01

    From a scientific point of view, the idea that genes exert an important role in explaining human pathology has gained much popularity in recent decades. However, according to Stephen Jay Gould, the "genetic fallacy" has been repeatedly used to avoid environmental action. In the case of occupational cancer, genetic screening of workers for their susceptibility to the action of chemical carcinogens, on the basis of "metabolic polymorphisms", would be unacceptable because of racial discrimination, related to uneven racial distribution of most polymorphisms, for example, 90% of Africans and 10% of Asians have the "slow" acetylator genotype. Therefore, not only technical and scientific aspects of genetic susceptibility to cancer, but also ethical and social implication have to be considered.

  8. The balance of weak and strong interactions in genetic networks.

    Directory of Open Access Journals (Sweden)

    Juan F Poyatos

    Full Text Available Genetic interactions are being quantitatively characterized in a comprehensive way in several model organisms. These data are then globally represented in terms of genetic networks. How are interaction strengths distributed in these networks? And what type of functional organization of the underlying genomic systems is revealed by such distribution patterns? Here, I found that weak interactions are important for the structure of genetic buffering between signaling pathways in Caenorhabditis elegans, and that the strength of the association between two genes correlates with the number of common interactors they exhibit. I also determined that this network includes genetic cascades balancing weak and strong links, and that its hubs act as particularly strong genetic modifiers; both patterns also identified in Saccharomyces cerevisae networks. In yeast, I further showed a relation, although weak, between interaction strengths and some phenotypic/evolutionary features of the corresponding target genes. Overall, this work demonstrates a non-random organization of interaction strengths in genetic networks, a feature common to other complex networks, and that could reflect in this context how genetic variation is eventually influencing the phenotype.

  9. Cheating for Problem Solving: A Genetic Algorithm with Social Interactions

    CERN Document Server

    Lahoz-Beltra, Rafeal; Aickelin, Uwe

    2010-01-01

    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.

  10. A UV-induced genetic network links the RSC complex to nucleotide excision repair and shows dose-dependent rewiring.

    Science.gov (United States)

    Srivas, Rohith; Costelloe, Thomas; Carvunis, Anne-Ruxandra; Sarkar, Sovan; Malta, Erik; Sun, Su Ming; Pool, Marijke; Licon, Katherine; van Welsem, Tibor; van Leeuwen, Fred; McHugh, Peter J; van Attikum, Haico; Ideker, Trey

    2013-12-26

    Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER) with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  11. A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    Directory of Open Access Journals (Sweden)

    Rohith Srivas

    2013-12-01

    Full Text Available Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  12. Predicting genetic interactions with random walks on biological networks

    Directory of Open Access Journals (Sweden)

    Singh Ambuj K

    2009-01-01

    Full Text Available Abstract Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree

  13. Fashion sketch design by interactive genetic algorithms

    Science.gov (United States)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  14. Adaptive interactive genetic algorithms with individual interval fitness

    Institute of Scientific and Technical Information of China (English)

    Dunwei Gong; Guangsong Guo; Li Lu; Hongmei Ma

    2008-01-01

    It is necessary to enhance the performance of interactive genetic algorithms in order to apply them to complicated optimization problems successfully. An adaptive interactive genetic algorithm with individual interval fitness is proposed in this paper in which an individual fitness is expressed by an interval. Through analyzing the fitness, information reflecting the distribution of an evolutionary population is picked up, namely, the difference of evaluating superior individuals and the difference of evaluating a population. Based on these, the adaptive probabilities of crossover and mutation operators of an individual are presented. The algorithm proposed in this paper is applied to a fashion evolutionary design system, and the results show that it can find many satisfactory solutions per generation. The achievement of the paper provides a new approach to enhance the performance of interactive genetic algorithms.

  15. Interacting personalities: behavioural ecology meets quantitative genetics.

    Science.gov (United States)

    Dingemanse, Niels J; Araya-Ajoy, Yimen G

    2015-02-01

    Behavioural ecologists increasingly study behavioural variation within and among individuals in conjunction, thereby integrating research on phenotypic plasticity and animal personality within a single adaptive framework. Interactions between individuals (cf. social environments) constitute a major causative factor of behavioural variation at both of these hierarchical levels. Social interactions give rise to complex 'interactive phenotypes' and group-level emergent properties. This type of phenotype has intriguing evolutionary implications, warranting a cohesive framework for its study. We detail here how a reaction-norm framework might be applied to usefully integrate social environment theory developed in behavioural ecology and quantitative genetics. The proposed emergent framework facilitates firm integration of social environments in adaptive research on phenotypic characters that vary within and among individuals.

  16. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  17. Inferring modulators of genetic interactions with epistatic nested effects models.

    Science.gov (United States)

    Pirkl, Martin; Diekmann, Madeline; van der Wees, Marlies; Beerenwinkel, Niko; Fröhlich, Holger; Markowetz, Florian

    2017-04-01

    Maps of genetic interactions can dissect functional redundancies in cellular networks. Gene expression profiles as high-dimensional molecular readouts of combinatorial perturbations provide a detailed view of genetic interactions, but can be hard to interpret if different gene sets respond in different ways (called mixed epistasis). Here we test the hypothesis that mixed epistasis between a gene pair can be explained by the action of a third gene that modulates the interaction. We have extended the framework of Nested Effects Models (NEMs), a type of graphical model specifically tailored to analyze high-dimensional gene perturbation data, to incorporate logical functions that describe interactions between regulators on downstream genes and proteins. We benchmark our approach in the controlled setting of a simulation study and show high accuracy in inferring the correct model. In an application to data from deletion mutants of kinases and phosphatases in S. cerevisiae we show that epistatic NEMs can point to modulators of genetic interactions. Our approach is implemented in the R-package 'epiNEM' available from https://github.com/cbg-ethz/epiNEM and https://bioconductor.org/packages/epiNEM/.

  18. Genetic connections between dressage and show-jumping horses in Dutch Warmblood horses

    DEFF Research Database (Denmark)

    Rovere, Gabriel; Madsen, Per; Norberg, Elise

    2014-01-01

    During the last decades, the breeding practice within the Dutch Warmblood studbook (KWPN) has resulted in an increasing specialisation of horses into show-jumping (JH) and dressage (DH). The objective of this study was to describe the effect of the specialisation on the connectedness between...... the subpopulations of JH and DH horses registered by KWPN. The subpopulations comprised 23,800 JH horses and 18,125 DH horses, born between 1995 and 2009. Genetic similarity (GS), genetic pool in common (GCx) based on the marginal genetic contribution of common ancestors and coefficient of relationship (r) between...

  19. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1...... diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions....

  20. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  1. On the physical basis for ambiguity in genetic coding interactions.

    Science.gov (United States)

    Grosjean, H J; de Henau, S; Crothers, D M

    1978-02-01

    We report the relative stabilities, in the form of complex lifetimes, of complexes between the tRNAs complementary, or nearly so, in their anticodons. The results show striking parallels with the genetic coding rules, including the wobble interaction and the role of modified nucleotides S2U and V (a 5-oxyacetic acid derivative of U). One important difference between the genetic code and the pairing rules in the tRNA-tRNA interaction is the stability in the latter of the short wobble pairs, which the wobble hypothesis excludes. We stress the potential of U for translational errors, and suggest a simple stereochemical basis for ribosome-mediated discrimination against short wobble pairs. Surprisingly, the stability of anticodon-anticodon complexes does not vary systematically on base sequence. Because of the close similarity to the genetic coding rules, it is tempting to speculate that the interaction between two RNA loops may have been part of the physical basis for the evolutionary origin of the genetic code, and that this mechanism may still be utilized by folding the mRNA on the ribosome into a loop similar to the anticodon loop.

  2. Added value measures in education show genetic as well as environmental influence.

    Science.gov (United States)

    Haworth, Claire M A; Asbury, Kathryn; Dale, Philip S; Plomin, Robert

    2011-02-02

    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.

  3. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  4. Genetic interaction mapping with microfluidic-based single cell sequencing

    Science.gov (United States)

    Haliburton, John R.; Shao, Wenjun; Deutschbauer, Adam; Arkin, Adam; Abate, Adam R.

    2017-01-01

    Genetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing. Our approach is scalable and theoretically enables the pooling of entire interaction libraries to interrogate multiple pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our approach makes genetic interaction mapping viable for routine characterization, allowing the interaction network to be used as a universal read out for a variety of biology experiments, and for the elucidation of interaction networks in non-model organisms. PMID:28170417

  5. Genome-Wide Prediction of C. elegans Genetic Interactions

    OpenAIRE

    Zhong, Weiwei; Sternberg, Paul W.

    2006-01-01

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms—Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster—and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understandin...

  6. Genetic connections between dressage and show jumping in Dutch Warmblood horses

    DEFF Research Database (Denmark)

    Rovere, G; Madsen, Per; Ducro, B J;

    During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH subpopulati......During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH...... subpopulations of the current generation. The material comprised horses that participated in the studbook entry inspections between 2005 and 2010. KWPN is registering jumping and dressage horses using different codes since 2005. Ancestors were traced back as far as possible in the pedigree to define the base...

  7. Genetic connections between dressage and show jumping in Dutch Warmblood horses

    DEFF Research Database (Denmark)

    Rovere, G; Madsen, Per; Ducro, B J;

    2012-01-01

    During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH subpopulati......During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH...... subpopulations of the current generation. The material comprised horses that participated in the studbook entry inspections between 2005 and 2010. KWPN is registering jumping and dressage horses using different codes since 2005. Ancestors were traced back as far as possible in the pedigree to define the base...

  8. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia.

    Science.gov (United States)

    Rangan, Haripriya; Bell, Karen L; Baum, David A; Fowler, Rachael; McConvell, Patrick; Saunders, Thomas; Spronck, Stef; Kull, Christian A; Murphy, Daniel J

    2015-01-01

    This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

  9. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia.

    Directory of Open Access Journals (Sweden)

    Haripriya Rangan

    Full Text Available This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

  10. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qingtao Liu

    2016-11-01

    Full Text Available H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06 virus was highly pathogenic for mice, with a 50% mouse lethal dose of 102.83 50% egg infectious dose, whereas the A/duck/Nanjing/01/1999 (NJ01 virus was low pathogenic for mice, with a 50% mouse lethal dose of >106.81 50% egg infectious dose. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only twelve different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.

  11. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering

    Directory of Open Access Journals (Sweden)

    Warren eAlbertin

    2016-01-01

    Full Text Available Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation which is usually performed by Saccharomyces species. The aim of this study was to characterise the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analysed using 11 microsatellite markers and a subset of 47 strains were analysed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localisation as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of Hanseniaspora uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia and copper addition on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed.

  12. Genetic connections between dressage and show jumping in Dutch Warmblood horses

    DEFF Research Database (Denmark)

    Rovere, G; Madsen, Per; Ducro, B J

    2012-01-01

    During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH subpopulati......During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH...... subpopulations of the current generation. The material comprised horses that participated in the studbook entry inspections between 2005 and 2010. KWPN is registering jumping and dressage horses using different codes since 2005. Ancestors were traced back as far as possible in the pedigree to define the base...... generation. Subsequently the base generation was divided into 3 base groups, according to having only descendants in JH, in DH or in both subpopulations. Subsequently, the genetic contribution of the 3 base groups to the subpopulations was estimated. DMUTRACE software was used to make the pedigrees files...

  13. Genetic connections between dressage and show jumping in Dutch Warmblood horses

    DEFF Research Database (Denmark)

    Rovere, G; Madsen, Per; Ducro, B J

    During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH subpopulati......During the last decades a process of specialization has occurred into show jumping (JH) and dressage (DH) in the Dutch Warmblood studbook (KWPN). As a consequence, the genetic base might become stratified. The objective of this study was to estimate the connectedness between JH and DH...... subpopulations of the current generation. The material comprised horses that participated in the studbook entry inspections between 2005 and 2010. KWPN is registering jumping and dressage horses using different codes since 2005. Ancestors were traced back as far as possible in the pedigree to define the base...... generation. Subsequently the base generation was divided into 3 base groups, according to having only descendants in JH, in DH or in both subpopulations. Subsequently, the genetic contribution of the 3 base groups to the subpopulations was estimated. DMUTRACE software was used to make the pedigrees files...

  14. Molecular epidemiological analysis of Mycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters

    DEFF Research Database (Denmark)

    McAuliffe, Laura; Kokotovic, Branko; Ayling, Roger D.

    2004-01-01

    Mycoplasma bovis is an important veterinary pathogen causing pneumonia, arthritis, and mastitis in infected cattle. We investigated the genetic diversity of 53 isolates collected in the United Kingdom between 1996 and 2002 with pulsed-field gel electrophoresis (PFGE), amplified fragment length...... polymorphism (AFLP), and random amplified polymorphic DNA (RAPD) analysis. In addition, the influence of variable surface protein (Vsp) profiles on the profiles generated with molecular typing techniques was studied. Both AFLP and RAPD separated the isolates into two distinct groups, but PFGE showed less...

  15. Genome-wide prediction of C. elegans genetic interactions.

    Science.gov (United States)

    Zhong, Weiwei; Sternberg, Paul W

    2006-03-10

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms-Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster-and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understanding of gene functions. We experimentally tested the predicted interactions for two human disease-related genes and identified 14 new modifiers.

  16. Multiple genetic interaction experiments provide complementary information useful for gene function prediction.

    Directory of Open Access Journals (Sweden)

    Magali Michaut

    Full Text Available Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and provide significant unique information. To exploit this information, we develop a novel method to combine individual genetic interaction data sets and show that the resulting network improves gene function prediction performance, demonstrating that individual networks provide complementary information. Our results support the notion that using diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function information produced by genetic interaction screens.

  17. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    Science.gov (United States)

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  18. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  19. Genome-wide association data reveal a global map of genetic interactions among protein complexes.

    Directory of Open Access Journals (Sweden)

    Gregory Hannum

    2009-12-01

    Full Text Available This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.

  20. Chronic Rhinosinusitis Patients Show Accumulation of Genetic Variants in PARS2.

    Directory of Open Access Journals (Sweden)

    Viktor Henmyr

    Full Text Available Genetic studies of chronic rhinosinusitis (CRS have identified a total of 53 CRS-associated SNPs that were subsequently evaluated for their reproducibility in a recent study. The rs2873551 SNP in linkage disequilibrium with PARS2 showed the strongest association signal. The present study aims to comprehensively screen for rare variants in PARS2 and evaluate for accumulation of such variants in CRS-patients. Sanger sequencing and long-range PCR were used to screen for rare variants in the putative promoter region and coding sequence of 310 CRS-patients and a total of 21 variants were detected. The mutation spectrum was then compared with data from European populations of the 1000Genomes project (EUR and the Exome Aggregation Consortium (ExAC. The CRS population showed a significant surplus of low-frequency variants compared with ExAC data. Haplotype analysis of the region showed a significant excess of rare haplotypes in the CRS population compared to the EUR population. Two missense mutations were also genotyped in the 310 CRS patients and 372 CRS-negative controls, but no associations with the disease were found. This is the first re-sequencing study in CRS research and also the first study to show an association of rare variants with the disease.

  1. Rapid Identification of Chemical Genetic Interactions in Saccharomyces cerevisiae

    Science.gov (United States)

    Dilworth, David; Nelson, Christopher J.

    2015-01-01

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described. PMID:25867090

  2. Amphibian DNA shows marked genetic structure and tracks pleistocene climate change in northeastern Brazil.

    Science.gov (United States)

    Carnaval, Ana Carolina; Bates, John M

    2007-12-01

    The glacial refugia paradigm has been broadly applied to patterns of species dynamics and population diversification. However, recent geological studies have demonstrated striking Pleistocene climate changes in currently semiarid northeastern Brazil at time intervals much more frequent than the climatic oscillations associated with glacial and interglacial periods. These geomorphic data documented recurrent pulses of wet regimes in the past 210,000 years that correlate with climate anomalies affecting multiple continents. While analyzing DNA sequences of two mitochondrial genes (cytochrome b and NADH-dehydrogenase subunit 2) and one nuclear marker (cellular-myelocytomatosis proto-oncogene) in the forest-associated frogs Proceratophrys boiei and Ischnocnema gr. ramagii, we found evidence of biological responses consistent with these pluvial maxima events. Sampled areas included old, naturally isolated forest enclaves within the semiarid Caatinga, as well as recent man-made fragments of humid coastal Atlantic forest. Results show that mtDNA lineages in enclave populations are monophyletic or nearly so, whereas nonenclave populations are polyphyletic and more diverse. The studied taxa show evidence of demographic expansions at times that match phases of pluvial maxima inferred from geological data. Divergence times between several populations fall within comparatively drier intervals suggested by geomorphology. Mitochondrial and nuclear data show local populations to be genetically structured, with some high levels of differentiation that suggest the need of further taxonomic work.

  3. Using genetic programming to discover nonlinear variable interactions.

    Science.gov (United States)

    Westbury, Chris; Buchanan, Lori; Sanderson, Michael; Rhemtulla, Mijke; Phillips, Leah

    2003-05-01

    Psychology has to deal with many interacting variables. The analyses usually used to uncover such relationships have many constraints that limit their utility. We briefly discuss these and describe recent work that uses genetic programming to evolve equations to combine variables in nonlinear ways in a number of different domains. We focus on four studies of interactions from lexical access experiments and psychometric problems. In all cases, genetic programming described nonlinear combinations of items in a manner that was subsequently independently verified. We discuss the general implications of genetic programming and related computational methods for multivariate problems in psychology.

  4. The ARMC5 gene shows extensive genetic variance in primary macronodular adrenocortical hyperplasia

    Science.gov (United States)

    Correa, Ricardo; Zilbermint, Mihail; Berthon, Annabel; Espiard, Stephanie; Batsis, Maria; Papadakis, Georgios Z.; Xekouki, Paraskevi; Lodish, Maya B.; Bertherat, Jerome; Faucz, Fabio R.; Stratakis, Constantine A.

    2015-01-01

    Objective Primary macronodular adrenal hyperplasia (PMAH) is a rare type of Cushing’s syndrome (CS) that results in increased cortisol production and bilateral enlargement of the adrenal glands. Recent work showed that the disease may be caused by germline and somatic mutations in the ARMC5 gene, a likely tumor-suppressor gene (TSG). We investigated 20 different adrenal nodules from one patient with PMAH for ARMC5 somatic sequence changes. Design All of the nodules where obtained from a single patient who underwent bilateral adrenalectomy. DNA was extracted by standard protocols and the ARMC5 sequence was determined by the Sanger method. Results Sixteen of 20 adrenocortical nodules harbored, in addition to what appeared to be the germline mutation, a second somatic variant. The p.Trp476* sequence change was present in all 20 nodules, as well as in normal tissue from the adrenal capsule, identifying it as the germline defect; each of the 16 other variants were found in different nodules: 6 were frame shift, 4 were missense, 3 were nonsense, and 1 was a splice site variation. Allelic losses were confirmed in 2 of the nodules. Conclusion This is the most genetic variance of the ARMC5 gene ever described in a single patient with PMAH: each of 16 adrenocortical nodules had a second new, “private”, and -in most cases- completely inactivating ARMC5 defect, in addition to the germline mutation. The data support the notion that ARMC5 is a TSG that needs a second, somatic hit, to mediate tumorigenesis leading to polyclonal nodularity; however, the driver of this extensive genetic variance of the second ARMC5 allele in adrenocortical tissue in the context of a germline defect and PMAH remains a mystery. PMID:26162405

  5. Neotropical birds show a humped distribution of within-population genetic diversity along a latitudinal transect.

    Science.gov (United States)

    Miller, Matthew J; Bermingham, Eldredge; Klicka, John; Escalante, Patricia; Winker, Kevin

    2010-05-01

    The latitudinal gradient in species richness is a nearly universal ecological phenomenon. Similarly, conspecific genetic diversity often increases towards the equator - usually explained as the consequence of post-glacial range expansion or due to the shared response of genetic diversity to processes that promote species richness. However, no study has yet examined the relationship between latitude and within-population genetic diversity in exclusively tropical species. We surveyed genetic variation in nine resident bird species co-occurring in tropical lowlands between southern Mexico and western Ecuador, where avian species richness increases with decreasing latitude. Within-population genetic variation was always highest at mid-range latitudes, and not in the most equatorial populations. Differences in demography and gene flow across species' ranges may explain some of our observations; however, much of the pattern may be due simply to geometric constraints. Our findings have implications for conservation planning and for understanding how biodiversity scales from genes to communities.

  6. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.

  7. Woody climbers show greater population genetic differentiation than trees: Insights into the link between ecological traits and diversification.

    Science.gov (United States)

    Gianoli, Ernesto; Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Saldaña, Alfredo; Ríos, Rodrigo S

    2016-12-01

    The climbing habit is a key innovation in plants: climbing taxa have higher species richness than nonclimbing sister groups. We evaluated the hypothesis that climbing plant species show greater among-population genetic differentiation than nonclimber species. We compared the among-population genetic distance in woody climbers (eight species, 30 populations) and trees (seven species, 29 populations) coexisting in nine communities in a temperate rainforest. We also compared within-population genetic diversity in co-occurring woody climbers and trees in two communities. Mean genetic distance between populations of climbers was twice that of trees. Isolation by distance (increase in genetic distance with geographic distance) was greater for climbers. Climbers and trees showed similar within-population genetic diversity. Our longevity estimate suggested that climbers had shorter generation times, while other biological features often associated with diversification (dispersal and pollination syndromes, mating system, size, and metabolic rate) did not show significant differences between groups. We hypothesize that the greater population differentiation in climbers could result from greater evolutionary responses to local selection acting on initially higher within-population genetic diversity, which could be driven by neutral processes associated with shorter generation times. Increased population genetic differentiation could be incorporated as another line of evidence when testing for key innovations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Using interactive family science shows to improve public knowledge on antibiotic resistance: does it work?

    Science.gov (United States)

    Lecky, Donna M; Hawking, Meredith K D; Verlander, Neville Q; McNulty, Cliodna A M

    2014-01-01

    The public plays an important role in controlling the emergence and spread of antibiotic resistance. A large British survey showed that there is still public misunderstanding about microbes and antibiotics. e-Bug, a European DG Sanco sponsored project, aims to disseminate a school antibiotic and hygiene educational pack and website across Europe. Interactive science shows based on the e-Bug educational packs were developed to take the key health and hygiene messages from the e-Bug school resources to families. The science show was evaluated to assess public knowledge and understanding of antibiotics and antibiotic resistance pre and post intervention. An interactive stall comprised of a 3×2 m backing stand with background information, an interactive activity and discussions with a trained demonstrator was on display at a family holiday resort. Pre-piloted knowledge questionnaires were completed by parents and children pre and post intervention. Adult (≥19 years) baseline knowledge regarding antibiotics and antibiotic resistance was high although significant knowledge improvement was observed where baseline knowledge was low. Children's (5-11 years) knowledge around antibiotics and antibiotic resistance was significantly improved for all questions. The science show can be viewed as a success in improving parents' and children's knowledge of antibiotic use thereby highlighting the importance of educating the public through interaction.

  9. Using interactive family science shows to improve public knowledge on antibiotic resistance: does it work?

    Directory of Open Access Journals (Sweden)

    Donna M Lecky

    Full Text Available The public plays an important role in controlling the emergence and spread of antibiotic resistance. A large British survey showed that there is still public misunderstanding about microbes and antibiotics. e-Bug, a European DG Sanco sponsored project, aims to disseminate a school antibiotic and hygiene educational pack and website across Europe. Interactive science shows based on the e-Bug educational packs were developed to take the key health and hygiene messages from the e-Bug school resources to families. The science show was evaluated to assess public knowledge and understanding of antibiotics and antibiotic resistance pre and post intervention. An interactive stall comprised of a 3×2 m backing stand with background information, an interactive activity and discussions with a trained demonstrator was on display at a family holiday resort. Pre-piloted knowledge questionnaires were completed by parents and children pre and post intervention. Adult (≥19 years baseline knowledge regarding antibiotics and antibiotic resistance was high although significant knowledge improvement was observed where baseline knowledge was low. Children's (5-11 years knowledge around antibiotics and antibiotic resistance was significantly improved for all questions. The science show can be viewed as a success in improving parents' and children's knowledge of antibiotic use thereby highlighting the importance of educating the public through interaction.

  10. Discovering Pair-Wise Genetic Interactions: An Information Theory-Based Approach

    Science.gov (United States)

    Ignac, Tomasz M.; Skupin, Alexander; Sakhanenko, Nikita A.; Galas, David J.

    2014-01-01

    Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and family-based approaches, complex phenotypic traits resulting from multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory, and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and outperforms other measures in several circumstances. The method also allows us to optimize case/control sample composition for clinical studies. PMID:24670935

  11. Natural Selection and Evolution: Using Multimedia Slide Shows to Emphasize the Role of Genetic Variation

    Science.gov (United States)

    Malone, Molly

    2012-01-01

    Most middle school students comprehend that organisms have adaptations that enable their survival and that successful adaptations prevail in a population over time. Yet they often miss that those bird beaks, moth-wing colors, or whatever traits are the result of random, normal genetic variations that just happen to confer a negative, neutral, or…

  12. Molecular epidemiological analysis of Mycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters

    DEFF Research Database (Denmark)

    McAuliffe, Laura; Kokotovic, Branko; Ayling, Roger D.;

    2004-01-01

    Mycoplasma bovis is an important veterinary pathogen causing pneumonia, arthritis, and mastitis in infected cattle. We investigated the genetic diversity of 53 isolates collected in the United Kingdom between 1996 and 2002 with pulsed-field gel electrophoresis (PFGE), amplified fragment length...

  13. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize

    Science.gov (United States)

    Plants in nature have inducible defenses that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within- species variati...

  14. Crossover Method for Interactive Genetic Algorithms to Estimate Multimodal Preferences

    Directory of Open Access Journals (Sweden)

    Misato Tanaka

    2013-01-01

    Full Text Available We apply an interactive genetic algorithm (iGA to generate product recommendations. iGAs search for a single optimum point based on a user’s Kansei through the interaction between the user and machine. However, especially in the domain of product recommendations, there may be numerous optimum points. Therefore, the purpose of this study is to develop a new iGA crossover method that concurrently searches for multiple optimum points for multiple user preferences. The proposed method estimates the locations of the optimum area by a clustering method and then searches for the maximum values of the area by a probabilistic model. To confirm the effectiveness of this method, two experiments were performed. In the first experiment, a pseudouser operated an experiment system that implemented the proposed and conventional methods and the solutions obtained were evaluated using a set of pseudomultiple preferences. With this experiment, we proved that when there are multiple preferences, the proposed method searches faster and more diversely than the conventional one. The second experiment was a subjective experiment. This experiment showed that the proposed method was able to search concurrently for more preferences when subjects had multiple preferences.

  15. Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    OpenAIRE

    Sourav Bandyopadhyay; Ryan Kelley; Krogan, Nevan J.; Trey Ideker

    2008-01-01

    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relat...

  16. Gene-Environment Interactions in Asthma: Genetic and Epigenetic Effects.

    Science.gov (United States)

    Lee, Jong-Uk; Kim, Jeong Dong; Park, Choon-Sik

    2015-07-01

    Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.

  17. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  18. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria.

    Science.gov (United States)

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Dobslaff, Kristin; Wiesner, Jochen; Twyman, Richard M; Zuchner, Thole; Sadd, Ben M; Regoes, Roland R; Schmid-Hempel, Paul; Vilcinskas, Andreas

    2015-05-01

    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.

  19. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    2009-03-01

    Full Text Available Evidence from human genetic studies of several disorders suggests that interactions between alleles at multiple genes play an important role in influencing phenotypic expression. Analytical methods for identifying Mendelian disease genes are not appropriate when applied to common multigenic diseases, because such methods investigate association with the phenotype only one genetic locus at a time. New strategies are needed that can capture the spectrum of genetic effects, from Mendelian to multifactorial epistasis. Random Forests (RF and Relief-F are two powerful machine-learning methods that have been studied as filters for genetic case-control data due to their ability to account for the context of alleles at multiple genes when scoring the relevance of individual genetic variants to the phenotype. However, when variants interact strongly, the independence assumption of RF in the tree node-splitting criterion leads to diminished importance scores for relevant variants. Relief-F, on the other hand, was designed to detect strong interactions but is sensitive to large backgrounds of variants that are irrelevant to classification of the phenotype, which is an acute problem in genome-wide association studies. To overcome the weaknesses of these data mining approaches, we develop Evaporative Cooling (EC feature selection, a flexible machine learning method that can integrate multiple importance scores while removing irrelevant genetic variants. To characterize detailed interactions, we construct a genetic-association interaction network (GAIN, whose edges quantify the synergy between variants with respect to the phenotype. We use simulation analysis to show that EC is able to identify a wide range of interaction effects in genetic association data. We apply the EC filter to a smallpox vaccine cohort study of single nucleotide polymorphisms (SNPs and infer a GAIN for a collection of SNPs associated with adverse events. Our results suggest an important

  20. Nondisease genetic testing: reporting of muscle SNPs shows effects on self-concept and health orientation scales.

    Science.gov (United States)

    Gordon, Erynn S; Gordish-Dressman, Heather A; Devaney, Joseph; Clarkson, Priscilla; Thompson, Paul; Gordon, Paul; Pescatello, Linda S; Hubal, Monica J; Pistilli, Emidio E; Gianetti, Gary; Kelsey, Bethany; Hoffman, Eric P

    2005-09-01

    The purpose of this study was to assess the impact of genetic self-knowledge (nondisease genotype information) on individual self-concept and Health Orientation Scale (HOS). Adult volunteers (n=257) were recruited from an ongoing genetic association study identifying muscle quantitative trait loci (QTLs). Participants completed psychosocial assessments before and after 12 weeks of resistance training of the nondominant arm. At study exit, a genetic counselor informed participants of genetic test results on three to four genes that have an association with muscle-related traits, and counseled subjects on the potential significance of these findings. The second psychosocial assessment was performed immediately following this counseling session. The Tennessee Self-Concept Scale v.2 (TSCS:2) and the HOS showed female subjects to have a significantly greater positive change between first and second assessments, relative to male subjects. Most self-concept subscales improved significantly, when 'neutral' genotypes (no anticipated beneficial or deleterious impact) were reported, compared to positive genotypes. TSCS:2 subscales showing improvement included: total (P=0.013); physical (P=0.004); satisfaction (P=0.019); and behavioral (P=0.047). HOS subscales showing improvement included health image concern (P=0.006); and health expectations (P=0.047). In conclusion, these results suggest that genetic self-knowledge affects self-concept, consistent with the 'attribution' theory. Individuals who received neutral genetic information attributed positive changes from the exercise program to their own abilities, while those who received positive information were more likely to attribute positive changes to their genetics. This study is limited by the ability to determine the direction of the impact of nondisease genetic information presented to participants.

  1. Molecular characterization showed limited genetic diversity among Salmonella Enteritidis isolated from humans and animals in Malaysia.

    Science.gov (United States)

    Ngoi, Soo Tein; Thong, Kwai Lin

    2013-12-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common causative agent of non-typhoidal salmonellosis in Malaysia. We aimed to characterize S. Enteritidis isolated from humans and animals by analyzing their antimicrobial resistance profiles and genotypes. A total of 111 strains were characterized using multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and antimicrobial susceptibility testing. Both typing methods revealed that genetically similar S. Enteritidis strains had persisted among human and animal populations within the period of study (2003-2008). Only 39% of the strains were multi-drug resistant (i.e., resistant to 3 or more classes of antimicrobial agents), with a majority (73%) of these in low-risk phase (multiple antibiotic resistant index <0.20). Limited genetic diversity among clinical and zoonotic S. Enteritidis suggested that animals are possible sources of human salmonellosis. The degree of multi-drug resistance among the strains was generally low during the study period.

  2. On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics.

    Science.gov (United States)

    Hou, Jing; Schacherer, Joseph

    2016-01-01

    Genetic variation within species is the substrate of evolution. Epistasis, which designates the non-additive interaction between loci affecting a specific phenotype, could be one of the possible outcomes of genetic diversity. Dissecting the basis of such interactions is of current interest in different fields of biology, from exploring the gene regulatory network, to complex disease genetics, to the onset of reproductive isolation and speciation. We present here a general workflow to identify epistatic interactions between independently evolving loci in natural populations of the yeast Saccharomyces cerevisiae. The idea is to exploit the genetic diversity present in the species by evaluating a large number of crosses and analyzing the phenotypic distribution in the offspring. For a cross of interest, both parental strains would have a similar phenotypic value, whereas the resulting offspring would have a bimodal distribution of the phenotype, possibly indicating the presence of epistasis. Classical segregation analysis of the tetrads uncovers the penetrance and complexity of the interaction. In addition, this segregation could serve as the guidelines for choosing appropriate mapping strategies to narrow down the genomic regions involved. Depending on the segregation patterns observed, we propose different mapping strategies based on bulk segregant analysis or consecutive backcrosses followed by high-throughput genome sequencing. Our method is generally applicable to all systems with a haplodiplobiontic life cycle and allows high resolution mapping of interacting loci that govern various DNA polymorphisms from single nucleotide mutations to large-scale structural variations.

  3. Human brain proteins showing neuron-specific interactions with γ-secretase.

    Science.gov (United States)

    Inoue, Mitsuhiro; Hur, Ji-Yeun; Kihara, Takahiro; Teranishi, Yasuhiro; Yamamoto, Natsuko G; Ishikawa, Taizo; Wiehager, Birgitta; Winblad, Bengt; Tjernberg, Lars O; Schedin-Weiss, Sophia

    2015-07-01

    The transmembrane protease complex γ-secretase is a key enzyme in Alzheimer disease pathogenesis as it liberates the neurotoxic amyloid β-peptide (Aβ); however, the mechanism of regulation of its activity in various cell types and subcellular compartments is largely unknown. Several γ-secretase inhibitors have been developed, but none have been released due to side-effects that appear to arise from reduced processing of Notch, one of many γ-secretase substrates. Hence, it is desirable to specifically inhibit Aβ production. In our previous studies, we have identified several γ-secretase-associated proteins (GSAPs) from brain, which affect Aβ production without having any major effects on Notch processing. In the present study using detergent-resistant membranes prepared from brain, we have identified four GSAPs that affect Aβ production to a greater extent than Notch processing. We evaluated the interaction between GSAPs and γ-secretase in various cell types and their mRNA expression in various human organs. Using an in situ proximity ligation assay, we demonstrated that many GSAPs showed considerably greater interaction with γ-secretase in neurons than in human embryonic kidney cells stably over-expressing APP, and showed that several GSAPs are highly expressed in human brain. This study underscores the importance of studying protein-protein interactions in relevant cell types, and suggests that reducing Aβ production by interfering with brain- or neuron-specific γ-secretase/GSAP interactions may reduce the risk of unwanted side-effects associated with treatment of Alzheimer disease.

  4. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit.

    Science.gov (United States)

    Napolitano, M; Koschorreck, M; Dubost, B; Behbood, N; Sewell, R J; Mitchell, M W

    2011-03-24

    Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter χ can achieve at best the standard quantum limit of sensitivity, δχ ∝ N(-1/2). However, using N entangled particles and exotic states, such an interferometer can in principle achieve the Heisenberg limit, δχ ∝ N(-1). Recent theoretical work has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δχ ∝ N(-k) with appropriate entangled states and δχ ∝ N(-(k-1/2)) even without entanglement. Here we demonstrate 'super-Heisenberg' scaling of δχ ∝ N(-3/2) in a nonlinear, non-destructive measurement of the magnetization of an atomic ensemble. We use fast optical nonlinearities to generate a pairwise photon-photon interaction (corresponding to k = 2) while preserving quantum-noise-limited performance. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.

  5. Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.

    Science.gov (United States)

    Broadaway, K Alaine; Duncan, Richard; Conneely, Karen N; Almli, Lynn M; Bradley, Bekh; Ressler, Kerry J; Epstein, Michael P

    2015-07-01

    The etiology of complex traits likely involves the effects of genetic and environmental factors, along with complicated interaction effects between them. Consequently, there has been interest in applying genetic association tests of complex traits that account for potential modification of the genetic effect in the presence of an environmental factor. One can perform such an analysis using a joint test of gene and gene-environment interaction. An optimal joint test would be one that remains powerful under a variety of models ranging from those of strong gene-environment interaction effect to those of little or no gene-environment interaction effect. To fill this demand, we have extended a kernel machine based approach for association mapping of multiple SNPs to consider joint tests of gene and gene-environment interaction. The kernel-based approach for joint testing is promising, because it incorporates linkage disequilibrium information from multiple SNPs simultaneously in analysis and permits flexible modeling of interaction effects. Using simulated data, we show that our kernel machine approach typically outperforms the traditional joint test under strong gene-environment interaction models and further outperforms the traditional main-effect association test under models of weak or no gene-environment interaction effects. We illustrate our test using genome-wide association data from the Grady Trauma Project, a cohort of highly traumatized, at-risk individuals, which has previously been investigated for interaction effects. © 2015 WILEY PERIODICALS, INC.

  6. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.

    Science.gov (United States)

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric

    2014-01-01

    The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles.

  7. Quantitative genetic-interaction mapping in mammalian cells

    Science.gov (United States)

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  8. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  9. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions.

    Science.gov (United States)

    Fan, Hailong; Yu, Xiang; Liu, Yang; Shi, Zujin; Liu, Huihui; Nie, Zongxiu; Wu, Decheng; Jin, Zhaoxia

    2015-06-21

    Recent research has indicated that polydopamine and synthetic eumelanins are optoelectronic biomaterials in which one-dimensional aggregates composed of ordered-stacking oligomers have been proposed as unique organic semiconductors. However, improving the ordered-stacking of oligomers in polydopamine nanostructures is a big challenge. Herein, we first demonstrate how folic acid molecules influence the morphology and nanostructure of polydopamine via tuning the π-π interactions of oligomers. MALDI-TOF mass spectrometry reveals that porphyrin-like tetramers are characteristic of folic acid-polydopamine (FA-PDA) nanofibers. X-ray diffraction combined with simulation studies indicate that these oligomers favour aggregation into graphite-like ordered nanostructures via strong π-π interactions. High-resolution TEM characterization of carbonized FA-PDA hybrids show that in FA-PDA nanofibers the size of the graphite-like domains is over 100 nm. The addition of folic acid in polydopamine enhances the ordered stacking of oligomers in its nanostructure. Our study steps forward to discover the mystery of the structure-property relationship of FA-PDA hybrids. It paves a way to optimize the properties of PDA through the design and selection of oligomer structures.

  10. Genetic connections between dressage and show-jumping horses in Dutch Warmblood horses

    NARCIS (Netherlands)

    Rovere, G.A.; Madsen, O.; Norberg, E.; Arendonk, van J.A.M.; Ducro, B.J.

    2014-01-01

    During the last decades, the breeding practice within the Dutch Warmblood studbook (KWPN) has resulted in an increasing specialisation of horses into show-jumping (JH) and dressage (DH). The objective of this study was to describe the effect of the specialisation on the connectedness between the sub

  11. Dynamic hubs show competitive and static hubs non-competitive regulation of their interaction partners.

    Directory of Open Access Journals (Sweden)

    Apurv Goel

    Full Text Available Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins and their edges (interactions during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as 'competitive hubs'. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity and subcellular localisation. The second was static hubs with dynamic partners, which we term 'non-competitive hubs'. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.

  12. Complex genetic interactions in a quantitative trait locus.

    Directory of Open Access Journals (Sweden)

    Himanshu Sinha

    2006-02-01

    Full Text Available Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs, characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg QTGs (MKT1, END3, and RHO2. We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3'UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae.

  13. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties.

    Science.gov (United States)

    St Pourcain, B; Robinson, E B; Anttila, V; Sullivan, B B; Maller, J; Golding, J; Skuse, D; Ring, S; Evans, D M; Zammit, S; Fisher, S E; Neale, B M; Anney, R J L; Ripke, S; Hollegaard, M V; Werge, T; Ronald, A; Grove, J; Hougaard, D M; Børglum, A D; Mortensen, P B; Daly, M J; Davey Smith, G

    2017-01-03

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic influences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic influences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors influencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic influences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms.Molecular Psychiatry advance online

  14. Genetic Interactions of STAT3 and Anticancer Drug Development

    Directory of Open Access Journals (Sweden)

    Bingliang Fang

    2014-03-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  15. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  16. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    Science.gov (United States)

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  17. Joint genetic analysis using variant sets reveals polygenic gene-context interactions.

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Casale

    2017-04-01

    Full Text Available Joint genetic models for multiple traits have helped to enhance association analyses. Most existing multi-trait models have been designed to increase power for detecting associations, whereas the analysis of interactions has received considerably less attention. Here, we propose iSet, a method based on linear mixed models to test for interactions between sets of variants and environmental states or other contexts. Our model generalizes previous interaction tests and in particular provides a test for local differences in the genetic architecture between contexts. We first use simulations to validate iSet before applying the model to the analysis of genotype-environment interactions in an eQTL study. Our model retrieves a larger number of interactions than alternative methods and reveals that up to 20% of cases show context-specific configurations of causal variants. Finally, we apply iSet to test for sub-group specific genetic effects in human lipid levels in a large human cohort, where we identify a gene-sex interaction for C-reactive protein that is missed by alternative methods.

  18. Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure.

    Directory of Open Access Journals (Sweden)

    Alexandra Surcel

    Full Text Available Cohesin is the protein complex responsible for maintaining sister chromatid cohesion. Cohesin interacts with centromeres and specific loci along chromosome arms known as Chromosome Attachment Regions (CARs. The cohesin holocomplex contains four subunits. Two of them, Smc1p (Structural maintenance of chromosome 1 protein and Smc3p, are long coiled-coil proteins, which heterodimerize with each other at one end. They are joined together at the other end by a third subunit, Scc1p, which also binds to the fourth subunit, Scc3p. How cohesin interacts with chromosomes is not known, although several models have been proposed, in part on the basis of in vitro assembly of purified cohesin proteins. To be able to observe in vivo cohesin-chromatin interactions, we have modified a Minichromosome Affinity Purification (MAP method to isolate a CAR-containing centromeric minichromosome attached to in vivo assembled cohesin. Transmission Electron Microscopy (TEM analysis of these minichromosomes suggests that cohesin assumes a rod shape and interacts with replicated minichromosome at one end of that rod. Additionally, our data implies that more than one cohesin molecule interacts with each pair of replicated minichromsomes. These molecules seem to be packed into a single thick rod, suggesting that the Smc1p and Smc3p subunits may interact extensively.

  19. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrb(s-l and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9. We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B.

  20. An Agrobacterium tumefaciens Strain with Gamma-Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants

    Science.gov (United States)

    Nonaka, Satoko; Someya, Tatsuhiko; Zhou, Sha; Takayama, Mariko; Nakamura, Kouji; Ezura, Hiroshi

    2017-01-01

    Agrobacterium tumefaciens has the unique ability to mediate inter-kingdom DNA transfer, and for this reason, it has been utilized for plant genetic engineering. To increase the transformation frequency in plant genetic engineering, we focused on gamma-aminobutyric acid (GABA), which is a negative factor in the Agrobacterium-plant interaction. Recent studies have shown contradictory results regarding the effects of GABA on vir gene expression, leading to the speculation that GABA inhibits T-DNA transfer. In this study, we examined the effect of GABA on T-DNA transfer using a tomato line with a low GABA content. Compared with the control, the T-DNA transfer frequency was increased in the low-GABA tomato line, indicating that GABA inhibits T-DNA transfer. Therefore, we bred a new A. tumefaciens strain with GABA transaminase activity and the ability to degrade GABA. The A. tumefaciens strain exhibited increased T-DNA transfer in two tomato cultivars and Erianthus arundinacues and an increased frequency of stable transformation in tomato. PMID:28220841

  1. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  2. Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture

    DEFF Research Database (Denmark)

    Arneborg, N.; Siegumfeldt, H.; Andersen, G.H.;

    2005-01-01

    Applying a newly developed user-interactive optical trapping system, we controllably surrounded individual cells of one yeast species, Hanseniaspora uvarum, with viable cells of another yeast species, Saccharomyces cerevisiae, thus creating a confinement of the former. Growth of surrounded and no...... of the latter. This study is the first to demonstrate that confinement is a determinant of growth in a microbial ecosystem. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved....

  3. Counting statistics for genetic switches based on effective interaction approximation

    Science.gov (United States)

    Ohkubo, Jun

    2012-09-01

    Applicability of counting statistics for a system with an infinite number of states is investigated. The counting statistics has been studied a lot for a system with a finite number of states. While it is possible to use the scheme in order to count specific transitions in a system with an infinite number of states in principle, we have non-closed equations in general. A simple genetic switch can be described by a master equation with an infinite number of states, and we use the counting statistics in order to count the number of transitions from inactive to active states in the gene. To avoid having the non-closed equations, an effective interaction approximation is employed. As a result, it is shown that the switching problem can be treated as a simple two-state model approximately, which immediately indicates that the switching obeys non-Poisson statistics.

  4. Counting statistics for genetic switches based on effective interaction approximation

    CERN Document Server

    Ohkubo, Jun

    2012-01-01

    Applicability of counting statistics for a system with an infinite number of states is investigated. The counting statistics has been studied a lot for a system with a finite number of states. While it is possible to use the scheme in order to count specific transitions in a system with an infinite number of states in principle, we have non-closed equations in general. A simple genetic switch can be described by a master equation with an infinite number of states, and we use the counting statistics in order to count the number of transitions from inactive to active states in the gene. To avoid to have the non-closed equations, an effective interaction approximation is employed. As a result, it is shown that the switching problem can be treated as a simple two-state model approximately, which immediately indicates that the switching obeys non-Poisson statistics.

  5. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Science.gov (United States)

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  6. The genetics of phenotypic plasticity. XIII. Interactions with developmental instability.

    Science.gov (United States)

    Scheiner, Samuel M

    2014-04-01

    In a heterogeneous environment, natural selection on a trait can lead to a variety of outcomes, including phenotypic plasticity and bet-hedging through developmental instability. These outcomes depend on the magnitude and pattern of that heterogeneity and the spatial and temporal distribution of individuals. However, we do not know if and how those two outcomes might interact with each other. I examined the joint evolution of plasticity and instability through the use of an individual-based simulation in which each could be genetically independent or pleiotropically linked. When plasticity and instability were determined by different loci, the only effect on the evolution of plasticity was the elimination of plasticity as a bet-hedging strategy. In contrast, the effects on the evolution of instability were more substantial. If conditions were such that the population was likely to evolve to the optimal reaction norm, then instability was disfavored. Instability was favored only when the lack of a reliable environmental cue disfavored plasticity. When plasticity and instability were determined by the same loci, instability acted as a strong limitation on the evolution of plasticity. Under some conditions, selection for instability resulted in maladaptive plasticity. Therefore, before testing any models of plasticity or instability evolution, or interpreting empirical patterns, it is important to know the ecological, life history, developmental, and genetic contexts of trait phenotypic plasticity and developmental instability.

  7. Genetic relations of movement and free-jumping traits with dressage and show-jumping performance in competition of Dutch Warmblood horses

    NARCIS (Netherlands)

    Ducro, B.J.; Koenen, E.P.C.; Tartwijk, van J.M.F.M.; Bovenhuis, H.

    2007-01-01

    Genetic parameters for traits evaluated at the studbook entry inspection and genetic correlations with dressage and show-jumping performance in competition were estimated. Data comprised 36,649 Warmblood horses that entered the studbook between 1992 and 2002. The genetic analyses were performed usin

  8. Dispersal in the sub-Antarctic: king penguins show remarkably little population genetic differentiation across their range.

    Science.gov (United States)

    Clucas, Gemma V; Younger, Jane L; Kao, Damian; Rogers, Alex D; Handley, Jonathan; Miller, Gary D; Jouventin, Pierre; Nolan, Paul; Gharbi, Karim; Miller, Karen J; Hart, Tom

    2016-10-13

    Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds

  9. Source-sink estimates of genetic introgression show influence of hatchery strays on wild chum salmon populations in Prince William Sound, Alaska.

    Directory of Open Access Journals (Sweden)

    James R Jasper

    Full Text Available The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta in Prince William Sound (PWS, Alaska, with 135 single nucleotide polymorphism (SNP markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982 with frequencies in contemporary samples (2008-2010 and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.

  10. Connecting with The Biggest Loser: an extended model of parasocial interaction and identification in health-related reality TV shows.

    Science.gov (United States)

    Tian, Yan; Yoo, Jina H

    2015-01-01

    This study investigates audience responses to health-related reality TV shows in the setting of The Biggest Loser. It conceptualizes a model for audience members' parasocial interaction and identification with cast members and explores antecedents and outcomes of parasocial interaction and identification. Data analysis suggests the following direct relationships: (1) audience members' exposure to the show is positively associated with parasocial interaction, which in turn is positively associated with identification, (2) parasocial interaction is positively associated with exercise self-efficacy, whereas identification is negatively associated with exercise self-efficacy, and (3) exercise self-efficacy is positively associated with exercise behavior. Indirect effects of parasocial interaction and identification on exercise self-efficacy and exercise behavior are also significant. We discuss the theoretical and practical implications of these findings.

  11. The show starts here: viewers’ interactions with recent television serials’ main title sequences

    Directory of Open Access Journals (Sweden)

    Annette Davison

    2013-12-01

    Full Text Available Recent title sequences for high production value television serials are generally one of two kinds: either extremely minimal, appearing part way through the episode with credits dispersed through the show, or as an extended format of c. ninety seconds’ duration, at or near the start of the show. In a previous book chapter I presented analyses of examples of the latter, arguing that the sequences form an efficient part of the brand image for both the show and commissioning channel. In order to explore the extent to which such sequences are watched or skipped by viewers, and how such decisions are made I organised a series of preliminary focus groups in February 2012 with participants who identified themselves as regular viewers of television serials, the findings of which are presented here. Two forms of stimuli were used: a main title sequence and an end credit sequence from a serial where different music is selected for this sequence for each episode. Analysis of the discussions indicates that the decision to view these sequences is dependent on a variety of factors. While for some the titles are required viewing, the participants in the groups are more likely to persistently view an end credit sequence where the music changes with the episode than an unchanging main title sequence. Perhaps most surprising, given the increase in opportunities for mobile viewing, is that for the participants of these groups television serials continue to be associated with social viewing in a domestic setting.

  12. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

    National Research Council Canada - National Science Library

    Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O‧Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason

    ...‐scale sequencing efforts. Using genome‐scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co...

  13. Genotype × Environment Interaction in Psychiatric Genetics: Deep Truth or Thin Ice?

    Science.gov (United States)

    Eaves, Lindon

    2017-06-01

    There continues to be significant investment in the detection of genotype × environment interaction (G × E) in psychiatric genetics. The implications of the method of assessment for the genetic analysis of psychiatric disorders are examined for simulated twin data on symptom scores and environmental covariates. Additive and independent genetic and environmental risks were simulated for 10,000 monozygotic (MZ) and 10,000 dizygotic (DZ) twin pairs and the 'subjects' administered typical simulated checklists of clinical symptoms and environmental factors. A variety of standard tests for G × E were applied to the simulated additive risk scores, sum scores derived from the checklists and transformed sum scores. All analyses revealed no evidence for G × E for latent risk but marked evidence for G × E and other effects of modulation in the sum scores. These effects were all removed by transformation. An integrated genetic and psychometric model, accounting for both the causes of latent liability and a theory of measurement, was fitted to a sample of the simulated sum-score data and showed that there was no significant modulation of the parameters of the genetic model by environmental covariates (i.e., no G × E). Claims to detect G × E based on analytical methods that ignore the theory of measurement must be subjected to greater scrutiny prior to publication.

  14. Drosophila domino Exhibits Genetic Interactions with a Wide Spectrum of Chromatin Protein-Encoding Loci.

    Science.gov (United States)

    Ellis, Kaitlyn; Friedman, Chloe; Yedvobnick, Barry

    2015-01-01

    The Drosophila domino gene encodes protein of the SWI2/SNF2 family that has widespread roles in transcription, replication, recombination and DNA repair. Here, the potential relationship of Domino protein to other chromatin-associated proteins has been investigated through a genetic interaction analysis. We scored for genetic modification of a domino wing margin phenotype through coexpression of RNAi directed against a set of previously characterized and more newly characterized chromatin-encoding loci. A set of other SWI2/SNF2 loci were also assayed for interaction with domino. Our results show that the majority of tested loci exhibit synergistic enhancement or suppression of the domino wing phenotype. Therefore, depression in domino function sensitizes the wing margin to alterations in the activity of numerous chromatin components. In several cases the genetic interactions are associated with changes in the level of cell death measured across the dorsal-ventral margin of the wing imaginal disc. These results highlight the broad realms of action of many chromatin proteins and suggest significant overlap with Domino function in fundamental cell processes, including cell proliferation, cell death and cell signaling.

  15. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    Directory of Open Access Journals (Sweden)

    Jaeyong Yee

    2015-01-01

    Full Text Available A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait.

  16. Automated identification of pathways from quantitative genetic interaction data

    Science.gov (United States)

    Battle, Alexis; Jonikas, Martin C; Walter, Peter; Weissman, Jonathan S; Koller, Daphne

    2010-01-01

    High-throughput quantitative genetic interaction (GI) measurements provide detailed information regarding the structure of the underlying biological pathways by reporting on functional dependencies between genes. However, the analytical tools for fully exploiting such information lag behind the ability to collect these data. We present a novel Bayesian learning method that uses quantitative phenotypes of double knockout organisms to automatically reconstruct detailed pathway structures. We applied our method to a recent data set that measures GIs for endoplasmic reticulum (ER) genes, using the unfolded protein response as a quantitative phenotype. The results provided reconstructions of known functional pathways including N-linked glycosylation and ER-associated protein degradation. It also contained novel relationships, such as the placement of SGT2 in the tail-anchored biogenesis pathway, a finding that we experimentally validated. Our approach should be readily applicable to the next generation of quantitative GI data sets, as assays become available for additional phenotypes and eventually higher-level organisms. PMID:20531408

  17. Chemical Genetic Dissection of Brassinosteroid-Ethylene Interaction

    Institute of Scientific and Technical Information of China (English)

    Joshua M.Gendron; Asif Haque; Nathan Gendron; Timothy Chang; Tadao Asami; Zhi-Yong Wang

    2008-01-01

    We undertook a chemical genetics screen to identify chemical inhibitors of brassinosteroid (BR) action.From a chemical library of 10,000 small molecules,one compound was found to inhibit hypocotyl length and activate the expression of a BR-repressed reporter gene (CPD::GUS) in Arabidopsis,and it was named brassinopride (BRP).These effects of BRP could be reversed by co-treatment with brassinolide,suggesting that BRP either directly or indirectly inhibits BR biosynthesis.Interestingly,the compound causes exaggerated apical hooks,similar to that caused by ethylene treatment.The BRP-induced apical hook phenotype can be blocked by a chemical inhibitor of ethylene perception or an ethylene-insensitive mutant,suggesting that,in addition to inhibiting BR,BRP activates ethylene response.Analysis of BRP analogs provided clues about structural features important for its effects on two separate targets in the BR and ethylene pathways.Analyses of the responses of various BR and ethylene mutants to BRP,ethylene,and BR treatments revealed modes of cross-talk between ethylene and BR in dark-grown seedlings.Our results suggest that active downstream BR signaling,but not BR synthesis or a BR gradient,is required for ethylene-induced apical hook formation.The BRP-related compounds can be useful tools for manipulating plant growth and studying hormone interactions.

  18. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake

    NARCIS (Netherlands)

    T. Tanaka (Toshiko); J.S. Ngwa; F.J.A. van Rooij (Frank); M.C. Zillikens (Carola); M.K. Wojczynski (Mary ); A.C. Frazier-Wood (Alexis); D.K. Houston (Denise); S. Kanoni (Stavroula); R.N. Lemaitre (Rozenn ); J. Luan; V. Mikkilä (Vera); F. Renström (Frida); E. Sonestedt (Emily); J.H. Zhao (Jing); A.Y. Chu (Audrey); L. Qi (Lu); D.I. Chasman (Daniel); M.C. De Oliveira Otto (Marcia); E.J. Dhurandhar (Emily); M.F. Feitosa (Mary Furlan); I. Johansson (Ingegerd); K-T. Khaw (Kay-Tee); K. Lohman (Kurt); A. Manichaikul (Ani); N.M. McKeown (Nicola ); D. Mozaffarian (Dariush); A.B. Singleton (Andrew); K. Stirrups (Kathy); J. Viikari (Jorma); Z. Ye (Zheng); S. Bandinelli (Stefania); I. Barroso (Inês); P. Deloukas (Panagiotis); N.G. Forouhi (Nita); A. Hofman (Albert); Y. Liu (Yongmei); L.-P. Lyytikäinen (Leo-Pekka); K.E. North (Kari); M. Dimitriou (Maria); G. Hallmans (Göran); M. Kähönen (Mika); C. Langenberg (Claudia); J.M. Ordovas (Jose); A.G. Uitterlinden (André); F.B. Hu (Frank); I.-P. Kalafati (Ioanna-Panagiota); O. Raitakari (Olli); O.H. Franco (Oscar); A. Johnson (Anthony); V. Emilsson (Valur); J.A. Schrack (Jennifer); R.D. Semba; D.S. Siscovick (David); D.K. Arnett (Donna); I.B. Borecki (Ingrid); P.W. Franks (Paul); S.B. Kritchevsky (Stephen); R.J.F. Loos (Ruth); M. Orho-Melander (Marju); J.I. Rotter (Jerome); N.J. Wareham (Nick); J.C.M. Witteman (Jacqueline); L. Ferrucci (Luigi); G.V. Dedoussis (George); L.A. Cupples (Adrienne); J.A. Nettleton (Jennifer )

    2013-01-01

    textabstractBackground: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. D

  19. Bulinus globosus (Planorbidae; Gastropoda) populations in the Lake Victoria basin and coastal Kenya show extreme nuclear genetic differentiation

    DEFF Research Database (Denmark)

    Nyakaana, Silvester; Stothard, J. Russell; Nalugwa, Allen

    2013-01-01

    -fertilizing, this species has been reported to be preferentially out crossing. In this study, we characterized the population genetic structure of 19 B. globosus populations sampled across the Lake Victoria basin and coastal Kenya using four polymorphic microsatellite loci. Population genetic structure was characterized...

  20. Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: An exploratory analysis.

    Science.gov (United States)

    Anand, Amit; Koller, Daniel L; Lawson, William B; Gershon, Elliot S; Nurnberger, John I

    2015-07-01

    This study investigated whether early life trauma mediates genetic effects on the age at onset (AAO) of bipolar disorder. Data from the BiGS Consortium case samples (N=1119) were used. Childhood traumatic events were documented using the Childhood Life Events Scale (CLES). Interaction between occurrence of childhood trauma and common genetic variants throughout the genome was tested to identify single nucleotide polymorphic gene variants (SNPs) whose effects on bipolar AAO differ between individuals clearly exposed (CLES≥2) and not exposed (CLES=0) to childhood trauma. The modal response to the CLES was 0 (N=480), but an additional 276 subjects had CLES=1, and 363 subjects reported 2 or more traumatic lifetime events. The distribution of age at onset showed a broad peak between ages 12 and 18, with the majority of subjects having onset during that period, and a significant decrease in age of onset with the number of traumatic events. No single SNP showed a statistically significant interaction with the presence of traumatic events to impact bipolar age at onset. However, SNPs in or near genes coding for calcium channel activity-related proteins (Gene Ontology: 0005262) were found to be more likely than other SNPs to show evidence of interaction using the INRICH method (peffects of early life trauma with genotype may have a significant effect on the development and manifestation of bipolar disorder. These effects may be mediated in part by genes involved in calcium signaling. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets

    NARCIS (Netherlands)

    Lu, X.; Kensche, P.R.; Huynen, M.A.; Notebaart, R.A.

    2013-01-01

    Genetic interactions reveal insights into cellular function and can be used to identify drug targets. Here we construct a new model to predict negative genetic interactions in protein complexes by exploiting the evolutionary history of genes in parallel converging pathways in metabolism. We evaluate

  2. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    Science.gov (United States)

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  3. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    Science.gov (United States)

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  4. Genetic mapping of social interaction behavior in B6/MSM consomic mouse strains.

    Science.gov (United States)

    Takahashi, Aki; Tomihara, Kazuya; Shiroishi, Toshihiko; Koide, Tsuyoshi

    2010-05-01

    Genetic studies are indispensable for understanding the mechanisms by which individuals develop differences in social behavior. We report genetic mapping of social interaction behavior using inter-subspecific consomic strains established from MSM/Ms (MSM) and C57BL/6J (B6) mice. Two animals of the same strain and sex, aged 10 weeks, were introduced into a novel open-field for 10 min. Social contact was detected by an automated system when the distance between the centers of the two animals became less than approximately 12 cm. In addition, detailed behavioral observations were made of the males. The wild-derived mouse strain MSM showed significantly longer social contact as compared to B6. Analysis of the consomic panel identified two chromosomes (Chr 6 and Chr 17) with quantitative trait loci (QTL) responsible for lengthened social contact in MSM mice and two chromosomes (Chr 9 and Chr X) with QTL that inhibited social contact. Detailed behavioral analysis of males identified four additional chromosomes associated with social interaction behavior. B6 mice that contained Chr 13 from MSM showed more genital grooming and following than the parental B6 strain, whereas the presence of Chr 8 and Chr 12 from MSM resulted in a reduction of those behaviors. Longer social sniffing was observed in Chr 4 consomic strain than in B6 mice. Although the frequency was low, aggressive behavior was observed in a few pairs from consomic strains for Chrs 4, 13, 15 and 17, as well as from MSM. The social interaction test has been used as a model to measure anxiety, but genetic correlation analysis suggested that social interaction involves different aspects of anxiety than are measured by open-field test.

  5. Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions.

    Science.gov (United States)

    Oughtred, Rose; Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Chang, Christie S; Rust, Jennifer M; Theesfeld, Chandra L; Heinicke, Sven; Breitkreutz, Ashton; Chen, Daici; Hirschman, Jodi; Kolas, Nadine; Livstone, Michael S; Nixon, Julie; O'Donnell, Lara; Ramage, Lindsay; Winter, Andrew; Reguly, Teresa; Sellam, Adnane; Stark, Chris; Boucher, Lorrie; Dolinski, Kara; Tyers, Mike

    2016-01-04

    The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set. © 2016 Cold Spring Harbor Laboratory Press.

  6. Intercellular Genetic Interaction Between Irf6 and Twist1 during Craniofacial Development.

    Science.gov (United States)

    Fakhouri, Walid D; Metwalli, Kareem; Naji, Ali; Bakhiet, Sarah; Quispe-Salcedo, Angela; Nitschke, Larissa; Kousa, Youssef A; Schutte, Brian C

    2017-08-02

    Interferon Regulatory Factor 6 (IRF6) and TWIST1 are transcription factors necessary for craniofacial development. Human genetic studies showed that mutations in IRF6 lead to cleft lip and palate and mandibular abnormalities. In the mouse, we found that loss of Irf6 causes craniosynostosis and mandibular hypoplasia. Similarly, mutations in TWIST1 cause craniosynostosis, mandibular hypoplasia and cleft palate. Based on this phenotypic overlap, we asked if Irf6 and Twist1 interact genetically during craniofacial formation. While single heterozygous mice are normal, double heterozygous embryos (Irf6 (+/-) ; Twist1 (+/-) ) can have severe mandibular hypoplasia that leads to agnathia and cleft palate at birth. Analysis of spatiotemporal expression showed that Irf6 and Twist1 are found in different cell types. Consistent with the intercellular interaction, we found reduced expression of Endothelin1 (EDN1) in mandible and transcription factors that are critical for mandibular patterning including DLX5, DLX6 and HAND2, were also reduced in mesenchymal cells. Treatment of mandibular explants with exogenous EDN1 peptides partially rescued abnormalities in Meckel's cartilage. In addition, partial rescue was observed when double heterozygous embryos also carried a null allele of p53. Considering that variants in IRF6 and TWIST1 contribute to human craniofacial defects, this gene-gene interaction may have implications on craniofacial disorders.

  7. Expansive phenotypic landscape of Botrytis cinerea shows differential contribution of genetic diversity and plasticity

    DEFF Research Database (Denmark)

    Corwin, Jason A; Subedy, Anushriya; Eshbaugh, Robert

    2016-01-01

    The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity and...

  8. Bulinus globosus (Planorbidae; Gastropoda) populations in the Lake Victoria basin and coastal Kenya show extreme nuclear genetic differentiation.

    Science.gov (United States)

    Nyakaana, Silvester; Stothard, J Russell; Nalugwa, Allen; Webster, Bonnie L; Lange, Charles N; Jørgensen, Aslak; Rollinson, David; Kristensen, Thomas K

    2013-11-01

    Bulinus globosus, a key intermediate host for Schistosoma haematobium that causes urinary schistosomiasis, is a hermaphroditic freshwater Planorbid snail species that inhabits patchy and transient water bodies prone to large seasonal variations in water availability. Although capable of self-fertilizing, this species has been reported to be preferentially out crossing. In this study, we characterized the population genetic structure of 19 B. globosus populations sampled across the Lake Victoria basin and coastal Kenya using four polymorphic microsatellite loci. Population genetic structure was characterized and quantified using FST statistics and Bayesian clustering algorithms. The four loci used in this study contained sufficient statistical power to detect low levels of population genetic differentiation and were highly polymorphic with the number of alleles per locus across populations ranging from 16 to 22. Average observed and expected heterozygosities across loci in each population ranged from 0.13 to 0.69 and from 0.39 to 0.79, respectively. Twenty-five of the seventy-six possible population-locus comparisons significantly deviated from Hardy-Weinberg equilibrium proportions after Bonferroni corrections, mostly due to the deficiency of heterozygotes. Significant genetic differentiation was observed between populations and Bayesian inferences identified 15 genetic clusters. The excess homozygosity, significant inbreeding and population genetic differentiation observed in B. globosus populations are likely to be due to the habitat patchiness, mating system and the proneness to cyclic extinction and recolonization in transient habitats.

  9. Mapping genetic factors controlling potato/cyst nematode interactions.

    NARCIS (Netherlands)

    Rouppe van der Voort, J.N.A.M.

    1998-01-01

    The thesis describes strategies for genetic mapping of the genomes of the potato cyst nematode and potato. Mapping in cyst nematodes was achieved by AFLP genotyping of single cysts and subsequent segregation analysis in a family of sibling populations. The genetic map of Globodera rostochiensis comp

  10. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts.

    Science.gov (United States)

    Rowntree, Jennifer K; Cameron, Duncan D; Preziosi, Richard F

    2011-05-12

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.

  11. Newcastle Disease Viruses Causing Recent Outbreaks Worldwide Show Unexpectedly High Genetic Similarity to Historical Virulent Isolates from the 1940s.

    Science.gov (United States)

    Dimitrov, Kiril M; Lee, Dong-Hun; Williams-Coplin, Dawn; Olivier, Timothy L; Miller, Patti J; Afonso, Claudio L

    2016-05-01

    Virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), a devastating disease of poultry and wild birds. Phylogenetic analyses clearly distinguish historical isolates (obtained prior to 1960) from currently circulating viruses of class II genotypes V, VI, VII, and XII through XVIII. Here, partial and complete genomic sequences of recent virulent isolates of genotypes II and IX from China, Egypt, and India were found to be nearly identical to those of historical viruses isolated in the 1940s. Phylogenetic analysis, nucleotide distances, and rates of change demonstrate that these recent isolates have not evolved significantly from the most closely related ancestors from the 1940s. The low rates of change for these virulent viruses (7.05 × 10(-5) and 2.05 × 10(-5) per year, respectively) and the minimal genetic distances existing between these and historical viruses (0.3 to 1.2%) of the same genotypes indicate an unnatural origin. As with any other RNA virus, Newcastle disease virus is expected to evolve naturally; thus, these findings suggest that some recent field isolates should be excluded from evolutionary studies. Furthermore, phylogenetic analyses show that these recent virulent isolates are more closely related to virulent strains isolated during the 1940s, which have been and continue to be used in laboratory and experimental challenge studies. Since the preservation of viable viruses in the environment for over 6 decades is highly unlikely, it is possible that the source of some of the recent virulent viruses isolated from poultry and wild birds might be laboratory viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Estimation of total genetic effects for survival time in crossbred laying hens showing cannibalism, using pedigree or genomic information.

    Science.gov (United States)

    Brinker, T; Raymond, B; Bijma, P; Vereijken, A; Ellen, E D

    2017-02-01

    Mortality of laying hens due to cannibalism is a major problem in the egg-laying industry. Survival depends on two genetic effects: the direct genetic effect of the individual itself (DGE) and the indirect genetic effects of its group mates (IGE). For hens housed in sire-family groups, DGE and IGE cannot be estimated using pedigree information, but the combined effect of DGE and IGE is estimated in the total breeding value (TBV). Genomic information provides information on actual genetic relationships between individuals and might be a tool to improve TBV accuracy. We investigated whether genomic information of the sire increased TBV accuracy compared with pedigree information, and we estimated genetic parameters for survival time. A sire model with pedigree information (BLUP) and a sire model with genomic information (ssGBLUP) were used. We used survival time records of 7290 crossbred offspring with intact beaks from four crosses. Cross-validation was used to compare the models. Using ssGBLUP did not improve TBV accuracy compared with BLUP which is probably due to the limited number of sires available per cross (~50). Genetic parameter estimates were similar for BLUP and ssGBLUP. For both BLUP and ssGBLUP, total heritable variance (T(2) ), expressed as a proportion of phenotypic variance, ranged from 0.03 ± 0.04 to 0.25 ± 0.09. Further research is needed on breeding value estimation for socially affected traits measured on individuals kept in single-family groups. © 2016 The Authors. Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.

  13. Retrospective analysis of main and interaction effects in genetic association studies of human complex traits

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Brasch-Andersen, Charlotte;

    2007-01-01

    BACKGROUND: The etiology of multifactorial human diseases involves complex interactions between numerous environmental factors and alleles of many genes. Efficient statistical tools are demanded in identifying the genetic and environmental variants that affect the risk of disease development....... This paper introduces a retrospective polytomous logistic regression model to measure both the main and interaction effects in genetic association studies of human discrete and continuous complex traits. In this model, combinations of genotypes at two interacting loci or of environmental exposure...... regression model can be used as a convenient tool for assessing both main and interaction effects in genetic association studies of human multifactorial diseases involving genetic and non-genetic factors as well as categorical or continuous traits....

  14. The synthetic genetic interaction network reveals small molecules that target specific pathways in Sacchromyces cerevisiae.

    Science.gov (United States)

    Tamble, Craig M; St Onge, Robert P; Giaever, Guri; Nislow, Corey; Williams, Alexander G; Stuart, Joshua M; Lokey, R Scott

    2011-06-01

    High-throughput elucidation of synthetic genetic interactions (SGIs) has contributed to a systems-level understanding of genetic robustness and fault-tolerance encoded in the genome. Pathway targets of various compounds have been predicted by comparing chemical-genetic synthetic interactions to a network of SGIs. We demonstrate that the SGI network can also be used in a powerful reverse pathway-to-drug approach for identifying compounds that target specific pathways of interest. Using the SGI network, the method identifies an indicator gene that may serve as a good candidate for screening a library of compounds. The indicator gene is selected so that compounds found to produce sensitivity in mutants deleted for the indicator gene are likely to abrogate the target pathway. We tested the utility of the SGI network for pathway-to-drug discovery using the DNA damage checkpoint as the target pathway. An analysis of the compendium of synthetic lethal interactions in yeast showed that superoxide dismutase 1 (SOD1) has significant SGI connectivity with a large subset of DNA damage checkpoint and repair (DDCR) genes in Saccharomyces cerevisiae, and minimal SGIs with non-DDCR genes. We screened a sod1Δ strain against three National Cancer Institute (NCI) compound libraries using a soft agar high-throughput halo assay. Fifteen compounds out of ∼3100 screened showed selective toxicity toward sod1Δ relative to the isogenic wild type (wt) strain. One of these, 1A08, caused a transient increase in growth in the presence of sublethal doses of DNA damaging agents, suggesting that 1A08 inhibits DDCR signaling in yeast. Genome-wide screening of 1A08 against the library of viable homozygous deletion mutants further supported DDCR as the relevant targeted pathway of 1A08. When assayed in human HCT-116 colorectal cancer cells, 1A08 caused DNA-damage resistant DNA synthesis and blocked the DNA-damage checkpoint selectively in S-phase.

  15. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species.

    Science.gov (United States)

    Campbell, Kyle K; Braile, Thomas; Winker, Kevin

    2016-01-01

    The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance) using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48). In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound.

  16. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species.

    Directory of Open Access Journals (Sweden)

    Kyle K Campbell

    Full Text Available The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48. In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound.

  17. High microsatellite and mitochondrial diversity in Anatolian native horse breeds shows Anatolia as a genetic conduit between Europe and Asia.

    Science.gov (United States)

    Koban, E; Denizci, M; Aslan, O; Aktoprakligil, D; Aksu, S; Bower, M; Balcioglu, B K; Ozdemir Bahadir, A; Bilgin, R; Erdag, B; Bagis, H; Arat, S

    2012-08-01

    The horse has been a food source, but more importantly, it has been a means for transport. Its domestication was one of the crucial steps in the history of human civilization. Despite the archaeological and molecular studies carried out on the history of horse domestication, which would contribute to conservation of the breeds, the details of the domestication of horses still remain to be resolved. We employed 21 microsatellite loci and mitochondrial control region partial sequences to analyse genetic variability within and among four Anatolian native horse breeds, Ayvacık Pony, Malakan Horse, Hınıs Horse and Canik Horse, as well as samples from indigenous horses of unknown breed ancestry. The aims of the study were twofold: first, to produce data from the prehistorically and historically important land bridge, Anatolia, in order to assess its role in horse domestication and second, to analyse the data from a conservation perspective to help the ministry improve conservation and management strategies regarding native horse breeds. Even though the microsatellite data revealed a high allelic diversity, 98% of the genetic variation partitioned within groups. Genetic structure did not correlate with a breed or geographic origin. High diversity was also detected in mtDNA control region sequence analysis. Frequencies of two haplogroups (HC and HF) revealed a cline between Asia and Europe, suggesting Anatolia as a probable connection route between the two continents. This first detailed genetic study on Anatolian horse breeds revealed high diversity among horse mtDNA haplogroups in Anatolia and suggested Anatolia's role as a conduit between the two continents. The study also provides an important basis for conservation practices in Turkey. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  18. Housing conditions influence cortical and behavioural reactions of sheep in response to videos showing social interactions of different valence.

    Science.gov (United States)

    Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2015-05-01

    Mood, as a long-term affective state, is thought to modulate short-term emotional reactions in animals, but the details of this interplay have hardly been investigated experimentally. Apart from a basic interest in this affective system, mood is likely to have an important impact on animal welfare, as bad mood may taint all emotional experience. In the present study about mood - emotion interaction, 29 sheep were kept under predictable, stimulus-rich or unpredictable, stimulus-poor housing conditions, to induce different mood states. In an experiment, the animals were confronted with video sequences of social interactions of conspecifics showing agonistic interactions, ruminating or tolerantly co-feeding as stimuli of different valences. Emotional reactions were assessed by measuring frontal brain activity using functional near-infrared spectroscopy and by recording behavioral reactions. Attentiveness of the sheep decreased from videos showing agonistic interactions to ruminating sheep to those displaying co-feeding sheep. Seeing agonistic interactions was also associated with a deactivation of the frontal cortex, specifically in animals living under predictable, stimulus-rich housing conditions. These sheep generally showed less attentiveness and locomotor activity and they had their ears in a forward position less often and in a backward position more often than the sheep from the unpredictable, stimulus-poor conditions. Housing conditions influenced how the sheep behaved, which can either be thought to be mediated by mood or by the animals' previous experience with stimulus-richness in their housing conditions. Frontal cortical activity may not depend on valence only, but also on the perceptual channel through which the stimuli were perceived.

  19. Phytophthora infestans field isolates from Gansu Province, China are genetically highly diverse and show a high frequency of self fertility

    NARCIS (Netherlands)

    Han, M.; Liu, G.; Li, J.P.; Govers, F.; Zhu, X.Q.; Shen, C.Y.; Guo, L.Y.

    2013-01-01

    The genetic diversity of 85 isolates of Phytophthora infestans collected in 2007 from Gansu province in China was determined and compared with 21 isolates collected before 2004. Among them, 70 belonged to the A1 mating type and 15 were self-fertile (SF). The mitochondrial DNA haplotypes revealed

  20. The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background

    Science.gov (United States)

    Méndez-Vigo, Belén; Martínez-Zapater, José M.; Alonso-Blanco, Carlos

    2013-01-01

    The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time. PMID:23382706

  1. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background.

    Directory of Open Access Journals (Sweden)

    Belén Méndez-Vigo

    Full Text Available The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F(2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1. We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP. Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time.

  2. Specialist and generalist symbionts show counterintuitive levels of genetic diversity and discordant demographic histories along the Florida Reef Tract

    Science.gov (United States)

    Titus, Benjamin M.; Daly, Marymegan

    2017-03-01

    Specialist and generalist life histories are expected to result in contrasting levels of genetic diversity at the population level, and symbioses are expected to lead to patterns that reflect a shared biogeographic history and co-diversification. We test these assumptions using mtDNA sequencing and a comparative phylogeographic approach for six co-occurring crustacean species that are symbiotic with sea anemones on western Atlantic coral reefs, yet vary in their host specificities: four are host specialists and two are host generalists. We first conducted species discovery analyses to delimit cryptic lineages, followed by classic population genetic diversity analyses for each delimited taxon, and then reconstructed the demographic history for each taxon using traditional summary statistics, Bayesian skyline plots, and approximate Bayesian computation to test for signatures of recent and concerted population expansion. The genetic diversity values recovered here contravene the expectations of the specialist-generalist variation hypothesis and classic population genetics theory; all specialist lineages had greater genetic diversity than generalists. Demography suggests recent population expansions in all taxa, although Bayesian skyline plots and approximate Bayesian computation suggest the timing and magnitude of these events were idiosyncratic. These results do not meet the a priori expectation of concordance among symbiotic taxa and suggest that intrinsic aspects of species biology may contribute more to phylogeographic history than extrinsic forces that shape whole communities. The recovery of two cryptic specialist lineages adds an additional layer of biodiversity to this symbiosis and contributes to an emerging pattern of cryptic speciation in the specialist taxa. Our results underscore the differences in the evolutionary processes acting on marine systems from the terrestrial processes that often drive theory. Finally, we continue to highlight the Florida Reef

  3. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  4. Exploitation of genetic interaction network topology for the prediction of epistatic behavior.

    Science.gov (United States)

    Alanis-Lobato, Gregorio; Cannistraci, Carlo Vittorio; Ravasi, Timothy

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks. We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks. Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab.

  5. Transgene x environment interactions in genetically modified wheat.

    Directory of Open Access Journals (Sweden)

    Simon L Zeller

    Full Text Available BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  6. Peer Observed Interaction and Structured Evaluation (POISE): a Canadian experience with peer supervision for genetic counselors.

    Science.gov (United States)

    Goldsmith, Claire; Honeywell, Christina; Mettler, Gabrielle

    2011-04-01

    Peer observation, while often used in other professions, has not been formally applied in genetic counseling. The objective of this study was to pilot a method of peer evaluation whereby genetic counselors observed, and were observed by, each other during patient interaction. All of the available genetic counselors participated in both rounds of the pilot study (six in round one, seven in round two). The genetic counselors that observed the session used an observation room. Most participants reported learning a new skill. Sensitivity to, and comfort with, the feedback process improved. We conclude that Peer-Observed Interaction and Structured Evaluation (POISE) provides an opportunity to refresh counseling approaches and develop feedback skills without causing undue team discord. This new approach to peer supervision in genetic counselling offers a live observation approach for genetic counsellor supervision.

  7. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties

    DEFF Research Database (Denmark)

    St Pourcain, B; Robinson, E B; Anttila, V

    2017-01-01

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic......-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34...... effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors influencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic influences with impairments in social...

  8. Transcriptomic analysis of the interaction between Helianthus annuus and its obligate parasite Plasmopara halstedii shows single nucleotide polymorphisms in CRN sequences

    Directory of Open Access Journals (Sweden)

    Gouzy Jérôme

    2011-10-01

    Full Text Available Abstract Background Downy mildew in sunflowers (Helianthus annuus L. is caused by the oomycete Plasmopara halstedii (Farl. Berlese et de Toni. Despite efforts by the international community to breed mildew-resistant varieties, downy mildew remains a major threat to the sunflower crop. Very few genomic, genetic and molecular resources are currently available to study this pathogen. Using a 454 sequencing method, expressed sequence tags (EST during the interaction between H. annuus and P. halstedii have been generated and a search was performed for sites in putative effectors to show polymorphisms between the different races of P. halstedii. Results A 454 pyrosequencing run of two infected sunflower samples (inbred lines XRQ and PSC8 infected with race 710 of P. halstedii, which exhibit incompatible and compatible interactions, respectively generated 113,720 and 172,107 useable reads. From these reads, 44,948 contigs and singletons have been produced. A bioinformatic portal, HP, was specifically created for in-depth analysis of these clusters. Using in silico filtering, 405 clusters were defined as being specific to oomycetes, and 172 were defined as non-specific oomycete clusters. A subset of these two categories was checked using PCR amplification, and 86% of the tested clusters were validated. Twenty putative RXLR and CRN effectors were detected using PSI-BLAST. Using corresponding sequences from four races (100, 304, 703 and 710, 22 SNPs were detected, providing new information on pathogen polymorphisms. Conclusions This study identified a large number of genes that are expressed during H. annuus/P. halstedii compatible or incompatible interactions. It also reveals, for the first time, that an infection mechanism exists in P. halstedii similar to that in other oomycetes associated with the presence of putative RXLR and CRN effectors. SNPs discovered in CRN effector sequences were used to determine the genetic distances between the four races

  9. Beyond the MHC: A canine model of dermatomyositis shows a complex pattern of genetic risk involving novel loci

    Science.gov (United States)

    Evans, Jacquelyn M.; Hill, Cody M.; Anderson, Kendall J.

    2017-01-01

    Juvenile dermatomyositis (JDM) is a chronic inflammatory myopathy and vasculopathy driven by genetic and environmental influences. Here, we investigated the genetic underpinnings of an analogous, spontaneous disease of dogs also termed dermatomyositis (DMS). As in JDM, we observed a significant association with a haplotype of the major histocompatibility complex (MHC) (DLA-DRB1*002:01/-DQA1*009:01/-DQB1*001:01), particularly in homozygosity (P-val = 0.0001). However, the high incidence of the haplotype among healthy dogs indicated that additional genetic risk factors are likely involved in disease progression. We conducted genome-wide association studies in two modern breeds having common ancestry and detected strong associations with novel loci on canine chromosomes 10 (P-val = 2.3X10-12) and 31 (P-val = 3.95X10-8). Through whole genome resequencing, we identified primary candidate polymorphisms in conserved regions of PAN2 (encoding p.Arg492Cys) and MAP3K7CL (c.383_392ACTCCACAAA>GACT) on chromosomes 10 and 31, respectively. Analyses of these polymorphisms and the MHC haplotypes revealed that nine of 27 genotypic combinations confer high or moderate probability of disease and explain 93% of cases studied. The pattern of disease risk across PAN2 and MAP3K7CL genotypes provided clear evidence for a significant epistatic foundation for this disease, a risk further impacted by MHC haplotypes. We also observed a genotype-phenotype correlation wherein an earlier age of onset is correlated with an increased number of risk alleles at PAN2 and MAP3K7CL. High frequencies of multiple genetic risk factors are unique to affected breeds and likely arose coincident with artificial selection for desirable phenotypes. Described herein is the first three-locus association with a complex canine disease and two novel loci that provide targets for exploration in JDM and related immunological dysfunction. PMID:28158183

  10. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thalian. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S. I.

    2000-06-01

    This is a final report describing the results of the research funded by the DOE Energy Biosciences Program grant entitled ''A Molecular-Genetic Approach to Studying Source-Sink Interactions in Arabidiopsis thaliana''.

  11. Genetic Vulnerability Interacts with Parenting and Early Care and Education to Predict Increasing Externalizing Behavior

    Science.gov (United States)

    Lipscomb, Shannon T.; Laurent, Heidemarie; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David; Leve, Leslie D.

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental…

  12. Effects of genotype x environment interaction on genetic gain in breeding programs

    NARCIS (Netherlands)

    Mulder, H.A.; Bijma, P.

    2005-01-01

    Genotype x environment interaction (G x E) is increasingly important, because breeding programs tend to be more internationally oriented. The aim of this theoretical study was to investigate the effects of G x E on genetic gain in sib-testing and progeny-testing schemes. Loss of genetic gain due to

  13. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    DEFF Research Database (Denmark)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,47...

  14. A twin study of ADHD symptoms in early adolescence: hyperactivity-impulsivity and inattentiveness show substantial genetic overlap but also genetic specificity

    NARCIS (Netherlands)

    Greven, C.U.; Rijsdijk, F.V.; Plomin, R.

    2011-01-01

    A previous paper in this journal revealed substantial genetic overlap between the ADHD dimensions of hyperactivity-impulsivity and inattentiveness in a sample of 8-year old twins drawn from a UK-representative population sample. Four years later, when the twins were 12 years old, more than 5,500 pai

  15. A Twin Study of ADHD Symptoms in Early Adolescence: Hyperactivity-Impulsivity and Inattentiveness Show Substantial Genetic Overlap but Also Genetic Specificity

    Science.gov (United States)

    Greven, Corina U.; Rijsdijk, Fruhling V.; Plomin, Robert

    2011-01-01

    A previous paper in this journal revealed substantial genetic overlap between the ADHD dimensions of hyperactivity-impulsivity and inattentiveness in a sample of 8-year old twins drawn from a UK-representative population sample. Four years later, when the twins were 12 years old, more than 5,500 pairs drawn from the same sample were rated again on…

  16. Interaction between 5 genetic variants and allergy in glioma risk

    DEFF Research Database (Denmark)

    Schoemaker, Minouk J; Robertson, Lindsay; Wigertz, Annette

    2010-01-01

    The etiology of glioma is barely known. Epidemiologic studies have provided evidence for an inverse relation between glioma risk and allergic disease. Genome-wide association data have identified common genetic variants at 5p15.33 (rs2736100, TERT), 8q24.21 (rs4295627, CCDC26), 9p21.3 (rs4977756...

  17. Genetic analysis shows that morphology alone cannot distinguish asian carp eggs from those of other cyprinid species

    Science.gov (United States)

    Larson, James H.; McCalla, Sunnie; Chapman, Duane C.; Rees, Christopher B.; Knights, Brent C.; Vallazza, Jon; George, Amy E.; Richardson, William B.; Amberg, Jon

    2016-01-01

    Fish eggs and embryos (hereafter collectively referred to as “eggs”) were collected in the upper Mississippi River main stem (~300 km upstream of previously reported spawning by invasive Asian carp) during summer 2013. Based on previously published morphological characteristics, the eggs were identified as belonging to Asian carp. A subsample of the eggs was subsequently analyzed by using molecular methods to determine species identity. Genetic identification using the cytochrome-c oxidase 1 gene was attempted for a total of 41 eggs. Due to the preservation technique used (formalin) and the resulting DNA degradation, sequences were recovered from only 17 individual eggs. In all 17 cases, cyprinids other than Asian carp (usually Notropis sp.) were identified as the most likely species. In previously published reports, a key characteristic that distinguished Asian carp eggs from those of other cyprinids was size: Asian carp eggs exhibited diameters ranging from 4.0 to 6.0 mm and were thought to be much larger than the otherwise similar eggs of native species. Eggs from endemic cyprinids were believed to rarely reach 3.0 mm and had not been observed to exceed 3.3 mm. However, many of the eggs that were genetically identified as originating from native cyprinids were as large as 4.0 mm in diameter (at early developmental stages) and were therefore large enough to over- lap with the lower end of the size range observed for Asian carp eggs. Researchers studying the egg stages of Asian carp and other cyprinids should plan on preserving subsets of eggs for genetic analysis to confirm morphological identifications.

  18. Human genetic affinities for Y-chromosome P49a,f/TaqI haplotypes show strong correspondence with linguistics

    OpenAIRE

    Poloni, Estella S; Semino, O.; Passarino, G.; Santachiara-Benerecetti, A S; Dupanloup, I.; Langaney, André; Excoffier, Laurent Georges Louis

    1997-01-01

    Numerous population samples from around the world have been tested for Y chromosome-specific p49a,f/TaqI restriction polymorphisms. Here we review the literature as well as unpublished data on Y-chromosome p49a,f/TaqI haplotypes and provide a new nomenclature unifying the notations used by different laboratories. We use this large data set to study worldwide genetic variability of human populations for this paternally transmitted chromosome segment. We observe, for the Y chromosome, an import...

  19. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.

    Science.gov (United States)

    Hou, Lin; Wang, Lin; Berg, Arthur; Qian, Minping; Zhu, Yunping; Li, Fangting; Deng, Minghua

    2012-01-01

    The goal of network clustering algorithms detect dense clusters in a network, and provide a first step towards the understanding of large scale biological networks. With numerous recent advances in biotechnologies, large-scale genetic interactions are widely available, but there is a limited understanding of which clustering algorithms may be most effective. In order to address this problem, we conducted a systematic study to compare and evaluate six clustering algorithms in analyzing genetic interaction networks, and investigated influencing factors in choosing algorithms. The algorithms considered in this comparison include hierarchical clustering, topological overlap matrix, bi-clustering, Markov clustering, Bayesian discriminant analysis based community detection, and variational Bayes approach to modularity. Both experimentally identified and synthetically constructed networks were used in this comparison. The accuracy of the algorithms is measured by the Jaccard index in comparing predicted gene modules with benchmark gene sets. The results suggest that the choice differs according to the network topology and evaluation criteria. Hierarchical clustering showed to be best at predicting protein complexes; Bayesian discriminant analysis based community detection proved best under epistatic miniarray profile (EMAP) datasets; the variational Bayes approach to modularity was noticeably better than the other algorithms in the genome-scale networks.

  20. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex.

    Directory of Open Access Journals (Sweden)

    Mariya M Kucherenko

    Full Text Available The Dystroglycan-Dystrophin (Dg-Dys complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-beta and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.

  1. Identifying ionic interactions within a membrane using BLaTM, a genetic tool to measure homo- and heterotypic transmembrane helix-helix interactions

    Science.gov (United States)

    Schanzenbach, Christoph; Schmidt, Fabian C.; Breckner, Patrick; Teese, Mark G.; Langosch, Dieter

    2017-01-01

    The assembly of integral membrane protein complexes is frequently supported by transmembrane domain (TMD) interactions. Here, we present the BLaTM assay that measures homotypic as well as heterotypic TMD-TMD interactions in a bacterial membrane. The system is based on complementation of β-lactamase fragments genetically fused to interacting TMDs, which confers ampicillin resistance to expressing cells. We validated BLaTM by showing that the assay faithfully reports known sequence-specific interactions of both types. In a practical application, we used BLaTM to screen a focussed combinatorial library for heterotypic interactions driven by electrostatic forces. The results reveal novel patterns of ionizable amino acids within the isolated TMD pairs. Those patterns indicate that formation of heterotypic TMD pairs is most efficiently supported by closely spaced ionizable residues of opposite charge. In addition, TMD heteromerization can apparently be driven by hydrogen bonding between basic or between acidic residues. PMID:28266525

  2. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

    Science.gov (United States)

    Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J; Vacic, Vladimir; Calderwood, Michael A; Roth, Frederick P; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M

    2014-04-11

    Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.

  3. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    Science.gov (United States)

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.

    Science.gov (United States)

    Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene

  5. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.

    Directory of Open Access Journals (Sweden)

    Mark A Genung

    Full Text Available Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N and phosphorous (P dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N, IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be

  6. [Cyclooxygenase 2 genetic variant interacting with tobacco smoking and the risk of lung cancer].

    Science.gov (United States)

    Zhang, Zhi; Liu, Rui; Yang, Zhao-huan; Wang, Guang-xia; Shao, Sha-sha; Song, Qin-qin; Zhang, Xue-mei

    2013-08-01

    To explore the association of -1195G > A genetic variant in the promoter region of cyclooxygenase 2 genetic (COX2) with the genetic susceptibility of lung cancer and its interaction with smoking. Totally, 956 lung cancer patients recruited between January 2000 and December 2008 at Cancer Hospital, Chinese Academy of Medical Science as the case group, and 994 frequency-matched controls were randomly selected from a pool of cancer-free subjects recruited from a nutritional survey. All subjects were ethnic Han Chinese. There was no sex, age restrictions. Case group and control group were matched. Informed consent was obtained and 2 ml peripheral blood was collected from each subject. All samples were genotyped by polymerase chain reaction-restriction fragment length polymorphism method, smoking status of the subjects was surveyed.While the OR and 95% CI were estimated by logistic regression to evaluate the relation of COX2 -1195G > A variant and the risk of lung cancer. The genetic allele COX2 -1195AA of control group and case group were 24.9% (247/994) and 28.3% (271/956) . Case-control analysis showed an increased risk of developing lung cancer for -1195AA genotype carriers (OR = 1.36, 95% CI: 1.03-1.79), compared with -1195GG carriers. When stratified by smoking status, the significant increased risk of lung cancer was found among smokers with COX2-1195AA genotype, with the OR (95%CI) was 1.56 (1.08-2.25); while among non-smokers, difference of lung cancer risk was not found among different genotypes (OR = 1.17; 95%CI: 0.77-1.61). Among heavy smokers (pack-year >20), -1195AA and -1195AG genotype carriers have significant increased risk of lung cancer with 1.85 (1.16-2.95) and 1.62(1.08-2.43) of OR (95%CI), respectively; among light smokers (pack-year ≤ 20), the OR (95%CI) of lung cancer risk in -1195AG and -1195AA genotype carriers were 0.78 (0.47-1.30) and 1.08 (0.60-1.94), respectively. Genetic polymorphism in the promoter of COX2 gene interacting with smoking

  7. Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females.

    Science.gov (United States)

    Hunter, Chad M; Robinson, Matthew C; Aylor, David L; Singh, Nadia D

    2016-05-03

    Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype-environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype-age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.

  8. Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females

    Directory of Open Access Journals (Sweden)

    Chad M. Hunter

    2016-05-01

    Full Text Available Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype–environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype–age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.

  9. Expression Profiling of Human Genetic and Protein Interaction Networks in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Brunak, Søren; Bergholdt, R; Brorsson, C

    2009-01-01

    Proteins contributing to a complex disease are often members of the same functional pathways. Elucidation of such pathways may provide increased knowledge about functional mechanisms underlying disease. By combining genetic interactions in Type 1 Diabetes (T1D) with protein interaction data we have...

  10. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    Directory of Open Access Journals (Sweden)

    Dowling Damian K

    2011-07-01

    Full Text Available Abstract Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass, and each trait harboured significant additive genetic variance in the standard temperature (27°C only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass. Of the female traits measured, only ovary mass for crickets

  11. Does prenatal valproate interact with a genetic reduction in the serotonin transporter?A rat study on anxiety and cognition

    Directory of Open Access Journals (Sweden)

    Bart A Ellenbroek

    2016-09-01

    Full Text Available There is ample evidence that prenatal exposure to valproate (or valproic acid, VPA enhances the risk of developing Autism Spectrum Disorders (ASD. In line with this, a single injection of VPA induces a multitude of ASD-like symptoms in animals such as rats and mice. However, there is equally strong evidence that genetic factors contribute significantly to the risk of ASD and indeed, like most other psychiatric disorders, ASD is now generally thought to results from an interaction between genetic and environmental factors. Given that VPA significantly impacts on the serotonergic system, and serotonin has strong biochemical and genetic links to ASD, we aimed to investigate the interaction between genetic reduction in the serotonin transporter and prenatal valproate administration. More specifically, we exposed both wildtype (SERT+/+ rats and rats heterozygous for the serotonin transporter deletion (SERT+/- to a single injection of 400 mg/kg VPA at gestational day (GD 12. The offspring, in adulthood, was assessed in four different tests: Elevated Plus Maze and Novelty Suppressed Feeding as measures for anxiety and prepulse inhibition (PPI and latent inhibition as measures for cognition and information processing. The results show that prenatal VPA significantly increased anxiety in both paradigm, reduced PPI and reduced conditioning in the latent inhibition paradigm. However, we failed to find a significant gene – environment interaction. We propose that this may be related to the timing of the VPA injection and suggest that whereas GD12 might be optimal for affecting normal rat, rats with a genetically compromised serotonergic system may be more sensitive to VPA at earlier time points during gestation. Overall our data are the first to investigate gene * environmental interactions in a genetic rat model for ASD suggest that timing may be of crucial importance to the long-term outcome.

  12. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Sitaraman Sujatha; Dipankar Chatterji

    2000-01-01

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and remote interplay between two subunits of a protein or between two proteins in a complex may govern the fate of a particular biochemical pathway. In a bacterial system where the complete genome sequence is available, it is an arduous task to assign function to a large number of proteins. It is possible that many of them are peripherally associated with a cellular event and it is very difficult to probe such interaction. However, mutations in the genes that encode such proteins (primary mutations) are useful in these studies. Isolation of a suppressor or a second-site mutation that restores the phenotype abolished by the primary mutation could be an elegant yet simple way to follow a set of interacting proteins. Such a reversion site need not necessarily be geometrically close to the primary mutation site.

  13. Cuckoo search epistasis: a new method for exploring significant genetic interactions.

    Science.gov (United States)

    Aflakparast, M; Salimi, H; Gerami, A; Dubé, M-P; Visweswaran, S; Masoudi-Nejad, A

    2014-06-01

    The advent of high-throughput sequencing technology has resulted in the ability to measure millions of single-nucleotide polymorphisms (SNPs) from thousands of individuals. Although these high-dimensional data have paved the way for better understanding of the genetic architecture of common diseases, they have also given rise to challenges in developing computational methods for learning epistatic relationships among genetic markers. We propose a new method, named cuckoo search epistasis (CSE) for identifying significant epistatic interactions in population-based association studies with a case-control design. This method combines a computationally efficient Bayesian scoring function with an evolutionary-based heuristic search algorithm, and can be efficiently applied to high-dimensional genome-wide SNP data. The experimental results from synthetic data sets show that CSE outperforms existing methods including multifactorial dimensionality reduction and Bayesian epistasis association mapping. In addition, on a real genome-wide data set related to Alzheimer's disease, CSE identified SNPs that are consistent with previously reported results, and show the utility of CSE for application to genome-wide data.

  14. Genotype X environment interactions. II. Some genetical considerations.

    Science.gov (United States)

    Mather, K

    1975-08-01

    An algebraic formulation, alternative to that of Mather and Jones (1958) and hierarchial rather than factorial in nauture, is presented for describing the differences among the phenotypes produced by a number of genotypes each grown in each of a number of environments. This formuationdoes not include terms representing statistical interactions between genotypes and environments: it depends instead on comparisons between the different genotypes in their variation over the relevant ranges of environemnts. The two-line case is considered ant eht condition established for linearity of the regress ion of genotype X enviroment interaction (g in Mather and Jones' formulation) on overall effect of the envirronment (e in Mather and Jones' formulation)...

  15. Class II HLA interactions modulate genetic risk for multiple sclerosis

    DEFF Research Database (Denmark)

    Moutsianas, Loukas; Jostins, Luke; Beecham, Ashley H;

    2015-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on ...

  16. DINUCLEAR NICKEL(II PIVALATE WITH µ-AQUA AND DI-µ-PIVALATO BRIDGES SHOWING A FERROMAGNETIC INTERACTION

    Directory of Open Access Journals (Sweden)

    Masahiro Mikuriya

    2014-12-01

    Full Text Available Dinuclear nickel(II complex, [Ni2{O2CC(CH33}4(OH2{HO2CC(CH33}4] (1, was synthesized and characterized by elemental analysis, IR and UV-Vis-NIR spectroscopy, and temperature dependence of magnetic susceptibilities (4.5—300 K. Single-crystal X-ray crystallography revealed a dinuclear core with µ-aqua and di-µ-pivalato bridges having monodentate pivalato and monodentate pivalic acid molecules. Magnetic data analysis showed a ferromagnetic interactions between the two nickel atoms with g = 2.251, J = 2.78 cm−1, D = 3.75 cm–1, and tip = 184 x 10–6 cm3 mol–1; g = 2.253, J = 2.73 cm−1, D = –3.26 cm–1, and tip = 176 x 10–6 cm3 mol–1.

  17. Hybrid Genetic Algorithm Based Optimization of Coupled HMM for Complex Interacting Processes Recognition

    Institute of Scientific and Technical Information of China (English)

    Liu Jianghua(刘江华); Chen Jiapin; Cheng Junshi

    2004-01-01

    Coupled Hidden Markov Model (CHMM) is the extension of traditional HMM, which is mainly used for complex interactive process modeling such as two-hand gestures. However, the problems of finding optimal model parameter are still of great interest to the researches in this area. This paper proposes a hybrid genetic algorithm (HGA) for the CHMM training. Chaos is used to initialize GA and used as mutation operator. Experiments on Chinese TaiChi gestures show that standard GA (SGA) based CHMM training is superior to Maximum Likelihood (ML) HMM training. HGA approach has the highest recognition rate of 98.0769%, then 96.1538% for SGA. The last one is ML method, only with a recognition rate of 69.2308%.

  18. Interaction of genetic and exposure factors in the prevalence of berylliosis.

    Science.gov (United States)

    Richeldi, L; Kreiss, K; Mroz, M M; Zhen, B; Tartoni, P; Saltini, C

    1997-10-01

    Prevalence of berylliosis, a lung disorder driven by the activation of beryllium-specific T cells, is associated with a major histocompatibility complex (MHC) class II marker (HLA-DPB1Glu69) and with the type of industrial exposure. We evaluated the interaction between marker and exposure in a beryllium-exposed population in which the prevalence of berylliosis was associated with machining beryllium. The presence of the marker was associated with higher prevalence (HLA-DPB1Glu69-positive machinists 25%; HLA-DPB1Glu69-negative machinists 3.2%, P = 0.05) and predicted berylliosis independent of machining history (odds ratios 11.8 and 10.1). The study shows that in berylliosis the carrier status of a genetic susceptibility factor adds to the effect of process-related risk factors.

  19. Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI.

    Directory of Open Access Journals (Sweden)

    Giosalba Burgio

    2008-06-01

    Full Text Available Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo.

  20. [Genetic and environmental interactions on the development of rheumatoid arthritis].

    Science.gov (United States)

    Malaise, O; von Frenckell, C; Malaise, M G

    2012-01-01

    Rheumatoid arthritis (RA) more and more becomes a syndrome, rather than a disease, with genetic, hormonal and environmental influences, among which smoking and the microbiota generate focused interest. The shared epitope and PTPN22 loci are associated with RA, and, particularly, with the "classical" form with anti-citrullinated peptide antibodies (ACPA) and IgM-rheumatoid factor (IgM-RF) positivity. Pregnancy is associated with a--temporary--remission of RA. Epidemiological studies have shown that oral contraception, parity and hormonal replacement therapy influence the severity of RA, and, this is still discussed, its incidence. Smoking is the first environmental factor strongly associated with RA, specifically with the shared epitope and with ACPA. The study of the microbiota is a novel emerging field that will help us to better understand patterns and evolution of RA.

  1. Genetic correlations between dressage, show jumping and studbook-entry inspection traits in a process of specialization in Dutch Warmblood horses

    NARCIS (Netherlands)

    Rovere, G.; Ducro, B.J.; Arendonk, van J.A.M.; Norberg, E.; Madsen, P.

    2016-01-01

    Sport performance in dressage and show jumping are two important traits in the breeding goals of many studbooks. To determine the optimum selection scheme for jumping and dressage, knowledge is needed on the genetic correlation between both disciplines and between traits measured early in life an

  2. Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development

    Directory of Open Access Journals (Sweden)

    Agoston Zsuzsa

    2012-03-01

    Full Text Available Abstract Background During early stages of brain development, secreted molecules, components of intracellular signaling pathways and transcriptional regulators act in positive and negative feed-back or feed-forward loops at the mid-hindbrain boundary. These genetic interactions are of central importance for the specification and subsequent development of the adjacent mid- and hindbrain. Much less, however, is known about the regulatory relationship and functional interaction of molecules that are expressed in the tectal anlage after tectal fate specification has taken place and tectal development has commenced. Results Here, we provide experimental evidence for reciprocal regulation and subsequent cooperation of the paired-type transcription factors Pax3, Pax7 and the TALE-homeodomain protein Meis2 in the tectal anlage. Using in ovo electroporation of the mesencephalic vesicle of chick embryos we show that (i Pax3 and Pax7 mutually regulate each other's expression in the mesencephalic vesicle, (ii Meis2 acts downstream of Pax3/7 and requires balanced expression levels of both proteins, and (iii Meis2 physically interacts with Pax3 and Pax7. These results extend our previous observation that Meis2 cooperates with Otx2 in tectal development to include Pax3 and Pax7 as Meis2 interacting proteins in the tectal anlage. Conclusion The results described here suggest a model in which interdependent regulatory loops involving Pax3 and Pax7 in the dorsal mesencephalic vesicle modulate Meis2 expression. Physical interaction with Meis2 may then confer tectal specificity to a wide range of otherwise broadly expressed transcriptional regulators, including Otx2, Pax3 and Pax7.

  3. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21.

    Science.gov (United States)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique; Michailidou, Kyriaki; Canisius, Sander; Lemaçon, Audrey; Droit, Arnaud; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Burwinkel, Barbara; Chang-Claude, Jenny; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G; Goldberg, Mark S; González-Neira, Anna; Grenaker-Alnæs, Grethe; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hallberg, Emily; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jones, Michael; Kabisch, Maria; Kataja, Vesa; Lambrechts, Diether; Le Marchand, Loic; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Maranian, Mel; Margolin, Sara; Marme, Frederik; Milne, Roger L; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olswold, Curtis; Peto, Julian; Plaseska-Karanfilska, Dijana; Pylkäs, Katri; Radice, Paolo; Rudolph, Anja; Sawyer, Elinor J; Schmidt, Marjanka K; Shu, Xiao-Ou; Southey, Melissa C; Swerdlow, Anthony; Tollenaar, Rob A E M; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Van Den Ouweland, Ans M W; Wang, Qin; Winqvist, Robert; Zheng, Wei; Benitez, Javier; Chenevix-Trench, Georgia; Dunning, Alison M; Pharoah, Paul D P; Kristensen, Vessela; Hall, Per; Easton, Douglas F; Pastinen, Tomi; Nord, Silje; Simard, Jacques

    2016-12-06

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.

  4. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    Science.gov (United States)

    Adoue, Véronique; Michailidou, Kyriaki; Canisius, Sander; Lemaçon, Audrey; Droit, Arnaud; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Burwinkel, Barbara; Chang-Claude, Jenny; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G.; Goldberg, Mark S.; González-Neira, Anna; Grenaker-Alnæs, Grethe; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hallberg, Emily; Hooning, Maartje J.; Hopper, John L.; Jakubowska, Anna; Jones, Michael; Kabisch, Maria; Kataja, Vesa; Lambrechts, Diether; Marchand, Loic Le; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Maranian, Mel; Margolin, Sara; Marme, Frederik; Milne, Roger L.; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Olswold, Curtis; Peto, Julian; Plaseska-Karanfilska, Dijana; Pylkäs, Katri; Radice, Paolo; Rudolph, Anja; Sawyer, Elinor J.; Schmidt, Marjanka K.; Shu, Xiao-Ou; Southey, Melissa C.; Swerdlow, Anthony; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Van Den Ouweland, Ans M. W.; Wang, Qin; Winqvist, Robert; Investigators, kConFab/AOCS; Zheng, Wei; Benitez, Javier; Chenevix-Trench, Georgia; Dunning, Alison M.; Pharoah, Paul D. P.; Kristensen, Vessela; Hall, Per; Easton, Douglas F.; Pastinen, Tomi; Nord, Silje; Simard, Jacques

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas. PMID:27792995

  5. Use of residual feed intake in Holsteins during early lactation shows potential to improve feed efficiency through genetic selection.

    Science.gov (United States)

    Connor, E E; Hutchison, J L; Norman, H D; Olson, K M; Van Tassell, C P; Leith, J M; Baldwin, R L

    2013-08-01

    Improved feed efficiency is a primary goal in dairy production to reduce feed costs and negative impacts of production on the environment. Estimates for efficiency of feed conversion to milk production based on residual feed intake (RFI) in dairy cattle are limited, primarily due to a lack of individual feed intake measurements for lactating cows. Feed intake was measured in Holstein cows during the first 90 d of lactation to estimate the heritability and repeatability of RFI, minimum test duration for evaluating RFI in early lactation, and its association with other production traits. Data were obtained from 453 lactations (214 heifers and 239 multiparous cows) from 292 individual cows from September 2007 to December 2011. Cows were housed in a free-stall barn and monitored for individual daily feed consumption using the GrowSafe 4000 System (GrowSafe Systems, Ltd., Airdrie, AB, Canada). Animals were fed a total mixed ration 3 times daily, milked twice daily, and weighed every 10 to 14 d. Milk yield was measured at each milking. Feed DM percentage was measured daily, and nutrient composition was analyzed from a weekly composite. Milk composition was analyzed weekly, alternating between morning and evening milking periods. Estimates of RFI were determined as the difference between actual energy intake and predicted intake based on a linear model with fixed effects of parity (1, 2, ≥ 3) and regressions on metabolic BW, ADG, and energy-corrected milk yield. Heritability was estimated to be moderate (0.36 ± 0.06), and repeatability was estimated at 0.56 across lactations. A test period through 53 d in milk (DIM) explained 81% of the variation provided by a test through 90 DIM. Multiple regression analysis indicated that high efficiency was associated with less time feeding per day and slower feeding rate, which may contribute to differences in RFI among cows. The heritability and repeatability of RFI suggest an opportunity to improve feed efficiency through genetic

  6. Phylogeographic Triangulation: Using Predator-Prey-Parasite Interactions to Infer Population History from Partial Genetic Information

    Science.gov (United States)

    Barbosa, A. Márcia; Thode, Guillermo; Real, Raimundo; Feliu, Carlos; Vargas, J. Mario

    2012-01-01

    Phylogeographic studies, which infer population history and dispersal movements from intra-specific spatial genetic variation, require expensive and time-consuming analyses that are not always feasible, especially in the case of rare or endangered species. On the other hand, comparative phylogeography of species involved in close biotic interactions may show congruent patterns depending on the specificity of the relationship. Consequently, the phylogeography of a parasite that needs two hosts to complete its life cycle should reflect population history traits of both hosts. Population movements evidenced by the parasite’s phylogeography that are not reflected in the phylogeography of one of these hosts may thus be attributed to the other host. Using the wild rabbit (Oryctolagus cuniculus) and a parasitic tapeworm (Taenia pisiformis) as an example, we propose comparing the phylogeography of easily available organisms such as game species and their specific heteroxenous parasites to infer population movements of definitive host/predator species, independently of performing genetic analyses on the latter. This may be an interesting approach for indirectly studying the history of species whose phylogeography is difficult to analyse directly. PMID:23209834

  7. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  8. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.

    Science.gov (United States)

    Hu, Ting; Darabos, Christian; Cricco, Maria E; Kong, Emily; Moore, Jason H

    2015-01-01

    The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease.

  9. Genetic and genotype × environment interaction effects for the content of seven essential amino acids in indica rice

    Indian Academy of Sciences (India)

    J. G. Wu; C. H. Shi; X. M. Zhang; T. Katsura

    2004-08-01

    It is necessary for rice breeders to understand the genetic basis of nutrient quality traits of rice. Essential amino acids are most important in determining the nutrient quality of rice grain and can affect the health of people who depend on rice as a staple food. In view of the paucity of genetic information available on essential amino acids in indica rice, we estimated the genetic main effects and genotype × environment (G × E) interaction effects on the content of essential amino acids. Nine cytoplasmic male sterile lines as females and five restorer lines as males were introduced in a North Carolina II design across environments. Estimates of the content of the essential amino acids valine, methionine, leucine and phenylalanine showed that they were mainly controlled by genetic main effects, while the contents of threonine, cysteine and isoleucine were mainly affected by G × E effects. In the case of genetic main effects, both cytoplasmic and maternal genetic effects were predominant for all essential amino acids, indicating that selection for improving essential amino acid content based on maternal performance would be more effective than that based on seeds. The total narrow-sense heritabilities were high and ranged from 0.72 to 0.83. Since general heritabilities for these essential amino acids (except for cysteine) were found to be much larger than G × E interaction heritability, the improvement of content of most essential amino acids under selection would be expected under various environments. Rice varieties such as Zhenan 3, Yinchao 1, T49, 26715, 102 and 1391 should be selected as optimal parents for increasing the content of most essential amino acids, while the total genetic effects from Zhexie 2, Xieqingzao, Gangchao 1, V20, Zuo 5 and Zhenshan 97 were mainly negative and these parents could decrease the contents of most essential amino acids.

  10. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Martine eTherrien

    2014-04-01

    Full Text Available Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS and frontotemporal degeneration (FTD. Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.

  11. Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7

    Directory of Open Access Journals (Sweden)

    Neszt Michael

    2008-07-01

    Full Text Available Abstract Background Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. Results We created a novel glc7 catalytic mutant (glc7-E101Q. Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. Conclusion We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes.

  12. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions.

    Directory of Open Access Journals (Sweden)

    Erika Garay

    2014-02-01

    Full Text Available Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.

  13. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions.

    Science.gov (United States)

    Garay, Erika; Campos, Sergio E; González de la Cruz, Jorge; Gaspar, Ana P; Jinich, Adrian; Deluna, Alexander

    2014-02-01

    Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis) among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.

  14. An information-gain approach to detecting three-way epistatic interactions in genetic association studies

    DEFF Research Database (Denmark)

    Hu, Ting; Chen, Yuanzhu; Kiralis, Jeff W;

    2013-01-01

    Background Epistasis has been historically used to describe the phenomenon that the effect of a given gene on a phenotype can be dependent on one or more other genes, and is an essential element for understanding the association between genetic and phenotypic variations. Quantifying epistasis....... In the tuberculosis data, we found a statistically significant pure three-way epistatic interaction effect that was stronger than any lower-order associations. Conclusion Our study provides a methodological basis for detecting and characterizing high-order gene-gene interactions in genetic association studies....

  15. Genetic cross-interaction between APOE and PRNP in sporadic Alzheimer's and Creutzfeldt-Jakob diseases.

    Directory of Open Access Journals (Sweden)

    Olga Calero

    Full Text Available Alzheimer's disease (AD and Creutzfeldt-Jakob disease (CJD represent two distinct clinical entities belonging to a wider group, generically named as conformational disorders that share common pathophysiologic mechanisms. It is well-established that the APOE ε4 allele and homozygosity at polymorphic codon 129 in the PRNP gene are the major genetic risk factors for AD and human prion diseases, respectively. However, the roles of PRNP in AD, and APOE in CJD are controversial. In this work, we investigated for the first time, APOE and PRNP genotypes simultaneously in 474 AD and 175 sporadic CJD (sCJD patients compared to a common control population of 335 subjects. Differences in genotype distribution between patients and control subjects were studied by logistic regression analysis using age and gender as covariates. The effect size of risk association and synergy factors were calculated using the logistic odds ratio estimates. Our data confirmed that the presence of APOE ε4 allele is associated with a higher risk of developing AD, while homozygosity at PRNP gene constitutes a risk for sCJD. Opposite, we found no association for PRNP with AD, nor for APOE with sCJD. Interestingly, when AD and sCJD patients were stratified according to their respective main risk genes (APOE for AD, and PRNP for sCJD, we found statistically significant associations for the other gene in those strata at higher previous risk. Synergy factor analysis showed a synergistic age-dependent interaction between APOE and PRNP in both AD (SF = 3.59, p = 0.027, and sCJD (SF = 7.26, p = 0.005. We propose that this statistical epistasis can partially explain divergent data from different association studies. Moreover, these results suggest that the genetic interaction between APOE and PRNP may have a biological correlate that is indicative of shared neurodegenerative pathways involved in AD and sCJD.

  16. Tl(+) showed negligible interaction with inner membrane sulfhydryl groups of rat liver mitochondria, but formed complexes with matrix proteins.

    Science.gov (United States)

    Korotkov, Sergey M; Brailovskaya, Irina V; Kormilitsyn, Boris N; Furaev, Viktor V

    2014-04-01

    The effects of Tl(+) on protein sulfhydryl (SH) groups, swelling, and respiration of rat liver mitochondria (RLM) were studied in a medium containing TlNO3 and sucrose, or TlNO3 and KNO3 as well as glutamate plus malate, or succinate plus rotenone. Detected with Ellman's reagent, an increase in the content of the SH groups was found in the inner membrane fraction, and a simultaneous decline was found in the content of the matrix-soluble fraction for RLM, incubated and frozen in 25-75 mM TlNO3 . This increase was greater in the medium containing KNO3 regardless of the presence of Ca(2+) . It was eliminated completely for RLM injected in the medium containing TlNO3 and then washed and frozen in the medium containing KNO3 . Calcium-loaded RLM showed increased swelling and decreased respiration. These results suggest that a ligand interaction of Tl(+) with protein SH groups, regardless of the presence of calcium, may underlie the mechanism of thallium toxicity.

  17. Cancer genetics education in a low- to middle-income country: evaluation of an interactive workshop for clinicians in Kenya.

    Directory of Open Access Journals (Sweden)

    Jessica A Hill

    Full Text Available Clinical genetic testing is becoming an integral part of medical care for inherited disorders. While genetic testing and counseling are readily available in high-income countries, in low- and middle-income countries like Kenya genetic testing is limited and genetic counseling is virtually non-existent. Genetic testing is likely to become widespread in Kenya within the next decade, yet there has not been a concomitant increase in genetic counseling resources. To address this gap, we designed an interactive workshop for clinicians in Kenya focused on the genetics of the childhood eye cancer retinoblastoma. The objectives were to increase retinoblastoma genetics knowledge, build genetic counseling skills and increase confidence in those skills.The workshop was conducted at the 2013 Kenyan National Retinoblastoma Strategy meeting. It included a retinoblastoma genetics presentation, small group discussion of case studies and genetic counseling role-play. Knowledge was assessed by standardized test, and genetic counseling skills and confidence by questionnaire.Knowledge increased significantly post-workshop, driven by increased knowledge of retinoblastoma causative genetics. One-year post-workshop, participant knowledge had returned to baseline, indicating that knowledge retention requires more frequent reinforcement. Participants reported feeling more confident discussing genetics with patients, and had integrated more genetic counseling into patient interactions.A comprehensive retinoblastoma genetics workshop can increase the knowledge and skills necessary for effective retinoblastoma genetic counseling.

  18. Batrachochytrium dendrobatidis shows high genetic diversity and ecological niche specificity among haplotypes in the Maya Mountains of Belize.

    Directory of Open Access Journals (Sweden)

    Kristine Kaiser

    Full Text Available The amphibian pathogen Batrachochytrium dendrobatidis (Bd has been implicated in amphibian declines around the globe. Although it has been found in most countries in Central America, its presence has never been assessed in Belize. We set out to determine the range, prevalence, and diversity of Bd using quantitative PCR (qPCR and sequencing of a portion of the 5.8 s and ITS1-2 regions. Swabs were collected from 524 amphibians of at least 26 species in the protected areas of the Maya Mountains of Belize. We sequenced a subset of 72 samples that had tested positive for Bd by qPCR at least once; 30 samples were verified as Bd. Eight unique Bd haplotypes were identified in the Maya Mountains, five of which were previously undescribed. We identified unique ecological niches for the two most broadly distributed haplotypes. Combined with data showing differing virulence shown in different strains in other studies, the 5.8 s - ITS1-2 region diversity found in this study suggests that there may be substantial differences among populations or haplotypes. Future work should focus on whether specific haplotypes for other genomic regions and possibly pathogenicity can be associated with haplotypes at this locus, as well as the integration of molecular tools with other ecological tools to elucidate the ecology and pathogenicity of Bd.

  19. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  20. I Show You How I Like You: Emotional Human-Robot Interaction through Facial Expression and Tactile Stimulation

    DEFF Research Database (Denmark)

    Canamero, Dolores; Fredslund, Jacob

    2001-01-01

    We report work on a LEGO robot that displays different emotional expressions in response to physical stimulation, for the purpose of social interaction with humans. This is a first step toward our longer-term goal of exploring believable emotional exchanges to achieve plausible interaction with a...

  1. How Genetic and Other Biological Factors Interact with Smoking Decisions.

    Science.gov (United States)

    Bierut, Laura; Cesarini, David

    2015-09-01

    Despite clear links between genes and smoking, effective public policy requires far richer measurement of the feedback between biological, behavioral, and environmental factors. The Kavli HUMAN Project (KHP) plans to exploit the plummeting costs of data gathering and to make creative use of new technologies to construct a longitudinal panel data set that would compare favorably to existing longitudinal surveys, both in terms of the richness of the behavioral measures and the cost-effectiveness of the data collection. By developing a more comprehensive approach to characterizing behavior than traditional methods, KHP will allow researchers to paint a much richer picture of an individual's life-cycle trajectory of smoking, alcohol, and drug use, and interactions with other choices and environmental factors. The longitudinal nature of KHP will be particularly valuable in light of the increasing evidence for how smoking behavior affects physiology and health. The KHP could have a transformative impact on the understanding of the biology of addictive behaviors such as smoking, and of a rich range of prevention and amelioration policies.

  2. Genetic variants in three genes and smoking show strong associations with susceptibility to exudative age-related macular degeneration in a Chinese population

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    cigarette smoking were also related to exudative AMD. After controlling for environmental risk factors, CFH and HTRA1 SNPs were independently associated with exudative AMD, with OR of 3.50 (1.45-8.45) for CT genotype in Y402H, 3.34 (1.33-8.36) for GG genotype in rs1410996 and 3.85 (1.58-9.42) for AA genotype in rs11200638 respectively. The interaction analysis between gene and environmental factors showed that smoking synergistically increased susceptibility of AMD for heterozygotes of rs1410996, with ORinteraction of 7.33 (Pinteraction=0.029). Conclusions In a Han Chinese population, CFH and HTRA1 polymorphisms appear to be independently and possibly additivelv hereditary contributors to exudative AMD. Y402H polymorphism conferred a significant but relatively lower contribution in Chinese than in Caucasians with a low frequency of risk allele. The gene-environment interaction may be a best way to encourage those with a high genetic risk to prevent AMD by avoiding modifiable factors until there is effective treatment for AMD.

  3. The conditional nature of genetic interactions: the consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen.

    Directory of Open Access Journals (Sweden)

    Sudarshan Chari

    Full Text Available The phenotypic outcome of a mutation cannot be simply mapped onto the underlying DNA variant. Instead, the phenotype is a function of the allele, the genetic background in which it occurs and the environment where the mutational effects are expressed. While the influence of genetic background on the expressivity of individual mutations is recognized, its consequences on the interactions between genes, or the genetic network they form, is largely unknown. The description of genetic networks is essential for much of biology; yet if, and how, the topologies of such networks are influenced by background is unknown. Furthermore, a comprehensive examination of the background dependent nature of genetic interactions may lead to identification of novel modifiers of biological processes. Previous work in Drosophila melanogaster demonstrated that wild-type genetic background influences the effects of an allele of scalloped (sd, with respect to both its principal consequence on wing development and its interactions with a mutation in optomotor blind. In this study we address whether the background dependence of mutational interactions is a general property of genetic systems by performing a genome wide dominant modifier screen of the sd(E3 allele in two wild-type genetic backgrounds using molecularly defined deletions. We demonstrate that ~74% of all modifiers of the sd(E3 phenotype are background-dependent due in part to differential sensitivity to genetic perturbation. These background dependent interactions include some with qualitative differences in the phenotypic outcome, as well as instances of sign epistasis. This suggests that genetic interactions are often contingent on genetic background, with flexibility in genetic networks due to segregating variation in populations. Such background dependent effects can substantially alter conclusions about how genes influence biological processes, the potential for genetic screens in alternative wild

  4. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction.

    Science.gov (United States)

    Cardoso, F F; Tempelman, R J

    2012-07-01

    The objectives of this work were to assess alternative linear reaction norm (RN) models for genetic evaluation of Angus cattle in Brazil. That is, we investigated the interaction between genotypes and continuous descriptors of the environmental variation to examine evidence of genotype by environment interaction (G×E) in post-weaning BW gain (PWG) and to compare the environmental sensitivity of national and imported Angus sires. Data were collected by the Brazilian Angus Improvement Program from 1974 to 2005 and consisted of 63,098 records and a pedigree file with 95,896 animals. Six models were implemented using Bayesian inference and compared using the Deviance Information Criterion (DIC). The simplest model was M(1), a traditional animal model, which showed the largest DIC and hence the poorest fit when compared with the 4 alternative RN specifications accounting for G×E. In M(2), a 2-step procedure was implemented using the contemporary group posterior means of M(1) as the environmental gradient, ranging from -92.6 to +265.5 kg. Moreover, the benefits of jointly estimating all parameters in a 1-step approach were demonstrated by M(3). Additionally, we extended M(3) to allow for residual heteroskedasticity using an exponential function (M(4)) and the best fitting (smallest DIC) environmental classification model (M(5)) specification. Finally, M(6) added just heteroskedastic residual variance to M(1). Heritabilities were less at harsh environments and increased with the improvement of production conditions for all RN models. Rank correlations among genetic merit predictions obtained by M(1) and by the best fitting RN models M(3) (homoskedastic) and M(5) (heteroskedastic) at different environmental levels ranged from 0.79 and 0.81, suggesting biological importance of G×E in Brazilian Angus PWG. These results suggest that selection progress could be optimized by adopting environment-specific genetic merit predictions. The PWG environmental sensitivity of

  5. Genotype and growing environment interaction shows a positive correlation between substrates of raffinose family oligosaccharides (RFO) biosynthesis and their accumulation in chickpea ( Cicer arietinum L.) seeds.

    Science.gov (United States)

    Gangola, Manu P; Khedikar, Yogendra P; Gaur, Pooran M; Båga, Monica; Chibbar, Ravindra N

    2013-05-22

    To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea ( Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from 2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60-3.59 g/100 g) and stachyose (0.18-2.38 g/100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and verbascose showed a moderate broad sense heritability (0.25-0.56), suggesting the use of a multilocation trials based approach in chickpea seed quality improvement programs.

  6. Interactions within the MHC contribute to the genetic architecture of celiac disease

    Science.gov (United States)

    Abraham, Gad; Kikianty, Eder; Wang, Qiao; Rawlinson, Dave; Shi, Fan; Haviv, Izhak; Stern, Linda

    2017-01-01

    Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets. PMID:28282431

  7. Effect of dietary phosphorus and its interaction with genetic background on global gene expression in porcine muscle.

    Science.gov (United States)

    Qu, A; Rothschild, M F; Stahl, C H

    2007-08-01

    Environmental concerns and costs associated with dietary phosphorus (P) supplementation have lead to attempts to minimize the amount of P added to swine diets. In addition to its requirement for bone growth, dietary P is also necessary for muscular growth. To examine the effects of genetic background and dietary P on global gene expression in the muscle of young pigs, we utilized muscle tissue from 36 gilts sired from two different sire lines. These animals were fed either a P adequate, P deficient or P repletion diets for 14 days and showed differences in growth performance and bone integrity in response to the interaction of genetic background and dietary P. Total RNA from the loin muscle of these animals was obtained for microarray analysis. Significant differences (p<0.01) in gene expression were seen based on the effect of sire line (339 genes), dietary P (18 genes) and the interaction between sire line and dietary P (31 genes). The microarray data were validated by semi-quantitative real-time PCR. These results support our hypothesis that genetic background and dietary P treatment can affect the homeorhetic control of P metabolism in pigs. Genes identified as differentially expressed in this study may be excellent candidate genes for additional work to elucidate genotype specific P requirements as well as to identify a genetic background that can maintain superior growth in a more environmentally friendly manner.

  8. I Show You How I Like You: Emotional Human-Robot Interaction through Facial Expression and Tactile Stimulation

    DEFF Research Database (Denmark)

    Canamero, Dolores; Fredslund, Jacob

    2001-01-01

    We report work on a LEGO robot that displays different emotional expressions in response to physical stimulation, for the purpose of social interaction with humans. This is a first step toward our longer-term goal of exploring believable emotional exchanges to achieve plausible interaction...... with a simple robot. Drawing inspiration from theories of human basic emotions, we implemented several prototypical expressions in the robot's caricatured face and conducted experiments to assess the recognizability of these expressions...

  9. Interactions between meat intake and genetic variation in relation to colorectal cancer

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Vogel, Ulla

    2015-01-01

    Meat intake is associated with the risk of colorectal cancer. The objective of this systematic review was to evaluate interactions between meat intake and genetic variation in order to identify biological pathways involved in meat carcinogenesis. We performed a literature search of Pub...... a polymorphism in XPC and meat was found in one prospective and one case-control study; however, the directions of the risk estimates were opposite. Thus, none of the findings were replicated. The results from this systematic review suggest that genetic variation in the inflammatory response and DNA repair...... pathway is involved in meat-related colorectal carcinogenesis, whereas no support for the involvement of heme and iron from meat or cooking mutagens was found. Further studies assessing interactions between meat intake and genetic variation in relation to CRC in large well-characterised prospective...

  10. The Interaction of Selective Attention and Cognitive Development on Achievement in Nigerian Secondary School Genetics

    Science.gov (United States)

    Okoye, Namdi N. S.

    2009-01-01

    The study tried to examine the interaction between two independent variables of selective attention and cognitive development on Achievement in Genetics at the Secondary School level. In looking at the problem of this study three null hypotheses were generated for testing at 0.05 level of significance. Factorial Analysis of Variance design with…

  11. Genetic interactions for heat stress and production level: predicting foreign from domestic data

    Science.gov (United States)

    Genetic by environmental interactions were estimated from U.S. national data by separately adding random regressions for heat stress (HS) and herd production level (HL) to the all-breed animal model to improve predictions of future records and rankings in other climate and production situations. Yie...

  12. Genetics of non-alcoholic fatty liver disease: From susceptibility and nutrient interactions to management

    Institute of Scientific and Technical Information of China (English)

    Vishnubhotla; Venkata; Ravi; Kanth; Mitnala; Sasikala; Mithun; Sharma; Padaki; Nagaraja; Rao; Duvvuru; Nageshwar; Reddy

    2016-01-01

    Genetics plays an important role in determining the susceptibility of an individual to develop a disease. Complex, multi factorial diseases of modern day(diabetes, cardiovascular disease, hypertension and obesity) are a result of disparity between the type of food consumed and genes, suggesting that food which does not match the host genes is probably one of the major reasons for developing life style diseases. Non-alcoholic fatty liver is becoming a global epidemic leading to substantial morbidity. While various genotyping approaches such as whole exome sequencing using next generation sequencers and genome wide association studies have identified susceptibility loci for non-alcoholic fatty liver disease(NAFLD) including variants in patatin-like phospholipase domain containing 3 and transmembrane 6 superfamily member 2 genes apart from others; nutrient based studies emphasized on a combination of vitamin D, E and omega-3 fatty acids to manage fatty liver disease. However majority of the studies were conducted independent of each other and very few studies explored the interactions between the genetic susceptibility and nutrient interactions. Identifying such interactions will aid in optimizing the nutrition tailor made to an individual’s genetic makeup, thereby aiding in delaying the onset of the disease and its progression. The present topic focuses on studies that identified the genetic susceptibility for NAFLD, nutritional recommendations, and their interactions for better management of NAFLD.

  13. Estimating interaction between genetic and environmental risk factors efficiency of sampling designs within a cohort

    Science.gov (United States)

    Large prospective cohorts originally assembled to study environmental risk factors are increasingly exploited to study gene-environment interactions. Given the cost of genetic studies in large numbers of subjects, being able to select a sub-sample for genotyping that contains most of the information...

  14. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2010-01-01

    textabstractBackground: Genetic variation in SIRT1 has been associated with body mass index (BMI) and risk of obesity. SIRT1 may be influenced by diet. Objective: We studied the gene-diet interaction on BMI at the SIRT1 locus. Design: In 4575 elderly men and women in the population-based Rotterdam S

  15. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2010-01-01

    textabstractBackground: Genetic variation in SIRT1 has been associated with body mass index (BMI) and risk of obesity. SIRT1 may be influenced by diet. Objective: We studied the gene-diet interaction on BMI at the SIRT1 locus. Design: In 4575 elderly men and women in the population-based Rotterdam

  16. Characterizing the Pyrenophora teres f. maculata – barley interaction using pathogen genetics

    Science.gov (United States)

    Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata- barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota, USA a...

  17. The interactome of Streptococcus pneumoniae and its bacteriophages show highly specific patterns of interactions among bacteria and their phages.

    Science.gov (United States)

    Mariano, Rachelle; Wuchty, Stefan; Vizoso-Pinto, Maria G; Häuser, Roman; Uetz, Peter

    2016-04-22

    Although an abundance of bacteriophages exists, little is known about interactions between their proteins and those of their bacterial hosts. Here, we experimentally determined the phage-host interactomes of the phages Dp-1 and Cp-1 and their underlying protein interaction network in the host Streptococcus pneumoniae. We compared our results to the interaction patterns of E. coli phages lambda and T7. Dp-1 and Cp-1 target highly connected host proteins, occupy central network positions, and reach many protein clusters through the interactions of their targets. In turn, lambda and T7 targets cluster to conserved and essential proteins in E. coli, while such patterns were largely absent in S. pneumoniae. Furthermore, targets in E. coli were mutually strongly intertwined, while targets of Dp-1 and Cp-1 were strongly connected through essential and orthologous proteins in their immediate network vicinity. In both phage-host systems, the impact of phages on their protein targets appears to extend from their network neighbors, since proteins that interact with phage targets were located in central network positions, have a strong topologically disruptive effect and touch complexes with high functional heterogeneity. Such observations suggest that the phages, biological impact is accomplished through a surprisingly limited topological reach of their targets.

  18. Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Yuan, Christine; Wang, Jian; Yeung, Sai-Ching J; Shete, Sanjay

    2015-06-05

    Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling. Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.

  19. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions.

    Science.gov (United States)

    Frérot, Hélène; Faucon, Michel-Pierre; Willems, Glenda; Godé, Cécile; Courseaux, Adeline; Darracq, Aude; Verbruggen, Nathalie; Saumitou-Laprade, Pierre

    2010-07-01

    This study sought to determine the main genomic regions that control zinc (Zn) hyperaccumulation in Arabidopsis halleri and to examine genotype x environment effects on phenotypic variance. To do so, quantitative trait loci (QTLs) were mapped using an interspecific A. halleri x Arabidopsis lyrata petraea F(2) population. *The F(2) progeny as well as representatives of the parental populations were cultivated on soils at two different Zn concentrations. A linkage map was constructed using 70 markers. *In both low and high pollution treatments, zinc hyperaccumulation showed high broad-sense heritability (81.9 and 74.7%, respectively). Five significant QTLs were detected: two QTLs specific to the low pollution treatment (chromosomes 1 and 4), and three QTLs identified at both treatments (chromosomes 3, 6 and 7). These QTLs explained 50.1 and 36.5% of the phenotypic variance in low and high pollution treatments, respectively. Two QTLs identified at both treatments (chromosomes 3 and 6) showed significant QTL x environment interactions. *The QTL on chromosome 3 largely colocalized with a major QTL previously identified for Zn and cadmium (Cd) tolerance. This suggests that Zn tolerance and hyperaccumulation share, at least partially, a common genetic basis and may have simultaneously evolved on heavy metal-contaminated soils.

  20. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  1. "Show Me Where You Study!"--An Interactive Project between German Language Students in Nottingham and St Andrews

    Science.gov (United States)

    Hartung, Insa; Reisenleutner, Sandra

    2016-01-01

    Interactive projects among students of a Common European Framework of Reference for languages (CEFR) A1+/A2 level seem difficult to set up due to the limited language repertoire of the students. Thus, our aim was to take up the challenge and start a project with the objective of applying their language skills. We chose a collaborative approach to…

  2. Interactions to the fifth thropic level: secondary and tertiary parasitoi wasps show extraordinary efficiency in utilizing host resources

    NARCIS (Netherlands)

    Harvey, J.A.; Wagenaar, R.; Bezemer, T.M.

    2009-01-01

    Parasitoid wasps are highly efficient organisms at utilizing and assimilating limited resources from their hosts. This study explores interactions over three trophic levels, from the third (primary parasitoid) to the fourth (secondary parasitoid) and terminating in the fifth (tertiary parasitoid). H

  3. Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States.

    Directory of Open Access Journals (Sweden)

    Stephanie Diezmann

    Full Text Available Candida albicans is among the most prevalent opportunistic fungal pathogens. Its capacity to cause life-threatening bloodstream infections is associated with the ability to form biofilms, which are intrinsically drug resistant reservoirs for dispersal. A key regulator of biofilm drug resistance and dispersal is the molecular chaperone Hsp90, which stabilizes many signal transducers. We previously identified 226 C. albicans Hsp90 genetic interactors under planktonic conditions, of which 56 are involved in transcriptional regulation. Six of these transcriptional regulators have previously been implicated in biofilm formation, suggesting that Hsp90 genetic interactions identified in planktonic conditions may have functional significance in biofilms. Here, we explored the relationship between Hsp90 and five of these transcription factor genetic interactors: BCR1, MIG1, TEC1, TUP1, and UPC2. We deleted each transcription factor gene in an Hsp90 conditional expression strain, and assessed biofilm formation and morphogenesis. Strikingly, depletion of Hsp90 conferred no additional biofilm defect in the mutants. An interaction was observed in which deletion of BCR1 enhanced filamentation upon reduction of Hsp90 levels. Further, although Hsp90 modulates expression of TEC1, TUP1, and UPC2 in planktonic conditions, it has no impact in biofilms. Lastly, we probed for physical interactions between Hsp90 and Tup1, whose WD40 domain suggests that it might interact with Hsp90 directly. Hsp90 and Tup1 formed a stable complex, independent of temperature or developmental state. Our results illuminate a physical interaction between Hsp90 and a key transcriptional regulator of filamentation and biofilm formation, and suggest that Hsp90 has distinct genetic interactions in planktonic and biofilm cellular states.

  4. Social Organization of Crop Genetic Diversity. The G × E × S Interaction Model

    Directory of Open Access Journals (Sweden)

    Geo Coppens d’Eeckenbrugge

    2011-12-01

    Full Text Available A better knowledge of factors organizing crop genetic diversity in situ increases the efficiency of diversity analyses and conservation strategies, and requires collaboration between social and biological disciplines. Four areas of anthropology may contribute to our understanding of the impact of social factors on crop diversity: ethnobotany, cultural, cognitive and social anthropology. So far, most collaborative studies have been based on ethnobotanical methods, focusing on farmers’ individual motivations and actions, and overlooking the effects of farmer’s social organization per se. After reviewing common shortcomings in studies on sorghum and maize, this article analyzes how social anthropology, through the analysis of intermarriage, residence and seed inheritance practices, can contribute to studies on crop genetic diversity in situ. Crop varieties are thus considered social objects and socially based sampling strategies can be developed. Such an approach is justified because seed exchange is built upon trust and as such seed systems are embedded in a pre-existing social structure and centripetally oriented as a function of farmers’ social identity. The strong analogy between farmers’ cultural differentiation and crop genetic differentiation, both submitted to the same vertical transmission processes, allows proposing a common methodological framework for social anthropology and crop population genetics, where the classical interaction between genetic and environmental factors, G × E, is replaced by a three-way interaction G × E × S, where “S” stands for the social differentiation factors.

  5. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition.

    Science.gov (United States)

    Malagon, Francisco; Tong, Amy H; Shafer, Brenda K; Strathern, Jeffrey N

    2004-01-01

    TFIIS promotes the intrinsic ability of RNA polymerase II to cleave the 3'-end of the newly synthesized RNA. This stimulatory activity of TFIIS, which is dependent upon Rpb9, facilitates the resumption of transcription elongation when the polymerase stalls or arrests. While TFIIS has a pronounced effect on transcription elongation in vitro, the deletion of DST1 has no major effect on cell viability. In this work we used a genetic approach to increase our knowledge of the role of TFIIS in vivo. We showed that: (1) dst1 and rpb9 mutants have a synthetic growth defective phenotype when combined with fyv4, gim5, htz1, yal011w, ybr231c, soh1, vps71, and vps72 mutants that is exacerbated during germination or at high salt concentrations; (2) TFIIS and Rpb9 are essential when the cells are challenged with microtubule-destabilizing drugs; (3) among the SDO (synthetic with Dst one), SOH1 shows the strongest genetic interaction with DST1; (4) the presence of multiple copies of TAF14, SUA7, GAL11, RTS1, and TYS1 alleviate the growth phenotype of dst1 soh1 mutants; and (5) SRB5 and SIN4 genetically interact with DST1. We propose that TFIIS is required under stress conditions and that TFIIS is important for the transition between initiation and elongation in vivo. PMID:15082542

  6. Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner showing broad cross-species transferability and utility in genetic studies

    Directory of Open Access Journals (Sweden)

    Hendre Prasad

    2008-04-01

    Full Text Available Abstract Background Species-specific microsatellite markers are desirable for genetic studies and to harness the potential of MAS-based breeding for genetic improvement. Limited availability of such markers for coffee, one of the most important beverage tree crops, warrants newer efforts to develop additional microsatellite markers that can be effectively deployed in genetic analysis and coffee improvement programs. The present study aimed to develop new coffee-specific SSR markers and validate their utility in analysis of genetic diversity, individualization, linkage mapping, and transferability for use in other related taxa. Results A small-insert partial genomic library of Coffea canephora, was probed for various SSR motifs following conventional approach of Southern hybridisation. Characterization of repeat positive clones revealed a very high abundance of DNRs (1/15 Kb over TNRs (1/406 kb. The relative frequencies of different DNRs were found as AT >> AG > AC, whereas among TNRs, AGC was the most abundant repeat. The SSR positive sequences were used to design 58 primer pairs of which 44 pairs could be validated as single locus markers using a panel of arabica and robusta genotypes. The analysis revealed an average of 3.3 and 3.78 alleles and 0.49 and 0.62 PIC per marker for the tested arabicas and robustas, respectively. It also revealed a high cumulative PI over all the markers using both sib-based (10-6 and 10-12 for arabicas and robustas respectively and unbiased corrected estimates (10-20 and 10-43 for arabicas and robustas respectively. The markers were tested for Hardy-Weinberg equilibrium, linkage dis-equilibrium, and were successfully used to ascertain generic diversity/affinities in the tested germplasm (cultivated as well as species. Nine markers could be mapped on robusta linkage map. Importantly, the markers showed ~92% transferability across related species/genera of coffee. Conclusion The conventional approach of genomic

  7. Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies.

    Science.gov (United States)

    Hendre, Prasad Suresh; Phanindranath, Regur; Annapurna, V; Lalremruata, Albert; Aggarwal, Ramesh K

    2008-04-30

    Species-specific microsatellite markers are desirable for genetic studies and to harness the potential of MAS-based breeding for genetic improvement. Limited availability of such markers for coffee, one of the most important beverage tree crops, warrants newer efforts to develop additional microsatellite markers that can be effectively deployed in genetic analysis and coffee improvement programs. The present study aimed to develop new coffee-specific SSR markers and validate their utility in analysis of genetic diversity, individualization, linkage mapping, and transferability for use in other related taxa. A small-insert partial genomic library of Coffea canephora, was probed for various SSR motifs following conventional approach of Southern hybridisation. Characterization of repeat positive clones revealed a very high abundance of DNRs (1/15 Kb) over TNRs (1/406 kb). The relative frequencies of different DNRs were found as AT > AG > AC, whereas among TNRs, AGC was the most abundant repeat. The SSR positive sequences were used to design 58 primer pairs of which 44 pairs could be validated as single locus markers using a panel of arabica and robusta genotypes. The analysis revealed an average of 3.3 and 3.78 alleles and 0.49 and 0.62 PIC per marker for the tested arabicas and robustas, respectively. It also revealed a high cumulative PI over all the markers using both sib-based (10-6 and 10-12 for arabicas and robustas respectively) and unbiased corrected estimates (10-20 and 10-43 for arabicas and robustas respectively). The markers were tested for Hardy-Weinberg equilibrium, linkage dis-equilibrium, and were successfully used to ascertain generic diversity/affinities in the tested germplasm (cultivated as well as species). Nine markers could be mapped on robusta linkage map. Importantly, the markers showed ~92% transferability across related species/genera of coffee. The conventional approach of genomic library was successfully employed although with low

  8. Analysis of ORFs 2b, 3, 4, and partial ORF5 of sequential isolates of equine arteritis virus shows genetic variation following experimental infection of horses.

    Science.gov (United States)

    Liu, Lihong; Castillo-Olivares, Javier; Davis-Poynter, Nick J; Baule, Claudia; Xia, Hongyan; Belák, Sándor

    2008-06-22

    Samples from horses experimentally infected with the "large plaque variant (LP3A+)" of equine arteritis virus were analysed. These included 182 nasal swabs collected from day 1 to 14 post-infection (p.i.), and 21 virus isolates obtained from white blood cells of animals that showed a prolonged viraemia between days 30 to 72 p.i. In order to determine the genetic stability of the virus and particularly to characterise the genetic variants found during the prolonged viraemia, partial sequences of open reading frame 5 (ORF5) encoding glycoprotein 5 (GP5) were generated. Viruses with amino acid substitutions in GP5 were used for further amplification and sequencing of a fragment encompassing ORFs 2b, 3, and 4. The ORF5 nucleotide sequences of the virus present in 65 out of 66 nasal swabs were identical to that of the inoculated virus, suggesting that the ORF5 gene of LP3A+ was genetically stable during the first 2 weeks p.i. Contrary to this, a number of mutations were found in the ORF5 of virus isolates obtained from day 30 p.i. The mutations mainly clustered in antigenic neutralization site C within variable region 1 of the GP5 ectodomain. Sequence variability was also identified in ORFs 2b, 3 and 4, with ORF 4 having the highest proportion of non-synonymous changes (4/6).

  9. Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota.

    Science.gov (United States)

    Org, Elin; Mehrabian, Margarete; Lusis, Aldons J

    2015-08-01

    Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD.

  10. Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota

    Science.gov (United States)

    Org, Elin; Mehrabian, Margarete; Lusis, Aldons J.

    2015-01-01

    Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. PMID:26071662

  11. Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies

    Science.gov (United States)

    Rietveld, Cornelius A.; Johannesson, Magnus; Magnusson, Patrik K. E.; Uitterlinden, André G.; van Rooij, Frank J. A.; Hofman, Albert

    2017-01-01

    Large-scale genome-wide association results are typically obtained from a fixed-effects meta-analysis of GWAS summary statistics from multiple studies spanning different regions and/or time periods. This approach averages the estimated effects of genetic variants across studies. In case genetic effects are heterogeneous across studies, the statistical power of a GWAS and the predictive accuracy of polygenic scores are attenuated, contributing to the so-called ‘missing heritability’. Here, we describe the online Meta-GWAS Accuracy and Power (MetaGAP) calculator (available at www.devlaming.eu) which quantifies this attenuation based on a novel multi-study framework. By means of simulation studies, we show that under a wide range of genetic architectures, the statistical power and predictive accuracy provided by this calculator are accurate. We compare the predictions from the MetaGAP calculator with actual results obtained in the GWAS literature. Specifically, we use genomic-relatedness-matrix restricted maximum likelihood to estimate the SNP heritability and cross-study genetic correlation of height, BMI, years of education, and self-rated health in three large samples. These estimates are used as input parameters for the MetaGAP calculator. Results from the calculator suggest that cross-study heterogeneity has led to attenuation of statistical power and predictive accuracy in recent large-scale GWAS efforts on these traits (e.g., for years of education, we estimate a relative loss of 51–62% in the number of genome-wide significant loci and a relative loss in polygenic score R2 of 36–38%). Hence, cross-study heterogeneity contributes to the missing heritability. PMID:28095416

  12. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I; Kahn, C Ronald

    2015-09-01

    Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  14. I Show You How I Like You: Emotional Human-Robot Interaction through Facial Expression and Tactile Stimulation

    DEFF Research Database (Denmark)

    Fredslund, Jakob; Cañamero, Lola D.

    2001-01-01

    , emotional states need to be clearly conveyed. We have drawn inspira- tion from theories of human basic emotions with associated universal facial expressions, which we have implemented in a caricaturized face. We have conducted experiments on both children and adults to assess the recogniz- ability......We report work on a LEGO robot capable of displaying several emo- tional expressions in response to physical contact. Our motivation has been to explore believable emotional exchanges to achieve plausible interaction with a simple robot. We have worked toward this goal in two ways. First...... of these expressions....

  15. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    Science.gov (United States)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.

  16. Interactive computer program for learning genetic principles of segregation and independent assortment through meiosis.

    Science.gov (United States)

    Yang, Xiaoli; Ge, Rong; Yang, Yufei; Shen, Hao; Li, Yingjie; Tseng, Charles C

    2009-01-01

    Teaching fundamental principles of genetics such as segregation and independent assortment of genes could be challenging for high school and college biology instructors. Students without thorough knowledge in meiosis often end up of frustration and failure in genetics courses. Although all textbooks and laboratory manuals have excellent graphic demonstrations and photographs of meiotic process, students may not always master the concept due to the lack of hands-on exercise. In response to the need for an effective lab exercise to understand the segregation of allelic genes and the independent assortment of the unlinked genes, we developed an interactive program for students to manually manipulate chromosome models and visualize each major step of meiosis so that these two genetic principles can be thoroughly understood.

  17. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  18. Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications

    Science.gov (United States)

    Teto, Georges; Fonsah, Julius Y.; Tagny, Claude T.; Mbanya, Dora; Nchindap, Emilienne; Kenmogne, Leopoldine; Fokam, Joseph; Njamnshi, Dora M.; Kouanfack, Charles; Njamnshi, Alfred K.; Kanmogne, Georgette D.

    2016-01-01

    HIV-1 Tat plays a critical role in viral transactivation. Subtype-B Tat has potential use as a therapeutic vaccine. However, viral genetic diversity and population genetics would significantly impact the efficacy of such a vaccine. Over 70% of the 37-million HIV-infected individuals are in sub-Saharan Africa (SSA) and harbor non-subtype-B HIV-1. Using specimens from 100 HIV-infected Cameroonians, we analyzed the sequences of HIV-1 Tat exon-1, its functional domains, post-translational modifications (PTMs), and human leukocyte antigens (HLA)-binding epitopes. Molecular phylogeny revealed a high genetic diversity with nine subtypes, CRF22_01A1/CRF01_AE, and negative selection in all subtypes. Amino acid mutations in Tat functional domains included N24K (44%), N29K (58%), and N40K (30%) in CRF02_AG, and N24K in all G subtypes. Motifs and phosphorylation analyses showed conserved amidation, N-myristoylation, casein kinase-2 (CK2), serine and threonine phosphorylation sites. Analysis of HLA allelic frequencies showed that epitopes for HLAs A*0205, B*5301, Cw*0401, Cw*0602, and Cw*0702 were conserved in 58%–100% of samples, with B*5301 epitopes having binding affinity scores > 100 in all subtypes. This is the first report of N-myristoylation, amidation, and CK2 sites in Tat; these PTMs and mutations could affect Tat function. HLA epitopes identified could be useful for designing Tat-based vaccines for highly diverse HIV-1 populations, as in SSA. PMID:27438849

  19. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome

    OpenAIRE

    Ussar, Siegfried; Griffin, Nicholas W.; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I.; Kahn, C. Ronald

    2015-01-01

    Obesity, diabetes and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly-used inbred strains of mice – obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ, from Jackson Laboratory and obesity-prone, but diabetes resistant 129S6/SvEvTac from Taconic - plus three derivative lines generated by breeding these strains in a new, common environm...

  20. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  1. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation.

    Directory of Open Access Journals (Sweden)

    Dimitrios Avramopoulos

    Full Text Available Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ and bipolar disorder (BP. It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP, a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively. We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.

  2. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation.

    Science.gov (United States)

    Avramopoulos, Dimitrios; Pearce, Brad D; McGrath, John; Wolyniec, Paula; Wang, Ruihua; Eckart, Nicole; Hatzimanolis, Alexandros; Goes, Fernando S; Nestadt, Gerald; Mulle, Jennifer; Coneely, Karen; Hopkins, Myfanwy; Ruczinski, Ingo; Yolken, Robert; Pulver, Ann E

    2015-01-01

    Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ) and bipolar disorder (BP). It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP), a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively). We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.

  3. PRL-3 and E-cadherin show mutual interactions and participate in lymph node metastasis formation in gastric cancer.

    Science.gov (United States)

    Pryczynicz, Anna; Guzińska-Ustymowicz, Katarzyna; Niewiarowska, Katarzyna; Cepowicz, Dariusz; Kemona, Andrzej

    2014-07-01

    E-cadherin, a transmembrane adhesion molecule, and phosphatase of regenerating liver 3 (PRL-3) protein, a member of the family of tyrosine phosphatases, seem to be responsible for cancer cell migration. Therefore, the study objective was to determine a correlation between PRL-3 and E-cadherin, to assess their expression in neoplastic tissue and normal mucosa of the stomach, to analyze their effect on cancer advancement, and to evaluate their potential as prognostic markers in gastric cancer. The expressions of PRL-3 and E-cadherin were assessed immunohistochemically in 71 patients with gastric cancer. Positive expression of PRL-3 was observed in 42.2 % of gastric cancer cases, whereas E-cadherin expression was abnormal in 38 % of cases. The study revealed that the positive PRL-3 expression and abnormal E-cadherin expression were associated with mucinous gastric carcinoma and lymph node involvement. The former was also related to the infiltrating type of tumor and abnormal E-cadherin expression. The expression of PRL-3, but not of E-cadherin, was associated with shorter survival of patients. PRL-3 and E-cadherin exhibit interactions in gastric cancer and are involved in the formation of lymph node metastases. The PRL-3 protein can be an independent predictive factor of overall survival in gastric cancer patients.

  4. Differential phenotypic and genetic expression of defence compounds in a plant-herbivore interaction along elevation.

    Science.gov (United States)

    Salgado, Ana L; Suchan, Tomasz; Pellissier, Loïc; Rasmann, Sergio; Ducrest, Anne-Lyse; Alvarez, Nadir

    2016-09-01

    Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low- and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent

  5. Differential phenotypic and genetic expression of defence compounds in a plant–herbivore interaction along elevation

    Science.gov (United States)

    Salgado, Ana L.; Suchan, Tomasz; Pellissier, Loïc; Rasmann, Sergio; Ducrest, Anne-Lyse

    2016-01-01

    Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low- and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent

  6. Interaction Between Functional Genetic Variation of DRD2 and Cannabis Use on Risk of Psychosis

    Science.gov (United States)

    Colizzi, Marco; Iyegbe, Conrad; Powell, John; Ursini, Gianluca; Porcelli, Annamaria; Bonvino, Aurora; Taurisano, Paolo; Romano, Raffaella; Masellis, Rita; Blasi, Giuseppe; Morgan, Craig; Aitchison, Katherine; Mondelli, Valeria; Luzi, Sonija; Kolliakou, Anna; David, Anthony; Murray, Robin M.; Bertolino, Alessandro; Forti, Marta Di

    2015-01-01

    Both cannabis use and the dopamine receptor (DRD2) gene have been associated with schizophrenia, psychosis-like experiences, and cognition. However, there are no published data investigating whether genetically determined variation in DRD2 dopaminergic signaling might play a role in individual susceptibility to cannabis-associated psychosis. We genotyped (1) a case-control study of 272 patients with their first episode of psychosis and 234 controls, and also from (2) a sample of 252 healthy subjects, for functional variation in DRD2, rs1076560. Data on history of cannabis use were collected on all the studied subjects by administering the Cannabis Experience Questionnaire. In the healthy subjects’ sample, we also collected data on schizotypy and cognitive performance using the Schizotypal Personality Questionnaire and the N-back working memory task. In the case-control study, we found a significant interaction between the rs1076560 DRD2 genotype and cannabis use in influencing the likelihood of a psychotic disorder. Among cannabis users, carriers of the DRD2, rs1076560, T allele showed a 3-fold increased probability to suffer a psychotic disorder compared with GG carriers (OR = 3.07; 95% confidence interval [CI]: 1.22–7.63). Among daily users, T carrying subjects showed a 5-fold increase in the odds of psychosis compared to GG carriers (OR = 4.82; 95% CI: 1.39–16.71). Among the healthy subjects, T carrying cannabis users had increased schizotypy compared with T carrying cannabis-naïve subjects, GG cannabis users, and GG cannabis-naïve subjects (all P ≤ .025). T carrying cannabis users had reduced working memory accuracy compared with the other groups (all P ≤ .008). Thus, variation of the DRD2, rs1076560, genotype may modulate the psychosis-inducing effect of cannabis use. PMID:25829376

  7. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence.

    Science.gov (United States)

    Liu, Xinyang; Hildebrandt, Andrea; Recio, Guillermo; Sommer, Werner; Cai, Xinxia; Wilhelm, Oliver

    2017-01-01

    Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT) Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN), when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account or not. These

  8. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence

    Directory of Open Access Journals (Sweden)

    Xinyang Liu

    2017-08-01

    Full Text Available Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN, when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account

  9. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence

    Science.gov (United States)

    Liu, Xinyang; Hildebrandt, Andrea; Recio, Guillermo; Sommer, Werner; Cai, Xinxia; Wilhelm, Oliver

    2017-01-01

    Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT) Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN), when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account or not. These

  10. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    Directory of Open Access Journals (Sweden)

    Jennifer N. Murdoch

    2014-10-01

    Full Text Available Neural tube defects (NTDs are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  11. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice.

    Science.gov (United States)

    Murdoch, Jennifer N; Damrau, Christine; Paudyal, Anju; Bogani, Debora; Wells, Sara; Greene, Nicholas D E; Stanier, Philip; Copp, Andrew J

    2014-10-01

    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2(Lp), Scrib(Crc) and Celsr1(Crsh) mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1(Crsh);Vangl2(Lp);Scrib(Crc) triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas Scrib(Crc) is a null mutant and produces no Scrib protein, Celsr1(Crsh) and Vangl2(Lp) homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  12. Influence of plant genetic diversity on interactions between higher trophic levels.

    Science.gov (United States)

    Moreira, Xoaquín; Mooney, Kailen A

    2013-06-23

    While the ecological consequences of plant diversity have received much attention, the mechanisms by which intraspecific diversity affects associated communities remains understudied. We report on a field experiment documenting the effects of patch diversity in the plant Baccharis salicifolia (genotypic monocultures versus polycultures of four genotypes), ants (presence versus absence) and their interaction on ant-tended aphids, ants and parasitic wasps, and the mechanistic pathways by which diversity influences their multi-trophic interactions. Five months after planting, polycultures (versus monocultures) had increased abundances of aphids (threefold), ants (3.2-fold) and parasitoids (1.7-fold) owing to non-additive effects of genetic diversity. The effect on aphids was direct, as plant genetic diversity did not mediate ant-aphid, parasitoid-aphid or ant-parasitoid interactions. This increase in aphid abundance occurred even though plant growth (and thus aphid resources) was not higher in polycultures. The increase in ants and parasitoids was an indirect effect, due entirely to higher aphid abundance. Ants reduced parasitoid abundance by 60 per cent, but did not affect aphid abundance or plant growth, and these top-down effects were equivalent between monocultures and polycultures. In summary, intraspecific plant diversity did not increase primary productivity, but nevertheless had strong effects across multiple trophic levels, and effects on both herbivore mutualists and enemies could be predicted entirely as an extension of plant-herbivore interactions.

  13. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.

    Science.gov (United States)

    Gorton, Amanda J; Heath, Katy D; Pilet-Nayel, Marie-Laure; Baranger, Alain; Stinchcombe, John R

    2012-11-01

    Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.

  14. The white barley mutant albostrians shows a supersusceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana.

    Science.gov (United States)

    Schäfer, Patrick; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2004-04-01

    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is a cereal pathogen of increasing global concern, with most significance in Asiatic cropping systems. In order to gain insight into the mechanism of host resistance, we studied fungal development on the supersusceptible barley mutant albostrians and its parent cv. Haisa. A microscopic dissection of early fungal growth on Haisa and green albostrians leaves revealed a distinct epidermis-localized biotrophic and a mesophyll-based necrotrophic phase. White, green, and striped white-green albostrians leaves showed extreme differences in disease development. When comparing cellular defense responses, we found restriction of fungal spreading after successful infection of host mesophyll tissue to be the most important mechanism limiting outbreak of the disease. Colonization of susceptible green leaves, but not extreme colonization of supersusceptible white albostrians leaves, was associated with macroscopically visible lesion formation and mesophyll accumulation of hydrogen peroxide (H2O2), implying a symptomless growth of the pathogen in supersusceptible host tissue. In contrast, early epidermal papilla-based resistance was closely linked to H2O2 accumulation in all leaf types. In white leaves, ascorbate peroxidase (APX), glutathione-S-transferase (GST), and the cell death regulator Bax-inhibitor-1 (BI-1) showed a stronger constitutive or pathogen responsive activation, whereas glycolate oxidase (GLOX) and catalase (CAT2) expression was stronger in green leaves. We discuss supersusceptibility and symptomless growth on the basis of the histochemical and the gene expression data.

  15. Genetic Analysis of Embryo, Cytoplasm and Maternal Effects and Their Environment Interactions for Isoflavone Content in Soybean [Glycine max(L.) Merr.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype × environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal,embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore,the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean. The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.

  16. X-linked Charcot-Marie-Tooth (CMT) neuropathies (CMTX1, CMTX2, CMTX3) show different clinical phenotype and molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    Ionasescu, V.V.; Searby, C.C.; Ionasescu, R. [Univ. of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    1994-09-01

    The purpose of this study was to compare the X-linked dominant type CMTX1 (20 families) with X-linked recessive types CMTX2 and CMTX3 (2 families). The clinical phenotype was consistent with CMT peripheral neuropathy in all cases including distal weakness, atrophy and sensory loss, pes cavus and areflexia. Additional clinicial involvement of the central nervous system was present in one family with CMTX2 (mental retardation) and one family with CMTX3 (spastic paraparesis). Tight genetic linkage to Xq13.1 was present in 20 families with CMTX1 (Z=34.07 at {theta}=0) for the marker DXS453. Fifteen of the CMTX1 families showed point mutations of the connexin 32 coding region (5 nonsense mutations, 8 missense mutations, 2 deletions). Five CMTX1 neuropathy families showed no evidence of point mutations of the CX32 coding sequence. These findings suggest that the CMTX1 neuropathy genotype in these families may be the result of promoter mutations, 3{prime}-untranslated region mutations or exon/intron splice site mutations or a mutation with a different type of connexin but which has close structural similarities to CX32. No mutations of the CX32 coding region were found in the CMTX2 or CMTX3 families. Linkage to Xq13.1 was excluded in both families. Genetic linkage to Xp22.2 was present in the CMTX2 family (Z=3.54 at {theta}=0) for the markers DXS987 and DXS999. Suggestion of linkage to Xq26 (Z=1.81 at {theta}=0) for the marker DXS86 was present in the CMTX3 family.

  17. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes.

    Science.gov (United States)

    Lin, Eugene; Pei, Dee; Huang, Yi-Jen; Hsieh, Chang-Hsun; Wu, Lawrence Shih-Hsin

    2009-08-01

    Recent studies indicate that obesity may play a key role in modulating genetic predispositions to type 2 diabetes (T2D). This study examines the main effects of both single-locus and multilocus interactions among genetic variants in Taiwanese obese and nonobese individuals to test the hypothesis that obesity-related genes may contribute to the etiology of T2D independently and/or through such complex interactions. We genotyped 11 single nucleotide polymorphisms for 10 obesity candidate genes including adrenergic beta-2-receptor surface, adrenergic beta-3-receptor surface, angiotensinogen, fat mass and obesity associated gene, guanine nucleotide binding protein beta polypeptide 3 (GNB3), interleukin 6 receptor, proprotein convertase subtilisin/kexin type 1 (PCSK1), uncoupling protein 1, uncoupling protein 2, and uncoupling protein 3. There were 389 patients diagnosed with T2D and 186 age- and sex-matched controls. Single-locus analyses showed significant main effects of the GNB3 and PCSK1 genes on the risk of T2D among the nonobese group (p = 0.002 and 0.047, respectively). Further, interactions involving GNB3 and PCSK1 were suggested among the nonobese population using the generalized multifactor dimensionality reduction method (p = 0.001). In addition, interactions among angiotensinogen, fat mass and obesity associated gene, GNB3, and uncoupling protein 3 genes were found in a significant four-locus generalized multifactor dimensionality reduction model among the obese population (p = 0.001). The results suggest that the single nucleotide polymorphisms from the obesity candidate genes may contribute to the risk of T2D independently and/or in an interactive manner according to the presence or absence of obesity.

  18. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions

    NARCIS (Netherlands)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik|info:eu-repo/dai/nl/304817236; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip|info:eu-repo/dai/nl/311462197; van Hooff, Sander R; Benschop, Joris J.; Lenstra, Tineke L.; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P|info:eu-repo/dai/nl/149308035; Kemmeren, Patrick|info:eu-repo/dai/nl/304817228

    2015-01-01

    Background: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering

  19. GLABROUS INFLORESCENCE STEMS regulates trichome branching by genetically interacting with SIM in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Li-li SUN; Zhong-jing ZHOU; Li-jun AN; Yan AN; Yong-qin ZHAO; Xiao-fang MENG; Clare STEELE-KING

    2013-01-01

    Arabidopsis trichomes are large branched single cells that protrude from the epidermis.The first morphological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication.Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling,although GIS gene does not play a direct role in regulating trichome cell division.Here,we describe a novel role of GIS,controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM).Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM.A loss of function mutation of SIM signficantly reduced the expression of GIS.Futhermore,the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant.The gain or loss of function of GIS had no significant effect on the expression of SIM.These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM.

  20. [Morphogenesis and differentiation of the female genital tract. Genetic determinism and epithelium-stromal interactions].

    Science.gov (United States)

    Amălinei, Cornelia

    2007-01-01

    The epithelium-stromal interaction is important in the process of morphogenesis, differentiation, and hormone response, in female genital tract. This review is organized in four sections: i) female genital tract morphogenesis, based on genetic determinism; ii) hormonal control of endometrial proliferation; iii) TGF-beta key-role in epithelium-stromal communication; iv) endometrial apoptosis. Female genital tract derives from the Müllerian ducts, a number of genes being involved in its regulation, like Lim1, Lhx9, Emx, Pax-2, Hox-A9, Hox-A10, Hox-A11, Hox-A13, Wnt-4, Wnt-7, WT1, SF-1, and GATA-4. TGF-beta, whose expression is modulated by ovarian steroids, regulates cell growth, differentiation, apoptosis, inflammatory and immune responses, extracellular matrix deposition, adhesion molecules, proteases, and protease inhibitor expression. In the endometrium, TGF-beta regulates its own expression, and that of extracellular matrix, adhesion molecules and proteases implicated in trophoblast invasion, angiogenesis, and tumor metastasis during embryo implantation, endometriosis, irregular bleeding, and endometrial cancer. Cellular response elicited by TGF-beta, mediated through a serine/threonine kinase receptor, induces the recruitment of multiple intracellular signals, specifically Smads, whose activation and subsequent translocation into the nucleus results in gene expression. Ubiquitin is involved in the degradation of short lived, regulatory or misfolded proteins, by tagging them to be taken to the proteasome. In the endometrium, ubiquitin may allow cells of stromal origin to grow, survive and evade T-cell mediated disposal, showing a functional duality. A complete understanding of the complex regulatory endometrial epithelium-stromal mechanism, concertating genes, hormones, and cytokines, may provide new therapeutic targets in female reproductive tract pathology.

  1. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies

    DEFF Research Database (Denmark)

    Castaldi, P J; Demeo, D L; Hersh, C P;

    2010-01-01

    with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...

  2. Meta-analysis of interaction between dietary magnesium intake and genetic risk variants on diabetes phenotypes in the charge consortium

    Science.gov (United States)

    Little is known about whether genetic variation modifies the effect of magnesium (Mg) intake on two important diabetes risk factors: fasting glucose (FG) and insulin (FI). We examined interactions between dietary Mg and genetic variants associated with glucose (16 SNPs), insulin (2 SNPs), or Mg home...

  3. Interaction between genetic predisposition to adiposity and dietary protein in relation to subsequent change in body weight and waist circumference.

    Directory of Open Access Journals (Sweden)

    Mikkel Z Ankarfeldt

    Full Text Available Genetic predisposition to adiposity may interact with dietary protein in relation to changes of anthropometry.To investigate the interaction between genetic predisposition to higher body mass index (BMI, waist circumference (WC or waist-hip ratio adjusted for BMI (WHRBMI and dietary protein in relation to subsequent change in body weight (ΔBW or change in WC (ΔWC.Three different Danish cohorts were used. In total 7,054 individuals constituted the study population with information on diet, 50 single-nucleotide polymorphisms (SNPs associated with BMI, WC or WHRBMI, as well as potential confounders. Mean follow-up time was ∼5 years. Four genetic predisposition-scores were based on the SNPs; a complete-score including all selected adiposity- associated SNPs, and three scores including BMI, WC or WHRBMI associated polymorphisms, respectively. The association between protein intake and ΔBW or ΔWC were examined and interactions between SNP-score and protein were investigated. Analyses were based on linear regressions using macronutrient substitution models and meta-analyses.When protein replaced carbohydrate, meta-analyses showed no associations with ΔBW (41.0 gram/y/5 energy% protein, [95% CI: -32.3; 114.3] or ΔWC (<-0.1 mm/y/5 energy % protein, [-1.1; 1.1]. Similarly, there were no interactions for any SNP-scores and protein for either ΔBW (complete SNP-score: 1.8 gram/y/5 energy% protein/risk allele, [-7.0; 10.6] or ΔWC (complete SNP-score: <0.1 mm/y/5 energy% protein/risk allele, [-0.1; 0.1]. Similar results were seen when protein replaced fat.This study indicates that the genetic predisposition to general and abdominal adiposity, assessed by gene-scores, does not seem to modulate the influence of dietary protein on ΔBW or ΔWC.

  4. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    affects phenotypic variation. This showed that the cytoplasmic variation had effects similar to, if not larger than, the largest individual nuclear locus. Inclusion of cytoplasmic variation into the genetic model greatly increased the explained phenotypic variation. Cytoplasmic genetic variation...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation......Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...

  5. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change.

    Science.gov (United States)

    Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2014-03-01

    Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary. © 2013 John Wiley & Sons Ltd.

  6. Physical and genetic interaction between ammonium transporters and the signaling protein Rho1 in the plant pathogen Ustilago maydis.

    Science.gov (United States)

    Paul, Jinny A; Barati, Michelle T; Cooper, Michael; Perlin, Michael H

    2014-10-01

    Dimorphic transitions between yeast-like and filamentous forms occur in many fungi and are often associated with pathogenesis. One of the cues for such a dimorphic switch is the availability of nutrients. Under conditions of nitrogen limitation, fungal cells (such as those of Saccharomyces cerevisiae and Ustilago maydis) switch from budding to pseudohyphal or filamentous growth. Ammonium transporters (AMTs) are responsible for uptake and, in some cases, for sensing the availability of ammonium, a preferred nitrogen source. Homodimer and/or heterodimer formation may be required for regulating the activity of the AMTs. To investigate the potential interactions of Ump1 and Ump2, the AMTs of the maize pathogen U. maydis, we first used the split-ubiquitin system, followed by a modified split-YFP (yellow fluorescent protein) system, to validate the interactions in vivo. This analysis showed the formation of homo- and hetero-oligomers by Ump1 and Ump2. We also demonstrated the interaction of the high-affinity ammonium transporter, Ump2, with the Rho1 GTPase, a central protein in signaling, with roles in controlling polarized growth. This is the first demonstration in eukaryotes of the physical interaction in vivo of an ammonium transporter with the signaling protein Rho1. Moreover, the Ump proteins interact with Rho1 during the growth of cells in low ammonium concentrations, a condition required for the expression of the Umps. Based on these results and the genetic evidence for the interaction of Ump2 with both Rho1 and Rac1, another small GTPase, we propose a model for the role of these interactions in controlling filamentation, a fundamental aspect of development and pathogenesis in U. maydis.

  7. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions.

  8. Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb.

    Science.gov (United States)

    Neufeld, Stanley J; Wang, Fan; Cobb, John

    2014-11-01

    The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb.

  9. A VR Based Interactive Genetic Algorithm Framework For Design of Support Schemes to Deep Excavations

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Riyu [Univ. of Queensland, Brisbane (Australia); Wu, Heng [Guangxi Univ., Nanning (China)

    2002-11-15

    An interactive genetic algorithm (IGA) framework for the design of support schemes to deep excavations is proposed in this paper, in which virtual reality (VR) is used as an aid to the evaluation of design schemes that is performed interactively. The fitness of a scheme individual is evaluated by two steps. Firstly a fitness value is automatically assigned to a scheme individual according to the the estimated construction cost of the individual. And the human evaluation is introduced to modify the fitness value by taking into account other factors, such as the feasibility factor. The design scheme is composed of four basic categories, i. e., cantilever walls, reinforced soil walls, tieback systems and bracing systems, each of which is encoded by a binary string. To assist human evaluation, 3D models of design schemes are created and visualized in a virtual reality environment, providing designers with a reality sense of various schemes.

  10. M51 revisited: a genetic algorithm approach of its interaction history

    CERN Document Server

    Theis, C; Spinneker, Ch.; Theis, Ch.

    2003-01-01

    Detailed models of observed interacting galaxies suffer from the extended parameter space. Here, we present results from our code MINGA which couples an evolutionary optimization strategy (a genetic algorithm) with a fast N-body method. MINGA allows for an automatic search of the optimal region(s) in parameter space within a few hours to a few days of CPU time on a modern PC by investigating of the order of 10^5 models. We demonstrate its applicability by modelling the HI intensity and velocity maps of the interacting system M51 and NGC 5195. We get a good fit for the HI intensity map and we can reproduce the counter-rotation feature of the HI arm. Our result corroborates the results of Salo & Laurikainen (2000) who favour a model with multiple passages through M51's disk.

  11. M51 revisited: A genetic algorithm approach of its interaction history

    Science.gov (United States)

    Theis, Christian; Spinneker, Christian

    2003-04-01

    Detailed models of observed interacting galaxies suffer from the extended parameter space. Here, we present results from our code MINGA which couples an evolutionary optimization strategy (a genetic algorithm) with a fast N-body method. MINGA allows for an automatic search of the optimal region(s) in parameter space within a few hours to a few days of CPU time on a modern PC by investigating of the order of 105 models. We demonstrate its applicability by modelling the HI intensity and velocity maps of the interacting system M51 and NGC 5195. We get a good fit for the HI intensity map and we can reproduce the counter-rotation feature of the HI arm. Our result corroborates the results of Salo and Laurikainen (2000) who favour a model with multiple passages through M51's disk.

  12. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies

    DEFF Research Database (Denmark)

    Castaldi, P J; Demeo, D L; Hersh, C P

    2010-01-01

    Background The identification of gene-by-environment interactions is important for understanding the genetic basis of chronic obstructive pulmonary disease (COPD). Many COPD genetic association analyses assume a linear relationship between pack-years of smoking exposure and forced expiratory volume...... in 1 s (FEV(1)); however, this assumption has not been evaluated empirically in cohorts with a wide spectrum of COPD severity. Methods The relationship between FEV(1) and pack-years of smoking exposure was examined in four large cohorts assembled for the purpose of identifying genetic associations...... with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...

  13. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity.

    Science.gov (United States)

    Escobedo, Noelia; Contreras, Osvaldo; Muñoz, Rosana; Farías, Marjorie; Carrasco, Héctor; Hill, Charlotte; Tran, Uyen; Pryor, Sophie E; Wessely, Oliver; Copp, Andrew J; Larraín, Juan

    2013-07-01

    Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2(Lp) compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2(Lp) mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2(Lp/+) enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2(Lp/+) embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2(Lp/Lp)) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos.

  14. Genetic and Epigenetic Contributions to Human Nutrition and Health: Managing Genome–Diet Interactions

    Science.gov (United States)

    STOVER, PATRICK J.; CAUDILL, MARIE A.

    2017-01-01

    The Institute of Medicine recently convened a workshop to review the state of the various domains of nutritional genomics research and policy and to provide guidance for further development and translation of this knowledge into nutrition practice and policy. Nutritional genomics holds the promise to revolutionize both clinical and public health nutrition practice and facilitate the establishment of (a) genome-informed nutrient and food-based dietary guidelines for disease prevention and healthful aging, (b) individualized medical nutrition therapy for disease management, and (c) better targeted public health nutrition interventions (including micronutrient fortification and supplementation) that maximize benefit and minimize adverse outcomes within genetically diverse human populations. As the field of nutritional genomics matures, which will include filling fundamental gaps in knowledge of nutrient–genome interactions in health and disease and demonstrating the potential benefits of customizing nutrition prescriptions based on genetics, registered dietitians will be faced with the opportunity of making genetically driven dietary recommendations aimed at improving human health. PMID:18755320

  15. Current progress on genetic interactions of rice with rice blast and sheath blight fungi

    Institute of Scientific and Technical Information of China (English)

    Yulin JIA; Guangjie LIU; Stefano COSTANZO; Seonghee LEE; Yuntao DAI

    2009-01-01

    Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Currently, dozens office resistance (R) genes against specific races of the blast fungus have been described. Among them, ten were molecularly characterized and some were widely used for breeding for genetic resistance. The Pi-ta gene was one of the best characterized rice R genes. Following the elucidation of its molecular structure, interaction, distribution, and evolution, user friendly DNA markers were developed from portions of the cloned genes to facilitate the incorporations of the Pi-ta mediated resistance into improved rice varieties using marker assisted selection (MAS). However, rice blast is still a major threat for stable rice production because of race change mutations occurring in rice fields, which often overcome added resistance based on single R genes, and these virulent races of M. oryzae pose a continued challenge for blast control. For sheath blight, progress has been made on the exploration of novel sources of resistance from wild rice relatives and indica rice cultivars. A major quantitative trait locus (QTL), named qSB9-2, was recently verified in several mapping populations with different phenotyping methods, including greenhouse methods. The ability to identify qSB9-2 using greenhouse methods should accelerate the efforts on the qSB9-2 fine mapping and positional cloning.

  16. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering.

    Science.gov (United States)

    Nishihara, Masahiro; Shimoda, Takeshi; Nakatsuka, Takashi; Arimura, Gen-Ichiro

    2013-06-26

    Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods.

  17. Genetic variability for iron and zinc content in common bean lines and interaction with water availability.

    Science.gov (United States)

    Pereira, H S; Del Peloso, M J; Bassinello, P Z; Guimarães, C M; Melo, L C; Faria, L C

    2014-08-28

    The common bean is an important source of iron and zinc in humans. Increases in the contents of these minerals can combat mineral deficiencies, but these contents are influenced by environmental conditions. Thus, the objectives of this study were to investigate the interaction between common bean lines and water availability on iron and zinc contents (CFe and CZn, respectively), identify superior lines with stable CFe and CZn, and test for a genetic relationship between CFe and CZn. Six crop trials were performed using a randomized block design with three replications. The trials were performed during the winter sowing period for three different combinations of year and site in Brazil. For each combination, 53 lines were evaluated across two parallel trials; one trial was irrigated according to the crop requirements, and the other trial operated under a water deficit. Interaction was detected between lines and environments, and between lines and water availability for CFe and CZn. However, some lines exhibited high CFe and CZn in both conditions. Lines G 6492 and G 6490 exhibited high mean values, stability, and adaptability for both minerals. Other lines exhibited high CFe (Xamego) or CZn (Bambuí and Iapar 65). A moderate genetic correlation (0.62) between CFe and CZn was detected. Water availability during the common bean cycle had an effect on CFe and CZn; however, lines with high CFe and CZn in different conditions of water availability and environment were detected.

  18. Interactions Between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium

    NARCIS (Netherlands)

    Campa, Daniele; Kaaks, Rudolf; Le Marchand, Loic; Haiman, Christopher A.; Travis, Ruth C.; Berg, Christine D.; Buring, Julie E.; Chanock, Stephen J.; Diver, W. Ryan; Dostal, Lucie; Fournier, Agnes; Hankinson, Susan E.; Henderson, Brian E.; Hoover, Robert N.; Isaacs, Claudine; Johansson, Mattias; Kolonel, Laurence N.; Kraft, Peter; Lee, I-Min; McCarty, Catherine A.; Overvad, Kim; Panico, Salvatore; Peeters, Petra H. M.; Riboli, Elio; Jose Sanchez, Maria; Schumacher, Fredrick R.; Skeie, Guri; Stram, Daniel O.; Thun, Michael J.; Trichopoulos, Dimitrios; Zhang, Shumin; Ziegler, Regina G.; Hunter, David J.; Lindstroem, Sara; Canzian, Federico

    2011-01-01

    Background Recently, several genome-wide association studies have identified various genetic susceptibility loci for breast cancer. Relatively little is known about the possible interactions between these loci and the established risk factors for breast cancer. Methods To assess interactions between

  19. Genetic perspectives on forager-farmer interaction in the Luangwa valley of Zambia.

    Science.gov (United States)

    de Filippo, Cesare; Heyn, Patricia; Barham, Lawrence; Stoneking, Mark; Pakendorf, Brigitte

    2010-03-01

    The transformation from a foraging way of life to a reliance on domesticated plants and animals often led to the expansion of agropastoralist populations at the expense of hunter-gatherers (HGs). In Africa, one of these expansions involved the Niger-Congo Bantu-speaking populations that started to spread southwards from Cameroon/Nigeria approximately 4,000 years ago, bringing agricultural technologies. Genetic studies have shown different degrees of gene flow (sometimes involving sex-biased migrations) between Bantu agriculturalists and HGs. Although these studies have covered many parts of sub-Saharan Africa, the central part (e.g. Zambia) was not yet studied, and the interactions between immigrating food-producers and local HGs are still unclear. Archeological evidence from the Luangwa Valley of Zambia suggests a long period of coexistence ( approximately 1,700 years) of early food-producers and HGs. To investigate if this apparent coexistence was accompanied by genetic admixture, we analyzed the mtDNA control region, Y chromosomal unique event polymorphisms, and 12 associated Y- short tandem repeats in two food-producing groups (Bisa and Kunda) that live today in the Luangwa Valley, and compared these data with available published data on African HGs. Our results suggest that both the Bisa and Kunda experienced at most low levels of admixture with HGs, and these levels do not differ between the maternal and paternal lineages. Coalescent simulations indicate that the genetic data best fit a demographic scenario with a long divergence (62,500 years) and little or no gene flow between the ancestors of the Bisa/Kunda and existing HGs. This scenario contrasts with the archaeological evidence for a long period of coexistence between the two different communities in the Luangwa Valley, and suggests a process of sociocultural boundary maintenance may have characterized their interaction.

  20. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  1. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans

    Directory of Open Access Journals (Sweden)

    Ben Dhiab Mohamed

    2008-02-01

    Full Text Available Abstract Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1 a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2 the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

  2. Phosphorus and Nitrogen Interactions in Field-Grown Soybean as Related to Genetic Attributes of Root Morphological and Nodular Traits

    Institute of Scientific and Technical Information of China (English)

    Rui-Bin KUANG; Hong LIAO; Xiao-Long YAN; Ying-Shan DONG

    2005-01-01

    Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological and nodular traits. In experiment one, 13 cultivated soybean varieties were grown in a field with relatively low soil P and N availability. P application with 160 kg P/hm2 as triple superphosphate produced a significant simultaneous increase in the content of both P and N in shoot, demonstrating positive P and N interactions. The addition of P also increased root dry weight, root nodule number, nodule mass, nodule size, and nodulation index, but decreased root length and root surface area, indicating that P may affect N nutrition in soybean through a number of root morphological and nodular traits. Interestingly,like P content, N content appeared to be more correlated with root morphological traits (root weight, root length, and root surface area) than with root nodular traits (nodule number, nodule size, nodule mass, and nodulation index) at both P levels, implying that N taken up by the roots may contribute more to the plant N status than biological N2 fixation under the present experimental conditions. In experiment two, 57 soybean lines of a recombinant inbred line (RIL) population derived from a cross between a cultivated variety and a wild genotype were grown on another field site with moderately sufficient P and N levels to further characterize the genetic attributes of root morphological and nodular traits and their relationships with P and N interactions. The results indicated that all morphological and nodular traits measured continually segregated in the RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Genetic analysis revealed that all these root traits had relatively low heritabilities (h2b=74.12, 70.65, 73.76, 56.34, 52.59, and 52

  3. Indirect genetic effects influence antipredator behavior in guppies: estimates of the coefficient of interaction psi and the inheritance of reciprocity.

    Science.gov (United States)

    Bleakley, Bronwyn H; Brodie, Edmund D

    2009-07-01

    How and why cooperation evolves, particularly among nonrelatives, remains a major paradox for evolutionary biologists and behavioral ecologists. Although much attention has focused on fitness consequences associated with cooperating, relatively little is known about the second component of evolutionary change, the inheritance of cooperation or reciprocity. The genetics of behaviors that can only be expressed in the context of interactions are particularly difficult to describe because the relevant genes reside in multiple social partners. Indirect genetic effects (IGEs) describe the influence of genes carried in social partners on the phenotype of a focal individual and thus provide a novel approach to quantifying the genetics underlying interactions such as reciprocal cooperation. We used inbred lines of guppies and a novel application of IGE theory to describe the dual genetic control of predator inspection and social behavior, both classic models of reciprocity. We identified effects of focal strain, social group strain, and interactions between focal and group strains on variation in focal behavior. We measured psi, the coefficient of the interaction, which describes the degree to which an individual's phenotype is influenced by the phenotype of its social partners. The genetic identity of social partners substantially influences inspection behavior, measures of threat assessment, and schooling and does so in positively reinforcing manner. We therefore demonstrate strong IGEs for antipredator behavior that represent the genetic variation necessary for the evolution of reciprocity.

  4. Interaction between Genetic Predisposition to Adiposity and Dietary Protein in Relation to Subsequent Change in Body Weight and Waist Circumference

    DEFF Research Database (Denmark)

    Ankarfeldt, Mikkel Z; Larsen, Sofus C; Angquist, Lars

    2014-01-01

    ) and dietary protein in relation to subsequent change in body weight (ΔBW) or change in WC (ΔWC). DESIGN: Three different Danish cohorts were used. In total 7,054 individuals constituted the study population with information on diet, 50 single-nucleotide polymorphisms (SNPs) associated with BMI, WC or WHRBMI......, as well as potential confounders. Mean follow-up time was ∼5 years. Four genetic predisposition-scores were based on the SNPs; a complete-score including all selected adiposity- associated SNPs, and three scores including BMI, WC or WHRBMI associated polymorphisms, respectively. The association between...... protein intake and ΔBW or ΔWC were examined and interactions between SNP-score and protein were investigated. Analyses were based on linear regressions using macronutrient substitution models and meta-analyses. RESULTS: When protein replaced carbohydrate, meta-analyses showed no associations with ΔBW (41...

  5. An Endangered Arboreal Specialist, the Western Ringtail Possum (Pseudocheirus occidentalis, Shows a Greater Genetic Divergence across a Narrow Artificial Waterway than a Major Road.

    Directory of Open Access Journals (Sweden)

    Kaori Yokochi

    Full Text Available The fragmentation of habitats by roads and other artificial linear structures can have a profound effect on the movement of arboreal species due to their strong fidelity to canopies. Here, we used 12 microsatellite DNA loci to investigate the fine-scale spatial genetic structure and the effects of a major road and a narrow artificial waterway on a population of the endangered western ringtail possum (Pseudocheirus occidentalis in Busselton, Western Australia. Using spatial autocorrelation analysis, we found positive genetic structure in continuous habitat over distances up to 600 m. These patterns are consistent with the sedentary nature of P. occidentalis and highlight their vulnerability to the effects of habitat fragmentation. Pairwise relatedness values and Bayesian cluster analysis also revealed significant genetic divergences across an artificial waterway, suggesting that it was a barrier to gene flow. By contrast, no genetic divergences were detected across the major road. While studies often focus on roads when assessing the effects of artificial linear structures on wildlife, this study provides an example of an often overlooked artificial linear structure other than a road that has a significant impact on wildlife dispersal leading to genetic subdivision.

  6. Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available Lesion mimics (LMs that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3-1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD and abnormal accumulation of reactive oxygen species (ROS. The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt infection, which was consistent with the increased expression of seven pathogenesis-related (PR and two wheat chemically induced (WCI genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine

  7. The Interaction between Pesticide Use and Genetic Variants Involved in Lipid Metabolism on Prostate Cancer Risk

    Directory of Open Access Journals (Sweden)

    Gabriella Andreotti

    2012-01-01

    Full Text Available Background. Lipid metabolism processes have been implicated in prostate carcinogenesis. Since several pesticides are lipophilic or are metabolized via lipid-related mechanisms, they may interact with variants of genes in the lipid metabolism pathway. Methods. In a nested case-control study of 776 cases and 1444 controls from the Agricultural Health Study (AHS, a prospective cohort study of pesticide applicators, we examined the interactions between 39 pesticides (none, low, and high exposure and 220 single nucleotide polymorphisms (SNPs in 59 genes. The false discovery rate (FDR was used to account for multiple comparisons. Results. We found 17 interactions that displayed a significant monotonic increase in prostate cancer risk with pesticide exposure in one genotype and no significant association in the other genotype. The most noteworthy association was for ALOXE3 rs3027208 and terbufos, such that men carrying the T allele who were low users had an OR of 1.86 (95% CI = 1.16–2.99 and high users an OR of 2.00 (95% CI = 1.28–3.15 compared to those with no use of terbufos, while men carrying the CC genotype did not exhibit a significant association. Conclusion. Genetic variation in lipid metabolism genes may modify pesticide associations with prostate cancer; however our results require replication.

  8. Gene interactions and genetics for yield and its attributes in grass pea (Lathyrus sativus L.)

    Indian Academy of Sciences (India)

    A. K. PARIHAR; G. P. DIXIT; DEEPAK SINGH

    2016-12-01

    Grain yield is a complex character representing a multiplicative end product of many yield attributes. However, understanding the genetics and inheritance that underlies yield and its component characters pose a prerequisite to attain the actual yieldpotential of any crop species. The knowledge pertaining to gene actions and interactions is likely to direct and strengthen the crop breeding programmes. With this objective, the present investigation was undertaken by using six generations derived from three different crosses in grass pea. The study underscores the significance of additive–dominance model, gene action involved in inheritance of quantitative characters and heritability. Of note, nonallelic interactions influencing the traits were detected by both scaling test and joint scaling test, indicating the inadequacy of the additive–dominance model alone in explaining the manifestation of complex traits such as yield. Besides, additive (d) and dominance (h) gene effects, different types of interallelic interactions (i, j, l) contributed towards the inheritance of traits in the given crosses. Nevertheless, predominanceof additive variance suggests a difference between homozygotes at a locus with positive and negative alleles being distributed between the parents. Duplicate epistasis was prevalent in most of the cases for traits like plant height, seeds/pod,100-seed weight and pod width. In view of the diverse gene actions, i.e. additive, dominant and epistasis, playing important roles in the manifestation of complex traits like yield, we advocate implementation of population improvement techniques inparticular reciprocal recurrent selection to improve productivity gains in grass pea.

  9. Genetic programming-based approach to elucidate biochemical interaction networks from data.

    Science.gov (United States)

    Kandpal, Manoj; Kalyan, Chakravarthy Mynampati; Samavedham, Lakshminarayanan

    2013-02-01

    Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods.

  10. Probing Protein-Protein Interactions with Genetically Encoded Photoactivatable Cross-Linkers.

    Science.gov (United States)

    Cooley, Richard B; Sondermann, Holger

    2017-01-01

    Fundamental to all living organisms is the ability of proteins to interact with other biological molecules at the right time and location, with the proper affinity, and to do so reversibly. One well-established technique to study protein interactions is chemical cross-linking, a process in which proteins in close spatial proximity are covalently tethered together. An emerging technology that overcomes many limitations of traditional cross-linking methods is one in which photoactivatable cross-linking noncanonical amino acids are genetically encoded into a protein of interest using the cell's native translational machinery. These proteins can then be used to trap interacting biomolecules upon UV illumination. Here, we describe a method for the site-specific incorporation of photoactivatable cross-linking amino acids into fluorescently tagged proteins of interest in E. coli. Photo-cross-linking and analysis by SDS-PAGE using in-gel fluorescence detection, which provides rapid, highly sensitive, and specific detection of cross-linked adducts even in impure systems, are also described. An example expression and cross-linking experiment involving transmembrane signaling of a bacterial second messenger receptor system that controls biofilm formation is shown. All reagents needed to carry out these experiments are commercially available, and do not require special or unique technology to perform, making this method tractable to a broad community studying protein structure and function.

  11. Show Time

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> Story: Show Time!The whole class presents the story"Under the Sea".Everyone is so excited and happy.Both Leo and Kathy show their parentsthe characters of the play."Who’s he?"asks Kathy’s mom."He’s the prince."Kathy replies."Who’s she?"asks Leo’s dad."She’s the queen."Leo replieswith a smile.

  12. Snobbish Show

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The State Administration of Radio,Film and Television (SARFT),China's media watchdog,issued a new set of mles on June 9 that strictly regulate TV match-making shows,which have been sweeping the country's primetime programming. "Improper social and love values such as money worship should not be presented in these shows.Humiliation,verbal attacks and sex-implied vulgar content are not allowed" the new roles said.

  13. 31-Year-Old Female Shows Marked Improvement in Depression, Agitation, and Panic Attacks after Genetic Testing Was Used to Inform Treatment

    Directory of Open Access Journals (Sweden)

    Scott Lawrence

    2014-01-01

    Full Text Available This case describes a 31-year-old female Caucasian patient with complaints of ongoing depression, agitation, and severe panic attacks. The patient was untreated until a recent unsuccessful trial of citalopram followed by venlafaxine which produced a partial response. Genetic testing was performed to assist in treatment decisions and revealed the patient to be heterozygous for polymorphisms in 5HT2C, ANK3, and MTHFR and homozygous for a polymorphism in SLC6A4 and the low activity (Met/Met COMT allele. In response to genetic results and clinical presentation, venlafaxine was maintained and lamotrigine was added leading to remission of agitation and depression.

  14. The human TPR protein TTC4 is a putative Hsp90 co-chaperone which interacts with CDC6 and shows alterations in transformed cells.

    Directory of Open Access Journals (Sweden)

    Gilles Crevel

    Full Text Available BACKGROUND: The human TTC4 protein is a TPR (tetratricopeptide repeat motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma. METHODOLOGY/PRINCIPLE FINDINGS: Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein. CONCLUSIONS/SIGNIFICANCE: Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells.

  15. Developmental cartography: coordination via hormonal and genetic interactions during gynoecium formation.

    Science.gov (United States)

    Deb, Joyita; Bland, Heather M; Østergaard, Lars

    2017-09-26

    Development in multicellular organisms requires the establishment of tissue identity through polarity cues. The Arabidopsis gynoecium presents an excellent model to study this coordination, as it comprises a complex tissue structure which is established through multiple polarity systems. The gynoecium is derived from the fusion of two carpels and forms in the centre of the flower. Many regulators of carpel development also have roles in leaf development, emphasizing the evolutionary origin of carpels as modified leaves. The gynoecium can therefore be considered as having evolved from a simple setup followed by adjustment in tissue polarity to facilitate efficient reproduction. Here, we discuss concepts to understand how hormonal and genetic systems interact to pattern the gynoecium. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Genetic association of LMAN2L gene in schizophrenia and bipolar disorder and its interaction with ANK3 gene polymorphism.

    Science.gov (United States)

    Lim, Chor Hong; Zain, Shamsul Mohd; Reynolds, Gavin P; Zain, Mohd Aizat; Roffeei, Siti Norsyuhada; Zainal, Nor Zuraida; Kanagasundram, Sharmilla; Mohamed, Zahurin

    2014-10-03

    Recent studies have shown that bipolar disorder (BPD) and schizophrenia (SZ) share some common genetic risk factors. This study aimed to examine the association between candidate single nucleotide polymorphisms (SNPs) identified from genome-wide association studies (GWAS) and risk of BPD and SZ. A total of 715 patients (244 BPD and 471 SZ) and 593 controls were genotyped using the Sequenom MassARRAY platform. We showed a positive association between LMAN2L (rs6746896) and risk of both BPD and SZ in a pooled population (P-value=0.001 and 0.009, respectively). Following stratification by ethnicity, variants of the ANK3 gene (rs1938516 and rs10994336) were found to be associated with BPD in Malays (P-value=0.001 and 0.006, respectively). Furthermore, an association exists between another variant of LMAN2L (rs2271893) and SZ in the Malay and Indian ethnic groups (P-value=0.003 and 0.002, respectively). Gene-gene interaction analysis revealed a significant interaction between the ANK3 and LMAN2L genes (empirical P=0.0107). Significant differences were shown between patients and controls for two haplotype frequencies of LMAN2L: GA (P=0.015 and P=0.010, for BPD and SZ, respectively) and GG (P=0.013 for BPD). Our study showed a significant association between LMAN2L and risk of both BPD and SZ.

  17. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans)

    DEFF Research Database (Denmark)

    Tomas Mas, Carmen; Sanchez Sanchez, Juan Jose; Barbaro, Anna;

    2008-01-01

    and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean...

  18. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    DEFF Research Database (Denmark)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,72...

  19. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits

    NARCIS (Netherlands)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán; Berndt, Sonja I; Jackson, Anne U; Monda, Keri L; Kilpeläinen, Tuomas O; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F; Croteau-Chonka, Damien C; Day, Felix R; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T; Dimas, Antigone S; Karpe, Fredrik; Min, Josine L; Nicholson, George; Clegg, Deborah J; Person, Thomas; Krohn, Jon P; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L; Harris, Tamara B; Smith, Albert Vernon; Shuldiner, Alan R; McArdle, Wendy L; Caulfield, Mark J; Munroe, Patricia B; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A; Kraja, Aldi T; Province, Michael A; Cupples, L Adrienne; Heard-Costa, Nancy L; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A; Johansson, Asa; Pramstaller, Peter P; Kathiresan, Sekar; Speliotes, Elizabeth K; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I; Campbell, Harry; Wilson, James F; Chanock, Stephen J; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G; Hofman, Albert; Zillikens, M Carola; den Heijer, Martin; Kiemeney, Lambertus A; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D; Hayward, Caroline; Rudan, Igor; Hall, Alistair S; Samani, Nilesh J; Attwood, Antony Paul; Sambrook, Jennifer G; Hung, Joseph; Palmer, Lyle J; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M; Snieder, Harold; Van der Klauw, Melanie M; Van Vliet-Ostaptchouk, Jana V; Gejman, Pablo V; Shi, Jianxin; Jacobs, Kevin B; Wang, Zhaoming; Bakker, Stephan J L; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Yang, Jian; Chasman, Daniel I; Ridker, Paul M; Rose, Lynda M; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R; Schwarz, Peter E H; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A; Rauramaa, Rainer; Bolton, Jennifer L; Fowkes, Gerry; Fraser, Ross M; Price, Jackie F; Fischer, Krista; Krjutå Kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K; Chines, Peter S; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Edkins, Sarah; Franks, Paul W; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N A; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E; Strawbridge, Rona J; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O; Kleber, Marcus E; März, Winfried; Winkelmann, Bernhard R; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W G; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K E; Pedersen, Nancy L; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L; O'Connell, Jeffrey R; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Abecasis, Gonçalo R; McCarthy, Mark I; Hirschhorn, Joel N; Qi, Lu; Loos, Ruth J F; Lindgren, Cecilia M; North, Kari E; Heid, Iris M

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 i

  20. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.

    Directory of Open Access Journals (Sweden)

    Joshua C Randall

    2013-06-01

    Full Text Available Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals and took forward 348 SNPs into follow-up (additional 137,052 individuals in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%, including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9 and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG, all of which were genome-wide significant in women (P<5×10(-8, but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

  1. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits

    NARCIS (Netherlands)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán; Berndt, Sonja I; Jackson, Anne U; Monda, Keri L; Kilpeläinen, Tuomas O; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F; Croteau-Chonka, Damien C; Day, Felix R; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T; Dimas, Antigone S; Karpe, Fredrik; Min, Josine L; Nicholson, George; Clegg, Deborah J; Person, Thomas; Krohn, Jon P; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L; Harris, Tamara B; Smith, Albert Vernon; Shuldiner, Alan R; McArdle, Wendy L; Caulfield, Mark J; Munroe, Patricia B; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A; Kraja, Aldi T; Province, Michael A; Cupples, L Adrienne; Heard-Costa, Nancy L; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A; Johansson, Asa; Pramstaller, Peter P; Kathiresan, Sekar; Speliotes, Elizabeth K; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I; Campbell, Harry; Wilson, James F; Chanock, Stephen J; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G; Hofman, Albert; Zillikens, M Carola; den Heijer, Martin; Kiemeney, Lambertus A; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D; Hayward, Caroline; Rudan, Igor; Hall, Alistair S; Samani, Nilesh J; Attwood, Antony Paul; Sambrook, Jennifer G; Hung, Joseph; Palmer, Lyle J; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M; Snieder, Harold; Van der Klauw, Melanie M; Van Vliet-Ostaptchouk, Jana V; Gejman, Pablo V; Shi, Jianxin; Jacobs, Kevin B; Wang, Zhaoming; Bakker, Stephan J L; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Yang, Jian; Chasman, Daniel I; Ridker, Paul M; Rose, Lynda M; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R; Schwarz, Peter E H; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A; Rauramaa, Rainer; Bolton, Jennifer L; Fowkes, Gerry; Fraser, Ross M; Price, Jackie F; Fischer, Krista; Krjutå Kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K; Chines, Peter S; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Edkins, Sarah; Franks, Paul W; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N A; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E; Strawbridge, Rona J; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O; Kleber, Marcus E; März, Winfried; Winkelmann, Bernhard R; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W G; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K E; Pedersen, Nancy L; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L; O'Connell, Jeffrey R; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Abecasis, Gonçalo R; McCarthy, Mark I; Hirschhorn, Joel N; Qi, Lu; Loos, Ruth J F; Lindgren, Cecilia M; North, Kari E; Heid, Iris M

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  2. Candidate Genetic Pathways for Attention-Deficit/Hyperactivity Disorder (ADHD) Show Association to Hyperactive/Impulsive Symptoms in Children With ADHD

    NARCIS (Netherlands)

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P.; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A.; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Buitelaar, Jan K.; Arias-Vasquez, Alejandro

    2013-01-01

    Objective: Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic stu

  3. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD

    NARCIS (Netherlands)

    Bralten, J.; Franke, B.; Waldman, I.; Rommelse, N.N.; Hartman, C.; Asherson, P.; Banaschewski, T.; Ebstein, R.P.; Gill, M.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Oosterlaan, J.; Sonuga-Barke, E.; Steinhausen, H.C.; Faraone, S.V.; Buitelaar, J.K.; Arias Vasquez, A.

    2013-01-01

    OBJECTIVE: Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic stu

  4. SMARCB1/INI1-deficient sinonasal carcinoma shows methylation of RASSF1 gene: A clinicopathological, immunohistochemical and molecular genetic study of a recently described entity.

    Science.gov (United States)

    Laco, Jan; Chmelařová, Marcela; Vošmiková, Hana; Sieglová, Kateřina; Bubancová, Ivana; Dundr, Pavel; Němejcová, Kristýna; Michálek, Jaroslav; Čelakovský, Petr; Mottl, Radovan; Sirák, Igor; Vošmik, Milan; Ryška, Aleš

    2017-02-01

    The aim of the study was detailed clinicopathological investigation of SMARCB1/INI1-deficient sinonasal carcinomas, including molecular genetic analysis of mutational status and DNA methylation of selected protooncogenes and tumor suppressor genes by means of next generation sequencing (NGS) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). A total of 4/56 (7%) cases of SMARCB1/INI1-deficient carcinomas were detected among 56 sinonasal carcinomas diagnosed over a 19year period using immunohistochemical screening. The series comprised 3 males and 1 female, aged 27-76 years (median 64 years). All tumors arose in the nasal cavity. Three neoplasms were diagnosed in advanced stage pT4. During the follow-up period (range 14-111 months (median 72 months)), three tumors recurred locally, but none of the patients developed regional or distant metastases. Ultimately, two patients died due to the tumor. Microscopically, all tumors consisted of infiltrating nests of polygonal basaloid cells with a variable component of rhabdoid cells with eosinophilic cytoplasm. Immunohistochemically, there was almost diffuse expression of cytokeratins (CK), p16, p40 and p63 in all cases, while expression of CK5/6, CK7 and vimentin was only focal or absent. The detection of NUT gave negative results. In three cases, the absence of SMARCB1/INI1 expression was due to deletion of SMARCB1/INI1 gene. Methylation of SMARCB1/INI1 gene was not found. One tumor harbored HPV18 E6/E7 mRNA. All 12 genes (BRAF, BRCA1, BRCA2, KIT, EGFR, KRAS, NRAS, PDGFRA, PIK3CA, PTEN, RET, and ROS1) tested for mutations using NGS were wild-type. Regarding DNA methylation, all four SMARCB1/INI1-deficient tumors showed methylation of RASSF1 gene by means of MS-MLPA. There was a statistically significant difference in RASSF1 gene methylation between SMARCB1/INI1-deficient and SMARCB1/INI1-positive tumors (p=0.0095). All other examined genes (ATM, BRCA1, BRCA2, CADM1, CASP8, CD44, CDKN1B

  5. Intramolecular interactions in aminoacyl nucleotides: Implications regarding the origin of genetic coding and protein synthesis

    Science.gov (United States)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Watkins, C. L.; Hall, L. M.

    1986-01-01

    Cellular organisms store information as sequences of nucleotides in double stranded DNA. This information is useless unless it can be converted into the active molecular species, protein. This is done in contemporary creatures first by transcription of one strand to give a complementary strand of mRNA. The sequence of nucleotides is then translated into a specific sequence of amino acids in a protein. Translation is made possible by a genetic coding system in which a sequence of three nucleotides codes for a specific amino acid. The origin and evolution of any chemical system can be understood through elucidation of the properties of the chemical entities which make up the system. There is an underlying logic to the coding system revealed by a correlation of the hydrophobicities of amino acids and their anticodonic nucleotides (i.e., the complement of the codon). Its importance lies in the fact that every amino acid going into protein synthesis must first be activated. This is universally accomplished with ATP. Past studies have concentrated on the chemistry of the adenylates, but more recently we have found, through the use of NMR, that we can observe intramolecular interactions even at low concentrations, between amino acid side chains and nucleotide base rings in these adenylates. The use of this type of compound thus affords a novel way of elucidating the manner in which amino acids and nucleotides interact with each other. In aqueous solution, when a hydrophobic amino acid is attached to the most hydrophobic nucleotide, AMP, a hydrophobic interaction takes place between the amino acid side chain and the adenine ring. The studies to be reported concern these hydrophobic interactions.

  6. Use of Genetic Effects and Genotype by Environmental Interactions for the Classification of Mexican Races of Maize

    Science.gov (United States)

    Cervantes, Tarcicio S.; Goodman, Major M.; Casas, Eduardo D.; Rawlings, John O.

    1978-01-01

    To examine the questions of whether the additive and dominance effects present for morphological characters in racial crosses are of sufficient consistency and magnitude to allow such genetic effects to be used for racial classification, we used a diallel experiment among the 25 well-defined Mexican races of maize, which include the ancestral stocks of most commercial and genetic maize types. With such an experiment, genetic effects and genotype by environmental interactions for one or more characters can be used to measure genetic and adaptational or environmental similarity. We used average parental effects (general combining abilities), specific effects, and genotype by environmental effects of 21 characters from the diallel (grown at three locations) to group the Mexican races of maize. The groupings based upon average genetic effects and upon genotype by environmental interactions are more satisfactory than groupings based upon specific effects. The standard errors for genetic distances based upon specific (largely dominance) effects seem to be too high for practical use. Principal components analyses of the same data suggest a similar conclusion.—The groupings based upon average genetic effects are in general agreement with previous studies, with the exception of Maíz Dulce, which is grouped with the Cónicos, rather than being isolated from the other Mexican races of maize. PMID:17248866

  7. Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies.

    Science.gov (United States)

    Wang, Tiange; Huang, Tao; Kang, Jae H; Zheng, Yan; Jensen, Majken K; Wiggs, Janey L; Pasquale, Louis R; Fuchs, Charles S; Campos, Hannia; Rimm, Eric B; Willett, Walter C; Hu, Frank B; Qi, Lu

    2017-05-09

    Whether habitual coffee consumption interacts with the genetic predisposition to obesity in relation to body mass index (BMI) and obesity is unknown. We analyzed the interactions between genetic predisposition and habitual coffee consumption in relation to BMI and obesity risk in 5116 men from the Health Professionals Follow-up Study (HPFS), in 9841 women from the Nurses' Health Study (NHS), and in 5648 women from the Women's Health Initiative (WHI). The genetic risk score was calculated based on 77 BMI-associated loci. Coffee consumption was examined prospectively in relation to BMI. The genetic association with BMI was attenuated among participants with higher consumption of coffee than among those with lower consumption in the HPFS (P interaction  = 0.023) and NHS (P interaction  = 0.039); similar results were replicated in the WHI (P interaction  = 0.044). In the combined data of all cohorts, differences in BMI per increment of 10-risk allele were 1.38 (standard error (SE), 0.28), 1.02 (SE, 0.10), and 0.95 (SE, 0.12) kg/m(2) for coffee consumption of  3 cup(s)/day, respectively (P interaction  coffee consumption among participants at lower genetic risk and slightly lower BMI with higher coffee consumption among those at higher genetic risk. Each increment of 10-risk allele was associated with 78% (95% confidence interval (CI), 59-99%), 48% (95% CI, 36-62%), and 43% (95% CI, 28-59%) increased risk for obesity across these subgroups of coffee consumption (P interaction  = 0.008). From another perspective, differences in BMI per increment of 1 cup/day coffee consumption were 0.02 (SE, 0.09), -0.02 (SE, 0.04), and -0.14 (SE, 0.04) kg/m(2) across tertiles of the genetic risk score. Higher coffee consumption might attenuate the genetic associations with BMI and obesity risk, and individuals with greater genetic predisposition to obesity appeared to have lower BMI associated with higher coffee consumption.

  8. EROBATIC SHOW

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Visitors look at plane models of the Commercial Aircraft Corp. of China, developer of the count,s first homegrown large passenger jet C919, during the Singapore Airshow on February 16. The biennial event is the largest airshow in Asia and one of the most important aviation and defense shows worldwide. A number of Chinese companies took part in the event during which Okay Airways, the first privately owned aidine in China, signed a deal to acquire 12 Boeing 737 jets.

  9. Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge

    Directory of Open Access Journals (Sweden)

    Adela Hruby

    2013-12-01

    Full Text Available Nutritional genomics has exploded in the last decade, yielding insights—both nutrigenomic and nutrigenetic—into the physiology of dietary interactions and our genes. Among these are insights into the regulation of magnesium transport and homeostasis and mechanisms underlying magnesium’s role in insulin and glucose handling. Recent observational evidence has attempted to examine some promising research avenues on interaction between genetics and dietary magnesium in relation to diabetes and diabetes risk factors. This brief review summarizes the recent evidence on dietary magnesium’s role in diabetes and related traits in the presence of underlying genetic risk, and discusses future potential research directions.

  10. Lessons from the use of genetically modified Drosophila melanogaster in ecological studies: Hsf mutant lines show highly trait-specific performance in field and laboratory thermal assays

    DEFF Research Database (Denmark)

    Sørensen, Jesper Givskov; Loeschcke, Volker; Kristensen, Torsten Nygård

    2009-01-01

    1.  Laboratory studies on genetically modified strains may reveal important information on mechanisms involved in coping with thermal stress. However, to address the evolutionary significance of specific genes or physiological mechanisms, ecologically relevant field tests should also be performed....... 2.  We have tested the importance of inducible heat shock proteins (Hsps) under different thermal conditions using two heat shock factor (Hsf) mutant lines (either able (Hsf+) or unable (Hsf0) to mount a heat stress response) and an outbred laboratory adapted wild-type line of Drosophila...... that the ecological relevance of specific molecular mechanisms should be tested under a range of conditions both in the laboratory and in the field. Genetically modified lines cannot be assumed to represent the performance of natural populations, especially for field and/or ecologically relevant studies.6...

  11. Modelling molecule-surface interactions--an automated quantum-classical approach using a genetic algorithm.

    Science.gov (United States)

    Herbers, Claudia R; Johnston, Karen; van der Vegt, Nico F A

    2011-06-14

    We present an automated and efficient method to develop force fields for molecule-surface interactions. A genetic algorithm (GA) is used to parameterise a classical force field so that the classical adsorption energy landscape of a molecule on a surface matches the corresponding landscape from density functional theory (DFT) calculations. The procedure performs a sophisticated search in the parameter phase space and converges very quickly. The method is capable of fitting a significant number of structures and corresponding adsorption energies. Water on a ZnO(0001) surface was chosen as a benchmark system but the method is implemented in a flexible way and can be applied to any system of interest. In the present case, pairwise Lennard Jones (LJ) and Coulomb potentials are used to describe the molecule-surface interactions. In the course of the fitting procedure, the LJ parameters are refined in order to reproduce the adsorption energy landscape. The classical model is capable of describing a wide range of energies, which is essential for a realistic description of a fluid-solid interface.

  12. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.)

    Indian Academy of Sciences (India)

    B. Divya; A. Biswas; S. Robin; R. Rabindran; A. John Joel

    2014-08-01

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. The epistatic interaction model was found adequate to explain the gene action in most of the traits. The interaction was complementary for number of productive tillers, economic yield, lesion number, infected leaf area and potential disease incidence but duplicate epistasis was observed for the remaining traits. Among the genotypes tested under epiphytotic conditions, gene pyramided lines were highly resistant to blast compared to individuals with single genes indicating that the nonallelic genes have a complementary effect when present together. The information on genetics of various contributing traits of resistance will further aid plant breeders in choosing appropriate breeding strategy for blast resistance and yield enhancement in rice.

  13. Genetic and Genotype × Environment Interaction Effects for Appearance Quality of Rice

    Institute of Scientific and Technical Information of China (English)

    Sharifi Peyman; Dehghani Hamid; Mumeni Ali; Moghaddam Mohammad

    2009-01-01

    This study was conducted to generate genetic information in rice varieties based on a complete diallel crosses over two years. The results indicated that genotype effect was significant for all traits. Genotype × environment interaction effects were significant only for cooked grain length (CGL) and cooked grain shape (CGSH). General combining ability (GCA) and specific combining ability (SCA) effects were significant for entire traits, which indicated the important roles of both additive and non-additive gene actions. GCA x environment interaction effects were significant for CGL, CGSH and grain elongation index (GEI). In the controlling of the inheritance of milled grain shape (GSH), milled grain width (MGW), GEI, milled grain length (MGL), CGSH and cooked grain width (CGW), the additive gene effects were more important than non-additive one.The average degree of dominance was within the range of partial dominance for all of the traits. The narrow-sense heritability was ranged from 0.65 (GSH) to 0.36 (CGL). GCA effects were significant for all of the parents in milled grain length and it was significant for some of the parents in other traits. The crosses of Deilmani × IRFAON-215 exhibited significant SCA for GEI. The positive mean of heterosis was observed for CGW. The highest maximum values of heterosis were revealed in GEI, flowed by GSH, MGW and CGW. GCA and MPV were significantly and positively correlated together for all traits.

  14. Biochemical and Genetic Evidence for a SAP-PKC-θ Interaction Contributing to IL-4 Regulation

    Science.gov (United States)

    Cannons, Jennifer L.; Wu, Julie Z.; Gomez-Rodriguez, Julio; Zhang, Jinyi; Dong, Baoxia; Liu, Yin; Shaw, Stephen; Siminovitch, Katherine A.; Schwartzberg, Pamela L.

    2012-01-01

    SAP, an adaptor molecule that recruits Fyn to the SLAM-family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4+ T cells from SAP-deficient mice have defective TCR-induced IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4+ T cells exhibit decreased PKC-θ recruitment upon TCR stimulation. We demonstrate here using GST-pulldowns and co-immunoprecipitation studies that SAP constitutively associates with PKC-θ in T cells. SAP-PKC-θ interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP’s interactions with PKC-θ occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-θ recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-θ, like SAP, was required for SLAM-mediated increases in IL-4 production and conversely, membrane-targeted PKC-θ mutants rescued IL-4 expression in SAP−/− CD4+ T cells, providing genetic evidence that PKC-θ is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production. PMID:20668219

  15. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    OpenAIRE

    Randall, J. C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpelainen, T.O.; Esko, T; Magi, R.; Li, S.; Workalemahu, T; Feitosa,M. F.; Croteau-Chonka, D.C.; Day, F. R.; Fall, T.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previousl...

  16. Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima–media thickness in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fen [Department of Population Health, New York University School of Medicine, New York, NY (United States); Department of Environmental Medicine, New York University School of Medicine, New York, NY (United States); Jasmine, Farzana; Kibriya, Muhammad G. [Department of Health Studies, The University of Chicago, Chicago, IL (United States); The University of Chicago Comprehensive Cancer Center, Chicago, IL (United States); Liu, Mengling; Cheng, Xin [Department of Population Health, New York University School of Medicine, New York, NY (United States); Department of Environmental Medicine, New York University School of Medicine, New York, NY (United States); Parvez, Faruque [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY (United States); Paul-Brutus, Rachelle [Department of Health Studies, The University of Chicago, Chicago, IL (United States); The University of Chicago Comprehensive Cancer Center, Chicago, IL (United States); Islam, Tariqul; Paul, Rina Rani; Sarwar, Golam; Ahmed, Alauddin [U-Chicago Research Bangladesh, Ltd., Dhaka (Bangladesh); Jiang, Jieying [Department of Population Health, New York University School of Medicine, New York, NY (United States); Department of Environmental Medicine, New York University School of Medicine, New York, NY (United States); Islam, Tariqul [U-Chicago Research Bangladesh, Ltd., Dhaka (Bangladesh); Slavkovich, Vesna [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY (United States); Rundek, Tatjana [Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL (United States); Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL (United States); Demmer, Ryan T.; Desvarieux, Moise [Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY (United States); and others

    2014-05-01

    Epidemiologic studies that evaluated genetic susceptibility for the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima–media thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenic in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = − 5.1 μm, 95% CI = − 31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = − 3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to the proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings. - Highlights: • Nine SNPs had a nominally significant interaction with well-water arsenic in cIMT. • Three SNPs in AS3MT showed nominally significant interactions with urinary arsenic. • cIMT was much higher among subjects with higher arsenic exposure and AS3MT

  17. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  18. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

    Science.gov (United States)

    Hoppins, Suzanne; Collins, Sean R; Cassidy-Stone, Ann; Hummel, Eric; Devay, Rachel M; Lackner, Laura L; Westermann, Benedikt; Schuldiner, Maya; Weissman, Jonathan S; Nunnari, Jodi

    2011-10-17

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.

  19. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum

    Directory of Open Access Journals (Sweden)

    Hui eWang

    2015-11-01

    Full Text Available The co-cultivation of the alphaproteobacterium Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum is characterized by a mutualistic phase followed by a pathogenic phase in which the bacterium kills aging algae. Thus it resembles the Jekyll-and-Hyde interaction that has been proposed for other algae and Roseobacter. Here we identified key genetic components of this interaction. Analysis of the transcriptome of D. shibae in co-culture with P. minimum revealed growth phase dependent changes in the expression of quorum sensing (QS, the CtrA phosphorelay, and flagella biosynthesis genes. Deletion of the histidine kinase gene cckA which is part of the CtrA phosphorelay or the flagella genes fliC or flgK resulted in complete lack of growth stimulation of P. minimum in co-culture with the D. shibae mutants. By contrast, pathogenicity was entirely dependent on one of the extrachromosomal elements of D. shibae, the 191 kb plasmid. The data show that flagella and the CtrA phosphorelay are required for establishing mutualism and prove a cell density dependent killing effect of D. shibae on P. minimum which is mediated by an unknown factor encoded on the 191 kb plasmid.

  20. Identification of Genetic Modules Mediating the Jekyll and Hyde Interaction of Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum.

    Science.gov (United States)

    Wang, Hui; Tomasch, Jürgen; Michael, Victoria; Bhuju, Sabin; Jarek, Michael; Petersen, Jörn; Wagner-Döbler, Irene

    2015-01-01

    The co-cultivation of the alphaproteobacterium Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum is characterized by a mutualistic phase followed by a pathogenic phase in which the bacterium kills aging algae. Thus it resembles the "Jekyll-and-Hyde" interaction that has been proposed for other algae and Roseobacter. Here, we identified key genetic components of this interaction. Analysis of the transcriptome of D. shibae in co-culture with P. minimum revealed growth phase dependent changes in the expression of quorum sensing, the CtrA phosphorelay, and flagella biosynthesis genes. Deletion of the histidine kinase gene cckA which is part of the CtrA phosphorelay or the flagella genes fliC or flgK resulted in complete lack of growth stimulation of P. minimum in co-culture with the D. shibae mutants. By contrast, pathogenicity was entirely dependent on one of the extrachromosomal elements of D. shibae, the 191 kb plasmid. The data show that flagella and the CtrA phosphorelay are required for establishing mutualism and prove a cell density dependent killing effect of D. shibae on P. minimum which is mediated by an unknown factor encoded on the 191 kb plasmid.

  1. Association of interactions between dietary salt consumption and hypertension-susceptibility genetic polymorphisms with blood pressure among Japanese male workers.

    Science.gov (United States)

    Imaizumi, Takahiro; Ando, Masahiko; Nakatochi, Masahiro; Maruyama, Shoichi; Yasuda, Yoshinari; Honda, Hiroyuki; Kuwatsuka, Yachiyo; Kato, Sawako; Kondo, Takaaki; Iwata, Masamitsu; Nakashima, Toru; Yasui, Hiroshi; Takamatsu, Hideki; Okajima, Hiroshi; Yoshida, Yasuko; Matsuo, Seiichi

    2017-06-01

    Blood pressure is influenced by hereditary factors and dietary habits. The objective of this study was to examine the effect of dietary salt consumption and single-nucleotide polymorphisms (SNPs) on blood pressure (BP). This was a cross-sectional analysis of 2728 male participants who participated in a health examination in 2009. Average dietary salt consumption was estimated using electronically collected meal purchase data from cafeteria. A multivariate analysis, adjusting for clinically relevant factors, was conducted to examine whether the effect on BP of salt consumption, SNPs, and interaction between salt consumption and each SNP. This study examined the SNPs AGT rs699 (Met235Thr), ADD1 rs4961 (Gly460Trp), NPPA rs5063 (Val32Met), GPX1 rs1050450 (Pro198Leu), and AGTR1 rs5186 (A1166C) in relation to hypertension and salt sensitivity. BP was not significantly associated with SNPs or salt consumption. The interaction between salt consumption and SNPs with systolic BP showed a significant association in NPPA rs5063 (Val32Met) (P = 0.023) and a marginal trend toward significance in rs4961 and rs1050450 (P = 0.060 and 0.067, respectively). The effect of salt consumption on BP differed by genotype. Dietary salt consumption and genetic variation can predict a high risk of hypertension.

  2. Genetics, mental illness, and complex disease: development and distribution of an interactive CD-ROM for genetic counselors. Final report for period 15 August 2000 - 31 December 2002

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, Joseph D.

    2003-03-31

    "Genetics and Major Psychiatric Disorders: A Program for Genetic Counselors" provides an introduction to psychiatric genetics, with a focus on the genetics of common complex disease, for genetics professionals. The program is available as a CD-ROM and an online educational resource. The on-line version requires a direct internet connection. Each educational module begins with an interactive case study that raises significant issues addressed in each module. In addition, case studies provided throughout the educational materials support teaching of major concepts. Incorporated throughout the content are expert video clips, video clips from individuals affected by psychiatric illness, and optional "learn more" materials that offer greater depth about a particular topic. The structure of the CD-ROM permits self-navigation, but we have suggested a sequence that allows materials to build upon each other. At any point in the materials, users may pause and look up terms in the glossary or review the DSM-IV criteria for selected psychiatric disorders. A detailed site map is available for those who choose to self navigate through the content.

  3. Genotype-Based Bayesian Analysis of Gene-Environment Interactions with Multiple Genetic Markers and Misclassification in Environmental Factors

    OpenAIRE

    Iryna Lobach; Ruzong Fan

    2012-01-01

    A key component to understanding etiology of complex diseases, such as cancer, diabetes, alcohol dependence, is to investigate gene-environment interactions. This work is motivated by the following two concerns in the analysis of gene-environment interactions. First, multiple genetic markers in moderate linkage disequilibrium may be involved in susceptibility to a complex disease. Second, environmental factors may be subject to misclassification. We develop a genotype based Bayesian pseudolik...

  4. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value.

    Directory of Open Access Journals (Sweden)

    Stéphane Cauchi

    Full Text Available BACKGROUND: Recently, several Genome Wide Association (GWA studies in populations of European descent have identified and validated novel single nucleotide polymorphisms (SNPs, highly associated with type 2 diabetes (T2D. Our aims were to validate these markers in other European and non-European populations, then to assess their combined effect in a large French study comparing T2D and normal glucose tolerant (NGT individuals. METHODOLOGY/PRINCIPAL FINDINGS: In the same French population analyzed in our previous GWA study (3,295 T2D and 3,595 NGT, strong associations with T2D were found for CDKAL1 (OR(rs7756992 = 1.30[1.19-1.42], P = 2.3x10(-9, CDKN2A/2B (OR(rs10811661 = 0.74[0.66-0.82], P = 3.5x10(-8 and more modestly for IGFBP2 (OR(rs1470579 = 1.17[1.07-1.27], P = 0.0003 SNPs. These results were replicated in both Israeli Ashkenazi (577 T2D and 552 NGT and Austrian (504 T2D and 753 NGT populations (except for CDKAL1 but not in the Moroccan population (521 T2D and 423 NGT. In the overall group of French subjects (4,232 T2D and 4,595 NGT, IGFBP2 and CXCR4 synergistically interacted with (LOC38776, SLC30A8, HHEX and (NGN3, CDKN2A/2B, respectively, encoding for proteins presumably regulating pancreatic endocrine cell development and function. The T2D risk increased strongly when risk alleles, including the previously discovered T2D-associated TCF7L2 rs7903146 SNP, were combined (8.68-fold for the 14% of French individuals carrying 18 to 30 risk alleles with an allelic OR of 1.24. With an area under the ROC curve of 0.86, only 15 novel loci were necessary to discriminate French individuals susceptible to develop T2D. CONCLUSIONS/SIGNIFICANCE: In addition to TCF7L2, SLC30A8 and HHEX, initially identified by the French GWA scan, CDKAL1, IGFBP2 and CDKN2A/2B strongly associate with T2D in French individuals, and mostly in populations of Central European descent but not in Moroccan subjects. Genes expressed in the pancreas interact together and their

  5. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions.

    Science.gov (United States)

    Demers, Catherine H; Drabant Conley, Emily; Bogdan, Ryan; Hariri, Ahmad R

    2016-09-01

    Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms.

    Science.gov (United States)

    Wright, Thomas; Ward, Jamie

    2013-08-01

    Sensory substitution is a promising technique for mitigating the loss of a sensory modality. Sensory substitution devices (SSDs) work by converting information from the impaired sense (e.g., vision) into another, intact sense (e.g., audition). However, there are a potentially infinite number of ways of converting images into sounds, and it is important that the conversion takes into account the limits of human perception and other user-related factors (e.g., whether the sounds are pleasant to listen to). The device explored here is termed "polyglot" because it generates a very large set of solutions. Specifically, we adapt a procedure that has been in widespread use in the design of technology but has rarely been used as a tool to explore perception-namely, interactive genetic algorithms. In this procedure, a very large range of potential sensory substitution devices can be explored by creating a set of "genes" with different allelic variants (e.g., different ways of translating luminance into loudness). The most successful devices are then "bred" together, and we statistically explore the characteristics of the selected-for traits after multiple generations. The aim of the present study is to produce design guidelines for a better SSD. In three experiments, we vary the way that the fitness of the device is computed: by asking the user to rate the auditory aesthetics of different devices (Experiment 1), and by measuring the ability of participants to match sounds to images (Experiment 2) and the ability to perceptually discriminate between two sounds derived from similar images (Experiment 3). In each case, the traits selected for by the genetic algorithm represent the ideal SSD for that task. Taken together, these traits can guide the design of a better SSD.

  7. Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling.

    Directory of Open Access Journals (Sweden)

    Laura E Yee

    2015-11-01

    Full Text Available Mutations in genes encoding cilia proteins cause human ciliopathies, diverse disorders affecting many tissues. Individual genes can be linked to ciliopathies with dramatically different phenotypes, suggesting that genetic modifiers may participate in their pathogenesis. The ciliary transition zone contains two protein complexes affected in the ciliopathies Meckel syndrome (MKS and nephronophthisis (NPHP. The BBSome is a third protein complex, affected in the ciliopathy Bardet-Biedl syndrome (BBS. We tested whether mutations in MKS, NPHP and BBS complex genes modify the phenotypic consequences of one another in both C. elegans and mice. To this end, we identified TCTN-1, the C. elegans ortholog of vertebrate MKS complex components called Tectonics, as an evolutionarily conserved transition zone protein. Neither disruption of TCTN-1 alone or together with MKS complex components abrogated ciliary structure in C. elegans. In contrast, disruption of TCTN-1 together with either of two NPHP complex components, NPHP-1 or NPHP-4, compromised ciliary structure. Similarly, disruption of an NPHP complex component and the BBS complex component BBS-5 individually did not compromise ciliary structure, but together did. As in nematodes, disrupting two components of the mouse MKS complex did not cause additive phenotypes compared to single mutants. However, disrupting both Tctn1 and either Nphp1 or Nphp4 exacerbated defects in ciliogenesis and cilia-associated developmental signaling, as did disrupting both Tctn1 and the BBSome component Bbs1. Thus, we demonstrate that ciliary complexes act in parallel to support ciliary function and suggest that human ciliopathy phenotypes are altered by genetic interactions between different ciliary biochemical complexes.

  8. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group.

    Science.gov (United States)

    Kreuze, J F; Karyeija, R F; Gibson, R W; Valkonen, J P

    2000-01-01

    Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) infects sweet potatoes (Ipomoea batatas) worldwide, but no sequence data on isolates from Africa are available. Coat protein (CP) gene sequences from eight East African isolates from Madagascar and different districts of Uganda (the second biggest sweet potato producer in the world) and two West African isolates from Nigeria and Niger were determined. They were compared by phylogenetic analysis with the previously reported sequences of ten SPFMV isolates from other continents. The East African SPFMV isolates formed a distinct cluster, whereas the other isolates were not clustered according to geographic origin. These data indicate that East African isolates of SPFMV form a genetically unique group.

  9. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success.

    Science.gov (United States)

    Schrieber, Karin; Lachmuth, Susanne

    2017-05-01

    Invasive species that successfully establish, persist, and expand within an area of introduction, in spite of demographic bottlenecks that reduce their genetic diversity, represent a paradox. Bottlenecks should inhibit population growth and invasive expansion, as a decrease in genetic diversity should result in inbreeding depression, increased fixation of deleterious mutations by genetic drift (drift load), and reduced evolutionary potential to respond to novel selection pressures. Here, we focus on the problems of inbreeding depression and drift load in introduced populations as key components of the Genetic Paradox of Invasions (GPI). We briefly review published explanations for the GPI, which are based on various mechanisms (invasion history events, reproductive traits, genetic characteristics) that mediate the avoidance of inbreeding depression and drift load. We find that there is still a substantial lack of explanation and empirical evidence for explaining the GPI for strongly bottlenecked invasions, or for during critical invasion phases (e.g. initial colonization, leading edges of range expansion) where strong genetic depletion, inbreeding depression and drift load occurs. Accordingly, we suggest that discussion of the GPI should be revived to find additional mechanisms applicable to explaining invasion success for such species and invasion phases. Based on a synthesis of the literature on the population genetics of invaders and the ecology of invaded habitats, we propose that inbreeding × environment (I × E) interactions are one such mechanism that may have strong explanatory power to address the GPI. Specifically, we suggest that a temporary or permanent release from stress in invaded habitats may alleviate the negative effects of genetic depletion on fitness via I × E interactions, and present published empirical evidence supporting this hypothesis. We additionally discuss that I × E interactions can result in rapid evolutionary changes, and may even

  10. Genetic interactions and functional analyses of the fission yeast gsk3 and amk2 single and double mutants defective in TORC1-dependent processes

    Science.gov (United States)

    Rallis, Charalampos; Townsend, StJohn; Bähler, Jürg

    2017-01-01

    The Target of Rapamycin (TOR) signalling network plays important roles in aging and disease. The AMP-activated protein kinase (AMPK) and the Gsk3 kinase inhibit TOR during stress. We performed genetic interaction screens using synthetic genetic arrays (SGA) with gsk3 and amk2 as query mutants, the latter encoding the regulatory subunit of AMPK. We identified 69 negative and 82 positive common genetic interactors, with functions related to cellular growth and stress. The 120 gsk3-specific negative interactors included genes functioning in translation and ribosomes. The 215 amk2-specific negative interactors included genes functioning in chromatin silencing and DNA damage repair. Both amk2- and gsk3-specific interactors were enriched in phenotype categories related to abnormal cell size and shape. We also performed SGA screen with the amk2 gsk3 double mutant as a query. Mutants sensitive to 5-fluorouracil, an anticancer drug are under-represented within the 305 positive interactors specific for the amk2 gsk3 query. The triple-mutant SGA screen showed higher number of negative interactions than the double mutant SGA screens and uncovered additional genetic network information. These results reveal common and specialized roles of AMPK and Gsk3 in mediating TOR-dependent processes, indicating that AMPK and Gsk3 act in parallel to inhibit TOR function in fission yeast. PMID:28281664

  11. Effects of climate change on plant-insect interactions and prospects for resistance breeding using genetic resources

    NARCIS (Netherlands)

    Pritchard, J.; Broekgaarden, C.; Vosman, B.

    2014-01-01

    This chapter describes the components (elevated CO2, temperature and drought) of climate change and their direct and indirect effects on plant-insect interactions. The genetic resources (such as wild relatives and traditional, locally adapted landraces) important for increasing pest/disease resistan

  12. Interaction between genetic and environmental risk factors for Alzheimer's disease: A reanalysis of case-control studies

    NARCIS (Netherlands)

    C.M. van Duijn (Cock); D.G. Clayton (David); V. Chandra; L. Fratiglioni (Laura); A.B. Graves; A. Heyman; A.F. Jorm; E. Kokmen (Emre); K. Kondo; J.A. Mortimer; W.A. Rocca (Walter); S.L. Shalat; H. Soininen (H.); A. Hofman (Albert)

    1994-01-01

    textabstractTo study the interaction among genetic and environmental risk factors, a reanalysis of case-control studies of Alzheimer's disease (AD) was conducted based on the original data of all studies carried out to January 1, 1990. Seven studies were included in the present analysis, comprising

  13. Interaction between genetic and environmental risk factors for Alzheimer's disease: a re-analysis of case-control studies

    NARCIS (Netherlands)

    C.M. van Duijn (Cock); D.G. Clayton (David); V. Chandra; L. Fratiglioni (Laura); A.B. Graves; A. Heyman; A.F. Jorm; E. Kokmen (Emre); K. Kondo; J.A. Mortimer; W.A. Rocca; S.L. Shalat; H. Soininen; A. Hofman (Albert)

    1994-01-01

    textabstractTo study the interaction among genetic and environmental risk factors, a reanalysis of case-control studies of Alzheimer's disease (AD) was conducted based on the original data of all studies carried out to January 1, 1990. Seven studies were included in the present analysis, comprising

  14. Effects of climate change on plant-insect interactions and prospects for resistance breeding using genetic resources

    NARCIS (Netherlands)

    Pritchard, J.; Broekgaarden, C.; Vosman, B.

    2014-01-01

    This chapter describes the components (elevated CO2, temperature and drought) of climate change and their direct and indirect effects on plant-insect interactions. The genetic resources (such as wild relatives and traditional, locally adapted landraces) important for increasing pest/disease

  15. Glucokinase regulatory proten genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome

    Science.gov (United States)

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3...

  16. Cladodes, leaf-like organs in Asparagus, show the significance of co-option of pre-existing genetic regulatory circuit for morphological diversity of plants.

    Science.gov (United States)

    Nakayama, Hokuto; Yamaguchi, Takahiro; Tsukaya, Hirokazu

    2012-08-01

    Plants in the genus Asparagus have determinate leaf-like organs called cladodes in the position of leaf axils. Because of their leaf-like morphology, axillary position, and morphological variation, it has been unclear how this unusual organ has evolved and diversified. In the previous study, we have shown that cladodes in the genus Asparagus are modified axillary shoots and proposed a model that cladodes have arisen by co-option and deployment of genetic regulatory circuit (GRC) involved in leaf development. Moreover, we proposed that the alteration of the expression pattern of genes involved in establishment of adaxial/abaxial polarity has led to the morphological diversification from leaf-like to rod-like form of cladodes in the genus. Thus, these results indicated that the co-option and alteration of pre-existing GRC play an important role in acquisition and subsequent morphological diversification. Here, we present data of further expression analysis of A. asparagoides. The results suggested that only a part of the GRC involved in leaf development appears to have been co-opted into cladode development. Based on our study and several examples of the morphological diversification, we briefly discuss the importance of co-option of pre-existing GRC and its genetic modularity in the morphological diversity of plants during evolution.

  17. Genetic variants associated with circulating MMP1 levels near matrix metalloproteinase genes on chromosome 11q21-22 in Taiwanese: interaction with obesity

    Science.gov (United States)

    2013-01-01

    Background MMP1 is implicated in the pathogenesis of atherothrombotic cardiovascular disease. We aimed to elucidate genetic determinants of inflammatory marker levels, including circulating MMP1, in Taiwanese, and their association with obesity. Methods Five genetic polymorphisms around matrix metalloproteinase genes on chromosome 11q21-22 region were genotyped in 519 subjects. Results After adjusting for clinical covariates, two polymorphisms were significantly associated with MMP1 levels, rs1799750 and rs495366, using an additive inheritance model (P = 1.5x10-4 and P = 2.57x10-5, respectively). Using dominant model, minor alleles of rs1799750 and rs495366 were associated with higher MMP1 levels (P = 1.3x10-4 and P = 1.95x10-5, respectively). In haplotype analysis, two haplotypes inferred from five SNPs (A2GATA and A1GATG) were associated with MMP1 levels (P = 5x10-4 and P = 8.47x10-5, respectively). Subgroup and interaction analysis revealed an association of rs1799750 and rs495366 with MMP1 levels only in non-obese subjects (P = 6.66x10-6 and P = 4.38x10-5, respectively, and interaction P = 0.008 for rs1799750). Haplotype interaction analysis also showed significant interaction for haplotype A1GATG (interaction P = 0.003). Conclusions Genotypes/haplotypes around MMP1 locus are associated with MMP1 levels in Taiwanese. Further, since genotypes/haplotypes near MMP1 locus interact with obesity to set MMP1 levels, genetic determinants for MMP1 level may be different between obese and non-obese individuals. PMID:23497408

  18. Motivational salience and genetic variability of dopamine D2 receptor expression interact in the modulation of interference processing

    Directory of Open Access Journals (Sweden)

    Anni eRichter

    2013-06-01

    Full Text Available Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497 has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. 46 young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI. Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both. Reaction times (RTs were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent versus congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward and punishment trials. In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction.

  19. Genetic susceptibility on CagA-interacting molecules and gene-environment interaction with phytoestrogens: a putative risk factor for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jae Jeong Yang

    Full Text Available OBJECTIVES: To evaluate whether genes that encode CagA-interacting molecules (SRC, PTPN11, CRK, CRKL, CSK, c-MET and GRB2 are associated with gastric cancer risk and whether an interaction between these genes and phytoestrogens modify gastric cancer risk. METHODS: In the discovery phase, 137 candidate SNPs in seven genes were analyzed in 76 incident gastric cancer cases and 322 matched controls from the Korean Multi-Center Cancer Cohort. Five significant SNPs in three genes (SRC, c-MET and CRK were re-evaluated in 386 cases and 348 controls in the extension phase. Odds ratios (ORs for gastric cancer risk were estimated adjusted for age, smoking, H. pylori seropositivity and CagA strain positivity. Summarized ORs in the total study population (462 cases and 670 controls were presented using pooled- and meta-analysis. Plasma concentrations of phytoestrogens (genistein, daidzein, equol and enterolactone were measured using the time-resolved fluoroimmunoassay. RESULTS: SRC rs6122566, rs6124914, c-MET rs41739, and CRK rs7208768 showed significant genetic effects for gastric cancer in both the pooled and meta-analysis without heterogeneity (pooled OR = 3.96 [95% CI 2.05-7.65], 1.24 [95% CI = 1.01-1.53], 1.19 [95% CI = 1.01-1.41], and 1.37 [95% CI = 1.15-1.62], respectively; meta OR = 4.59 [95% CI 2.74-7.70], 1.36 [95% CI = 1.09-1.70], 1.20 [95% CI = 1.00-1.44], and 1.32 [95% CI = 1.10-1.57], respectively. Risk allele of CRK rs7208768 had a significantly increased risk for gastric cancer at low phytoestrogen levels (p interaction<0.05. CONCLUSIONS: Our findings suggest that SRC, c-MET and CRK play a key role in gastric carcinogenesis by modulating CagA signal transductions and interaction between CRK gene and phytoestrogens modify gastric cancer risk.

  20. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease

    Directory of Open Access Journals (Sweden)

    Pappas Georgios J

    2008-01-01

    Full Text Available Abstract Background Citrus sudden death (CSD, a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV. CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. Results A total of 286 RNA-dependent-RNA polymerase (RdRp and 284 heat shock protein 70 homolog (HSP70h gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. Conclusion We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence of a single CTV variant within these populations that triggers the disease.

  1. Genetic complementation analysis showed distinct contributions of the N-terminal tail of H2A.Z to epigenetic regulations.

    Science.gov (United States)

    Kusakabe, Masayuki; Oku, Hiroyuki; Matsuda, Ryo; Hori, Tetsuya; Muto, Akihiko; Igarashi, Kazuhiko; Fukagawa, Tatsuo; Harata, Masahiko

    2016-02-01

    H2A.Z is one of the most evolutionally conserved histone variants. In vertebrates, this histone variant has two isoforms, H2A.Z.1 and H2A.Z.2, each of which is coded by an individual gene. H2A.Z is involved in multiple epigenetic regulations, and in humans, it also has relevance to carcinogenesis. In this study, we used the H2A.Z DKO cells, in which both H2A.Z isoform genes could be inducibly knocked out, for the functional analysis of H2A.Z by a genetic complementation assay, as the first example of its kind in vertebrates. Ectopically expressed wild-type H2A.Z and two N-terminal mutants, a nonacetylable H2A.Z mutant and a chimera in which the N-terminal tail of H2A.Z.1 was replaced with that of the canonical H2A, complemented the mitotic defects of H2A.Z DKO cells similarly, suggesting that both acetylation and distinctive sequence of the N-terminal tail of H2A.Z are not required for mitotic progression. In contrast, each one of these three forms of H2A.Z complemented the transcriptional defects of H2A.Z DKO cells differently. These results suggest that the N-terminal tail of vertebrate H2A.Z makes distinctively different contributions to these epigenetic events. Our results also imply that this genetic complementation system is a novel and useful tool for the functional analysis of H2A.Z.

  2. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    Science.gov (United States)

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  3. Mucosal Interactions Between Genetics, Diet And Microbiome In Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    Abigail Basson

    2016-08-01

    Full Text Available Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD, particularly Crohn’s disease (CD. However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e. pantropic mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of been elucidated. Progress seems however hampered by various difficult-to-study factors interacting at the mucosal level. Here we highlight some of such factors that merit consideration, namely; 1 the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; 2 the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; 3 the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; 4 the impact of endogenous and exogenous intestinal micronutrients and metabolites, and 5 the need to consider food associated toxins and chemicals which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins. These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.

  4. Evolving the Ideal Visual-to-Auditory Sensory Substitution Device Using Interactive Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Thomas D Wright

    2011-10-01

    Full Text Available Visual-to-auditory sensory substitution devices have various benefits over tactile counterparts (eg, less hardware limitations, but they also suffer from several drawbacks (eg, learning time, potentially unpleasant sounds. An ‘ideal’ device would be intuitive to learn, pleasant to listen to, and capture relevant visual information in sufficient detail. In this presentation, we outline the general problem of how to convert an image into sound, and we give an overview of some possible approaches to the problem. We then go on to describe our own recent explorations using Interactive Genetic Algorithms (IGAs. IGAs enable a highly dimensional problem space to be explored rapidly. Initially, a set of orthogonally varying settings need to be identified (eg, different levels of maximum and minimum pitch, different ways of mapping lightness-loudness, musical vs non-musical intervals, and a set of random permutations of these settings are chosen. Participants then evaluate the ‘fitness’ of these different algorithms (eg, by selecting what the correct image is for a given sound. The fittest algorithms are then ‘bred’ together over successive generations. Using this approach, we compare the performance of evolved devices against one of the main existing devices (the vOICe in three tasks: audio-visual matching, aesthetic preference, and auditory discrimination.

  5. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease

    Science.gov (United States)

    Basson, Abigail; Trotter, Ashley; Rodriguez-Palacios, Alex; Cominelli, Fabio

    2016-01-01

    Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes. PMID:27531998

  6. Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum

    Indian Academy of Sciences (India)

    Sushil Kumar; Raghvendra Kumar Mishra; Arvind Kumar; Swati Chaudhary; Vishakha Sharma; Renu Kumari

    2012-12-01

    In Pisum sativum, the completely penetrant leaflet development (lld) mutation is known to sporadically abort pinnae suborgans in the unipinnate compound leaf. Here, the frequency and morphology of abortion was studied in each of the leaf suborgans in 36 genotypes and in presence of auxin and gibberellin, and their antagonists. Various lld genotypes were constructed by multifariously recombining lld with a coch homeotic stipule mutation and with af, ins, mare, mfp, tl and uni-tac leaf morphology mutations. It was observed that the suborgans at all levels of pinna subdivisions underwent lld-led abortion events at different stages of development. As in leafblades, lld aborted the pinnae in leaf-like compound coch stipules. The lld mutation interacted with mfp synergistically and with other leaf mutations additively. The rod-shaped and trumpet-shaped aborted pea leaf suborgans mimicked the phenotype of aborted leaves in HD-ZIP-III-deficient Arabidopsis thaliana mutants. Suborganwise aborted morphologies in lld gnotypes were in agreement with basipetal differentiation of leaflets and acropetal differentiation in tendrils. Altogether, the observations suggested that LLD was the master regulator of pinna development. On the basis of molecular markers found linked to lld, its locus was positioned on the linkage group III of the P. sativum genetic map.

  7. Exploring the Interactions of the Dietary Plant Flavonoids Fisetin and Naringenin with G-Quadruplex and Duplex DNA, Showing Contrasting Binding Behavior: Spectroscopic and Molecular Modeling Approaches.

    Science.gov (United States)

    Bhattacharjee, Snehasish; Chakraborty, Sandipan; Sengupta, Pradeep K; Bhowmik, Sudipta

    2016-09-01

    Guanine-rich sequences have the propensity to fold into a four-stranded DNA structure known as a G-quadruplex (G4). G4 forming sequences are abundant in the promoter region of several oncogenes and become a key target for anticancer drug binding. Here we have studied the interactions of two structurally similar dietary plant flavonoids fisetin and naringenin with G4 as well as double stranded (duplex) DNA by using different spectroscopic and modeling techniques. Our study demonstrates the differential binding ability of the two flavonoids with G4 and duplex DNA. Fisetin more strongly interacts with parallel G4 structure than duplex DNA, whereas naringenin shows stronger binding affinity to duplex rather than G4 DNA. Molecular docking results also corroborate our spectroscopic results, and it was found that both of the ligands are stacked externally in the G4 DNA structure. C-ring planarity of the flavonoid structure appears to be a crucial factor for preferential G4 DNA recognition of flavonoids. The goal of this study is to explore the critical effects of small differences in the structure of closely similar chemical classes of such small molecules (flavonoids) which lead to the contrasting binding properties with the two different forms of DNA. The resulting insights may be expected to facilitate the designing of the highly selective G4 DNA binders based on flavonoid scaffolds.

  8. α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease.

    Science.gov (United States)

    Rostovtseva, Tatiana K; Gurnev, Philip A; Protchenko, Olga; Hoogerheide, David P; Yap, Thai Leong; Philpott, Caroline C; Lee, Jennifer C; Bezrukov, Sergey M

    2015-07-24

    Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies.

  9. Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer.

    Science.gov (United States)

    Gong, Jian; Hutter, Carolyn M; Newcomb, Polly A; Ulrich, Cornelia M; Bien, Stephanie A; Campbell, Peter T; Baron, John A; Berndt, Sonja I; Bezieau, Stephane; Brenner, Hermann; Casey, Graham; Chan, Andrew T; Chang-Claude, Jenny; Du, Mengmeng; Duggan, David; Figueiredo, Jane C; Gallinger, Steven; Giovannucci, Edward L; Haile, Robert W; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jeon, Jihyoun; Jenkins, Mark A; Kocarnik, Jonathan; Küry, Sébastien; Le Marchand, Loic; Lin, Yi; Lindor, Noralane M; Nishihara, Reiko; Ogino, Shuji; Potter, John D; Rudolph, Anja; Schoen, Robert E; Schrotz-King, Petra; Seminara, Daniela; Slattery, Martha L; Thibodeau, Stephen N; Thornquist, Mark; Toth, Reka; Wallace, Robert; White, Emily; Jiao, Shuo; Lemire, Mathieu; Hsu, Li; Peters, Ulrike

    2016-10-01

    Genome-wide association studies (GWAS) have identified many genetic susceptibility loci for colorectal cancer (CRC). However, variants in these loci explain only a small proportion of familial aggregation, and there are likely additional variants that are associated with CRC susceptibility. Genome-wide studies of gene-environment interactions may identify variants that are not detected in GWAS of marginal gene effects. To study this, we conducted a genome-wide analysis for interaction between genetic variants and alcohol consumption and cigarette smoking using data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Interactions were tested using logistic regression. We identified interaction between CRC risk and alcohol consumption and variants in the 9q22.32/HIATL1 (Pinteraction = 1.76×10-8; permuted p-value 3.51x10-8) region. Compared to non-/occasional drinking light to moderate alcohol consumption was associated with a lower risk of colorectal cancer among individuals with rs9409565 CT genotype (OR, 0.82 [95% CI, 0.74-0.91]; P = 2.1×10-4) and TT genotypes (OR,0.62 [95% CI, 0.51-0.75]; P = 1.3×10-6) but not associated among those with the CC genotype (p = 0.059). No genome-wide statistically significant interactions were observed for smoking. If replicated our suggestive finding of a genome-wide significant interaction between genetic variants and alcohol consumption might contribute to understanding colorectal cancer etiology and identifying subpopulations with differential susceptibility to the effect of alcohol on CRC risk.

  10. Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Jian Gong

    2016-10-01

    Full Text Available Genome-wide association studies (GWAS have identified many genetic susceptibility loci for colorectal cancer (CRC. However, variants in these loci explain only a small proportion of familial aggregation, and there are likely additional variants that are associated with CRC susceptibility. Genome-wide studies of gene-environment interactions may identify variants that are not detected in GWAS of marginal gene effects. To study this, we conducted a genome-wide analysis for interaction between genetic variants and alcohol consumption and cigarette smoking using data from the Colon Cancer Family Registry (CCFR and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO. Interactions were tested using logistic regression. We identified interaction between CRC risk and alcohol consumption and variants in the 9q22.32/HIATL1 (Pinteraction = 1.76×10-8; permuted p-value 3.51x10-8 region. Compared to non-/occasional drinking light to moderate alcohol consumption was associated with a lower risk of colorectal cancer among individuals with rs9409565 CT genotype (OR, 0.82 [95% CI, 0.74-0.91]; P = 2.1×10-4 and TT genotypes (OR,0.62 [95% CI, 0.51-0.75]; P = 1.3×10-6 but not associated among those with the CC genotype (p = 0.059. No genome-wide statistically significant interactions were observed for smoking. If replicated our suggestive finding of a genome-wide significant interaction between genetic variants and alcohol consumption might contribute to understanding colorectal cancer etiology and identifying subpopulations with differential susceptibility to the effect of alcohol on CRC risk.

  11. Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning.

    Science.gov (United States)

    Bogdan, Ryan; Santesso, Diane L; Fagerness, Jesen; Perlis, Roy H; Pizzagalli, Diego A

    2011-09-14

    Stress is a general risk factor for psychopathology, but the mechanisms underlying this relationship remain largely unknown. Animal studies and limited human research suggest that stress can induce anhedonic behavior. Moreover, emerging data indicate that genetic variation within the corticotropin-releasing hormone type 1 receptor gene (CRHR1) at rs12938031 may promote psychopathology, particularly in the context of stress. Using an intermediate phenotypic neurogenetics approach, we assessed how stress and CRHR1 genetic variation (rs12938031) influence reward learning, an important component of anhedonia. Psychiatrically healthy female participants (n = 75) completed a probabilistic reward learning task during stress and no-stress conditions while 128-channel event-related potentials were recorded. Fifty-six participants were also genotyped across CRHR1. Response bias, an individual's ability to modulate behavior as a function of reward, was the primary behavioral variable of interest. The feedback-related positivity (FRP) in response to reward feedback was used as a neural index of reward learning. Relative to the no-stress condition, acute stress was associated with blunted response bias as well as a smaller and delayed FRP (indicative of disrupted reward learning) and reduced anterior cingulate and orbitofrontal cortex activation to reward. Critically, rs12938031 interacted with stress to influence reward learning: both behaviorally and neurally, A homozygotes showed stress-induced reward learning abnormalities. These findings indicate that acute, uncontrollable stressors reduce participants' ability to modulate behavior as a function of reward, and that such effects are modulated by CRHR1 genotype. Homozygosity for the A allele at rs12938031 may increase risk for psychopathology via stress-induced reward learning deficits.

  12. Association studies in Populus tomentosa reveal the genetic interactions of Pto-MIR156c and its targets in wood formation

    Directory of Open Access Journals (Sweden)

    Mingyang Quan

    2016-08-01

    Full Text Available MicroRNAs (miRNAs regulate gene expression in many biological processes, but the significance of the interaction between a miRNA and its targets in perennial trees remains largely unknown. Here, we employed transcript profiling and association studies in Populus tomentosa (Pto to decipher the effect of genetic variation and interactions between Pto-miR156c and its potential targets (Pto-SPL15, Pto-SPL20, and Pto-SPL25 in 435 unrelated individuals from a natural population of P. tomentosa. Single-SNP (single-nucleotide polymorphism based association studies with analysis of the underlying additive and dominant effects identified 69 significant associations (P 0.05 from Pto-MIR156c and its three potential targets, with six wood and growth traits, revealing their common roles in wood formation. Epistasis analysis uncovered 129 significant SNP-SNP associations with ten traits, indicating the potential genetic interactions of Pto-MIR156c and its three putative targets. Interestingly, expression analysis in stem (phloem, cambium, and xylem revealed that Pto-miR156c expression showed strong negative correlations with Pto-SPL20 (r = -0.90, P < 0.01 and Pto-SPL25 (r = -0.65, P < 0.01, and a positive correlation with Pto-SPL15 (r = 0.40, P < 0.01, which also indicated the putative interactions of Pto-miR156c and its potential targets and their common roles in wood formation. Thus, our study provided an alternative approach to decipher the interaction between miRNAs and their targets and to dissect the genetic architecture of complex traits in trees.

  13. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions.

    Science.gov (United States)

    Stukenbrock, Eva H; McDonald, Bruce A

    2009-04-01

    Antagonistic coevolution between plants and pathogens has generated a broad array of attack and defense mechanisms. In the classical avirulence (Avr) gene-for-gene model, the pathogen gene evolves to escape host recognition while the host resistance (R) gene evolves to track the evolving pathogen elicitor. In the case of host-specific toxins (HST), the evolutionary arms race may be inverted, with the gene encoding the pathogen toxin evolving to maintain recognition of the host sensitivity target while the host sensitivity gene evolves to escape binding with the toxin. Pathogen effector genes, including those encoding Avr elicitors and HST, often show elevated levels of polymorphism reflecting the coevolutionary arms race between host and pathogen. However, selection can also eliminate variation in the coevolved gene and its neighboring regions when advantageous alleles are swept to fixation. The distribution and diversity of corresponding host genes will have a major impact on the distribution and diversity of effectors in the pathogen population. Population genetic analyses including both hosts and their pathogens provide an essential tool to understand the diversity and dynamics of effector genes. Here, we summarize current knowledge about the population genetics of fungal and oomycete effector genes, focusing on recent studies that have used both spatial and temporal collections to assess the diversity and distribution of alleles and to monitor changes in allele frequencies over time. These studies illustrate that effector genes exhibit a significant degree of diversity at both small and large sampling scales, suggesting that local selection plays an important role in their evolution. They also illustrate that Avr elicitors and HST may be recognizing the same R genes in plants, leading to evolutionary outcomes that differ for necrotrophs and biotrophs while affecting the evolution of the corresponding R genes. Under this scenario, the optimal number of R genes

  14. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Tariq Waseem Chohan

    2014-09-01

    Full Text Available Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1 and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET and wild-type (WT mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV and the dentate gyrus (DG of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.

  15. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  16. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    Science.gov (United States)

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  17. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction.

    Science.gov (United States)

    Murakami, Mário Tyago; Sforça, Mauricio Luis; Neves, Jorge Luiz; Paiva, Joice Helena; Domingues, Mariane Noronha; Pereira, André Luiz Araujo; Zeri, Ana Carolina de Mattos; Benedetti, Celso Eduardo

    2010-12-01

    Many plant pathogenic bacteria rely on effector proteins to suppress defense and manipulate host cell mechanisms to cause disease. The effector protein PthA modulates the host transcriptome to promote citrus canker. PthA possesses unusual protein architecture with an internal region encompassing variable numbers of near-identical tandem repeats of 34 amino acids termed the repeat domain. This domain mediates protein-protein and protein-DNA interactions, and two polymorphic residues in each repeat unit determine DNA specificity. To gain insights into how the repeat domain promotes protein-protein and protein-DNA contacts, we have solved the structure of a peptide corresponding to 1.5 units of the PthA repeat domain by nuclear magnetic resonance (NMR) and carried out small-angle X-ray scattering (SAXS) and spectroscopic studies on the entire 15.5-repeat domain of PthA2 (RD2). Consistent with secondary structure predictions and circular dichroism data, the NMR structure of the 1.5-repeat peptide reveals three α-helices connected by two turns that fold into a tetratricopeptide repeat (TPR)-like domain. The NMR structure corroborates the theoretical TPR superhelix predicted for RD2, which is also in agreement with the elongated shape of RD2 determined by SAXS. Furthermore, RD2 undergoes conformational changes in a pH-dependent manner and upon DNA interaction, and shows sequence similarities to pentatricopeptide repeat (PPR), a nucleic acid-binding motif structurally related to TPR. The results point to a model in which the RD2 structure changes its compactness as it embraces the DNA with the polymorphic diresidues facing the interior of the superhelix oriented toward the nucleotide bases.

  18. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Lori K.; Xian, Wujing; Guaqueta, Camilo; Strohman, Michael J.; Vrasich, Chuck R.; Luijten, Erik; Wong, Gerard C.L. (UIUC)

    2008-07-11

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  19. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, L.K.; Xian, W.; Guaqueta, C.; Strohman, M.; Vrasich, C.R.; Luijten, E.; Wong, G.C.L.

    2009-06-04

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  20. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage.

    Science.gov (United States)

    Hernández, Antonio F; Gil, Fernando; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Tsatsakis, Aristidis M; Requena, Mar; Parrón, Tesifón; Alarcón, Raquel

    2013-11-01

    Metabolic activation of pesticides in the liver may result in highly reactive intermediates capable of impairing various cellular functions. Nevertheless, the knowledge about the effect of pesticide exposure on liver function is still limited. This study assessed whether exposure to pesticides elicits early biochemical changes in biomarkers of liver function and looked for potential gene-environmental interactions between pesticide exposure and polymorphisms of pesticide-metabolizing genes. A longitudinal study was conducted in farm-workers from Andalusia (South Spain), during two periods of the same crop season with different degree of pesticide exposure. Blood samples were taken for the measurement of serum and erythrocyte cholinesterase activities as well as for determining clinical chemistry parameters as biomarkers of liver function. Serum lipid levels were also measured as they may help to monitor the progress of toxic liver damage. A reduction in serum cholinesterase was associated with decreased levels of all clinical chemistry parameters studied except HDL-cholesterol. Conversely, a decreased erythrocyte cholinesterase (indicating long-term pesticide exposure) was associated with increased levels of aspartate aminotransferase and alkaline phosphatase and increased levels of triglycerides, total cholesterol and LDL-cholesterol, but reduced levels of HDL-cholesterol. Changes in liver biomarkers were particularly associated with the PON155M/192R haplotype. The obtained results therefore support the hypothesis that pesticide exposure results in subtle biochemical liver toxicity and highlight the role of genetic polymorphisms in pesticide-metabolizing enzymes as biomarkers of susceptibility for developing adverse health effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium.

    Science.gov (United States)

    Campa, Daniele; Kaaks, Rudolf; Le Marchand, Loïc; Haiman, Christopher A; Travis, Ruth C; Berg, Christine D; Buring, Julie E; Chanock, Stephen J; Diver, W Ryan; Dostal, Lucie; Fournier, Agnes; Hankinson, Susan E; Henderson, Brian E; Hoover, Robert N; Isaacs, Claudine; Johansson, Mattias; Kolonel, Laurence N; Kraft, Peter; Lee, I-Min; McCarty, Catherine A; Overvad, Kim; Panico, Salvatore; Peeters, Petra H M; Riboli, Elio; Sanchez, Maria José; Schumacher, Fredrick R; Skeie, Guri; Stram, Daniel O; Thun, Michael J; Trichopoulos, Dimitrios; Zhang, Shumin; Ziegler, Regina G; Hunter, David J; Lindström, Sara; Canzian, Federico

    2011-08-17

    Recently, several genome-wide association studies have identified various genetic susceptibility loci for breast cancer. Relatively little is known about the possible interactions between these loci and the established risk factors for breast cancer. To assess interactions between single-nucleotide polymorphisms (SNPs) and established risk factors, we prospectively collected DNA samples and questionnaire data from 8576 breast cancer case subjects and 11 892 control subjects nested within the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3). We genotyped 17 germline SNPs (FGFR2-rs2981582, FGFR2-rs3750817, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, CASP8-rs1045485, LSP1-rs3817198, COL1A1-rs2075555, COX11-rs6504950, RNF146-rs2180341, 6q25-rs2046210, SLC4A7-rs4973768, NOTCH2-rs11249433, 5p12-rs4415084, 5p12-rs10941679, RAD51L1-rs999737), and odds ratios were estimated by logistic regression to confirm previously reported associations with breast cancer risk. We performed likelihood ratio test to assess interactions between 17 SNPs and nine established risk factors (age at menarche, parity, age at menopause, use of hormone replacement therapy, family history, height, body mass index, smoking status, and alcohol consumption), and a correction for multiple testing of 153 tests (adjusted P value threshold = .05/153 = 3 × 10(-4)) was done. Case-case comparisons were performed for possible differential associations of polymorphisms by subgroups of tumor stage, estrogen and progesterone receptor status, and age at diagnosis. All statistical tests were two-sided. We confirmed the association of 14 SNPs with breast cancer risk (P(trend) = 2.57 × 10(-3) -3.96 × 10(-19)). Three SNPs (LSP1-rs3817198, COL1A1-rs2075555, and RNF146-rs2180341) did not show association with breast cancer risk. After accounting for multiple testing, no statistically significant interactions were detected between the 17 SNPs and the nine risk

  2. Genetic gating of human fear learning and extinction: possible implications for gene-environment interaction in anxiety disorder.

    Science.gov (United States)

    Lonsdorf, Tina B; Weike, Almut I; Nikamo, Pernilla; Schalling, Martin; Hamm, Alfons O; Ohman, Arne

    2009-02-01

    Pavlovian fear conditioning is a widely used model of the acquisition and extinction of fear. Neural findings suggest that the amygdala is the core structure for fear acquisition, whereas prefrontal cortical areas are given pivotal roles in fear extinction. Forty-eight volunteers participated in a fear-conditioning experiment, which used fear potentiation of the startle reflex as the primary measure to investigate the effect of two genetic polymorphisms (5-HTTLPR and COMTval158met) on conditioning and extinction of fear. The 5-HTTLPR polymorphism, located in the serotonin transporter gene, is associated with amygdala reactivity and neuroticism, whereas the COMTval158met polymorphism, which is located in the gene coding for catechol-O-methyltransferase (COMT), a dopamine-degrading enzyme, affects prefrontal executive functions. Our results show that only carriers of the 5-HTTLPR s allele exhibited conditioned startle potentiation, whereas carriers of the COMT met/met genotype failed to extinguish conditioned fear. These results may have interesting implications for understanding gene-environment interactions in the development and treatment of anxiety disorders.

  3. Estimation of indirect genetic effects in group-housed mink (Neovison vison) should account for systematic interactions either due to kin or sex

    DEFF Research Database (Denmark)

    Alemu, Setegn Worku; Berg, Peer; Janss, Luc

    2016-01-01

    Social interactions among individuals are abundant, both in wild and in domestic populations. With social interactions, the genes of an individual may affect the trait values of other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models....... Most IGE models assume that individuals interact equally to all group mates irrespective of relatedness. Kin selection theory, however, predicts that an individual will interact differently with family members versus non-family members. Here, we investigate kin- and sex-specific non-genetic social...... interactions in group-housed mink. Furthermore, we investigated whether systematic non-genetic interactions between kin or individuals of the same sex influence the estimates of genetic parameters. As a second objective, we clarify the relationship between estimates of the traditional IGE model and a family...

  4. Gene by Social-Context Interactions for Number of Sexual Partners Among White Male Youths: Genetics-informed Sociology

    Science.gov (United States)

    Guo, Guang; Tong, Yuying; Cai, Tianji

    2010-01-01

    In this study, we set out to investigate whether introducing molecular genetic measures into an analysis of sexual partner variety will yield novel sociological insights. The data source is the white male DNA sample in the National Longitudinal Study of Adolescent Health. Our empirical analysis has produced a robust protective effect of the 9R/9R genotype relative to the Any10R genotype in the dopamine transporter gene (DAT1). The gene-environment interaction analysis demonstrates that the protective effect of 9R/9R tends to be lost in schools in which higher proportions of students start having sex early or among those with relatively low levels of cognitive ability. Our genetics-informed sociological analysis suggests that the “one size” of a single social theory may not fit all. Explaining a human trait or behavior may require a theory that accommodates the complex interplay between social contextual and individual influences and genetic predispositions. PMID:19569400

  5. A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution.

    Science.gov (United States)

    Bind, Marie-Abele; Coull, Brent; Suh, Helen; Wright, Robert; Baccarelli, Andrea; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Air pollution has been associated with increased systemic inflammation markers. We developed a new pathway analysis approach to investigate whether gene variants within relevant pathways (oxidative stress, endothelial function, and metal processing) modified the association between particulate air pollution and fibrinogen, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Our study population consisted of 822 elderly participants of the Normative Aging Study (1999-2011). To investigate the role of biological mechanisms and to reduce the number of comparisons in the analysis, we created pathway-specific scores using gene variants related to each pathway. To select the most appropriate gene variants, we used the least absolute shrinkage and selection operator (Lasso) to relate independent outcomes representative of each pathway (8-hydroxydeoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead for metal processing) to gene variants. A high genetic score corresponds to a higher allelic risk profile. We fit mixed-effects models to examine modification by the genetic score of the weekly air pollution association with the outcome. Among participants with higher genetic scores within the oxidative stress pathway, we observed significant associations between particle number and fibrinogen, while we did not find any association among participants with lower scores (p(interaction) = 0.04). Compared to individuals with low genetic scores of metal processing gene variants, participants with higher scores had greater effects of particle number on fibrinogen (p(interaction) = 0.12), CRP (p(interaction) = 0.02), and ICAM-1 (pinteraction = 0.08). This two-stage penalization method is easy to implement and can be used for large-scale genetic applications.

  6. Genetic interactions matter more in less-optimal environments: a focused review

    Directory of Open Access Journals (Sweden)

    Dustin A. Landers

    2014-08-01

    Full Text Available An increase in the distribution of data points indicates the presence of genetic or environmental modifiers. Mapping of the genetic control of the spread of points, the uniformity, allows us to allocate genetic difference in point distribution to adjacent, cis effects or to independently segregating, trans genetic effects. Our genetic architecture-mapping experiment elucidated the ‘environmental context specificity’ of modifiers, the number and effect size of positive and negative alleles important for uniformity in single and combined stress, and the extent of additivity in estimated allele effects in combined stress environments. We found no alleles for low uniformity in combined stress treatments in the maize mapping population we examined.The major advances in this research area since early 2011 have been in improved methods for modeling of distributions and means and detection of important loci. Double hierarchical general linear models and, more recently, a likelihood ratio formulation have been developed to better model and estimate the genetic and environmental effects in populations. These new methods have been applied to real data sets by the method authors and we now encourage additional development of the software and wider application of the methods. We also propose that simulations of genetic regulatory network models to examine differences in uniformity and systematic exploration of models using shared simulations across communities of researchers would be constructive avenues for developing further insight into the genetic mechanisms of variation control.

  7. Studying Interactions, Reactions, and Perceptions: Can Genetic Disorders Serve as Behavioral Proxies?

    Science.gov (United States)

    Hodapp, Robert M.

    2004-01-01

    Different genetic disorders predispose individuals to display specific, etiology-related profiles, personalities, and maladaptive behaviors. Using groups with genetic etiologies as stand-ins or proxies for a specific behavior or set of behaviors, one can then examine how others in the child's environment react and whether such reactions are…

  8. Phenotype-Environment Interactions in Genetic Syndromes Associated with Severe or Profound Intellectual Disability

    Science.gov (United States)

    Tunnicliffe, Penny; Oliver, Chris

    2011-01-01

    The research literature notes both biological and operant theories of behavior disorder in individuals with intellectual disabilities. These two theories of genetic predisposition and operant reinforcement remain quite distinct; neither theory on its own is sufficient to explain challenging behavior in genetic syndromes and an integrated approach…

  9. Genetic risk for violent behavior and environmental exposure to disadvantage and violent crime: the case for gene-environment interaction.

    Science.gov (United States)

    Barnes, J C; Jacobs, Bruce A

    2013-01-01

    Despite mounds of evidence to suggest that neighborhood structural factors predict violent behavior, almost no attention has been given to how these influences work synergistically (i.e., interact) with an individual's genetic propensity toward violent behavior. Indeed, two streams of research have, heretofore, flowed independently of one another. On one hand, criminologists have underscored the importance of neighborhood context in the etiology of violence. On the other hand, behavioral geneticists have argued that individual-level genetic propensities are important for understanding violence. The current study seeks to integrate these two compatible frameworks by exploring gene-environment interactions (GxE). Two GxEs were examined and supported by the data (i.e., the National Longitudinal Study of Adolescent Health). Using a scale of genetic risk based on three dopamine genes, the analysis revealed that genetic risk had a greater influence on violent behavior when the individual was also exposed to neighborhood disadvantage or when the individual was exposed to higher violent crime rates. The relevance of these findings for criminological theorizing was considered.

  10. A multidirectional non-cell autonomous control and a genetic interaction restricting tobacco etch virus susceptibility in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suresh Gopalan

    Full Text Available BACKGROUND: Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery. METHODOLOGY/PRINCIPAL FINDINGS: An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV, a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement. CONCLUSIONS/SIGNIFICANCE: The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.

  11. Generation of a multi-locus chicken introgression line to study the effects of genetic interactions on metabolic phenotypes in chickens

    Directory of Open Access Journals (Sweden)

    Weronica eEk

    2012-03-01

    Full Text Available Most biological traits are regulated by a complex interplay between genetic and environmental factors. By intercrossing divergent lines, it is possible to identify individual and interacting QTL involved in the genetic architecture of these traits. When the loci have been mapped, alternative strategies are needed for fine-mapping and studying the individual and interactive effects of the QTL in detail. We have previously identified, replicated and fine-mapped a four-locus QTL network that determines nearly half of the eight-fold difference in body-weight at 56 days of age between two divergently selected chicken lines. Here, we describe, to our knowledge, the first generation of a three-locus QTL introgression line in chickens to further study the effect of three of the interacting loci in this network on metabolic phenotypes. Recurrent marker assisted backcrossing was used to simultaneously transfer QTL alleles from the low-weight selected line into the high-weight selected line. Three generations of backcrossing and one generation of intercrossing resulted in an introgression line where all three introgressed QTL and several unlinked and linked control-loci were segregating at nearly expected allele frequencies. We show that marker-based sexing is an efficient method for sexing breeding populations and how intensive selection can be applied using artificial insemination to generate large half-sib families. Based on our empirical observations, we provide recommendations for future introgression-line breeding experiments. In the future, use of this confirmed introgression line will facilitate detailed studies of the effects of genetic interactions on complex traits.

  12. A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Nike Bharucha

    2011-04-01

    Full Text Available The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans.Our strategy for this screen was based on the concept of complex haploinsufficiency (CHI. A heterozygous mutant of CBK1(cbk1Δ/CBK1, a key RAM pathway protein kinase, was subjected to transposon-mediated, insertional mutagenesis. The resulting double heterozygous mutants (6,528 independent strains were screened for decreased filamentation on SpiderMedium (SM. From the 441 mutants showing altered filamentation, 139 transposon insertion sites were sequenced,yielding 41 unique CBK1-interacting genes. This gene set was enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent protein kinase A (PKA pathway, suggesting an interaction between these two pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a common set of genes during morphogenesis and that hyperactivation of the PKA pathway may compensate for loss of RAM pathway function. Our data also indicate that the PKA–regulated transcription factor Efg1 primarily localizes to yeast phase cells while the RAM–pathway regulated transcription factor Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken together, our observations indicate that CHI–based screening is a useful approach to genetic interaction analysis in C. albicans and support a model in which these two pathways regulate a common set of genes at different stages of filamentation.

  13. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Malgorzata A Domagalska

    Full Text Available BACKGROUND: Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs is the most documented. Abscisic acid (ABA has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response. METHODOLOGY: We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated. CONCLUSIONS: Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action.

  14. Genetic variation in mu-opioid-receptor-interacting proteins and smoking cessation in a nicotine replacement therapy trial.

    Science.gov (United States)

    Ray, Riju; Jepson, Christopher; Wileyto, E Paul; Dahl, John P; Patterson, Freda; Rukstalis, Margaret; Pinto, Angela; Berrettini, Wade; Lerman, Caryn

    2007-11-01

    Extending a previous finding of an association between functional genetic variation in the mu-opioid receptor gene and response to nicotine replacement therapy, we explored the role of genetic variants in two genes encoding mu-opioid-receptor-interacting proteins, namely ARRB2 and HINT1. Participants were 374 smokers treated for nicotine dependence with either transdermal nicotine or nicotine nasal spray for 8 weeks in an open-label randomized trial. In a logistic regression model controlling for OPRM1 genotype, treatment type, and other covariates, we found no significant main effect of ARRB2 genotype on abstinence at either end of treatment or 6-month follow-up. Participants with the HINT1 TT genotype had significantly higher abstinence rates at 6-month follow-up, but this may not be a pharmacogenetic effect, given that the participants were drug free during this time. Haplotype analysis did not reveal any significant associations for either gene. We found an interaction of ARRB2 and OPRM1 genotype on abstinence at 6 months that approached significance; however, interpretation of this finding is limited by the small number of participants with the minor alleles for both genes. Although these data do not provide support for the role of genetic variation in these mu-opioid-receptor-interacting proteins and smoking cessation, further exploration of opioid pathway genes in larger prospective pharmacogenetic trials may be warranted.

  15. Genotype-Based Bayesian Analysis of Gene-Environment Interactions with Multiple Genetic Markers and Misclassification in Environmental Factors.

    Science.gov (United States)

    Lobach, Iryna; Fan, Ruzong

    A key component to understanding etiology of complex diseases, such as cancer, diabetes, alcohol dependence, is to investigate gene-environment interactions. This work is motivated by the following two concerns in the analysis of gene-environment interactions. First, multiple genetic markers in moderate linkage disequilibrium may be involved in susceptibility to a complex disease. Second, environmental factors may be subject to misclassification. We develop a genotype based Bayesian pseudolikelihood approach that accommodates linkage disequilibrium in genetic markers and misclassification in environmental factors. Since our approach is genotype based, it allows the observed genetic information to enter the model directly thus eliminating the need to infer haplotype phase and simplifying computations. Bayesian approach allows shrinking parameter estimates towards prior distribution to improve estimation and inference when environmental factors are subject to misclassification. Simulation experiments demonstrated that our method produced parameter estimates that are nearly unbiased even for small sample sizes. An application of our method is illustrated using a case-control study of interaction between early onset of drinking and genes involved in dopamine pathway.

  16. Genotype-Based Bayesian Analysis of Gene-Environment Interactions with Multiple Genetic Markers and Misclassification in Environmental Factors

    Directory of Open Access Journals (Sweden)

    Iryna Lobach

    2012-01-01

    Full Text Available A key component to understanding etiology of complex diseases, such as cancer, diabetes, alcohol dependence, is to investigate gene-environment interactions. This work is motivated by the following two concerns in the analysis of gene-environment interactions. First, multiple genetic markers in moderate linkage disequilibrium may be involved in susceptibility to a complex disease. Second, environmental factors may be subject to misclassification. We develop a genotype based Bayesian pseudolikelihood approach that accommodates linkage disequilibrium in genetic markers and misclassification in environmental factors. Since our approach is genotype based, it allows the observed genetic information to enter the model directly thus eliminating the need to infer haplotype phase and simplifying computations. Bayesian approach allows shrinking parameter estimates towards prior distribution to improve estimation and inference when environmental factors are subject to misclassification. Simulation experiments demonstrated that our method produced parameter estimates that are nearly unbiased even for small sample sizes. An application of our method is illustrated using a case-control study of interaction between early onset of drinking and genes involved in dopamine pathway.

  17. Interactions between paraoxonase 1 genetic polymorphisms and smoking and their effects on oxidative stress and lung cancer risk in a Korean population.

    Science.gov (United States)

    Eom, Sang-Yong; Yim, Dong-Hyuk; Lee, Chul-Ho; Choe, Kang-Hyeon; An, Jin Young; Lee, Kye Young; Kim, Yong-Dae; Kim, Heon

    2015-01-01

    Few studies in epidemiology have evaluated the effects of gene-environment interaction on oxidative stress, even though this interaction is an important etiologic factor in lung carcinogenesis. We investigated the effects of the genetic polymorphisms of paraoxonase 1 (PON1), smoking, and the interaction between the two on lung cancer risk and oxidative stress. This study's subjects consisted of 416 newly diagnosed lung cancer patients and an equal number of matched controls. The GoldenGate assay was used for genotypic analyses of the PON1 gene. Urinary 8-hydroxydeoxyguanosine (8-OHdG) and thiobarbituric acid reactive substances levels were measured as indicators of oxidative stress. The PON1 rs662 AA genotype showed a significantly lower risk of lung cancer than the GG genotype (OR = 0.60, 95% CI: 0.36-0.99). The protective effect of the PON1 rs662 AA genotype on lung cancer risk was limited to non-smokers. Lung cancer patients who had the rs662 A allele showed a dose-dependent association between smoking status and oxidative stress markers. Among non-smoking lung cancer patients, urinary 8-OHdG levels were significantly lower in individuals with the rs662 GA and AA genotypes than in those with the GG genotype. Furthermore, we found a significant interaction effect between PON1 rs662 and smoking status on urinary 8-OHdG levels in lung cancer patients. Our results suggest that the protective effect of PON1 rs662 SNP against lung carcinogenesis and the induction of oxidative stress might be modulated by the interaction between PON1 genetic polymorphisms and tobacco smoking.

  18. Population dynamics of three songbird species in a nestbox population in Central Europe show effects of density, climate and competitive interactions

    NARCIS (Netherlands)

    Smallegange, I.M.; van der Meer, J.; Fiedler, W.

    2011-01-01

    Unravelling the contributions of density-dependent and density-independent factors in determining species population dynamics is a challenge, especially if the two factors interact. One approach is to apply stochastic population models to long-term data, yet few studies have included interactions

  19. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    Science.gov (United States)

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  20. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1.

    Science.gov (United States)

    Popescu, Luca; Gaudreault, Natasha N; Whitworth, Kristen M; Murgia, Maria V; Nietfeld, Jerome C; Mileham, Alan; Samuel, Melissa; Wells, Kevin D; Prather, Randall S; Rowland, Raymond R R

    2017-01-15

    African swine fever is a highly contagious, often fatal disease of swine for which there is no vaccine or other curative treatment. The macrophage marker, CD163, is a putative receptor for African swine fever virus (ASFV). Pigs possessing a complete knockout of CD163 on macrophages were inoculated with Georgia 2007/1, a genotype 2 isolate. Knockout and wild type pen mates became infected and showed no differences in clinical signs, mortality, pathology or viremia. There was also no difference following in vitro infection of macrophages. The results do not rule out the possibility that other ASFV strains utilize CD163, but demonstrate that CD163 is not necessary for infection with the Georgia 2007/1 isolate. This work rules out a significant role for CD163 in ASFV infection and creates opportunities to focus on alternative receptors and entry mechanisms. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment.

    Science.gov (United States)

    Orata, Fabini D; Kirchberger, Paul C; Méheust, Raphaël; Barlow, E Jed; Tarr, Cheryl L; Boucher, Yan

    2015-10-09

    Vibrio metoecus is the closest relative of Vibrio cholerae, the causative agent of the potent diarrheal disease cholera. Although the pathogenic potential of this new species is yet to be studied in depth, it has been co-isolated with V. cholerae in coastal waters and found in clinical specimens in the United States. We used these two organisms to investigate the genetic interaction between closely related species in their natural environment. The genomes of 20 V. cholerae and 4 V. metoecus strains isolated from a brackish coastal pond on the US east coast, as well as 4 clinical V. metoecus strains were sequenced and compared with reference strains. Whole genome comparison shows 86-87% average nucleotide identity (ANI) in their core genes between the two species. On the other hand, the chromosomal integron, which occupies approximately 3% of their genomes, shows higher conservation in ANI between species than any other region of their genomes. The ANI of 93-94% observed in this region is not significantly greater within than between species, meaning that it does not follow species boundaries. Vibrio metoecus does not encode toxigenic V. cholerae major virulence factors, the cholera toxin and toxin-coregulated pilus. However, some of the pathogenicity islands found in pandemic V. cholerae were either present in the common ancestor it shares with V. metoecus, or acquired by clinical and environmental V. metoecus in partial fragments. The virulence factors of V. cholerae are therefore both more ancient and more widespread than previously believed. There is high interspecies recombination in the core genome, which has been detected in 24% of the single-copy core genes, including genes involved in pathogenicity. Vibrio metoecus was six times more often the recipient of DNA from V. cholerae as it was the donor, indicating a strong bias in the direction of gene transfer in the environment. © The Author(s) 2015. Published by Oxford University Press on behalf of the

  2. Amerindians show association to obesity with adiponectin gene SNP45 and SNP276: population genetics of a food intake control and "thrifty" gene.

    Science.gov (United States)

    Arnaiz-Villena, Antonio; Fernández-Honrado, Mercedes; Rey, Diego; Enríquez-de-Salamanca, Mercedes; Abd-El-Fatah-Khalil, Sedeka; Arribas, Ignacio; Coca, Carmen; Algora, Manuel; Areces, Cristina

    2013-02-01

    Adiponectin gene polymorphisms SNP45 and SNP276 have been related to metabolic syndrome (MS) and related pathologies, including obesity. However results of associations are contradictory depending on which population is studied. In the present study, these adiponectin SNPs are for the first time studied in Amerindians. Allele frequencies are obtained and comparison with obesity and other MS related parameters are performed. Amerindians were also defined by characteristic HLA genes. Our main results are: (1) SNP276 T is associated to low diastolic blood pressure in Amerindians, (2) SNP45 G allele is correlated with obesity in female but not in male Amerindians, (3) SNP45/SNP276 T/G haplotype in total obese/non-obese subjects tends to show a linkage with non-obese Amerindians, (4) SNP45/SNP276 T/T haplotype is linked to obese Amerindian males. Also, a world population study is carried out finding that SNP45 T and SNP276 T alleles are the most frequent in African Blacks and are found significantly in lower frequencies in Europeans and Asians. This together with the fact that there is a linkage of this haplotype to obese Amerindian males suggest that evolutionary forces related to famine (or population density in relation with available food) may have shaped world population adiponectin polymorphism frequencies.

  3. The InterAct Project: An Examination of the Interaction of Genetic and Lifestyle Factors on the Incidence of Type 2 Diabetes in the EPIC Study

    Science.gov (United States)

    Langenberg, C; Sharp, S; Forouhi, NG; Franks, P; Schulze, MB; Kerrison, N; Ekelund, U; Barroso, I; Panico, S; Tormo, M; Spranger, J; Griffin, S; van der Schouw, YT; Amiano, P; Ardanaz, E; Arriola, L; Balkau, B; Barricarte, A; Beulens, JWJ; Boeing, H; Bueno-de-Mesquita, HB; Buijsse, BB; Chirlaque Lopez, MD; Clavel-Chapelon, F; Crowe, FL; de Lauzon-Guillan, B; Deloukas, P; Dorronsoro, M; Drogan, DD; Froguel, P; Gonzalez, C; Grioni, S; Groop, L; Groves, C; Hainaut, P; Halkjaer, J; Hallmans, G; Hansen, T; Kaaks, R; Key, TJ; Khaw, K; Koulman, A; Mattiello, A; Navarro, C; Nilsson, P; Norat, T; Overvad, K; Palla, L; Palli, D; Pedersen, O; Peeters, PH; Quirós, JR; Ramachandran, A; Rodriguez-Suarez, L; Rolandsson, O; Romaguera, D; Romieu, I; Sacerdote, C; Sánchez, M; Sandbaek, A; Slimani, N; Sluijs, I; Spijkerman, AMW; Teucher, B; Tjonneland, A; Tumino, R; van der A, DL; Verschuren, WMM; Tuomilehto, J; Feskens, E; McCarthy, M; Riboli, E; Wareham, NJ

    2014-01-01

    Background Studying gene-lifestyle interaction may help to identify lifestyle factors that modify genetic susceptibility and uncover genetic loci exerting important subgroup effects. Adequately powered studies with prospective, unbiased, standardised assessment of key behavioural factors for gene-lifestyle studies are lacking. Objective To establish a type 2 diabetes case-cohort study designed to investigate how genetic and potentially modifiable lifestyle and behavioral factors, particularly diet and physical activity, interact in their influence on the risk of developing type 2 diabetes. Methods Funded by the Sixth European Framework Programme, InterAct consortium partners ascertained and verified incident cases of type 2 diabetes occurring in European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts between 1991 and 2007 from 8 of the 10 EPIC countries. A pragmatic, high sensitivity approach was used for case ascertainment including multiple sources at each EPIC centre, followed by diagnostic verification. Prentice-weighted Cox regression and random effects meta-analyses were used to investigate differences in diabetes incidence by age and sex. Results A total of 12,403 verified incident cases of type 2 diabetes occurred during 3.99 million person-years of follow-up of 340,234 EPIC participants eligible for InterAct. We defined a centre stratified subcohort of 16,154 individuals for comparative analyses. Individuals with incident diabetes that were randomly selected into the subcohort (n=778) were included as cases in the analyses. All prevalent diabetes cases were excluded from the study. InterAct cases were followed-up for an average of 6.9 years, 49.7% were men. Mean baseline age and age at diagnosis were 55.6 and 62.5 years, mean BMI and waist were 29.4 kg/m2 and 102.7 cm in men, and 30.1 kg/m2 and 92.8 cm in women, respectively. Risk of type 2 diabetes increased linearly with age, with an overall hazard ratio (95% CI) of 1.56 (1.48; 1

  4. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction

    Directory of Open Access Journals (Sweden)

    Larance Ronsard

    2017-04-01

    Full Text Available HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat, a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR RNA. In this study, HIV-1 infected patients (n = 120 from North India revealed Ser46Phe (20% and Ser61Arg (2% mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.

  5. Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana.

    Science.gov (United States)

    Chiang, Ming-Hau; Shen, Hwei-Ling; Cheng, Wan-Hsing

    2015-07-01

    Although abscisic acid (ABA) and gibberellins (GAs) play pivotal roles in many physiological processes in plants, their interaction in the control of leaf growth remains elusive. In this study, genetic analyses of ABA and GA interplay in leaf growth were performed in Arabidopsis thaliana. The results indicate that for the ABA and GA interaction, leaf growth of both the aba2/ga20ox1 and aba2/GA20ox1 plants, which were derived from the crosses of aba2×ga20ox1 and aba2×GA20ox1 overexpressor, respectively, exhibits partially additive effects but is similar to the aba2 mutant. Consistently, the transcriptome analysis suggests that a substantial proportion (45-65%) of the gene expression profile of aba2/ga20ox1 and aba2/GA20ox1 plants overlap and share a pattern similar to the aba2 mutant. Thus, these data suggest that ABA deficiency dominates leaf growth regardless of GA levels. Moreover, the gene ontology (GO) analysis indicates gene enrichment in the categories of hormone response, developmental and metabolic processes, and cell wall organization in these three genotypes. Leaf developmental genes are also involved in the ABA-GA interaction. Collectively, these data support that the genetic relationship of ABA and GA interaction involves multiple coordinated pathways rather than a simple linear pathway for the regulation of leaf growth.

  6. The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis.

    Science.gov (United States)

    Malosetti, Marcos; Ribaut, Jean-Marcel; van Eeuwijk, Fred A

    2013-01-01

    Genotype-by-environment interaction (GEI) is an important phenomenon in plant breeding. This paper presents a series of models for describing, exploring, understanding, and predicting GEI. All models depart from a two-way table of genotype by environment means. First, a series of descriptive and explorative models/approaches are presented: Finlay-Wilkinson model, AMMI model, GGE biplot. All of these approaches have in common that they merely try to group genotypes and environments and do not use other information than the two-way table of means. Next, factorial regression is introduced as an approach to explicitly introduce genotypic and environmental covariates for describing and explaining GEI. Finally, QTL modeling is presented as a natural extension of factorial regression, where marker information is translated into genetic predictors. Tests for regression coefficients corresponding to these genetic predictors are tests for main effect QTL expression and QTL by environment interaction (QEI). QTL models for which QEI depends on environmental covariables form an interesting model class for predicting GEI for new genotypes and new environments. For realistic modeling of genotypic differences across multiple environments, sophisticated mixed models are necessary to allow for heterogeneity of genetic variances and correlations across environments. The use and interpretation of all models is illustrated by an example data set from the CIMMYT maize breeding program, containing environments differing in drought and nitrogen stress. To help readers to carry out the statistical analyses, GenStat® programs, 15th Edition and Discovery® version, are presented as "Appendix."

  7. The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors.

    Science.gov (United States)

    Dato, Serena; Bellizzi, Dina; Rose, Giuseppina; Passarino, Giuseppe

    2016-03-01

    Nutrition has a strong influence on the health status of the elderly, with many dietary components associated to either an increased risk of disease or to an improvement of the quality of life and to a delay of age-related pathologies. A direct effect of a reduced caloric intake on the delay of aging phenotypes is documented in several organisms. The role of nutrients in the regulation of human lifespan is not easy to disentangle, influenced by a complex interaction of nutrition with environmental and genetic factors. The individual genetic background is fundamental for mediating the effects of nutritional components on aging. Classical genetic factors able to influence nutrient metabolism are considered those belonging to insulin/insulin growth factor (INS/IGF-1) signaling, TOR signaling and Sirtuins, but also genes involved in inflammatory/immune response and antioxidant activity can have a major role. Considering the worldwide increasing interest in nutrition to prevent age related diseases and achieve a healthy aging, in this review we will discuss this complex interaction, in the light of metabolic changes occurring with aging, with the aim of shedding a light on the enormous complexity of the metabolic scenario underlying longevity phenotype.

  8. Exploring the gene: Interactive exhibits on genetics and the human genome. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    Under funding by the United States Department of Energy, the Exploratorium has substantially completed the prototype development of four exhibits on the nature of DNA and genetics, and substantially completed the production of ed exhibits based on these prototypes. Individually these genetic exhibits have been designed to elucidate specific themes, such as, the molecular properties of DNA, the encoding of genetic information, the expression of genetic information, and technological manipulation. The exhibits are titled Dancing DNA, Marching Bands, Protein Production Line, and Genetic Playbook. Specific exhibit projects are detailed below. In all the exhibits we have sought to draw a relationship between the nature of DNA and its expression in organisms. For most visitors, DNA exists as an invisible abstract molecule with marginal connections to their lives, while organisms exist as a familiar tangible entities. Inclusion of this broad thematic connection provides the crucial bridge between the abstract principles and the real world, and serves to underpin scientific, medical, and public interest in the topic.

  9. A novel role for transcription factor Lmo4 in thymus development through genetic interaction with Cited2.

    Science.gov (United States)

    Michell, Anna C; Bragança, José; Broadbent, Carol; Joyce, Bradley; Franklyn, Angela; Schneider, Jürgen E; Bhattacharya, Shoumo; Bamforth, Simon D

    2010-07-01

    Deletion of the transcriptional modulator Cited2 in the mouse results in embryonic lethality, cardiovascular malformations, adrenal agenesis, cranial ganglia fusion, exencephaly, and left-right patterning defects, all seen with a varying degree of penetrance. The phenotypic heterogeneity, observed on different genetic backgrounds, indicates the existence of both genetic and environmental modifiers. Mice lacking the LIM domain-containing protein Lmo4 share specific phenotypes with Cited2 null embryos, such as embryonic lethality, cranial ganglia fusion, and exencephaly. These shared phenotypes suggested that Lmo4 may be a potential genetic modifier of the Cited2 phenotype. Examination of Lmo4-deficient embryos revealed partially penetrant cardiovascular malformations and hypoplastic thymus. Examination of Lmo4;Cited2 compound mutants indicated that there is a genetic interaction between Cited2 and Lmo4 in control of thymus development. Our data suggest that this may occur, in part, through control of expression of a common target gene, Tbx1, which is necessary for normal thymus development.

  10. Genetic variant in the IGF2BP2 gene may interact with fetal malnutrition to affect glucose metabolism

    NARCIS (Netherlands)

    M. van Hoek (Mandy); J.G. Langendonk (Janneke); S.R. de Rooij (Susanne); E.J.G. Sijbrands (Eric); T.J. Roseboom (Tessa)

    2009-01-01

    textabstractOBJECTIVE - Fetal malnutrition may predispose to type 2 diabetes through gene programming and developmental changes. Previous studies showed that these effects may be modulated by genetic variation. Genome-wide association studies discovered and replicated a number of type 2

  11. Interactive decision support for risk management: a qualitative evaluation in cancer genetic counselling sessions.

    Science.gov (United States)

    Glasspool, David W; Oettinger, Ayelet; Braithwaite, Dejana; Fox, John

    2010-09-01

    Genetic counselling for inherited susceptibility to cancer involves communication of a significant amount of information about possible consequences of different interventions. This study explores counsellors' attitudes to computer software designed to aid this process. Eight genetic counsellors used the software with actors playing patients. Clinicians' rating of expected patient satisfaction, content, accuracy, timeliness, format, overall value, ease of use, effect on the patient-provider relationship and effect on clinician's performance were evaluated via qualitative and quantitative analysis of interviews, training tasks and questionnaires. Most counsellors found the software effective. Concerns related to possible impact on consultation dynamics and content. Participants suggested countering these through appropriate new counselling skills and selective use of the computer. The REACT software could provide effective support for genetic risk management counselling.

  12. Genomic testing interacts with reproductive surplus in reducing genetic lag and increasing economic net return

    DEFF Research Database (Denmark)

    Hjortø, Line; Ettema, Jehan Frans; Kargo, Morten

    2015-01-01

    , especially if genomic tests are used in combination with sexed semen or a high management level for reproductive performance, because both factors provide the opportunity for generating a reproductive surplus in the herd. In this study, sexed semen is used in combination with beef semen to produce high-value...... simulates the parity distribution of the dams of heifer calves. The ADAM program estimates genetic merit per year in a herd under different strategies for use of sexed semen and genomic tests. The annual net return per slot was calculated as the sum of operational return and value of genetic lag minus costs......Until now, genomic information has mainly been used to improve the accuracy of genomic breeding values for breeding animals at a population level. However, we hypothesize that the use of information from genotyped females also opens up the possibility of reducing genetic lag in a dairy herd...

  13. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees

    Science.gov (United States)

    Richard A. Sniezko; Alvin D. Yanchuk; John T. Kliejunas; Katharine M. Palmieri; Janice M. Alexander; Susan J. Frankel

    2012-01-01

    Individual papers are available at http://www.fs.fed.us/psw/publications/documents/psw_gtr240/The Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees...

  14. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination.

    Directory of Open Access Journals (Sweden)

    Daniel T Grimes

    2016-06-01

    Full Text Available During mammalian development, left-right (L-R asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM. Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.

  15. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination.

    Science.gov (United States)

    Grimes, Daniel T; Keynton, Jennifer L; Buenavista, Maria T; Jin, Xingjian; Patel, Saloni H; Kyosuke, Shinohara; Vibert, Jennifer; Williams, Debbie J; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M; Norris, Dominic P

    2016-06-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.

  16. Genetic diversity, virulence, and Meloidogyne incognita interactions of Fusarium oxysporum isolates causing cotton wilt in Georgia

    Science.gov (United States)

    Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. ox...

  17. Demonstrating an Interactive Genetic Drift Exercise: Examining the Processes of Random Mating and Selection.

    Science.gov (United States)

    Carter, Ashley J. R.

    2002-01-01

    Presents a hands-on activity on the phenomenon of genetic drift in populations that reinforces the random nature of drift and demonstrates the effect of the population size on the mean frequency of an allele over a few generations. Includes materials for the demonstration, procedures, and discussion topics. (KHR)

  18. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci

    NARCIS (Netherlands)

    Jansen, R.C.; Ooijen, J.W. van; Stam, P.; Lister, C.; Dean, C.

    1995-01-01

    The interval mapping method is widely used for the genetic mapping of quantitative trait loci (QTLs), though true resolution of quantitative variation into QTLs is hampered with this method. Separation of QTLs is troublesome, because single-QTL is models are fitted. Further, genotype-by-environment

  19. Generating Enhanced Natural Environments and Terrain for Interactive Combat Simulations (GENETICS)

    Science.gov (United States)

    2005-09-01

    desktop system with an AMD Athlon64 FX-55 CPU and 2Gb RAM, a NVIDIA 6800GT 256Mb graphics card, and a Seagate Barracuda 120Gb hard drive operating at...graphics card, and a Seagate Barracuda 80Gb hard drive operating at 7200 rpm. The third GENETICS test machine (“Voodoo”) is a laptop with an AMD Athlon64

  20. D-VASim: An Interactive Virtual Laboratory Environment for the Simulation and Analysis of Genetic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2016-01-01

    the behavior of genetic logic circuit models represented in an SBML (Systems Biology Markup Language). Hence, SBML models developed in other software environments can be analyzed and simulated in D-VASim. D-VASim offers deterministic as well as stochastic simulation; and differs from other software tools...

  1. No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment

    DEFF Research Database (Denmark)

    Bukh, Jens Drachmann; Bock, Camilla; Vinberg, Maj;

    2009-01-01

    in the genes encoding the serotonin transporter, brain derived neurotrophic factor, catechol-O-methyltransferase, angiotensin converting enzyme, tryptophan hydroxylase, and the serotonin receptors 1A, 2A, and 2C. We found no evidence that the effects of the genetic polymorphisms on treatment outcome were...

  2. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Science.gov (United States)

    Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O.; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renström, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L.; Hutri-Kähönen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparsø, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A; Swift, Amy J.; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Böger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Verbeek, André L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltán; Loos, Ruth J. F.

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape. PMID:26426971

  3. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.

    Directory of Open Access Journals (Sweden)

    Thomas W Winkler

    2015-10-01

    Full Text Available Genome-wide association studies (GWAS have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI, a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE, sex-specific effects (G x SEX or age-specific effects that differed between men and women (G x AGE x SEX. For BMI, we identified 15 loci (11 previously established for main effects, four novel that showed significant (FDR<5% age-specific effects, of which 11 had larger effects in younger (<50y than in older adults (≥50y. No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.

  4. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    Science.gov (United States)

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  5. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions.

    Science.gov (United States)

    Mao, Tingting; Li, Jinyu; Wen, Zixiang; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Jiang, Bingjun; Hou, Wensheng; Li, Wenbin; Song, Qijian; Wang, Dechun; Han, Tianfu

    2017-05-26

    Soybean (Glycine max (L.) Merr.) is a short day plant. Its flowering and maturity time are controlled by genetic and environmental factors, as well the interaction between the two factors. Previous studies have shown that both genetic and environmental factors, mainly photoperiod and temperature, control flowering time of soybean. Additionally, these studies have reported gene × gene and gene × environment interactions on flowering time. However, the effects of quantitative trait loci (QTL) in response to photoperiod and temperature have not been well evaluated. The objectives of the current study were to identify the effects of loci associated with flowering time under different photo-thermal conditions and to understand the effects of interaction between loci and environment on soybean flowering. Different photoperiod and temperature combinations were obtained by adjusting sowing dates (spring sowing and summer sowing) or day-length (12 h, 16 h). Association mapping was performed on 91 soybean cultivars from different maturity groups (MG000-VIII) using 172 SSR markers and 5107 SNPs from the Illumina SoySNP6K iSelectBeadChip. The effects of the interaction between QTL and environments on flowering time were also analysed using the QTXNetwork. Large-effect loci were detected on Gm 11, Gm 16 and Gm 20 as in previous reports. Most loci associated with flowering time are sensitive to photo-thermal conditions. Number of loci associated with flowering time was more under the long day (LD) than under the short day (SD) condition. The variation of flowering time among the soybean cultivars mostly resulted from the epistasis × environment and additive × environment interactions. Among the three candidate loci, i.e. Gm04_4497001 (near GmCOL3a), Gm16_30766209 (near GmFT2a and GmFT2b) and Gm19_47514601 (E3 or GmPhyA3), the Gm04_4497001 may be the key locus interacting with other loci for controlling soybean flowering time. The effects of loci associated

  6. SNP interaction detection with Random Forests in high-dimensional genetic data

    Directory of Open Access Journals (Sweden)

    Winham Stacey J

    2012-07-01

    Full Text Available Abstract Background Identifying variants associated with complex human traits in high-dimensional data is a central goal of genome-wide association studies. However, complicated etiologies such as gene-gene interactions are ignored by the univariate analysis usually applied in these studies. Random Forests (RF are a popular data-mining technique that can accommodate a large number of predictor variables and allow for complex models with interactions. RF analysis produces measures of variable importance that can be used to rank the predictor variables. Thus, single nucleotide polymorphism (SNP analysis using RFs is gaining popularity as a potential filter approach that considers interactions in high-dimensional data. However, the impact of data dimensionality on the power of RF to identify interactions has not been thoroughly explored. We investigate the ability of rankings from variable importance measures to detect gene-gene interaction effects and their potential effectiveness as filters compared to p-values from univariate logistic regression, particularly as the data becomes increasingly high-dimensional. Results RF effectively identifies interactions in low dimensional data. As the total number of predictor variables increases, probability of detection declines more rapidly for interacting SNPs than for non-interacting SNPs, indicating that in high-dimensional data the RF variable importance measures are capturing marginal effects rather than capturing the effects of interactions. Conclusions While RF remains a promising data-mining technique that extends univariate methods to condition on multiple variables simultaneously, RF variable importance measures fail to detect interaction effects in high-dimensional data in the absence of a strong marginal component, and therefore may not be useful as a filter technique that allows for interaction effects in genome-wide data.

  7. Systems biology and systems genetics - novel innovative approaches to study host-pathogen interactions during influenza infection.

    Science.gov (United States)

    Kollmus, Heike; Wilk, Esther; Schughart, Klaus

    2014-06-01

    Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host-pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead.

  8. University of California San Francisco (UCSF-1): Chemical-Genetic Interaction Mapping Strategy | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at University of California San Francisco (UCSF-1) developed a chemical-genetic interaction mapping strategy to uncover the impact of cancer gene expression on responses to a panel of emerging therapeutics. To study the impact of aberrant gene activity in isolation, they developed an isogenic model of triple-negative breast cancer (TNBC) using the hormone receptor negative MCF10A non-tumorigenic cell line derived from healthy breast tissue which is diploid and largely devoid of somatic alterations.

  9. Coexisting/Coexpressing Genomic Libraries (CoGeL) identify interactions among distantly located genetic loci for developing complex microbial phenotypes.

    Science.gov (United States)

    Nicolaou, Sergios A; Gaida, Stefan M; Papoutsakis, Eleftherios T

    2011-12-01

    In engineering novel microbial strains for biotechnological applications, beyond a priori identifiable pathways to be engineered, it is becoming increasingly important to develop complex, ill-defined cellular phenotypes. One approach is to screen genomic or metagenomic libraries to identify genes imparting desirable phenotypes, such as tolerance to stressors or novel catabolic programs. Such libraries are limited by their inability to identify interactions among distant genetic loci. To solve this problem, we constructed plasmid- and fosmid-based Escherichia coli Coexisting/Coexpressing Genomic Libraries (CoGeLs). As a proof of principle, four sets of two genes of the l-lysine biosynthesis pathway distantly located on the E. coli chromosome were knocked out. Upon transformation of these auxotrophs with CoGeLs, cells growing without supplementation were found to harbor library inserts containing the knocked-out genes demonstrating the interaction between the two libraries. CoGeLs were also screened to identify genetic loci that work synergistically to create the considerably more complex acid-tolerance phenotype. CoGeL screening identified combination of genes known to enhance acid tolerance (gadBC operon and adiC), but also identified the novel combination of arcZ and recA that greatly enhanced acid tolerance by 9000-fold. arcZ is a small RNA that we show increases pH tolerance alone and together with recA.

  10. Genome Analyses of Icelandic Strains of Sulfolobus islandicus, Model Organisms for Genetic and Virus-Host Interaction Studies

    DEFF Research Database (Denmark)

    Guo, Li; Brügger, Kim; Liu, Chao;

    2011-01-01

    The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad h...... conjugative plasmids, which have integrated at a few tRNA genes lacking introns. This provides a possible rationale for the presence of the introns.......The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad...... in gene content and gene order occur. These include gene clusters involved in specific metabolic pathways, multiple copies of VapBC antitoxin-toxin gene pairs, and in strain HVE10/4, a 50-kb region rich in glycosyl transferase genes. The variable region also contains most of the insertion sequence (IS...

  11. Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia.

    Science.gov (United States)

    Walker, Michael D; Mason, Georgia

    2011-10-10

    Environmental enrichment typically improves learning, increases cortical thickness and hippocampal neurogenesis, reduces anxiety, and reduces stereotypic behaviour, yet sometimes such effects are absent or even reversed. We investigated whether neophobia governs how mice interact with enrichments, since this could explain why enrichments vary in impact. Female C57BL/6 mice, previously screened for neophobia, had free access to enriched cages connected to their standard cages. The relative consumption of food in each cage revealed approximate dwelling times; the use of two enrichments was also measured. High neophobia significantly predicted reduced use of the enriched cage. Thus even within this homogeneous population, provided with identical enrichments, differential neophobia predicted differential enrichment use.

  12. Reprint of: Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia.

    Science.gov (United States)

    Walker, Michael D; Mason, Georgia

    2012-02-14

    Environmental enrichment typically improves learning, increases cortical thickness and hippocampal neurogenesis, reduces anxiety, and reduces stereotypic behaviour, yet sometimes such effects are absent or even reversed. We investigated whether neophobia governs how mice interact with enrichments, since this could explain why enrichments vary in impact. Female C57BL/6 mice, previously screened for neophobia, had free access to enriched cages connected to their standard cages. The relative consumption of food in each cage revealed approximate dwelling times; the use of two enrichments was also measured. High neophobia significantly predicted reduced use of the enriched cage. Thus even within this homogeneous population, provided with identical enrichments, differential neophobia predicted differential enrichment use.

  13. Interactions of Lipid Genetic Risk Scores with Estimates of Metabolic Health in a Danish Population

    DEFF Research Database (Denmark)

    Justesen, Johanne M; Allin, Kristine H; Sandholt, Camilla H

    2015-01-01

    Background—There are several well-established lifestyle factors influencing dyslipidemia and currently; 157 genetic susceptibility loci have been reported to be associated with serum lipid levels at genome-wide statistical significance. However, the interplay between lifestyle risk factors...... and these susceptibility loci has not been fully elucidated. We tested whether genetic risk scores (GRS) of lipid-associated single nucleotide polymorphisms associate with fasting serum lipid traits and whether the effects are modulated by lifestyle factors or estimates of metabolic health. Methods and Results—The single......-cholesterol, high-density lipoprotein-cholesterol, or triglyceride, 4 weighted GRS were constructed. In a cross-sectional design, we investigated whether the effect of these weighted GRSs on lipid levels were modulated by diet, alcohol consumption, physical activity, and smoking or the individual metabolic health...

  14. Genetic interactions between the Drosophila tumor suppressor gene ept and the stat92E transcription factor.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    Full Text Available BACKGROUND: Tumor Susceptibility Gene-101 (TSG101 promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control. PRINCIPAL FINDINGS: We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs. CONCLUSIONS: These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues.

  15. Interaction of genetic predisposition and environmental factors in the pathogenesis of idiopathic orthostatic intolerance

    Science.gov (United States)

    Jordan, J.; Shannon, J. R.; Jacob, G.; Pohar, B.; Robertson, D.

    1999-01-01

    BACKGROUND: The hemodynamic and autonomic abnormalities in idiopathic orthostatic intolerance (IOI) have been studied extensively. However, the mechanisms underlying these abnormalities are not understood. If genetic predisposition were important in the pathogenesis of IOI, monozygotic twins of patients with IOI should have similar hemodynamic and autonomic abnormalities. METHODS: We studied two patients with IOI and their identical twins. Both siblings in the first twin pair had orthostatic symptoms, significant orthostatic tachycardia, increased plasma norepinephrine levels with standing, and a greater than normal decrease in systolic blood pressure with trimethaphan infusion. RESULTS: Both siblings had a normal response of plasma renin activity to upright posture. In the second twin pair, only one sibling had symptoms of orthostatic intolerance, an orthostatic tachycardia, and raised plasma catecholamines with standing. The affected sibling had inappropriately low plasma renin activity with standing and was 8-fold more sensitive to the pressor effect of phenylephrine than the unaffected sibling. CONCLUSIONS: We conclude that in some patients, IOI seems to be strongly influenced by genetic factors. In others, however, IOI may be mainly caused by nongenetic factors. These findings suggest that IOI is heterogenous, and that both genetic and environmental factors contribute individually or collectively to create the IOI phenotype.

  16. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    Directory of Open Access Journals (Sweden)

    Oscar Takeo Suzuki

    2014-08-01

    Full Text Available New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 hours using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways.

  17. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis.

    Science.gov (United States)

    Nakatomi, Mitsushiro; Wang, Xiu-Ping; Key, Darren; Lund, Jennifer J; Turbe-Doan, Annick; Kist, Ralf; Aw, Andrew; Chen, Yiping; Maas, Richard L; Peters, Heiko

    2010-04-15

    Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller "incisor field" forms in Pax9(+/-);Msx1(+/-) mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean

    Directory of Open Access Journals (Sweden)

    Ana M. eGonzález

    2015-03-01

    Full Text Available Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole. A population of 185 recombinant inbred lines (RIL derived from the cross PMB0225 x PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs (21 for resistance to race 23 and 18 for resistance to race 1545 involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS.

  19. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean.

    Science.gov (United States)

    González, Ana M; Yuste-Lisbona, Fernando J; Rodiño, A Paula; De Ron, Antonio M; Capel, Carmen; García-Alcázar, Manuel; Lozano, Rafael; Santalla, Marta

    2015-01-01

    Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS).

  20. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  1. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Siegfried Ussar

    2016-09-01

    Major conclusions: Understanding these complex interactions will help in the development of novel treatments for microbiome-related metabolic diseases. This article is part of a special issue on microbiota.

  2. Genomic and transcriptome profiling identified both human and HBV genetic variations and their interactions in Chinese hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Dong

    2015-12-01

    Full Text Available Interaction between HBV and host genome integrations in hepatocellular carcinoma (HCC development is a complex process and the mechanism is still unclear. Here we described in details the quality controls and data mining of aCGH and transcriptome sequencing data on 50 HCC samples from the Chinese patients, published by Dong et al. (2015 (GEO#: GSE65486. In additional to the HBV-MLL4 integration discovered, we also investigated the genetic aberrations of HBV and host genes as well as their genetic interactions. We reported human genome copy number changes and frequent transcriptome variations (e.g. TP53, CTNNB1 mutation, especially MLL family mutations in this cohort of the patients. For HBV genotype C, we identified a novel linkage disequilibrium region covering HBV replication regulatory elements, including basal core promoter, DR1, epsilon and poly-A regions, which is associated with HBV core antigen over-expression and almost exclusive to HBV-MLL4 integration.

  3. The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis

    Directory of Open Access Journals (Sweden)

    Marcos eMalosetti

    2013-03-01

    Full Text Available Genotype by environment interaction (GEI is an important phenomenon in plant breeding. This paper presents a series of models for describing, exploring, understanding and predicting GEI. All models depart from a two-way table of genotype by environment means. First, a series of descriptive and explorative models/ approaches are presented: Finlay-Wilkinson model, AMMI model, GGE biplot. All of these approaches have in common that they merely try to group genotypes and environments and do not use other information than the two-way table of means. Next, factorial regression is introduced as an approach to explicitly introduce genotypic and environmental covariates for describing and explaining GEI. Finally, QTL modeling is presented as a natural extension of factorial regression, where marker information is translated into genetic predictors. Tests for regression coefficients corresponding to these genetic predictors are tests for main effect QTL expression and QTL by environment interaction (QEI. QTL models for which QEI depends on environmental covariables form an interesting model class for predicting GEI for new genotypes and new environments. For realistic modeling of genotypic differences across multiple environments, sophisticated mixed models are necessary to allow for heterogeneity of genetic variances and correlations across environments. The use and interpretation of all models is illustrated by an example data set from the CIMMYT maize breeding program, containing environments differing in drought and nitrogen stress. To help readers to carry out the statistical analyses, GenStat® programs, 15th Edition and Discovery® version, are presented as supplementary material.

  4. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development.

    Science.gov (United States)

    Brook, A H

    2009-12-01

    Dental anomalies are caused by complex interactions between genetic, epigenetic and environmental factors during the long process of dental development. This process is multifactorial, multilevel, multidimensional and progressive over time. In this paper the evidence from animal models and from human studies is integrated to outline the current position and to construct and evaluate models, as a basis for future work. Dental development is multilevel entailing molecular and cellular interactions which have macroscopic outcomes. It is multidimensional, requiring developments in the three spatial dimensions and the fourth dimension of time. It is progressive, occurring over a long period, yet with critical stages. The series of interactions involving multiple genetic signalling pathways are also influenced by extracellular factors. Interactions, gradients and spatial field effects of multiple genes, epigenetic and environmental factors all influence the development of individual teeth, groups of teeth and the dentition as a whole. The macroscopic, clinically visible result in humans is a complex unit of four different tooth types formed in morphogenetic fields, in which teeth within each field form directionally and erupt at different times, reflecting the spatio-temporal control of development. Even when a specific mutation of a single gene or one major environmental insult has been identified in a patient with a dental anomaly, detailed investigation of the phenotype often reveals variation between affected individuals in the same family, between dentitions in the same individual and even between different teeth in the same dentition. The same, or closely similar phenotypes, whether anomalies of tooth number or structure, may arise from different aetiologies: not only mutations in different genes but also environmental factors may result in similar phenotypes. Related to the action of a number of the developmental regulatory genes active in odontogenesis, in

  5. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development

    Science.gov (United States)

    Brook, A.H.

    2009-01-01

    Dental anomalies are caused by complex interactions between genetic, epigenetic and environmental factors during the long process of dental development. This process is multifactorial, multilevel, multidimensional and progressive over time. In this paper the evidence from animal models and from human studies is integrated to outline the current position and to construct and evaluate models, as a basis for future work. Dental development is multilevel entailing molecular and cellular interactions which have macroscopic outcomes. It is multidimensional, requiring developments in the three spatial dimensions and the fourth dimension of time. It is progressive, occurring over a long period, yet with critical stages. The series of interactions involving multiple genetic signalling pathways are also influenced by extracellular factors. Interactions, gradients and spatial field effects of multiple genes, epigenetic and environmental factors all influence the development of individual teeth, groups of teeth and the dentition as a whole. The macroscopic, clinically visible result in humans is a complex unit of four different tooth types formed in morphogenetic fields, in which teeth within each field form directionally and erupt at different times, reflecting the spatio-temporal control of development. Even when a specific mutation of a single gene or one major environmental insult has been identified in a patient with a dental anomaly, detailed investigation of the phenotype often reveals variation between affected individuals in the same family, between dentitions in the same individual and even between different teeth in the same dentition. The same, or closely similar phenotypes, whether anomalies of tooth number or structure, may arise from different aetiologies: not only mutations in different genes but also environmental factors may result in similar phenotypes. Related to the action of a number of the developmental regulatory genes active in odontogenesis, in

  6. Synthesis and structural characterization of a novel peroxo bridged dinuclear cobalt(III) complex of succinimide showing three varieties of hydrogen bonding interactions

    Indian Academy of Sciences (India)

    Murat Taş; Orhan Büyükgüngör

    2009-05-01

    The reaction of aqueous cobaltous nitrate hexahydrate with the anion of succinimide (sucH) in the presence of excess ethylenediamine (en) in air results in the formation of a dinuclear complex -peroxo-bis[bis(ethylenediamine)succinimidato-cobalt(III)] dinitrate dihydrate, 1, in good yield. Compound 1 was characterized by elemental analysis, IR, visible spectra and magnetic susceptibility studies. The explosive nature of [Co(en)2(suc)(-O2)Co(en)2(suc)](NO3)2.2H2O, 1, precluded its thermal characterization. Compound 1 crystallises in the monoclinic space group 21/ and a half of the molecule, constitutes its asymmetric unit. In the centrosymmetric dinuclear complex 1, two Co(III) centres are linked by a planar peroxide bridge. Each cobalt atom is surrounded by four nitrogen atoms of ethylenediamine ligands, a nitrogen atom of succinimidato anion and an oxygen atom of peroxo bridge resulting in a slightly distorted {CoN5O} octahedron. Due to steric hindrance between the two Co(III) centres, the peroxide bridge is planar with a Co-O-O-Co torsion angle of 180°. The dinuclear complex cation, the nitrate anion and the lattice water are involved in three varieties of H-bonding interactions namely N-H$\\cdots$O, O-H$\\cdots$O and C-H$\\cdots$O.

  7. NMR shows hydrophobic interactions replace glycine packing in the triple helix at a natural break in the (Gly-X-Y)n repeat.

    Science.gov (United States)

    Li, Yingjie; Brodsky, Barbara; Baum, Jean

    2007-08-03

    Little is known about the structural consequences of the more than 20 breaks in the (Gly-X-Y)(n) repeating sequence found in the long triple helix domain of basement membrane type IV collagen. NMR triple resonance studies of doubly labeled residues within a set of collagen model peptides provide distance and dihedral angle restraints that allow determination of model structures of both a standard triple helix and of a triple helix with a break in solution. Although the standard triple helix cannot continue when Gly is not every third residue, the NMR data support rod-like molecules that have standard triple-helical structures on both sides of a well defined and highly localized perturbation. The GAAVM break region may be described as a "pseudo triple helix," because it preserves the standard one-residue stagger of the triple helix but introduces hydrophobic interactions at the position normally occupied by the much smaller and hydrogen-bonded Gly residue of the repeating (Gly-X-Y)(n) sequence. This structure provides a rationale for the consensus presence of hydrophobic residues in breaks of similar length and defines a novel variant of a triple helix that could be involved in recognition.

  8. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    Science.gov (United States)

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  9. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  10. Show me the money!’ An insight into the Copyright Licensing Agency (CLA and its interaction with Higher Education Institutions

    Directory of Open Access Journals (Sweden)

    Dinusha Mendis

    2005-09-01

    Full Text Available The aim of this paper will be to provide a case study of the Copyright Licensing Agency (CLA and its inter-action with Higher Education Institutions (HEIs. The paper will begin by introducing and expanding on the concept of higher education institutions and how they have had to adapt to copyright reproduction, especially from the mid twentieth century, with the advent of the photocopy machine. The paper will touch upon the copyright laws that have attempted to regulate copying within HEIs in the UK and consider whether it has been a success or not. The paper will then carry out a study in to CLA and will aim to raise and answer the following question: what really happens to the money that is collected from HEIs by the CLA and distributed through the Authors Licensing and Collecting Society (ALCS and Publishers Licensing Society (PLS? Is the license fee collected from HEIs fairly distributed amongst the right holders? Having looked at both HEIs and collecting societies (CLA specifically, the paper will consider whether collecting societies are the best practical solution we have or whether we are putting up with a system that we have come to know? The UUK v CLA case revealed the dangerous side of collecting societies, especially that of CLA and questioned its motives and aims. In offering a solution, the system in USA will be considered where the US law allows for two or more competing collecting societies in one area. Does competition combat an abuse of a dominant position, which is what we have in the UK and is this the way forward for the UK? Or does competition curtail creativity? Whilst some of these questions have been answered by the author, others have been left open for consideration.

  11. Unraveling the genetics of wheat-necrotrophic pathogen interactions reveals a conundrum

    Science.gov (United States)

    Interactions between wheat and the necrotrophic pathogens Parastagonospora nodorum (Pn) and Pyrenophora tritici-repentis (Ptr), which cause the foliar diseases Septoria nodorum blotch (SNB) and tan spot, respectively, involve host genes that recognize pathogen-produced necrotrophic effectors (NEs) i...

  12. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome

    DEFF Research Database (Denmark)

    Suhasini, Avvaru N; Rawtani, Nina A; Wu, Yuliang

    2011-01-01

    Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact...

  13. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function.

    Science.gov (United States)

    Wu, X; Chang, A; Sudol, M; Hanes, S D

    2001-12-01

    Transcription of protein-coding genes by RNA polymerase II (pol II) is a highly coordinated process that requires the stepwise association of distinct protein complexes with the C-terminal domain (CTD) of Rpbl, the largest subunit of RNA pol II. Interaction of these complexes with the CTD might be subject to regulation by proteins such as Ess1 and Rsp5. Ess1, a prolyl-isomerase, binds the CTD and is thought to play a positive role in pol II transcription by generating conformational isomers of the CTD. Rsp5, a ubiquitin ligase, binds the CTD and is thought to play a negative role in transcription by mediating Rpbl ubiquitination and degradation. In this paper, we demonstrate that ESS1 and RSP5 interact genetically and that these interactions occur via RPBI. We show that over-expression of RSP5 enhances the growth defect of ess1ts cells and this effect is reversed by introducing extra copies of RPB1. Over-expression of RSP5 also mimics the sensitivity of ess1ts mutant cells to the toxicity of plasmids carrying dominant-negative CTD mutations, whereas mutations in RSP5 suppress this effect. Using a modified two-hybrid assay, we also demonstrate that Essl and Rsp5 compete directly for binding to the CTD. The results suggest a model in which Essl and Rsp5 act opposingly on pol II function to control the level of pol II available for transcription.

  14. The genetic origin of honey bee colonies used in the COLOSS Genotype-Environment Interactions Experiment: a comparison of methods

    DEFF Research Database (Denmark)

    Francis, Roy M; Kryger, Per; Meixner, Marina;

    2014-01-01

    to describe the genetic background and population allocation of the bees used in this experiment. Two wing morphometric and two genetic methods were employed to discriminate bee populations. Classical morphometry of 11 angles on the wings were carried out on 350 bees. Geometric morphometry on 19 wing...... landmarks was carried out on 381 individuals. DNA microsatellite analysis was carried out on 315 individuals using 24 loci. Allozyme analysis was performed on 90 individuals using six enzyme systems. DNA microsatellite markers produced the best discrimination between the subspecies (Apis mellifera carnica......, A. m. ligustica, A. m. macedonica, A. m. mellifera and A. m. siciliana) used in the experiment. Morphometric methods generally showed an intermediate level of discrimination, usually best separating A. m. siciliana and A. m. ligustica from the remaining populations. Allozyme markers lack power...

  15. Epidemiology of Down syndrome: new insight into the multidimensional interactions among genetic and environmental risk factors in the oocyte.

    Science.gov (United States)

    Ghosh, Sujoy; Hong, Chang-Sook; Feingold, Eleanor; Ghosh, Papiya; Ghosh, Priyanka; Bhaumik, Pranami; Dey, Subrata Kumar

    2011-11-01

    Down syndrome birth is attributable to multiple maternal risk factors that include both genetic and environmental challenges, but there is limited understanding of the complicated interactions among these factors. In the present study, a case-control analysis of approximately 400 infants with or without suspected Down syndrome reported between 2003 and 2009 and their parents in and around Kolkata, India, was conducted. Maternal exposure to 2 environmental risk factors (smokeless chewing tobacco and oral contraceptive pills) was recorded, and families were genotyped with microsatellite markers to establish the origin of nondisjunction errors as well as recombination patterns of nondisjoined chromosome 21. With logistic regression models, the possible interactions among all of these risk factors, as well as with maternal age, were explored. Smokeless chewing tobacco was associated with significant risk for meiosis II nondisjunction and achiasmate (nonexchange) meiosis I error among young mothers. By contrast, the risk due to oral contraceptive pills was associated with older mothers. Study results suggest that the chewing tobacco risk factor operates independently of the maternal age effect, whereas contraceptive pill-related risk may interact with or exacerbate age-related risk. Moreover, both risk factors, when present together, exhibited a strong age-dependent effect.

  16. Neuregulin 1: a prime candidate for research into gene-environment interactions in schizophrenia? Insights from genetic rodent models

    Directory of Open Access Journals (Sweden)

    Tim eKarl

    2013-08-01

    Full Text Available Schizophrenia is a multi-factorial disease characterized by a high heritability and environmental risk factors. In recent years, an increasing number of researchers worldwide have started investigating the ‘two-hit hypothesis’ of schizophrenia predicting that genetic and environmental risk factors (GxE interactively cause the development of the disorder. This work is starting to produce valuable new animal models and reveal novel insights into the pathophysiology of schizophrenia. This mini review will focus on recent advancements in the field made by challenging mutant and transgenic rodent models for the schizophrenia candidate gene neuregulin 1 (NRG1 with particular environmental factors. It will outline results obtained from mouse and rat models for various Nrg1 isoforms/isoform types (e.g. transmembrane domain Nrg1, Type II Nrg1, which have been exposed to different forms of stress (acute versus chronic, restraint versus social and housing conditions (standard laboratory versus minimally enriched housing. These studies suggest Nrg1 as a prime candidate for GxE interactions in schizophrenia rodent models and that the use of rodent models will enable a better understanding of GxE interactions and the underlying mechanisms.

  17. Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry.

    Science.gov (United States)

    Corradin, Olivia; Cohen, Andrea J; Luppino, Jennifer M; Bayles, Ian M; Schumacher, Fredrick R; Scacheri, Peter C

    2016-11-01

    SNPs associated with disease susceptibility often reside in enhancer clusters, or super-enhancers. Constituents of these enhancer clusters cooperate to regulate target genes and often extend beyond the linkage disequilibrium (LD) blocks containing risk SNPs identified in genome-wide association studies (GWAS). We identified 'outside variants', defined as SNPs in weak LD with GWAS risk SNPs that physically interact with risk SNPs as part of a target gene's regulatory circuitry. These outside variants further explain variation in target gene expression beyond that explained by GWAS-associated SNPs. Additionally, the clinical risk associated with GWAS SNPs is considerably modified by the genotype of outside variants. Collectively, these findings suggest a potential model in which outside variants and GWAS SNPs that physically interact in 3D chromatin collude to influence target transcript levels as well as clinical risk. This model offers an additional hypothesis for the source of missing heritability for complex traits.

  18. Optimizing information flow in small genetic networks. II. Feed-forward interactions.

    Science.gov (United States)

    Walczak, Aleksandra M; Tkacik, Gasper; Bialek, William

    2010-04-01

    Central to the functioning of a living cell is its ability to control the readout or expression of information encoded in the genome. In many cases, a single transcription factor protein activates or represses the expression of many genes. As the concentration of the transcription factor varies, the target genes thus undergo correlated changes, and this redundancy limits the ability of the cell to transmit information about input signals. We explore how interactions among the target genes can reduce this redundancy and optimize information transmission. Our discussion builds on recent work [Tkacik, Phys. Rev. E 80, 031920 (2009)], and there are connections to much earlier work on the role of lateral inhibition in enhancing the efficiency of information transmission in neural circuits; for simplicity we consider here the case where the interactions have a feed forward structure, with no loops. Even with this limitation, the networks that optimize information transmission have a structure reminiscent of the networks found in real biological systems.

  19. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liquan; Wang, Dan [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); Fisher, Alfred L., E-mail: fishera2@uthscsa.edu [Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229 (United States); Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States); Wang, Zhou, E-mail: wangz2@upmc.edu [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States)

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  20. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis.

    Directory of Open Access Journals (Sweden)

    Paul M B Medina

    Full Text Available BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.

  1. Associations of two common genetic variants with breast cancer risk in a chinese population: a stratified interaction analysis.

    Directory of Open Access Journals (Sweden)

    Yuxiang Lin

    Full Text Available Recent genome-wide association studies (GWAS have identified a series of new genetic susceptibility loci for breast cancer (BC. However, the correlations between these variants and breast cancer are still not clear. In order to explore the role of breast cancer susceptibility variants in a Southeast Chinese population, we genotyped two common SNPs at chromosome 6q25 (rs2046210 and in TOX3 (rs4784227 in a case-control study with a total of 702 breast cancer cases and 794 healthy-controls. In addition, we also evaluated the multiple interactions among genetic variants, risk factors, and tumor subtypes. Associations of genotypes with breast cancer risk was evaluated using multivariate logistic regression to estimate odds ratios (OR and their 95% confidence intervals (95% CI. The results indicated that both polymorphisms were significantly associated with the risk of breast cancer, with per allele OR = 1.35, (95%CI = 1.17-1.57 for rs2046210 and per allele OR = 1.24 (95%CI = 1.06-1.45 for rs4784227. Furthermore, in subgroup stratified analyses, we observed that the T allele of rs4784227 was significantly associated with elevated OR among postmenopausal populations (OR = 1.44, 95%CI 1.11-1.87 but not in premenopausal populations, with the heterogeneity P value of P = 0.064. These findings suggest that the genetic variants at chromosome 6q25 and in the TOX3 gene may play important roles in breast cancer development in a Chinese population and the underlying biological mechanisms need to be further elucidated.

  2. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium.

    Science.gov (United States)

    Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A

    2016-02-01

    Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.

  3. Dispersal, Isolation, and Interaction in the Islands of Polynesia: A Critical Review of Archaeological and Genetic Evidence

    Directory of Open Access Journals (Sweden)

    K. Ann Horsburgh

    2017-09-01

    Full Text Available Integration of archaeology, modern genetics, and ancient DNA holds promise for the reconstruction of the human past. We examine the advances in research on the indigenous peoples of Polynesia to determine: (1 what do archaeological and genetic data (ancient and modern DNA tell us about the origins of Polynesians; and, (2 what evidence is there for long-distance travel and contacts between Polynesians and indigenous populations of the Americas? We note that the general dispersal pattern of founding human populations in the remote islands of the Pacific and long-distance interaction spheres continue to reflect well-established models. New research suggests that the formation of an Ancestral Polynesia Culture in Western Polynesia may have involved differential patterns of dispersal followed by significant later migrations. It has also been suggested that the pause between the settlement of Western and Eastern Polynesia was centuries longer than currently thought, followed by a remarkably rapid pulse of island colonization. Long-distance travel between islands of the Pacific is currently best documented through the sourcing of artifacts, while the discovery of admixture of Native American DNA within the genome of the people from Easter Island (Rapa Nui is strong new evidence for sustained contacts between Polynesia and the Americas.

  4. Genetic Interactions Reveal that Specific Defects of Chloroplast Translation are Associated with the Suppression of var2-Mediated Leaf Variegation

    Institute of Scientific and Technical Information of China (English)

    Xiayan Liu; Mengdi Zheng; Rui Wang; Ruijuan Wang; Lijun An; Steve R. Rodermel; Fei Yu

    2013-01-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development.

  5. Estimating genetic effect sizes under joint disease-endophenotype models in presence of gene-environment interactions

    Directory of Open Access Journals (Sweden)

    Alexandre eBureau

    2015-07-01

    Full Text Available Effects of genetic variants on the risk of complex diseases estimated from association studies are typically small. Nonetheless, variants may have important effects in presence of specific levels of environmental exposures, and when a trait related to the disease (endophenotype is either normal or impaired. We propose polytomous and transition models to represent the relationship between disease, endophenotype, genotype and environmental exposure in family studies. Model coefficients were estimated using generalized estimating equations and were used to derive gene-environment interaction effects and genotype effects at specific levels of exposure. In a simulation study, estimates of the effect of a genetic variant were substantially higher when both an endophenotype and an environmental exposure modifying the variant effect were taken into account, particularly under transition models, compared to the alternative of ignoring the endophenotype. Illustration of the proposed modeling with the metabolic syndrome, abdominal obesity, physical activity and polymorphisms in the NOX3 gene in the Quebec Family Study revealed that the positive association of the A allele of rs1375713 with the metabolic syndrome at high levels of physical activity was only detectable in subjects without abdominal obesity, illustrating the importance of taking into account the abdominal obesity endophenotype in this analysis.

  6. Membrane Vesicles Released by a hypervesiculating Escherichia coli Nissle 1917 tolR Mutant Are Highly Heterogeneous and Show Reduced Capacity for Epithelial Cell Interaction and Entry

    Science.gov (United States)

    Pérez-Cruz, Carla; Cañas, María-Alexandra; Giménez, Rosa; Badia, Josefa; Mercade, Elena; Aguilera, Laura

    2016-01-01

    Membrane vesicles (MVs) produced by Gram-negative bacteria are being explored for novel clinical applications due to their ability to deliver active molecules to distant host cells, where they can exert immunomodulatory properties. MVs released by the probiotic Escherichia coli Nissle 1917 (EcN) are good candidates for testing such applications. However, a drawback for such studies is the low level of MV isolation from in vitro culture supernatants, which may be overcome by the use of mutants in cell envelope proteins that yield a hypervesiculation phenotype. Here, we confirm that a tolR mutation in EcN increases MV production, as determined by protein, LPS and fluorescent lipid measurements. Transmission electron microscopy (TEM) of negatively stained MVs did not reveal significant differences with wild type EcN MVs. Conversely, TEM observation after high-pressure freezing followed by freeze substitution of bacterial samples, together with cryo-TEM observation of plunge-frozen hydrated isolated MVs showed considerable structural heterogeneity in the EcN tolR samples. In addition to common one-bilayer vesicles (OMVs) and the recently described double-bilayer vesicles (O-IMVs), other types of MVs were observed. Time-course experiments of MV uptake in Caco-2 cells using rhodamine- and DiO-labelled MVs evidenced that EcN tolR MVs displayed reduced internalization levels compared to the wild-type MVs. The low number of intracellular MVs was due to a lower cell binding capacity of the tolR-derived MVs, rather than a different entry pathway or mechanism. These findings indicate that heterogeneity of MVs from tolR mutants may have a major impact on vesicle functionality, and point to the need for conducting a detailed structural analysis when MVs from hypervesiculating mutants are to be used for biotechnological applications. PMID:28036403

  7. Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima-media thickness in Bangladesh.

    Science.gov (United States)

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Cheng, Xin; Parvez, Faruque; Paul-Brutus, Rachelle; Paul, Rina Rani; Sarwar, Golam; Ahmed, Alauddin; Jiang, Jieying; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T; Desvarieux, Moise; Ahsan, Habibul; Chen, Yu

    2014-05-01

    Epidemiologic studies that evaluated genetic susceptibility for the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima-media thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenic in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = -5.1 μm, 95% CI = -31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = -3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to the proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings.

  8. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  9. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, Samuel M.; Gibson, Ronald L. [University of Washington, Department of Pediatrics, Seattle, WA (United States); Effmann, Eric L. [University of Washington School of Medicine, Children' s Hospital and Regional Medical Center, Department of Radiology, Seattle, WA (United States)

    2005-08-01

    Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies. (orig.)

  10. HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer.

    Directory of Open Access Journals (Sweden)

    Angeline S Andrew

    Full Text Available Bladder cancer is the 4(th most common cancer among men in the U.S. We analyzed variant genotypes hypothesized to modify major biological processes involved in bladder carcinogenesis, including hormone regulation, apoptosis, DNA repair, immune surveillance, metabolism, proliferation, and telomere maintenance. Logistic regression was used to assess the relationship between genetic variation affecting these processes and susceptibility in 563 genotyped urothelial cell carcinoma cases and 863 controls enrolled in a case-control study of incident bladder cancer conducted in New Hampshire, U.S. We evaluated gene-gene interactions using Multifactor Dimensionality Reduction (MDR and Statistical Epistasis Network analysis. The 3'UTR flanking variant form of the hormone regulation gene HSD3B2 was associated with increased bladder cancer risk in the New Hampshire population (adjusted OR 1.85 95%CI 1.31-2.62. This finding was successfully replicated in the Texas Bladder Cancer Study with 957 controls, 497 cases (adjusted OR 3.66 95%CI 1.06-12.63. The effect of this prevalent SNP was stronger among males (OR 2.13 95%CI 1.40-3.25 than females (OR 1.56 95%CI 0.83-2.95, (SNP-gender interaction P = 0.048. We also identified a SNP-SNP interaction between T-cell activation related genes GATA3 and CD81 (interaction P = 0.0003. The fact that bladder cancer incidence is 3-4 times higher in males suggests the involvement of hormone levels. This biologic process-based analysis suggests candidate susceptibility markers and supports the theory that disrupted hormone regulation plays a role in bladder carcinogenesis.

  11. Genetic interactions provide evidence for the role of integrins in specifying normal olfactory behavior in Drosophila melanogaster.

    Science.gov (United States)

    Ayyub, Champakali; Paranjape, Jayashree

    2002-01-01

    In a previous paper, we showed that weak hypomorphic alleles at the myospheroid (mys) locus, which encodes the beta-subunit of integrin, possess defects in olfactory behavior in both adult and larva. In this paper, we show that another olfactory gene, olfE, exhibits haploinsufficient interactions with recessive alleles at the mys locus. olfE has recently been shown to be an allele of swisscheese and is now designated as sws(olfE). Our findings suggest an interaction between the sws protein and beta-integrin in the development and/or functioning of the olfactory system. Similar interactions were also observed between sws and inflated, a gene encoding the alpha2-subunit of integrin, as well as mys and multiple edematous wing (mew), a gene coding for alpha1 subunit of integrin. This study provides evidence for the roles of different integrin subunits and the sws product in regulating normal olfactory behavior in Drosophila.

  12. CLPTM1L genetic polymorphisms and interaction with smoking and alcohol drinking in lung cancer risk: a case-control study in the Han population from northwest China.

    Science.gov (United States)

    Xun, Xiaojie; Wang, Huijuan; Yang, Hua; Wang, Hong; Wang, Bo; Kang, Longli; Jin, Tianbo; Chen, Chao

    2014-12-01

    Genetic variants of cleft lip and palate trans-membrane 1-like (CLPTM1L) genes in the p15.33 region of chromosome 5 were previously identified to influence susceptibility to lung cancer. We examined the association of single nucleotide polymorphisms (SNPs) in CLPTM1L genes with lung cancer and explored their potential effects on the relationship between environmental risk factors (smoking, drinking) and lung cancer in a Chinese Han population. We genotyped 9 single nucleotide polymorphisms (SNPs) of CLPTM1L in a case-control study with 228 lung cancer cases and 301 controls from northwest China. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression. We identified that the minor alleles of rs451360, rs402710, and rs31484 in CLPTM1L were associated with a 0.52-fold, 0.76-fold, and 0.70-fold decreased risk of lung cancer in allelic model analysis, respectively. In the genetic model analysis, we found rs402710 and rs401681 were associated with decreased lung cancer risk. Further stratification analysis showed that rs380286 displayed a significantly decreased lung cancer risk (OR=0.65, P=0.041) in the non-drinkers. In addition, Haplotype "GTTATCTGT" was found to be associated with decreased lung cancer risk (OR=0.50, P=0.033). Our results verified that genetic variants of CLPTM1L contribute to lung cancer susceptibility in the northwest Chinese Han population. Additionally, we found that consumption of alcohol may interact with CLPTM1L polymorphisms to contribute to overall lung cancer susceptibility.

  13. iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data

    Directory of Open Access Journals (Sweden)

    Heinrich Julian

    2012-05-01

    Full Text Available Abstract In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT, facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data.

  14. Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients.

    Science.gov (United States)

    Solini, Anna; Simeon, Vittorio; Derosa, Lisa; Orlandi, Paola; Rossi, Chiara; Fontana, Andrea; Galli, Luca; Di Desidero, Teresa; Fioravanti, Anna; Lucchesi, Sara; Coltelli, Luigi; Ginocchi, Laura; Allegrini, Giacomo; Danesi, Romano; Falcone, Alfredo; Bocci, Guido

    2015-10-01

    VEGFR-2 and P2X7 receptor (P2X7R) have been described to stimulate the angiogenesis and inflammatory processes of prostate cancer. The present study has been performed to investigate the genetic interactions among VEGFR-2 and P2X7R SNPs and their correlation with overall survival (OS) in a population of metastatic prostate cancer patients. Analyses were performed on germline DNA obtained from blood samples and SNPs were investigated by real-time PCR technique. The survival dimensionality reduction (SDR) methodology was applied to investigate the genetic interaction between SNPs. One hundred patients were enrolled. The SDR software provided two genetic interaction profiles consisting of the combination between specific VEGFR-2 (rs2071559, rs11133360) and P2X7R (rs3751143, rs208294) genotypes. The median OS was 126 months (95% CI, 115.94-152.96) and 65.65 months (95% CI, 52.95-76.53) for the favorable and the unfavorable genetic profile, respectively (p < 0.0001). The genetic statistical interaction between VEGFR-2 (rs2071559, rs11133360) and P2X7R (rs3751143, rs208294) genotypes may identify a population of prostate cancer patients with a better prognosis.

  15. Phosphatase and Tensin Homologue Genetic Polymorphisms and their Interactions with Viral Mutations on the Risk of Hepatocellular Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yan Du; Yu-Wei Zhang; Rui Pu; Xue Han; Jian-Ping Hu; Hong-Wei Zhang; Hong-Yang Wang

    2015-01-01

    Background:Chronic hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC).Some HBV mutants and dysregulation of phosphatase and tensin homolog (PTEN) may promote the development of HCC synergistically.We aimed to test the effects of PTEN genetic polymorphisms and their interactions with important HBV mutations on the development of HCC in HBV-infected subjects.Methods:Quantitative polymerase chain reaction was applied to genotype PTEN polymorphisms (rs1234220,rs2299939,rs1234213) in 1012 healthy controls,302 natural clearance subjects,and 2011 chronic HBV-infected subjects including 1021 HCC patients.HBV mutations were determined by sequencing.The associations of PTEN polymorphisms and their interactions with HBV mutations with HCC risk were assessed using multivariate logistic regression analysis.Results:Rs 1234220 C allele was significantly associated with HCC risk compared to healthy controls (adjusted odds ratio [A OR] =1.35,95% confidence interval [CI] =1.07-1.69) and HCC-free HBV-infected subjects (AOR =1.27,95% CI =1.01-1.57).rs1234220 C allele was significantly associated with increased frequencies of HCC-risk A 1652G,C 1673T,and C 1730G mutations in genotype B HBV-infected subjects.Rs2299939 GT genotype was inversely associated with HCC risk in HBV-infected patients (AOR =0.75,95% CI =0.62-0.92).The interaction of rs2299939 variant genotypes (GT+TT) with A3054T mutation significantly increased HCC risk (AOR =2.41,95% CI =1.08-5.35);whereas its interaction with C3116T mutation significantly reduced HCC risk (AOR =0.34,95% CI =0.18-0.66).These significant effects were only evident in males after stratification.Conclusions:PTEN polymorphisms and their interactions with HBV mutations may contribute to hepatocarcinogenesis in males.The host-virus interactions are important in identifying HBV-infected subjects who are more likely to develop HCC.

  16. On the remote interaction of biological objects with identical genetic structures

    CERN Document Server

    Berkovich, S Y

    2002-01-01

    The paper puts forward an unusual prediction that cultivating a clone can curtail the lifespan of the clone donor. Neither the arrangement of this suggested empirical study nor the analyses of the anticipated outcomes rely on the accompanying theoretical contemplations. This prediction has come from the interpretation of the genome as a "barcode". The genome is considered as an identification label rather than a repository of control information, so living beings are portrayed as a community of users on the "Internet of the physical Universe". Thus, biological objects with identical (or nearly identical) DNA structures can interfere, and the surmised remote impact appears tangible. The effect of clone-donor interaction leads to a decisive Experimentum Crucis that can reject the common view on the organization of biological information processing. Exploitation of this effect can be potentially dangerous.

  17. Pharmacokinetic interactions between glimepiride and rosuvastatin in healthy Korean subjects: does the SLCO1B1 or CYP2C9 genetic polymorphism affect these drug interactions?

    Science.gov (United States)

    Kim, Choon Ok; Oh, Eun Sil; Kim, Hohyun; Park, Min Soo

    2017-01-01

    To improve cardiovascular outcomes, dyslipidemia in patients with diabetes needs to be treated. Thus, these patients are likely to take glimepiride and rosuvastatin concomitantly. Therefore, this study aimed to evaluate the pharmacokinetic (PK) interactions between these two drugs in healthy males and to explore the effect of SLCO1B1 and CYP2C9 polymorphisms on their interactions in two randomized, open-label crossover studies. Glimepiride was studied in part 1 and rosuvastatin in part 2. Twenty-four participants were randomly assigned to each part. All subjects (n=24) completed part 1, and 22 subjects completed part 2. A total of 38 subjects among the participants of the PK interaction studies were enrolled in the genotype study to analyze their SLCO1B1 and CYP2C9 polymorphisms retrospectively (n=22 in part 1, n=16 in part 2). Comparison of the PK and safety of each drug alone with those of the drugs in combination showed that both glimepiride and rosuvastatin did not interact with each other and had tolerable safety profiles in all subjects. However, with regard to glimepiride PK, the SLCO1B1 521TC group had a significantly higher maximum plasma concentration (Cmax,ss) and area under the plasma concentration–time curve during the dose interval at steady state (AUCτ,ss) for glimepiride in combination with rosuvastatin than those for glimepiride alone. However, other significant effects of the SLCO1B1 or CYP2C9 polymorphism on the interaction between the two drugs were not observed. In conclusion, there were no significant PK interactions between the two drugs; however, the exposure to glimepiride could be affected by rosuvastatin in the presence of the SLCO1B1 polymorphism. PMID:28260863

  18. A Genetic Model for Understanding Higher Order Visual Processing: Functional Interactions of the Ventral Visual Stream in Williams Syndrome

    Science.gov (United States)

    Sarpal, Deepak; Buchsbaum, Bradley R.; Kohn, Philip D.; Kippenhan, J. Shane; Mervis, Carolyn B.; Morris, Colleen A.; Meyer-Lindenberg, Andreas

    2008-01-01

    Williams syndrome (WS) is a rare neurodevelopmental disorder caused by a 1.6 Mb microdeletion on chromosome 7q11.23 and characterized by hypersocial personality and prominent visuospatial construction impairments. Previous WS studies have identified functional and structural abnormalities in the hippocampal formation, prefrontal regions crucial for amygdala regulation and social cognition, and the dorsal visual stream, notably the intraparietal sulcus (IPS). Although aberrant ventral stream activation has not been found in WS, object-related visual information that is processed in the ventral stream is a critical source of input into these abnormal regions. The present study, therefore, examined neural interactions of ventral stream areas in WS. Using a passive face- and house-viewing paradigm, activation and functional connectivity of stimulus-selective regions in fusiform and parahippocampal gyri, respectively, were investigated. During house viewing, significant activation differences were observed between participants with WS and a matched control group in IPS. Abnormal functional connectivity was found between parahippocampal gyrus and parietal cortex and between fusiform gyrus and a network of brain regions including amygdala and portions of prefrontal cortex. These results indicate that abnormal upstream visual object processing may contribute to the complex cognitive/behavioral phenotype in WS and provide a systems-level characterization of genetically mediated abnormalities of neural interactions. PMID:18308711

  19. Ecological and genetic interactions between cyanobacteria and viruses in a low-oxygen mat community inferred through metagenomics and metatranscriptomics.

    Science.gov (United States)

    Voorhies, Alexander A; Eisenlord, Sarah D; Marcus, Daniel N; Duhaime, Melissa B; Biddanda, Bopaiah A; Cavalcoli, James D; Dick, Gregory J

    2016-02-01

    Metagenomic and metatranscriptomic sequencing was conducted on cyanobacterial mats of the Middle Island Sinkhole (MIS), Lake Huron. Metagenomic data from 14 samples collected over 5 years were used to reconstruct genomes of two genotypes of a novel virus, designated PhV1 type A and PhV1 type B. Both viral genotypes encode and express nblA, a gene involved in degrading phycobilisomes, which are complexes of pigmented proteins that harvest light for photosynthesis. Phylogenetic analysis indicated that the viral-encoded nblA is derived from the host cyanobacterium, Phormidium MIS-PhA. The cyanobacterial host also has two complete CRISPR (clustered regularly interspaced short palindromic repeats) systems that serve as defence mechanisms for bacteria and archaea against viruses and plasmids. One 45 bp CRISPR spacer from Phormidium had 100% nucleotide identity to PhV1 type B, but this region was absent from PhV1 type A. Transcripts from PhV1 and the Phormidium CRISPR loci were detected in all six metatranscriptomic data sets (three during the day and three at night), indicating that both are transcriptionally active in the environment. These results reveal ecological and genetic interactions between viruses and cyanobacteria at MIS, highlighting the value of parallel analysis of viruses and hosts in understanding ecological interactions in natural communities.

  20. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells

    Directory of Open Access Journals (Sweden)

    Judd F. Hultquist

    2016-10-01

    Full Text Available New genetic tools are needed to understand the functional interactions between HIV and human host factors in primary cells. We recently developed a method to edit the genome of primary CD4+ T cells by electroporation of CRISPR/Cas9 ribonucleoproteins (RNPs. Here, we adapted this methodology to a high-throughput platform for the efficient, arrayed editing of candidate host factors. CXCR4 or CCR5 knockout cells generated with this method are resistant to HIV infection in a tropism-dependent manner, whereas knockout of LEDGF or TNPO3 results in a tropism-independent reduction in infection. CRISPR/Cas9 RNPs can furthermore edit multiple genes simultaneously, enabling studies of interactions among multiple host and viral factors. Finally, in an arrayed screen of 45 genes associated with HIV integrase, we identified several candidate dependency/restriction factors, demonstrating the power of this approach as a discovery platform. This technology should accelerate target validation for pharmaceutical and cell-based therapies to cure HIV infection.

  1. Novel genetic male sterility developed in (Capsicum annuum x C. chinense) x C. pubescens and induced by HNO2 showing Mendelian inheritance and aborted at telophase of microspore mother cell stage.

    Science.gov (United States)

    Huang, W; Ji, J-J; Li, C; Li, G-Q; Yin, C-C; Chai, W-G; Gong, Z-H

    2015-04-13

    A novel genetic male sterile germplasm was developed by successively crossing of (C. annuum x C. chinense) x C. pubescens and by chemical mutagenesis in pepper. The sterile anthers showed morphological abnormalities, but pistils developed normally with fine pollination capability. We investigated fertility segregation through sib-crossing of the same strains and test crossing by male sterile plants with 6 advanced inbred lines. The results showed that male fertility in the pepper was dominant in the F1 generation and segregated at a rate of 3:1 in the F2 generation, suggesting that monogenic male sterility was recessive and conformed to Mendelian inheritance. Cyto-anatomy analysis revealed that microspore abortion of sterile anthers occurred during telophase in the microspore mother cell stage when tapetal cells showed excessive vacuolation, resulting in occupation of the loculi. The microspore mother cells self-destructed and autolyzed with the tapetum so that meiosis in pollen mother cells could not proceed past the tetrad stage.

  2. Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans.

    Science.gov (United States)

    Torres, Jorge B; Ruberson, John R

    2008-06-01

    A number of cotton varieties have been genetically transformed with genes from Bacillus thuringiensis (Bt) to continuously produce Bt endotoxins, offering whole plant and season-long protection against many lepidopteran larvae. Constant whole-plant toxin expression creates a significant opportunity for non-target herbivores to acquire and bio-accumulate the toxin for higher trophic levels. In the present study we investigated movement of Cry1Ac toxin from the transgenic cotton plant through specific predator-prey pairings, using omnivorous predators with common cotton pests as prey: (1) the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), with the predator Podisus maculiventris (Heteroptera: Pentatomidae); (2) the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae), with the predatory big-eyed bug Geocoris punctipes (Heteroptera: Geocoridae) and (3) with the predatory damsel bug Nabis roseipennis (Heteropera: Nabidae); and (4) the thrips Frankliniella occidentalis (Thysanoptera: Thripidae) with the predatory pirate bug Orius insidiosus (Heteroptera: Anthocoridae). We quantified Cry1Ac toxin in the cotton plants, and in the pests and predators, and the effects of continuous feeding on S. exigua larvae fed either Bt or non-Bt cotton on life history traits of P. maculiventris. All three herbivores were able to convey Cry1Ac toxin to their respective predators. Among the herbivores, T. urticae exhibited 16.8 times more toxin in their bodies than that expressed in Bt-cotton plant, followed by S. exigua (1.05 times), and F. occidentalis immatures and adults (0.63 and 0.73 times, respectively). Of the toxin in the respective herbivorous prey, 4, 40, 17 and 14% of that amount was measured in the predators G. punctipes, P. maculiventris, O. insidiosus, and N. roseipennis, respectively. The predator P. maculiventris exhibited similar life history characteristics (developmental time, survival, longevity, and fecundity) regardless of the prey's food

  3. A Method for Aircraft Concept Selection Using Multicriteria Interactive Genetic Algorithms

    Science.gov (United States)

    Buonanno, Michael; Mavris, Dimitri

    2005-01-01

    The problem of aircraft concept selection has become increasingly difficult in recent years as a result of a change from performance as the primary evaluation criteria of aircraft concepts to the current situation in which environmental effects, economics, and aesthetics must also be evaluated and considered in the earliest stages of the decision-making process. This has prompted a shift from design using historical data regression techniques for metric prediction to the use of physics-based analysis tools that are capable of analyzing designs outside of the historical database. The use of optimization methods with these physics-based tools, however, has proven difficult because of the tendency of optimizers to exploit assumptions present in the models and drive the design towards a solution which, while promising to the computer, may be infeasible due to factors not considered by the computer codes. In addition to this difficulty, the number of discrete options available at this stage may be unmanageable due to the combinatorial nature of the concept selection problem, leading the analyst to arbitrarily choose a sub-optimum baseline vehicle. These concept decisions such as the type of control surface scheme to use, though extremely important, are frequently made without sufficient understanding of their impact on the important system metrics because of a lack of computational resources or analysis tools. This paper describes a hybrid subjective/quantitative optimization method and its application to the concept selection of a Small Supersonic Transport. The method uses Genetic Algorithms to operate on a population of designs and promote improvement by varying more than sixty parameters governing the vehicle geometry, mission, and requirements. In addition to using computer codes for evaluation of quantitative criteria such as gross weight, expert input is also considered to account for criteria such as aeroelasticity or manufacturability which may be impossible or

  4. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds.

    Science.gov (United States)

    Lecomte, L; Duffé, P; Buret, M; Servin, B; Hospital, F; Causse, M

    2004-08-01

    The evaluation of organoleptic quality of tomato fruit requires physical, chemical and sensory analyses, which are expensive and difficult to assess. Therefore, their practical use in phenotypic selection is difficult. In a previous study, the genetic control of several traits related to organoleptic quality of fresh-market tomato fruit was investigated. Five chromosome regions strongly involved in organoleptic quality attributes were then chosen to be introgressed into three different recipient lines through marker-assisted selection. A marker-assisted backcross (MABC) strategy was performed, as all the favorable alleles for quality traits were provided by the same parental tomato line, whose fruit weight (FW) and firmness were much lower than those of the lines commonly used to develop fresh market varieties. Three improved lines were obtained after three backcrossing and two selfing generations. The implementation of the MABC scheme is described. The three improved lines were crossed together and with the recipient lines in a half-diallel mating scheme, and the simultaneous effect of the five quantitative trait locus (QTL) regions was compared in different genetic backgrounds. Significant effects of the introgressed regions and of the genetic backgrounds were shown. Additive effects were detected for soluble solid and reducing sugar content in two genetic backgrounds. A partially dominant effect on titratable acidity was detected in only one genetic background. In contrast, additive to dominant unfavorable effects of the donor alleles were detected for FW and locule number in the three genetic backgrounds. Recessive QTL effects on firmness were only detected in the two firmest genetic backgrounds. Comparison of the hybrids in the half-diallel gave complementary information on the effects of: (1) the alleles at the selected regions, (2) the genetic backgrounds and (3) their interaction. Breeding efficiency strongly varied according to the recipient parent, and

  5. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.

    Science.gov (United States)

    Wynn, April N; Rueschhoff, Elizabeth E; Franks, Robert G

    2011-01-01

    In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

  6. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    April N Wynn

    Full Text Available In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU and AINTEGUMENTA (ANT encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM. The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM and GROWTH-REGULATING FACTOR (GRF families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

  7. Interaction of Ionizing Radiation, Genetically Active Chemicals, and Radiofrequency Radiation in Human and Rodent Cells

    Science.gov (United States)

    1990-12-01

    Martin L. Meltz, Ph.D. Patricia K. Holahan , Ph.D. Steven T. Smith, Ph.D. James J. Kerbacher, Ph.D. Victor Ciaravino, Ph.D. Department of Radiology PO...Chemicals, and Radiofrequency Radiation in Human and Rodent Cells 12 PERSONAL AUTHOR(S) Meltz. Martin L.; Holahan Patricia K.; Smith Steven Kerbacher...Potentiation of SCE Induction and Cell Killing by Adriamycin in CHO Cells (Ciaravino and Holahan , in preparation), showed that Adriamycin exposure at 410C

  8. Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area.

    Science.gov (United States)

    Benson, John F; Mahoney, Peter J; Sikich, Jeff A; Serieys, Laurel E K; Pollinger, John P; Ernest, Holly B; Riley, Seth P D

    2016-08-31

    The extinction vortex is a theoretical model describing the process by which extinction risk is elevated in small, isolated populations owing to interactions between environmental, demographic, and genetic factors. However, empirical demonstrations of these interactions have been elusive. We modelled the dynamics of a small mountain lion population isolated by anthropogenic barriers in greater Los Angeles, California, to evaluate the influence of demographic, genetic, and landscape factors on extinction probability. The population exhibited strong survival and reproduction, and the model predicted stable median population growth and a 15% probability of extinction over 50 years in the absence of inbreeding depression. However, our model also predicted the population will lose 40-57% of its heterozygosity in 50 years. When we reduced demographic parameters proportional to reductions documented in another wild population of mountain lions that experienced inbreeding depression, extinction probability rose to 99.7%. Simulating greater landscape connectivity by increasing immigration to greater than or equal to one migrant per generation appears sufficient to largely maintain genetic diversity and reduce extinction probability. We provide empirical support for the central tenet of the extinction vortex as interactions between genetics and demography greatly increased extinction probability relative to the risk from demographic and environmental stochasticity alone. Our modelling approach realistically integrates demographic and genetic data to provide a comprehensive assessment of factors threatening small populations. © 2016 The Author(s).

  9. Synthetic lethal genetic interactions that decrease somatic cell proliferation in Caenorhabditis elegans identify the alternative RFC CTF18 as a candidate cancer drug target.

    Science.gov (United States)

    McLellan, Jessica; O'Neil, Nigel; Tarailo, Sanja; Stoepel, Jan; Bryan, Jennifer; Rose, Ann; Hieter, Philip

    2009-12-01

    Somatic mutations causing chromosome instability (CIN) in tumors can be exploited for selective killing of cancer cells by knockdown of second-site genes causing synthetic lethality. We tested and statistically validated synthetic lethal (SL) interactions between mutations in six Saccharomyces cerevisiae CIN genes orthologous to genes mutated in colon tumors and five additional CIN genes. To identify which SL interactions are conserved in higher organisms and represent potential chemotherapeutic targets, we developed an assay system in Caenorhabditis elegans to test genetic interactions causing synthetic proliferation defects in somatic cells. We made use of postembryonic RNA interference and the vulval cell lineage of C. elegans as a readout for somatic cell proliferation defects. We identified SL interactions between members of the cohesin complex and CTF4, RAD27, and components of the alternative RFC(CTF18) complex. The genetic interactions tested are highly conserved between S. cerevisiae and C. elegans and suggest that the alternative RFC components DCC1, CTF8, and CTF18 are ideal therapeutic targets because of their mild phenotype when knocked down singly in C. elegans. Furthermore, the C. elegans assay system will contribute to our knowledge of genetic interactions in a multicellular animal and is a powerful approach to identify new cancer therapeutic targets.

  10. Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data.

    Science.gov (United States)

    Kogelman, Lisette J A; Kadarmideen, Haja N

    2014-01-01

    High-throughput genotype (HTG) data has been used primarily in genome-wide association (GWA) studies; however, GWA results explain only a limited part of the complete genetic variation of traits. In systems genetics, network approaches have been shown to be able to identify pathways and their underlying causal genes to unravel the biological and genetic background of complex diseases and traits, e.g., the Weighted Gene Co-expression Network Analysis (WGCNA) method based on microarray gene expression data. The main objective of this study was to develop a scale-free weighted genetic interaction network method using whole genome HTG data in order to detect biologically relevant pathways and potential genetic biomarkers for complex diseases and traits. We developed the Weighted Interaction SNP Hub (WISH) network method that uses HTG data to detect genome-wide interactions between single nucleotide polymorphism (SNPs) and its relationship with complex traits. Data dimensionality reduction was achieved by selecting SNPs based on its: 1) degree of genome-wide significance and 2) degree of genetic variation in a population. Network construction was based on pairwise Pearson's correlation between SNP genotypes or the epistatic interaction effect between SNP pairs. To identify modules the Topological Overlap Measure (TOM) was calculated, reflecting the degree of overlap in shared neighbours between SNP pairs. Modules, clusters of highly interconnected SNPs, were defined using a tree-cutting algorithm on the SNP dendrogram created from the dissimilarity TOM (1-TOM). Modules were selected for functional annotation based on their association with the trait of interest, defined by the Genome-wide Module Association Test (GMAT). We successfully tested the established WISH network method using simulated and real SNP interaction data and GWA study results for carcass weight in a pig resource population; this resulted in detecting modules and key functional and biological pathways

  11. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L

    Directory of Open Access Journals (Sweden)

    Ayobami Ward

    2016-06-01

    Full Text Available Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3, an α-kleisin protein (RAD21, RAD21L, or REC8, and a stromal antigen protein (STAG1, 2, or 3. STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase (“zygotene-like” stage, displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier “leptotene-like” arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary

  12. Novel frem1-related mouse phenotypes and evidence of genetic interactions with gata4 and slit3.

    Directory of Open Access Journals (Sweden)

    Tyler F Beck

    Full Text Available The FRAS1-related extracellular matrix 1 (FREM1 gene encodes an extracellular matrix protein that plays a critical role in the development of multiple organ systems. In humans, recessive mutations in FREM1 cause eye defects, congenital diaphragmatic hernia, renal anomalies and anorectal malformations including anteriorly placed anus. A similar constellation of findings-microphthalmia, cryptophthalmos, congenital diaphragmatic hernia, renal agenesis and rectal prolapse-have been described in FREM1-deficient mice. In this paper, we identify a homozygous Frem1 missense mutation (c.1687A>T, p.Ile563Phe in an N-ethyl-N-nitrosourea (ENU-derived mouse strain, crf11, with microphthalmia, cryptophthalmos, renal agenesis and rectal prolapse. This mutation affects a highly conserved residue in FREM1's third CSPG domain. The p.Ile563Phe change is predicted to be deleterious and to cause decreased FREM1 protein stability. The crf11 allele also fails to complement the previously described eyes2 allele of Frem1 (p.Lys826* providing further evidence that the crf11 phenotype is due to changes affecting Frem1 function. We then use mice bearing the crf11 and eyes2 alleles to identify lung lobulation defects and decreased anogenital distance in males as novel phenotypes associated with FREM1 deficiency in mice. Due to phenotypic overlaps between FREM1-deficient mice and mice that are deficient for the retinoic acid-responsive transcription factor GATA4 and the extracellular matrix protein SLIT3, we also perform experiments to look for in vivo genetic interactions between the genes that encode these proteins. These experiments reveal that Frem1 interacts genetically with Gata4 in the development of lung lobulation defects and with Slit3 in the development of renal agenesis. These results demonstrate that FREM1-deficient mice faithfully recapitulate many of the phenotypes seen in individuals with FREM1 deficiency and that variations in GATA4 and SLIT3 expression

  13. Pharmacokinetic interactions between glimepiride and rosuvastatin in healthy Korean subjects: does the SLCO1B1 or CYP2C9 genetic polymorphism affect these drug interactions?

    Directory of Open Access Journals (Sweden)

    Kim CO

    2017-02-01

    Full Text Available Choon Ok Kim,1 Eun Sil Oh,2 Hohyun Kim,3 Min Soo Park1,4 1Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul, 2Department of Pharmaceutical Medicine and Regulatory Sciences, College of Medicine and Pharmacy, Yonsei University, Incheon, 3Korea Medicine Research Institute, Inc., Seongnam, 4Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea Abstract: To improve cardiovascular outcomes, dyslipidemia in patients with diabetes needs to be treated. Thus, these patients are likely to take glimepiride and rosuvastatin concomitantly. Therefore, this study aimed to evaluate the pharmacokinetic (PK interactions between these two drugs in healthy males and to explore the effect of SLCO1B1 and CYP2C9 polymorphisms on their interactions in two randomized, open-label crossover studies. Glimepiride was studied in part 1 and rosuvastatin in part 2. Twenty-four participants were randomly assigned to each part. All subjects (n=24 completed part 1, and 22 subjects completed part 2. A total of 38 subjects among the participants of the PK interaction studies were enrolled in the genotype study to analyze their SLCO1B1 and CYP2C9 polymorphisms retrospectively (n=22 in part 1, n=16 in part 2. Comparison of the PK and safety of each drug alone with those of the drugs in combination showed that both glimepiride and rosuvastatin did not interact with each other and had tolerable safety profiles in all subjects. However, with regard to glimepiride PK, the SLCO1B1 521TC group had a significantly higher maximum plasma concentration (Cmax,ss and area under the plasma concentration–time curve during the dose interval at steady state (AUCt,ss for glimepiride in combination with rosuvastatin than those for glimepiride alone. However, other significant effects of the SLCO1B1 or CYP2C9 polymorphism on the interaction between the two drugs were not observed. In conclusion, there were no significant PK

  14. Dynamic interaction between fetal adversity and a genetic score reflecting dopamine function on developmental outcomes at 36 months.

    Science.gov (United States)

    Bischoff, Adrianne R; Pokhvisneva, Irina; Léger, Étienne; Gaudreau, Hélène; Steiner, Meir; Kennedy, James L; O'Donnell, Kieran J; Diorio, Josie; Meaney, Michael J; Silveira, Patrícia P

    2017-01-01

    Fetal adversity, evidenced by poor fetal growth for instance, is associated with increased risk for several diseases later in life. Classical cut-offs to characterize small (SGA) and large for gestational age (LGA) newborns are used to define long term vulnerability. We aimed at exploring the possible dynamism of different birth weight cut-offs in defining vulnerability in developmental outcomes (through the Bayley Scales of Infant and Toddler Development), using the example of a gene vs. fetal adversity interaction considering gene choices based on functional relevance to the studied outcome. 36-month-old children from an established prospective birth cohort (Maternal Adversity, Vulnerability, and Neurodevelopment) were classified according to birth weight ratio (BWR) (SGA ≤0.85, LGA >1.15, exploring a wide range of other cut-offs) and genotyped for polymorphisms associated with dopamine signaling (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-repeat, DAT1-10- repeat, Met/Met-COMT), composing a score based on the described function, in which hypofunctional variants received lower scores. There were 251 children (123 girls and 128 boys). Using the classic cut-offs (0.85 and 1.15), there were no statistically significant interactions between the neonatal groups and the dopamine genetic score. However, when changing the cut-offs, it is possible to see ranges of BWR that could be associated with vulnerability to poorer development according to the variation in the dopamine function. The classic birth weight cut-offs to define SGA and LGA newborns should be seen with caution, as depending on the outcome in question, the protocols for long-term follow up could be either too inclusive-therefore most costly, or unable to screen true vulnerabilities-and therefore ineffective to establish early interventions and primary prevention.

  15. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  16. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.

    Science.gov (United States)

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-09-15

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.

  17. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    Science.gov (United States)

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  18. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    Science.gov (United States)

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular