WorldWideScience

Sample records for genetic interaction network

  1. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  2. A global genetic interaction network maps a wiring diagram of cellular function.

    Science.gov (United States)

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D; Pelechano, Vicent; Styles, Erin B; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F; Li, Sheena C; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; San Luis, Bryan-Joseph; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M; Moore, Claire L; Rosebrock, Adam P; Caudy, Amy A; Myers, Chad L; Andrews, Brenda; Boone, Charles

    2016-09-23

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. Copyright © 2016, American Association for the Advancement of Science.

  3. Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7

    Directory of Open Access Journals (Sweden)

    Neszt Michael

    2008-07-01

    Full Text Available Abstract Background Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. Results We created a novel glc7 catalytic mutant (glc7-E101Q. Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. Conclusion We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes.

  4. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    2009-03-01

    Full Text Available Evidence from human genetic studies of several disorders suggests that interactions between alleles at multiple genes play an important role in influencing phenotypic expression. Analytical methods for identifying Mendelian disease genes are not appropriate when applied to common multigenic diseases, because such methods investigate association with the phenotype only one genetic locus at a time. New strategies are needed that can capture the spectrum of genetic effects, from Mendelian to multifactorial epistasis. Random Forests (RF and Relief-F are two powerful machine-learning methods that have been studied as filters for genetic case-control data due to their ability to account for the context of alleles at multiple genes when scoring the relevance of individual genetic variants to the phenotype. However, when variants interact strongly, the independence assumption of RF in the tree node-splitting criterion leads to diminished importance scores for relevant variants. Relief-F, on the other hand, was designed to detect strong interactions but is sensitive to large backgrounds of variants that are irrelevant to classification of the phenotype, which is an acute problem in genome-wide association studies. To overcome the weaknesses of these data mining approaches, we develop Evaporative Cooling (EC feature selection, a flexible machine learning method that can integrate multiple importance scores while removing irrelevant genetic variants. To characterize detailed interactions, we construct a genetic-association interaction network (GAIN, whose edges quantify the synergy between variants with respect to the phenotype. We use simulation analysis to show that EC is able to identify a wide range of interaction effects in genetic association data. We apply the EC filter to a smallpox vaccine cohort study of single nucleotide polymorphisms (SNPs and infer a GAIN for a collection of SNPs associated with adverse events. Our results suggest an important

  5. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  6. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio; Cannistraci, Carlo; Ravasi, Timothy

    2013-01-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  7. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    Science.gov (United States)

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  8. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation.

    Science.gov (United States)

    Nath, Artika P; Ritchie, Scott C; Byars, Sean G; Fearnley, Liam G; Havulinna, Aki S; Joensuu, Anni; Kangas, Antti J; Soininen, Pasi; Wennerström, Annika; Milani, Lili; Metspalu, Andres; Männistö, Satu; Würtz, Peter; Kettunen, Johannes; Raitoharju, Emma; Kähönen, Mika; Juonala, Markus; Palotie, Aarno; Ala-Korpela, Mika; Ripatti, Samuli; Lehtimäki, Terho; Abraham, Gad; Raitakari, Olli; Salomaa, Veikko; Perola, Markus; Inouye, Michael

    2017-08-01

    Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.

  9. Construction and application of a protein and genetic interaction network (yeast interactome).

    Science.gov (United States)

    Stuart, Gregory R; Copeland, William C; Strand, Micheline K

    2009-04-01

    Cytoscape is a bioinformatic data analysis and visualization platform that is well-suited to the analysis of gene expression data. To facilitate the analysis of yeast microarray data using Cytoscape, we constructed an interaction network (interactome) using the curated interaction data available from the Saccharomyces Genome Database (www.yeastgenome.org) and the database of yeast transcription factors at YEASTRACT (www.yeastract.com). These data were formatted and imported into Cytoscape using semi-automated methods, including Linux-based scripts, that simplified the process while minimizing the introduction of processing errors. The methods described for the construction of this yeast interactome are generally applicable to the construction of any interactome. Using Cytoscape, we illustrate the use of this interactome through the analysis of expression data from a recent yeast diauxic shift experiment. We also report and briefly describe the complex associations among transcription factors that result in the regulation of thousands of genes through coordinated changes in expression of dozens of transcription factors. These cells are thus able to sensitively regulate cellular metabolism in response to changes in genetic or environmental conditions through relatively small changes in the expression of large numbers of genes, affecting the entire yeast metabolome.

  10. Expression Profiling of Human Genetic and Protein Interaction Networks in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Brunak, Søren; Bergholdt, R; Brorsson, C

    2009-01-01

    Proteins contributing to a complex disease are often members of the same functional pathways. Elucidation of such pathways may provide increased knowledge about functional mechanisms underlying disease. By combining genetic interactions in Type 1 Diabetes (T1D) with protein interaction data we have...

  11. Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data.

    Science.gov (United States)

    Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie

    2017-08-24

    Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.

  12. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization

    Directory of Open Access Journals (Sweden)

    Tuikkala Johannes

    2012-03-01

    Full Text Available Abstract Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.

  13. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization.

    Science.gov (United States)

    Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero

    2012-03-26

    Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.

  14. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering

    Science.gov (United States)

    2013-01-01

    Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods. PMID:23803155

  15. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    Science.gov (United States)

    Demongeot, Jacques; Ben Amor, Hedi; Elena, Adrien; Gillois, Pierre; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. PMID:20057955

  16. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    Directory of Open Access Journals (Sweden)

    Sylvain Sené

    2009-10-01

    Full Text Available Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability. We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression. We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control.

  17. Genetic networks and soft computing.

    Science.gov (United States)

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  18. Genetic and environmental interactions

    International Nuclear Information System (INIS)

    Strong, L.C.

    1977-01-01

    Cancer may result from a multistage process occurring over a long period of time. Presumably, initial and progressive stages of carcinogenesis may be modified by both genetic and environmental factors. Theoretically, genetic factors may alter susceptibility to the carcinogenic effects of an environmental agent at the initial exposure due to variation in metabolism of the carcinogen or variation in specific target cell response to the active carcinogen, or during the latent phase due to numerous factors that might increase the probability of tumor expression, including growth-promoting factors or immunodeficiency states. Observed genetic and environmental interactions in carcinogenesis include an association between genetically determined inducibility of aryl hydrocarbon hydroxylase and smoking-related cancers, familial susceptibility to certain environmental carcinogens, an association between hereditary disorders of mutagenesis and carcinogenesis, and enhancement of tissue-specific, dominantly inherited tumor predisposition by radiation. Multiple primary tumors occur frequently in genetically predisposed individuals. Specific markers for susceptibility must be sought in order that high-risk individuals be identified and appropriate measures taken for early cancer detection or prevention. Study of the nature of the genetically determined susceptibility and interactions with environmental agents may be revealing in the understanding of carcinogenesis in general

  19. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network

    Directory of Open Access Journals (Sweden)

    Han Kyungsook

    2010-06-01

    Full Text Available Abstract Background Genetic interaction profiles are highly informative and helpful for understanding the functional linkages between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific pathway structures. However, our understanding is rather limited to the relationship between double concurrent perturbation and various higher level phenotypic changes, e.g. those in cells, tissues or organs. Modifier screens, such as synthetic genetic arrays (SGA can help us to understand the phenotype caused by combined gene mutations. Unfortunately, exhaustive tests on all possible combined mutations in any genome are vulnerable to combinatorial explosion and are infeasible either technically or financially. Therefore, an accurate computational approach to predict genetic interaction is highly desirable, and such methods have the potential of alleviating the bottleneck on experiment design. Results In this work, we introduce a computational systems biology approach for the accurate prediction of pairwise synthetic genetic interactions (SGI. First, a high-coverage and high-precision functional gene network (FGN is constructed by integrating protein-protein interaction (PPI, protein complex and gene expression data; then, a graph-based semi-supervised learning (SSL classifier is utilized to identify SGI, where the topological properties of protein pairs in weighted FGN is used as input features of the classifier. We compare the proposed SSL method with the state-of-the-art supervised classifier, the support vector machines (SVM, on a benchmark dataset in S. cerevisiae to validate our method's ability to distinguish synthetic genetic interactions from non-interaction gene pairs. Experimental results show that the proposed method can accurately predict genetic interactions in S. cerevisiae (with a sensitivity of 92% and specificity of 91%. Noticeably, the SSL method is more efficient than SVM, especially for

  20. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions

    Science.gov (United States)

    Pool, John E.

    2015-01-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa–Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. PMID:26354524

  1. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  2. The Mosaic Ancestry of the Drosophila Genetic Reference Panel and the D. melanogaster Reference Genome Reveals a Network of Epistatic Fitness Interactions.

    Science.gov (United States)

    Pool, John E

    2015-12-01

    North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa-Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Interacting neural networks

    Science.gov (United States)

    Metzler, R.; Kinzel, W.; Kanter, I.

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.

  4. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization

    OpenAIRE

    Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero

    2012-01-01

    Abstract Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, suc...

  5. Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Sloep, P. (2009). Social Interaction in Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp 13-15). Berlin, Germany: Springer Verlag.

  6. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  7. The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    Science.gov (United States)

    2011-01-01

    Background Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of CCW12 results in severe cell wall damage and reduced mating efficiency. Results In order to explore the function of CCW12, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of CCW12. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are PFD1, WHI3, SRN2, PAC10, FEN1 and YDR417C, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant ccw12Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are BCK1, CHS3, EDE1, PFD1, SLT2 and SLA1 that were also identified in the SGA. In contrast, a specific feature of mutant ccw12Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection. Conclusions The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw

  8. A map of directional genetic interactions in a metazoan cell.

    Science.gov (United States)

    Fischer, Bernd; Sandmann, Thomas; Horn, Thomas; Billmann, Maximilian; Chaudhary, Varun; Huber, Wolfgang; Boutros, Michael

    2015-03-06

    Gene-gene interactions shape complex phenotypes and modify the effects of mutations during development and disease. The effects of statistical gene-gene interactions on phenotypes have been used to assign genes to functional modules. However, directional, epistatic interactions, which reflect regulatory relationships between genes, have been challenging to map at large-scale. Here, we used combinatorial RNA interference and automated single-cell phenotyping to generate a large genetic interaction map for 21 phenotypic features of Drosophila cells. We devised a method that combines genetic interactions on multiple phenotypes to reveal directional relationships. This network reconstructed the sequence of protein activities in mitosis. Moreover, it revealed that the Ras pathway interacts with the SWI/SNF chromatin-remodelling complex, an interaction that we show is conserved in human cancer cells. Our study presents a powerful approach for reconstructing directional regulatory networks and provides a resource for the interpretation of functional consequences of genetic alterations.

  9. Biological Networks Entropies: Examples in Neural Memory Networks, Genetic Regulation Networks and Social Epidemic Networks

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    2018-01-01

    Full Text Available Networks used in biological applications at different scales (molecule, cell and population are of different types: neuronal, genetic, and social, but they share the same dynamical concepts, in their continuous differential versions (e.g., non-linear Wilson-Cowan system as well as in their discrete Boolean versions (e.g., non-linear Hopfield system; in both cases, the notion of interaction graph G(J associated to its Jacobian matrix J, and also the concepts of frustrated nodes, positive or negative circuits of G(J, kinetic energy, entropy, attractors, structural stability, etc., are relevant and useful for studying the dynamics and the robustness of these systems. We will give some general results available for both continuous and discrete biological networks, and then study some specific applications of three new notions of entropy: (i attractor entropy, (ii isochronal entropy and (iii entropy centrality; in three domains: a neural network involved in the memory evocation, a genetic network responsible of the iron control and a social network accounting for the obesity spread in high school environment.

  10. Networks and Interactivity

    DEFF Research Database (Denmark)

    Considine, Mark; Lewis, Jenny

    2012-01-01

    of `street-level' employment services staff for the impacts of this. Contrary to expectations, networking has generally declined over the last decade. There are signs of path dependence in networking patterns within each country, but also a convergence of patterns for the UK and Australia......The systemic reform of employment services in OECD countries was driven by New Public Management (NPM) and then post-NPM reforms, when first-phase changes such as privatization were amended with `joined up' processes to help manage fragmentation. This article examines the networking strategies......, but not The Netherlands. Networking appears to be mediated by policy and regulatory imperatives....

  11. Online Social Network Interactions:

    Directory of Open Access Journals (Sweden)

    Hui-Jung Chang

    2018-01-01

    Full Text Available A cross-cultural comparison of social networking structure on McDonald’s Facebook fan sites between Taiwan and the USA was conducted utilizing the individualism/collectivism dimension proposed by Hofstede. Four network indicators are used to describe the network structure of McDonald’s Facebook fan sites: size, density, clique and centralization. Individuals who post on both Facebook sites for the year of 2012 were considered as network participants for the purpose of the study. Due to the huge amount of data, only one thread of postings was sampled from each month of the year of 2012. The final data consists of 1002 postings written by 896 individuals and 5962 postings written by 5532 individuals from Taiwan and the USA respectively. The results indicated that the USA McDonald’s Facebook fan network has more fans, while Taiwan’s McDonald’s Facebook fan network is more densely connected. Cliques did form among the overall multiplex and within the individual uniplex networks in two countries, yet no significant differences were found between them. All the fan networks in both countries are relatively centralized, mostly on the site operators.

  12. Topology of molecular interaction networks

    NARCIS (Netherlands)

    Winterbach, W.; Van Mieghem, P.; Reinders, M.; Wang, H.; De Ridder, D.

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over

  13. Interactive Network Exploration with Orange

    Directory of Open Access Journals (Sweden)

    Miha Štajdohar

    2013-04-01

    Full Text Available Network analysis is one of the most widely used techniques in many areas of modern science. Most existing tools for that purpose are limited to drawing networks and computing their basic general characteristics. The user is not able to interactively and graphically manipulate the networks, select and explore subgraphs using other statistical and data mining techniques, add and plot various other data within the graph, and so on. In this paper we present a tool that addresses these challenges, an add-on for exploration of networks within the general component-based environment Orange.

  14. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Fayroz F. Sherif

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer’s disease (AD. Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA studies. New SNP biomarkers were observed to be significantly associated with Alzheimer’s disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively.

  15. Dynamic and interacting complex networks

    Science.gov (United States)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  16. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  17. Information transmission in genetic regulatory networks: a review

    International Nuclear Information System (INIS)

    Tkacik, Gasper; Walczak, Aleksandra M

    2011-01-01

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'. (topical review)

  18. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  19. Statistical Mechanics of Temporal and Interacting Networks

    Science.gov (United States)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide

  20. Inferring genetic interactions from comparative fitness data.

    Science.gov (United States)

    Crona, Kristina; Gavryushkin, Alex; Greene, Devin; Beerenwinkel, Niko

    2017-12-20

    Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that genetic interactions can often be inferred from fitness rank orders, where all genotypes are ordered according to fitness, and even from partial fitness orders. We provide a complete characterization of rank orders that imply higher order epistasis. Our theory applies to all common types of gene interactions and facilitates comprehensive investigations of diverse genetic interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite Plasmodium vivax , the fungus Aspergillus niger , and the TEM-family of β-lactamase associated with antibiotic resistance. For all systems, our approach revealed higher order interactions among mutations.

  1. Multiple genetic interaction experiments provide complementary information useful for gene function prediction.

    Directory of Open Access Journals (Sweden)

    Magali Michaut

    Full Text Available Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and provide significant unique information. To exploit this information, we develop a novel method to combine individual genetic interaction data sets and show that the resulting network improves gene function prediction performance, demonstrating that individual networks provide complementary information. Our results support the notion that using diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function information produced by genetic interaction screens.

  2. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.

    Directory of Open Access Journals (Sweden)

    Nathaniel D Maynard

    2010-07-01

    Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.

  3. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  4. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  5. Complex and unexpected dynamics in simple genetic regulatory networks

    Science.gov (United States)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  6. GKIN: a tool for drawing genetic networks

    Directory of Open Access Journals (Sweden)

    Jonathan Arnold

    2012-03-01

    Full Text Available We present GKIN, a simulator and a comprehensive graphical interface where one can draw the model specification of reactions between hypothesized molecular participants in a gene regulatory and biochemical reaction network (or genetic network for short. The solver is written in C++ in a nearly platform independentmanner to simulate large ensembles of models, which can run on PCs, Macintoshes, and UNIX machines, and its graphical user interface is written in Java which can run as a standalone or WebStart application. The drawing capability for rendering a network significantly enhances the ease of use of other reaction network simulators, such as KINSOLVER (Aleman-Meza et al., 2009 and enforces a correct semantic specification of the network. In a usability study with novice users, drawing the network with GKIN was preferred and faster in comparison with entry with a dialog-box guided interface in COPASI (Hoops, et al., 2006 with no difference in error rates between GKIN and COPASI in specifying the network. GKIN is freely available at http://faculty.cs.wit.edu/~ldeligia/PROJECTS/GKIN/.

  7. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

  8. Protein Kinase C Epsilon and Genetic Networks in Osteosarcoma Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Atta, E-mail: atta.goudarzi@utoronto.ca [Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 (Canada); Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Gokgoz, Nalan; Gill, Mona; Pinnaduwage, Dushanthi [Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Merico, Daniele [The Centre for Applied Genomics, The Hospital for Sick Children, MaRS Centre-East Tower, 101 College Street Rm.14-701, Toronto, ON M5G 1L7 (Canada); Wunder, Jay S. [Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Andrulis, Irene L. [Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 (Canada); Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada)

    2013-04-08

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation.

  9. Protein Kinase C Epsilon and Genetic Networks in Osteosarcoma Metastasis

    International Nuclear Information System (INIS)

    Goudarzi, Atta; Gokgoz, Nalan; Gill, Mona; Pinnaduwage, Dushanthi; Merico, Daniele; Wunder, Jay S.; Andrulis, Irene L.

    2013-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation

  10. Stochastic dynamics of genetic broadcasting networks

    Science.gov (United States)

    Potoyan, Davit A.; Wolynes, Peter G.

    2017-11-01

    The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκ B which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.

  11. A global interaction network maps a wiring diagram of cellular function

    Science.gov (United States)

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  12. Genetic Network Programming with Reconstructed Individuals

    Science.gov (United States)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  13. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  14. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  15. Network Physiology: How Organ Systems Dynamically Interact

    Science.gov (United States)

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  16. Environmental and genetic interactions in human cancer

    International Nuclear Information System (INIS)

    Paterson, M.C.

    Humans, depending upon their genetic make-up, differ in their susceptibility to the cancer-causing effects of extrinsic agents. Clinical and laboratory studies on the hereditary disorder, ataxia telangiectasia (AT) show that persons afflicted with this are cancer-prone and unusually sensitive to conventional radiotherapy. Their skin cells, when cultured, are hypersensitive to killing by ionizing radiation, being defective in the enzymatic repair of radiation-induced damange to the genetic material, deoxyribonucleic acid (DNA). This molecular finding implicates DNA damage and its imperfect repair as an early step in the induction of human cancer by radiation and other carcinogens. The parents of AT patients are clincally normal but their cultured cells are often moderately radiosensitive. The increased radiosensitivity of cultured cells offers a means of identifying a presumed cancer-prone subpopulation that should avoid undue exposure to certain carcinogens. The radioresponse of cells from patients with other cancer-associated genetic disorders and persons suspected of being genetically predisposed to radiation-induced cancer has also been measured. Increased cell killing by γ-rays appears in the complex genetic disease, tuberous sclerosis. Cells from cancer-stricken members of a leukemia-prone family are also radiosensitive, as are cells from one patient with radiation-associated breast cancer. These radiobiological data, taken together, strongly suggest that genetic factors can interact with extrinsic agents and thereby play a greater causative role in the development of common cancers in man than previously thought. (L.L.)

  17. Genetic analysis of the heparan modification network in Caenorhabditis elegans.

    Science.gov (United States)

    Townley, Robert A; Bülow, Hannes E

    2011-05-13

    Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans.

  18. Genetic Analysis of the Heparan Modification Network in Caenorhabditis elegans*

    Science.gov (United States)

    Townley, Robert A.; Bülow, Hannes E.

    2011-01-01

    Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans. PMID:21454666

  19. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  20. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  1. A High-Level Petri Net Framework for Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Banks Richard

    2007-12-01

    Full Text Available To understand the function of genetic regulatory networks in the development of cellular systems, we must not only realise the individual network entities, but also the manner by which they interact. Multi-valued networks are a promising qualitative approach for modelling such genetic regulatory networks, however, at present they have limited formal analysis techniques and tools. We present a flexible formal framework for modelling and analysing multi-valued genetic regulatory networks using high-level Petri nets and logic minimization techniques. We demonstrate our approach with a detailed case study in which part of the genetic regulatory network responsible for the carbon starvation stress response in Escherichia coli is modelled and analysed. We then compare and contrast this multivalued model to a corresponding Boolean model and consider their formal relationship.

  2. Fashion sketch design by interactive genetic algorithms

    Science.gov (United States)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  3. Vulnerability of networks of interacting Markov chains.

    Science.gov (United States)

    Kocarev, L; Zlatanov, N; Trajanov, D

    2010-05-13

    The concept of vulnerability is introduced for a model of random, dynamical interactions on networks. In this model, known as the influence model, the nodes are arranged in an arbitrary network, while the evolution of the status at a node is according to an internal Markov chain, but with transition probabilities that depend not only on the current status of that node but also on the statuses of the neighbouring nodes. Vulnerability is treated analytically and numerically for several networks with different topological structures, as well as for two real networks--the network of infrastructures and the EU power grid--identifying the most vulnerable nodes of these networks.

  4. Statistical physics of interacting neural networks

    Science.gov (United States)

    Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido

    2001-12-01

    Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.

  5. Application of genetic neural network in steam generator fault diagnosing

    International Nuclear Information System (INIS)

    Lin Xiaogong; Jiang Xingwei; Liu Tao; Shi Xiaocheng

    2005-01-01

    In the paper, a new algorithm which neural network and genetic algorithm are mixed is adopted, aiming at the problems of slow convergence rate and easily falling into part minimums in network studying of traditional BP neural network, and used in the fault diagnosis of steam generator. The result shows that this algorithm can solve the convergence problem in the network trains effectively. (author)

  6. Evolution of a protein domain interaction network

    International Nuclear Information System (INIS)

    Li-Feng, Gao; Jian-Jun, Shi; Shan, Guan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases. (general)

  7. A candidate multimodal functional genetic network for thermal adaptation

    Directory of Open Access Journals (Sweden)

    Katharina C. Wollenberg Valero

    2014-09-01

    Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and

  8. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1...... diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions....

  9. STATE NETWORK INTERNATIONAL POLITICAL INTERACTION

    Directory of Open Access Journals (Sweden)

    D. M. Feldman

    2011-01-01

    Full Text Available Abstract: The processes of fragmentation (regionalization and localization and globalization turn the state as the basic system forming element of the state-centric world political system into the component of the world political network. The political relations between actors of the world political network are ruled by the effectiveness and not by legitimacy (“victory rules”, what is different from the participatory principles of interstate relations (“participation rules” accepted by the Westphalian state system. The article argues that the post-Westphalian world political system will witness the clashes between victory rules and participation rules and their eventual coexistence since the very nature of the victory rules hinders its institutionalization, consolidation and legitimation. The article suggests that the new system of state relations regardless of the name will be not less Westphalian than the preceding one thus new participation rules will have to be formulated and codified.

  10. Unraveling spurious properties of interaction networks with tailored random networks.

    Directory of Open Access Journals (Sweden)

    Stephan Bialonski

    Full Text Available We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  11. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  12. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  14. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission.

    Science.gov (United States)

    Zarrabi, Narges; Prosperi, Mattia; Belleman, Robert G; Colafigli, Manuela; De Luca, Andrea; Sloot, Peter M A

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks

  15. Introduction to focus issue: quantitative approaches to genetic networks.

    Science.gov (United States)

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  16. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  17. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  18. Synchronization in networks with multiple interaction layers

    Science.gov (United States)

    del Genio, Charo I.; Gómez-Gardeñes, Jesús; Bonamassa, Ivan; Boccaletti, Stefano

    2016-01-01

    The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multilayered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the master stability function approach. We validate our method by applying it to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the interactions among the units in the network. PMID:28138540

  19. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  20. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  1. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  2. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  3. Asymptotic stability of a genetic network under impulsive control

    International Nuclear Information System (INIS)

    Li Fangfei; Sun Jitao

    2010-01-01

    The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.

  4. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana

    OpenAIRE

    Wolf, Jason B.; Mutic, Joshua J.; Kover, Paula X.

    2011-01-01

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with ‘direct...

  5. Smart Business Networks Design and Business Genetics

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2006-01-01

    textabstractWith the emergence of smart business networks, agile networks, etc. as important research areas in management, for all the attractiveness of these concepts, a major issue remains around their design and the selection rules. While smart business networks should provide advantages due to

  6. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

  7. Exploring Genetic Suppression Interactions on a Global Scale

    OpenAIRE

    van Leeuwen, Jolanda; Pons, Carles; Mellor, Joseph C.; Yamaguchi, Takafumi N.; Friesen, Helena; Koschwanez, John; Ušaj, Mojca Mattiazzi; Pechlaner, Maria; Takar, Mehmet; Ušaj, Matej; VanderSluis, Benjamin; Andrusiak, Kerry; Bansal, Pritpal; Baryshnikova, Anastasia; Boone, Claire

    2016-01-01

    Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insig...

  8. Network Interactions in the Great Altai Region

    Directory of Open Access Journals (Sweden)

    Lev Aleksandrovich Korshunov

    2017-12-01

    Full Text Available To improve the efficiency and competitiveness of the regional economy, an effective interaction between educational institutions in the Great Altai region is needed. The innovation growth can enhancing this interaction. The article explores the state of network structures in the economy and higher education in the border territories of the countries of Great Altai. The authors propose an updated approach to the three-level classification of network interaction. We analyze growing influence of the countries with emerging economies. We define the factors that impede the more stable and multifaceted regional development of these countries. Further, the authors determine indicators of the higher education systems and cooperation systems at the university level between the Shanghai Cooperation Organization countries (SCO and BRICS countries, showing the international rankings of the universities in these countries. The teaching language is important to overcome the obstacles in the interregional cooperation. The authors specify the problems of the development of the universities of the SCO and BRICS countries as global educational networks. The research applies basic scientific logical methods of analysis and synthesis, induction and deduction, as well as the SWOT analysis method. We have indentified and analyzed the existing economic and educational relations. To promote the economic innovation development of the border territories of the Great Altai, we propose a model of regional network university. Modern universities function in a new economic environment. Thus, in a great extent, they form the technological and social aspects of this environment. Innovative network structures contribute to the formation of a new network institutional environment of the regional economy, which impacts the macro- and microeconomic performance of the region as a whole. The results of the research can help to optimize the regional economies of the border

  9. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  10. Implementation and Characterization of Dynamic Genetic Networks in Vitro

    OpenAIRE

    Niederholtmeyer, Henrike Marie

    2015-01-01

    Transcription and translation (TX-TL) can be performed in vitro, outside of cells, allowing the assembly and analysis of genetic networks. This approach to engineering biological networks in a less complex and more controllable environment could one day allow rapid prototyping of network designs before implementing them in living cells. Furthermore, the in vitro approach provides insight into how natural biological systems are built and is instructive to define the rules for engineering biolo...

  11. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network and pathway analyses

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Pant, Sameer Dinkar; Fredholm, Merete

    2014-01-01

    .g. metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index...... investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation...... of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation...

  12. The Global Alzheimer's Association Interactive Network.

    Science.gov (United States)

    Toga, Arthur W; Neu, Scott C; Bhatt, Priya; Crawford, Karen L; Ashish, Naveen

    2016-01-01

    The Global Alzheimer's Association Interactive Network (GAAIN) is consolidating the efforts of independent Alzheimer's disease data repositories around the world with the goals of revealing more insights into the causes of Alzheimer's disease, improving treatments, and designing preventative measures that delay the onset of physical symptoms. We developed a system for federating these repositories that is reliant on the tenets that (1) its participants require incentives to join, (2) joining the network is not disruptive to existing repository systems, and (3) the data ownership rights of its members are protected. We are currently in various phases of recruitment with over 55 data repositories in North America, Europe, Asia, and Australia and can presently query >250,000 subjects using GAAIN's search interfaces. GAAIN's data sharing philosophy, which guided our architectural choices, is conducive to motivating membership in a voluntary data sharing network. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  13. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  14. Temporal stability in human interaction networks

    Science.gov (United States)

    Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais

    2017-11-01

    This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.

  15. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  16. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    Science.gov (United States)

    Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike

    2006-01-01

    Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047

  17. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  18. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    Science.gov (United States)

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Coffee, Genetic Variants, and Parkinson's Disease: Gene–Environment Interactions

    OpenAIRE

    Yamada-Fowler, Naomi; Söderkvist, Peter

    2015-01-01

    Studies of gene–environment interactions may help us to understand the disease mechanisms of common and complex diseases such as Parkinson's disease (PD). Sporadic PD, the common form of PD, is thought to be a multifactorial disorder caused by combinations of multiple genetic factors and environmental or life-style exposures. Since one of the most extensively studied life-style factors in PD is coffee/caffeine intake, here, the studies of genetic polymorphisms with life-style interactions of ...

  20. Interactome of Obesity: Obesidome : Genetic Obesity, Stress Induced Obesity, Pathogenic Obesity Interaction.

    Science.gov (United States)

    Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George

    2017-01-01

    Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.

  1. Genetic optimization of neural network architecture

    International Nuclear Information System (INIS)

    Harp, S.A.; Samad, T.

    1994-03-01

    Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)

  2. Wind power prediction based on genetic neural network

    Science.gov (United States)

    Zhang, Suhan

    2017-04-01

    The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.

  3. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  4. Repulsive interactions between two polyelectrolyte networks

    Science.gov (United States)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera Group Collaboration

    Surfaces formed by charged polymeric species are highly_abundant in both synthetic and biological systems, for which maintaining_an optimum contact distance and a pressure balance is paramount. We investigate interactions between surfaces of two same-charged and_highly swollen polyelectrolyte gels, using extensive molecular dynamic_simulations and minimal analytical methods. The external-pressure_responses of the gels and the polymer-free ionic solvent layer separating_two surfaces are considered. Simulations confirmed that the surfaces are_held apart by osmotic pressure resulting from excess charges diffusing out_of the network. Both the solvent layer and pressure dependence are well_described by an analytical model based on the Poisson -Boltzmann solution for low and moderate electrostatic strengths. Our results can be of great importance for systems where charged gels or gel-like structures interact in various solvents, including systems encapsulated by gels and microgels in confinement.

  5. A genetic ensemble approach for gene-gene interaction identification

    Directory of Open Access Journals (Sweden)

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  6. Genetic demographic networks: Mathematical model and applications.

    Science.gov (United States)

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  7. Criticality is an emergent property of genetic networks that exhibit evolvability.

    Directory of Open Access Journals (Sweden)

    Christian Torres-Sosa

    Full Text Available Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype while allowing for switching between multiple phenotypes (network states as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i preserve all the already acquired phenotypes (dynamical attractor states and (ii generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation while conserving the existing phenotypes (conservation suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

  8. Influence Maximization in Social Networks with Genetic Algorithms

    NARCIS (Netherlands)

    Bucur, Doina; Iacca, Giovanni; Squillero, Giovanni; Burelli, Paolo

    We live in a world of social networks. Our everyday choices are often influenced by social interactions. Word of mouth, meme diffusion on the Internet, and viral marketing are all examples of how social networks can affect our behaviour. In many practical applications, it is of great interest to

  9. Neural networks for genetic epidemiology: past, present, and future

    Directory of Open Access Journals (Sweden)

    Motsinger-Reif Alison A

    2008-07-01

    Full Text Available Abstract During the past two decades, the field of human genetics has experienced an information explosion. The completion of the human genome project and the development of high throughput SNP technologies have created a wealth of data; however, the analysis and interpretation of these data have created a research bottleneck. While technology facilitates the measurement of hundreds or thousands of genes, statistical and computational methodologies are lacking for the analysis of these data. New statistical methods and variable selection strategies must be explored for identifying disease susceptibility genes for common, complex diseases. Neural networks (NN are a class of pattern recognition methods that have been successfully implemented for data mining and prediction in a variety of fields. The application of NN for statistical genetics studies is an active area of research. Neural networks have been applied in both linkage and association analysis for the identification of disease susceptibility genes. In the current review, we consider how NN have been used for both linkage and association analyses in genetic epidemiology. We discuss both the successes of these initial NN applications, and the questions that arose during the previous studies. Finally, we introduce evolutionary computing strategies, Genetic Programming Neural Networks (GPNN and Grammatical Evolution Neural Networks (GENN, for using NN in association studies of complex human diseases that address some of the caveats illuminated by previous work.

  10. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  11. Dynamic modeling of genetic networks using genetic algorithm and S-system.

    Science.gov (United States)

    Kikuchi, Shinichi; Tominaga, Daisuke; Arita, Masanori; Takahashi, Katsutoshi; Tomita, Masaru

    2003-03-22

    The modeling of system dynamics of genetic networks, metabolic networks or signal transduction cascades from time-course data is formulated as a reverse-problem. Previous studies focused on the estimation of only network structures, and they were ineffective in inferring a network structure with feedback loops. We previously proposed a method to predict not only the network structure but also its dynamics using a Genetic Algorithm (GA) and an S-system formalism. However, it could predict only a small number of parameters and could rarely obtain essential structures. In this work, we propose a unified extension of the basic method. Notable improvements are as follows: (1) an additional term in its evaluation function that aims at eliminating futile parameters; (2) a crossover method called Simplex Crossover (SPX) to improve its optimization ability; and (3) a gradual optimization strategy to increase the number of predictable parameters. The proposed method is implemented as a C program called PEACE1 (Predictor by Evolutionary Algorithms and Canonical Equations 1). Its performance was compared with the basic method. The comparison showed that: (1) the convergence rate increased about 5-fold; (2) the optimization speed was raised about 1.5-fold; and (3) the number of predictable parameters was increased about 5-fold. Moreover, we successfully inferred the dynamics of a small genetic network constructed with 60 parameters for 5 network variables and feedback loops using only time-course data of gene expression.

  12. Genetic Allee effects and their interaction with ecological Allee effects.

    Science.gov (United States)

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects

  13. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

  14. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  15. Neural networks for predicting breeding values and genetic gains

    Directory of Open Access Journals (Sweden)

    Gabi Nunes Silva

    2014-12-01

    Full Text Available Analysis using Artificial Neural Networks has been described as an approach in the decision-making process that, although incipient, has been reported as presenting high potential for use in animal and plant breeding. In this study, we introduce the procedure of using the expanded data set for training the network. Wealso proposed using statistical parameters to estimate the breeding value of genotypes in simulated scenarios, in addition to the mean phenotypic value in a feed-forward back propagation multilayer perceptron network. After evaluating artificial neural network configurations, our results showed its superiority to estimates based on linear models, as well as its applicability in the genetic value prediction process. The results further indicated the good generalization performance of the neural network model in several additional validation experiments.

  16. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

    Science.gov (United States)

    Wuchty, Stefan

    2006-05-23

    While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions

  17. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  18. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  19. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  20. Information theory and the ethylene genetic network.

    Science.gov (United States)

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  1. Weighted Protein Interaction Network Analysis of Frontotemporal Dementia.

    Science.gov (United States)

    Ferrari, Raffaele; Lovering, Ruth C; Hardy, John; Lewis, Patrick A; Manzoni, Claudia

    2017-02-03

    The genetic analysis of complex disorders has undoubtedly led to the identification of a wealth of associations between genes and specific traits. However, moving from genetics to biochemistry one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain the molecular basis of phenotypes. Here we present a novel approach, weighted protein-protein interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological processes associated with a given trait. This is exemplified in the current study by applying W-PPI-NA to frontotemporal dementia (FTD): We first built the state of the art FTD protein network (FTD-PN) and then analyzed both its topological and functional features. The FTD-PN resulted from the sum of the individual interactomes built around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty nine of 4198 nodes, called inter-interactome hubs (IIHs), represented those interactors able to bridge over 60% of the individual interactomes. Functional annotation analysis not only reiterated and reinforced previous findings from single genes and gene-coexpression analyses but also indicated a number of novel potential disease related mechanisms, including DNA damage response, gene expression regulation, and cell waste disposal and potential biomarkers or therapeutic targets including EP300. These processes and targets likely represent the functional core impacted in FTD, reflecting the underlying genetic architecture contributing to disease. The approach presented in this study can be applied to other complex traits for which risk-causative genes are known as it provides a promising tool for setting the foundations for collating genomics and wet laboratory data in a bidirectional manner. This is and will be critical to accelerate molecular target prioritization and drug discovery.

  2. Exploring genetic suppression interactions on a global scale.

    Science.gov (United States)

    van Leeuwen, Jolanda; Pons, Carles; Mellor, Joseph C; Yamaguchi, Takafumi N; Friesen, Helena; Koschwanez, John; Ušaj, Mojca Mattiazzi; Pechlaner, Maria; Takar, Mehmet; Ušaj, Matej; VanderSluis, Benjamin; Andrusiak, Kerry; Bansal, Pritpal; Baryshnikova, Anastasia; Boone, Claire E; Cao, Jessica; Cote, Atina; Gebbia, Marinella; Horecka, Gene; Horecka, Ira; Kuzmin, Elena; Legro, Nicole; Liang, Wendy; van Lieshout, Natascha; McNee, Margaret; San Luis, Bryan-Joseph; Shaeri, Fatemeh; Shuteriqi, Ermira; Sun, Song; Yang, Lu; Youn, Ji-Young; Yuen, Michael; Costanzo, Michael; Gingras, Anne-Claude; Aloy, Patrick; Oostenbrink, Chris; Murray, Andrew; Graham, Todd R; Myers, Chad L; Andrews, Brenda J; Roth, Frederick P; Boone, Charles

    2016-11-04

    Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations,in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression. Copyright © 2016, American Association for the Advancement of Science.

  3. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  4. Endogenous network states predict gain or loss of functions for genetic mutations in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Gaowei; Su, Hang; Yu, Helin; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2016-02-01

    Cancers have been typically characterized by genetic mutations. Patterns of such mutations have traditionally been analysed by posteriori statistical association approaches. One may ponder the possibility of a priori determination of any mutation regularity. Here by exploring biological processes implied in a mechanistic theory recently developed (the endogenous molecular-cellular network theory), we found that the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. With hepatocellular carcinoma (HCC) as an example, we found that the normal hepatocyte and cancerous hepatocyte can be represented by robust stable states of one single endogenous network. These stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on accumulated and preferred mutation spectra in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. © 2016 The Author(s).

  5. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    Science.gov (United States)

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  6. Social interactions predict genetic diversification: an experimental manipulation in shorebirds.

    Science.gov (United States)

    Cunningham, Charles; Parra, Jorge E; Coals, Lucy; Beltrán, Marcela; Zefania, Sama; Székely, Tamás

    2018-01-01

    Mating strategy and social behavior influence gene flow and hence affect levels of genetic differentiation and potentially speciation. Previous genetic analyses of closely related plovers Charadrius spp. found strikingly different population genetic structure in Madagascar: Kittlitz's plovers are spatially homogenous whereas white-fronted plovers have well segregated and geographically distinct populations. Here, we test the hypotheses that Kittlitz's plovers are spatially interconnected and have extensive social interactions that facilitate gene flow, whereas white-fronted plovers are spatially discrete and have limited social interactions. By experimentally removing mates from breeding pairs and observing the movements of mate-searching plovers in both species, we compare the spatial behavior of Kittlitz's and white-fronted plovers within a breeding season. The behavior of experimental birds was largely consistent with expectations: Kittlitz's plovers travelled further, sought new mates in larger areas, and interacted with more individuals than white-fronted plovers, however there was no difference in breeding dispersal. These results suggest that mating strategies, through spatial behavior and social interactions, are predictors of gene flow and thus genetic differentiation and speciation. Our study highlights the importance of using social behavior to understand gene flow. However, further work is needed to investigate the relative importance of social structure, as well as intra- and inter-season dispersal, in influencing the genetic structures of populations.

  7. Network-assisted crop systems genetics: network inference and integrative analysis.

    Science.gov (United States)

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    Science.gov (United States)

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  9. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Node-based measures of connectivity in genetic networks.

    Science.gov (United States)

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.

  11. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    In this paper, the configuration of a district heating (DH) network which connects from the heating plant to the end users was optimized with emphasizing the network thermal performance. Each end user in the network represents a building block. The locations of the building blocks are fixed while...... the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...... by multi factors as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding pressure and temperature limitation, as well as the corresponding network heat loss....

  12. Game theory in communication networks cooperative resolution of interactive networking scenarios

    CERN Document Server

    Antoniou, Josephina

    2012-01-01

    A mathematical tool for scientists and researchers who work with computer and communication networks, Game Theory in Communication Networks: Cooperative Resolution of Interactive Networking Scenarios addresses the question of how to promote cooperative behavior in interactive situations between heterogeneous entities in communication networking scenarios. It explores network design and management from a theoretical perspective, using game theory and graph theory to analyze strategic situations and demonstrate profitable behaviors of the cooperative entities. The book promotes the use of Game T

  13. Applications of a formal approach to decipher discrete genetic networks.

    Science.gov (United States)

    Corblin, Fabien; Fanchon, Eric; Trilling, Laurent

    2010-07-20

    A growing demand for tools to assist the building and analysis of biological networks exists in systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit efficiently every bit of experimental information. In our approach, both the evolution rules and the partial knowledge about the structure and the behaviour of the network are formalized using a common constraint-based language. In this article our formal and declarative approach is applied to three biological applications. The software environment that we developed allows to specifically address each application through a new class of biologically relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision, prediction of properties, search for minimal models relatively to specified criteria. The formal approach proposed here deeply changes the way to proceed in the exploration of genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the constraint approach promotes an integration of model and experimental data in a single framework.

  14. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  15. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    Science.gov (United States)

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  16. Online networks, social interaction and segregation: An evolutionary approach

    OpenAIRE

    Antoci, Angelo; Sabatini, Fabio

    2018-01-01

    There is growing evidence that face-to-face interaction is declining in many countries, exacerbating the phenomenon of social isolation. On the other hand, social interaction through online networking sites is steeply rising. To analyze these societal dynamics, we have built an evolutionary game model in which agents can choose between three strategies of social participation: 1) interaction via both online social networks and face-to-face encounters; 2) interaction by exclusive means of face...

  17. Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools.

    Science.gov (United States)

    Miryala, Sravan Kumar; Anbarasu, Anand; Ramaiah, Sudha

    2018-02-05

    Computational analysis of biomolecular interaction networks is now gaining a lot of importance to understand the functions of novel genes/proteins. Gene interaction (GI) network analysis and protein-protein interaction (PPI) network analysis play a major role in predicting the functionality of interacting genes or proteins and gives an insight into the functional relationships and evolutionary conservation of interactions among the genes. An interaction network is a graphical representation of gene/protein interactome, where each gene/protein is a node, and interaction between gene/protein is an edge. In this review, we discuss the popular open source databases that serve as data repositories to search and collect protein/gene interaction data, and also tools available for the generation of interaction network, visualization and network analysis. Also, various network analysis approaches like topological approach and clustering approach to study the network properties and functional enrichment server which illustrates the functions and pathway of the genes and proteins has been discussed. Hence the distinctive attribute mentioned in this review is not only to provide an overview of tools and web servers for gene and protein-protein interaction (PPI) network analysis but also to extract useful and meaningful information from the interaction networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  19. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Science.gov (United States)

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  20. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Elizarraras

    2014-01-01

    Full Text Available The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15% compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput.

  1. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  2. Cluster Approach to Network Interaction in Pedagogical University

    Science.gov (United States)

    Chekaleva, Nadezhda V.; Makarova, Natalia S.; Drobotenko, Yulia B.

    2016-01-01

    The study presented in the article is devoted to the analysis of theory and practice of network interaction within the framework of education clusters. Education clusters are considered to be a novel form of network interaction in pedagogical education in Russia. The aim of the article is to show the advantages and disadvantages of the cluster…

  3. Towards a predictive theory for genetic regulatory networks

    Science.gov (United States)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  4. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  5. A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    Directory of Open Access Journals (Sweden)

    Rohith Srivas

    2013-12-01

    Full Text Available Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  6. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  7. CRISPR genetic screens to discover host-virus interactions.

    Science.gov (United States)

    McDougall, William M; Perreira, Jill M; Reynolds, Erin C; Brass, Abraham L

    2018-04-01

    Viruses impose an immense burden on human health. With the goal of treating and preventing viral infections, researchers have carried out genetic screens to improve our understanding of viral dependencies and identify potential anti-viral strategies. The emergence of CRISPR genetic screening tools has facilitated this effort by enabling host-virus screens to be undertaken in a more versatile and fidelitous manner than previously possible. Here we review the growing number of CRISPR screens which continue to increase our understanding of host-virus interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana.

    Science.gov (United States)

    Wolf, Jason B; Mutic, Joshua J; Kover, Paula X

    2011-05-12

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with 'direct' effects on traits of individuals also have pleiotropic 'indirect' effects on traits expressed in neighbouring plants. Here, we further explore these connections by examining functional relationships between traits affected directly and indirectly by the same QTL. We develop a novel approach using structural equation models (SEMs) to determine whether observed pleiotropic effects result from traits directly affected by the QTL in focal individuals causing the changes in the neighbours' phenotypes. This hypothesis was assessed using SEMs to test whether focal plant phenotypes appear to mediate the connection between the focal plants' genotypes and the phenotypes of their neighbours, or alternatively, whether the connection between the focal plants' genotypes and the neighbours' phenotypes is mediated by unmeasured traits. We implement this analysis using a QTL of major effect that maps to the well-characterized flowering locus, FRIGIDA. The SEMs support the hypothesis that the pleiotropic indirect effects of this locus arise from size and developmental timing-related traits in focal plants affecting the expression of developmental traits in their neighbours. Our findings provide empirical insights into the genetics and nature of intraspecific ecological interactions. Our technique holds promise in directing future work into the genetic basis and functional relationship of traits mediating and responding to ecological interactions.

  9. Genetic and genomic interactions of animals with different ploidy levels.

    Science.gov (United States)

    Bogart, J P; Bi, K

    2013-01-01

    Polyploid animals have independently evolved from diploids in diverse taxa across the tree of life. We review a few polyploid animal species or biotypes where recently developed molecular and cytogenetic methods have significantly improved our understanding of their genetics, reproduction and evolution. Mitochondrial sequences that target the maternal ancestor of a polyploid show that polyploids may have single (e.g. unisexual salamanders in the genus Ambystoma) or multiple (e.g. parthenogenetic polyploid lizards in the genus Aspidoscelis) origins. Microsatellites are nuclear markers that can be used to analyze genetic recombinations, reproductive modes (e.g. Ambystoma) and recombination events (e.g. polyploid frogs such as Pelophylax esculentus). Hom(e)ologous chromosomes and rare intergenomic exchanges in allopolyploids have been distinguished by applying genome-specific fluorescent probes to chromosome spreads. Polyploids arise, and are maintained, through perturbations of the 'normal' meiotic program that would include pre-meiotic chromosome replication and genomic integrity of homologs. When possible, asexual, unisexual and bisexual polyploid species or biotypes interact with diploid relatives, and genes are passed from diploid to polyploid gene pools, which increase genetic diversity and ultimately evolutionary flexibility in the polyploid. When diploid relatives do not exist, polyploids can interact with another polyploid (e.g. species of African Clawed Frogs in the genus Xenopus). Some polyploid fish (e.g. salmonids) and frogs (Xenopus) represent independent lineages whose ancestors experienced whole genome duplication events. Some tetraploid frogs (P. esculentus) and fish (Squaliusalburnoides) may be in the process of becoming independent species, but diploid and triploid forms of these 'species' continue to genetically interact with the comparatively few tetraploid populations. Genetic and genomic interaction between polyploids and diploids is a complex

  10. Reverse engineering large-scale genetic networks: synthetic versus

    Indian Academy of Sciences (India)

    Development of microarray technology has resulted in an exponential rise in gene expression data. Linear computational methods are of great assistance in identifying molecular interactions, and elucidating the functional properties of gene networks. It overcomes the weaknesses of in vivo experiments including high cost, ...

  11. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  12. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Science.gov (United States)

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  13. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  14. XMRF: an R package to fit Markov Networks to high-throughput genetics data.

    Science.gov (United States)

    Wan, Ying-Wooi; Allen, Genevera I; Baker, Yulia; Yang, Eunho; Ravikumar, Pradeep; Anderson, Matthew; Liu, Zhandong

    2016-08-26

    Technological advances in medicine have led to a rapid proliferation of high-throughput "omics" data. Tools to mine this data and discover disrupted disease networks are needed as they hold the key to understanding complicated interactions between genes, mutations and aberrations, and epi-genetic markers. We developed an R software package, XMRF, that can be used to fit Markov Networks to various types of high-throughput genomics data. Encoding the models and estimation techniques of the recently proposed exponential family Markov Random Fields (Yang et al., 2012), our software can be used to learn genetic networks from RNA-sequencing data (counts via Poisson graphical models), mutation and copy number variation data (categorical via Ising models), and methylation data (continuous via Gaussian graphical models). XMRF is the only tool that allows network structure learning using the native distribution of the data instead of the standard Gaussian. Moreover, the parallelization feature of the implemented algorithms computes the large-scale biological networks efficiently. XMRF is available from CRAN and Github ( https://github.com/zhandong/XMRF ).

  15. Detecting instability in animal social networks: genetic fragmentation is associated with social instability in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Brianne A Beisner

    2011-01-01

    Full Text Available The persistence of biological systems requires evolved mechanisms which promote stability. Cohesive primate social groups are one example of stable biological systems, which persist in spite of regular conflict. We suggest that genetic relatedness and its associated kinship structure are a potential source of stability in primate social groups as kinship structure is an important organizing principle in many animal societies. We investigated the effect of average genetic relatedness per matrilineal family on the stability of matrilineal grooming and agonistic interactions in 48 matrilines from seven captive groups of rhesus macaques. Matrilines with low average genetic relatedness show increased family-level instability such as: more sub-grouping in their matrilineal groom network, more frequent fighting with kin, and higher rates of wounding. Family-level instability in multiple matrilines within a group is further associated with group-level instability such as increased wounding. Stability appears to arise from the presence of clear matrilineal structure in the rhesus macaque group hierarchy, which is derived from cohesion among kin in their affiliative and agonistic interactions with each other. We conclude that genetic relatedness and kinship structure are an important source of group stability in animal societies, particularly when dominance and/or affilative interactions are typically governed by kinship.

  16. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.

    Science.gov (United States)

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi; Salleh, Abdul Hakim Mohamed

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  17. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  18. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  19. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  20. The role of social networking sites in medical genetics research.

    Science.gov (United States)

    Reaves, Allison Cook; Bianchi, Diana W

    2013-05-01

    Social networking sites (SNS) have potential value in the field of medical genetics as a means of research subject recruitment and source of data. This article examines the current role of SNS in medical genetics research and potential applications for these sites in future studies. Facebook is the primary SNS considered, given the prevalence of its use in the United States and role in a small but growing number of studies. To date, utilization of SNS in medical genetics research has been primarily limited to three studies that recruited subjects from populations of Facebook users [McGuire et al. (2009); Am J Bioeth 9: 3-10; Janvier et al. (2012); Pediatrics 130: 293-298; Leighton et al. (2012); Public Health Genomics 15: 11-21]. These studies and a number of other medical and public health studies that have used Facebook as a context for recruiting research subjects are discussed. Approaches for Facebook-based subject recruitment are identified, including paid Facebook advertising, snowball sampling, targeted searching and posting. The use of these methods in medical genetics research has the potential to facilitate cost-effective research on both large, heterogeneous populations and small, hard-to-access sub-populations. Copyright © 2013 Wiley Periodicals, Inc.

  1. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  2. Investigating physics learning with layered student interaction networks

    DEFF Research Database (Denmark)

    Bruun, Jesper; Traxler, Adrienne

    Centrality in student interaction networks (SINs) can be linked to variables like grades [1], persistence [2], and participation [3]. Recent efforts in the field of network science have been done to investigate layered - or multiplex - networks as mathematical objects [4]. These networks can be e......, this study investigates how target entropy [5,1] and pagerank [6,7] are affected when we take time and modes of interaction into account. We present our preliminary models and results and outline our future work in this area....

  3. Global patterns of interaction specialization in bird-flower networks

    DEFF Research Database (Denmark)

    Zanata, Thais B.; Dalsgaard, Bo; Passos, Fernando C.

    2017-01-01

    , such as plant species richness, asymmetry, latitude, insularity, topography, sampling methods and intensity. Results: Hummingbird–flower networks were more specialized than honeyeater–flower networks. Specifically, hummingbird–flower networks had a lower proportion of realized interactions (lower C), decreased...... in the interaction patterns with their floral resources. Location: Americas, Africa, Asia and Oceania/Australia. Methods: We compiled interaction networks between birds and floral resources for 79 hummingbird, nine sunbird and 33 honeyeater communities. Interaction specialization was quantified through connectance...... (C), complementary specialization (H2′), binary (QB) and weighted modularity (Q), with both observed and null-model corrected values. We compared interaction specialization among the three types of bird–flower communities, both independently and while controlling for potential confounding variables...

  4. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  5. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers.

    Science.gov (United States)

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier; Lecompte, Odile

    2017-06-16

    The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. ©Alexis Allot, Kirsley Chennen, Yannis

  6. Specific non-monotonous interactions increase persistence of ecological networks.

    Science.gov (United States)

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  7. Combining neural networks and genetic algorithms for hydrological flow forecasting

    Science.gov (United States)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and

  8. High Performance Data mining by Genetic Neural Network

    Directory of Open Access Journals (Sweden)

    Dadmehr Rahbari

    2013-10-01

    Full Text Available Data mining in computer science is the process of discovering interesting and useful patterns and relationships in large volumes of data. Most methods for mining problems is based on artificial intelligence algorithms. Neural network optimization based on three basic parameters topology, weights and the learning rate is a powerful method. We introduce optimal method for solving this problem. In this paper genetic algorithm with mutation and crossover operators change the network structure and optimized that. Dataset used for our work is stroke disease with twenty features that optimized number of that achieved by new hybrid algorithm. Result of this work is very well incomparison with other similar method. Low present of error show that our method is our new approach to efficient, high-performance data mining problems is introduced.

  9. Do networks of social interactions reflect patterns of kinship?

    Directory of Open Access Journals (Sweden)

    Joah R. MADDEN, Johanna F. NIELSEN, Tim H. CLUTTON-BROCK

    2012-04-01

    Full Text Available The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal association between individuals, and is presumed to facilitate inclusive fitness benefits. Such structure may be evident at a finer, behavioural, scale with individuals preferentially interacting with kin. We tested whether kin structure within groups of meerkats Suricata suricatta matched three forms of social interaction networks: grooming, dominance or foraging competitions. Networks of dominance interactions were positively related to networks of kinship, with close relatives engaging in dominance interactions with each other. This relationship persisted even after excluding the breeding dominant pair and when we restricted the kinship network to only include links between first order kin, which are most likely to be able to discern kin through simple rules of thumb. Conversely, we found no relationship between kinship networks and either grooming networks or networks of foraging competitions. This is surprising because a positive association between kin in a grooming network, or a negative association between kin in a network of foraging competitions offers opportunities for inclusive fitness benefits. Indeed, the positive association between kin in a network of dominance interactions that we did detect does not offer clear inclusive fitness benefits to group members. We conclude that kin structure in behavioural interactions in meerkats may be driven by factors other than indirect fitness benefits, and that networks of cooperative behaviours such as grooming may be driven by direct benefits accruing to individuals perhaps through mutualism or manipulation [Current Zoology 58 (2: 319-328, 2012].

  10. Do networks of social interactions reflect patterns of kinship?

    Institute of Scientific and Technical Information of China (English)

    Joah R. MADDEN; Johanna F. NIEL SEN; Tim H. CLUTTON-BROCK

    2012-01-01

    The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal association between individuals,and is presumed to facilitate inclusive fitness benefits.Such structure may be evident at a finer,behavioural,scale with individuals preferentially interacting with kin.We tested whether kin structure within groups of meerkats Suricata suricatta matched three forms of social interaction networks:grooming,dominance or foraging competitions.Networks of dominance interactions were positively related to networks of kinship,with close relatives engaging in dominance interactions with each other.This relationship persisted even after excluding the breeding dominant pair and when we restricted the kinship network to only include links between first order kin,which are most likely to be able to discern kin through simple rules of thumb.Conversely,we found no relationship between kinship networks and either grooming networks or networks of foraging competitions.This is surprising because a positive association between kin in a grooming network,or a negative association between kin in a network of foraging competitions offers opportunities for inclusive fitness benefits.Indeed,the positive association between kin in a network of dominance interactions that we did detect does not offer clear inclusive fitness benefits to group members.We conclude that kin structure in behavioural interactions in meerkats may be driven by factors other than indirect fitness benefits,and that networks of cooperative behaviours such as grooming may be driven by direct benefits accruing to individuals perhaps through mutualism or manipulation [Current Zoology 58 (2):319-328,2012].

  11. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  12. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  13. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2011-01-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits

  15. The Congenital Heart Disease Genetic Network Study: Cohort description.

    Directory of Open Access Journals (Sweden)

    Thanh T Hoang

    Full Text Available The Pediatric Cardiac Genomics Consortium (PCGC designed the Congenital Heart Disease Genetic Network Study to provide phenotype and genotype data for a large congenital heart defects (CHDs cohort. This article describes the PCGC cohort, overall and by major types of CHDs (e.g., conotruncal defects and subtypes of conotrucal heart defects (e.g., tetralogy of Fallot and left ventricular outflow tract obstructions (e.g., hypoplastic left heart syndrome. Cases with CHDs were recruited through ten sites, 2010-2014. Information on cases (N = 9,727 and their parents was collected through interviews and medical record abstraction. Four case characteristics, eleven parental characteristics, and thirteen parent-reported neurodevelopment outcomes were summarized using counts and frequencies and compared across CHD types and subtypes. Eleven percent of cases had a genetic diagnosis. Among cases without a genetic diagnosis, the majority had conotruncal heart defects (40% or left ventricular outflow tract obstruction (21%. Across CHD types, there were significant differences (p<0.05 in the distribution of all four case characteristics (e.g., sex, four parental characteristics (e.g., maternal pregestational diabetes, and five neurodevelopmental outcomes (e.g., learning disabilities. Several characteristics (e.g., sex were also significantly different across CHD subtypes. The PCGC cohort is one of the largest CHD cohorts available for the study of genetic determinants of risk and outcomes. The majority of cases do not have a genetic diagnosis. This description of the PCGC cohort, including differences across CHD types and subtypes, provides a reference work for investigators who are interested in collaborating with or using publically available resources from the PCGC.

  16. Empirical evaluation of neutral interactions in host-parasite networks.

    Science.gov (United States)

    Canard, E F; Mouquet, N; Mouillot, D; Stanko, M; Miklisova, D; Gravel, D

    2014-04-01

    While niche-based processes have been invoked extensively to explain the structure of interaction networks, recent studies propose that neutrality could also be of great importance. Under the neutral hypothesis, network structure would simply emerge from random encounters between individuals and thus would be directly linked to species abundance. We investigated the impact of species abundance distributions on qualitative and quantitative metrics of 113 host-parasite networks. We analyzed the concordance between neutral expectations and empirical observations at interaction, species, and network levels. We found that species abundance accurately predicts network metrics at all levels. Despite host-parasite systems being constrained by physiology and immunology, our results suggest that neutrality could also explain, at least partially, their structure. We hypothesize that trait matching would determine potential interactions between species, while abundance would determine their realization.

  17. Genome complexity, robustness and genetic interactions in digital organisms

    Science.gov (United States)

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  18. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    Science.gov (United States)

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  19. Default network modulation and large-scale network interactivity in healthy young and old adults.

    Science.gov (United States)

    Spreng, R Nathan; Schacter, Daniel L

    2012-11-01

    We investigated age-related changes in default, attention, and control network activity and their interactions in young and old adults. Brain activity during autobiographical and visuospatial planning was assessed using multivariate analysis and with intrinsic connectivity networks as regions of interest. In both groups, autobiographical planning engaged the default network while visuospatial planning engaged the attention network, consistent with a competition between the domains of internalized and externalized cognition. The control network was engaged for both planning tasks. In young subjects, the control network coupled with the default network during autobiographical planning and with the attention network during visuospatial planning. In old subjects, default-to-control network coupling was observed during both planning tasks, and old adults failed to deactivate the default network during visuospatial planning. This failure is not indicative of default network dysfunction per se, evidenced by default network engagement during autobiographical planning. Rather, a failure to modulate the default network in old adults is indicative of a lower degree of flexible network interactivity and reduced dynamic range of network modulation to changing task demands.

  20. Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution

    Science.gov (United States)

    Wilkins, Adam S.

    2007-01-01

    The extent to which “developmental constraints” in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a “network perspective” may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed. PMID:17494754

  1. Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.

    Science.gov (United States)

    Wilkins, Adam S

    2007-05-15

    The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.

  2. Interacting Social Processes on Interconnected Networks.

    Directory of Open Access Journals (Sweden)

    Lucila G Alvarez-Zuzek

    Full Text Available We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2, describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2 or a moderate (S = ±1 is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1 or against (S = -1 the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A when the reinforcement overcomes a crossover value r*(β, while a negative consensus happens for r βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*.

  3. Personal Profiles: Enhancing Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter; Fetter, Sibren

    2009-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns, F., Sloep, P. B., & Fetter, S. (2011). Personal Profiles: Enhancing Social Interaction in Learning Networks. International Journal of Web Based Communities, 7(1), 66-82.

  4. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network.

    Science.gov (United States)

    Fricke, Evan C; Tewksbury, Joshua J; Rogers, Haldre S

    2018-01-01

    Following defaunation, the loss of interactions with mutualists such as pollinators or seed dispersers may be compensated through increased interactions with remaining mutualists, ameliorating the negative cascading impacts on biodiversity. Alternatively, remaining mutualists may respond to altered competition by reducing the breadth or intensity of their interactions, exacerbating negative impacts on biodiversity. Despite the importance of these responses for our understanding of the dynamics of mutualistic networks and their response to global change, the mechanism and magnitude of interaction compensation within real mutualistic networks remains largely unknown. We examined differences in mutualistic interactions between frugivores and fruiting plants in two island ecosystems possessing an intact or disrupted seed dispersal network. We determined how changes in the abundance and behavior of remaining seed dispersers either increased mutualistic interactions (contributing to "interaction compensation") or decreased interactions (causing an "interaction deficit") in the disrupted network. We found a "rich-get-richer" response in the disrupted network, where remaining frugivores favored the plant species with highest interaction frequency, a dynamic that worsened the interaction deficit among plant species with low interaction frequency. Only one of five plant species experienced compensation and the other four had significant interaction deficits, with interaction frequencies 56-95% lower in the disrupted network. These results do not provide support for the strong compensating mechanisms assumed in theoretical network models, suggesting that existing network models underestimate the prevalence of cascading mutualism disruption after defaunation. This work supports a mutualist biodiversity-ecosystem functioning relationship, highlighting the importance of mutualist diversity for sustaining diverse and resilient ecosystems. © 2017 John Wiley & Sons Ltd.

  5. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    Science.gov (United States)

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  6. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  7. Near-Optimal Resource Allocation in Cooperative Cellular Networks Using Genetic Algorithms

    OpenAIRE

    Luo, Zihan; Armour, Simon; McGeehan, Joe

    2015-01-01

    This paper shows how a genetic algorithm can be used as a method of obtaining the near-optimal solution of the resource block scheduling problem in a cooperative cellular network. An exhaustive search is initially implementedto guarantee that the optimal result, in terms of maximizing the bandwidth efficiency of the overall network, is found, and then the genetic algorithm with the properly selected termination conditions is used in the same network. The simulation results show that the genet...

  8. Development of Attention Networks and Their Interactions in Childhood

    Science.gov (United States)

    Pozuelos, Joan P.; Paz-Alonso, Pedro M.; Castillo, Alejandro; Fuentes, Luis J.; Rueda, M. Rosario

    2014-01-01

    In the present study, we investigated developmental trajectories of alerting, orienting, and executive attention networks and their interactions over childhood. Two cross-sectional experiments were conducted with different samples of 6-to 12-year-old children using modified versions of the attention network task (ANT). In Experiment 1 (N = 106),…

  9. Global Diffusion of Interactive Networks. The Impact of Culture

    OpenAIRE

    Maitland, Carleen

    1998-01-01

    The Internet and other interactive networks are diffusing across the globe at rates that vary from country to country. Typically, economic and market structure variables are used to explain these differences. The addition of culture to these variables will provide a more robust understanding of the differences in Internet and interactive network diffusion. Existing analyses that identify culture as a predictor of diffusion do not adequately specificy the dimensions of culture and their imp...

  10. Functional Interaction Network Construction and Analysis for Disease Discovery.

    Science.gov (United States)

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  11. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  12. Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs

    Directory of Open Access Journals (Sweden)

    Guo Hao

    2011-05-01

    Full Text Available Abstract Background High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance. Results Here we study the evolution of protein interaction networks from the perspective of network motifs. We find that in current protein interaction networks, proteins of the same age class tend to form motifs and such co-origins of motif constituents are affected by their topologies and biological functions. Further, we find that the proteins within motifs whose constituents are of the same age class tend to be densely interconnected, co-evolve and share the same biological functions, and these motifs tend to be within protein complexes. Conclusions Our findings provide novel evidence for the hypothesis of the additions of clustered interacting nodes and point out network motifs, especially the motifs with the dense topology and specific function may play important roles during this process. Our results suggest functional constraints may be the underlying driving force for such additions of clustered interacting nodes.

  13. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  14. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  15. Jimena: efficient computing and system state identification for genetic regulatory networks.

    Science.gov (United States)

    Karl, Stefan; Dandekar, Thomas

    2013-10-11

    Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.

  16. Building a glaucoma interaction network using a text mining approach.

    Science.gov (United States)

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of

  17. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  18. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  19. Unified Alignment of Protein-Protein Interaction Networks.

    Science.gov (United States)

    Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša

    2017-04-19

    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.

  20. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  1. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Xiaodong Cai

    Full Text Available Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this paper, sparse structural equation models (SEMs are employed to integrate both gene expression data and cis-expression quantitative trait loci (cis-eQTL, for modeling gene regulatory networks in accordance with biological evidence about genes regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum likelihood (SML is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL based scheme, and the QTL-directed dependency graph (QDG method. Computer simulations demonstrate that the novel SML algorithm offers significantly better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The SML method is further applied to infer a network of 39 human genes that are related to the immune function and are chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both gene expression and perturbation data to infer gene regulatory networks. An open-source computer program implementing the SML algorithm is freely available upon request.

  2. Genetic Interactions of STAT3 and Anticancer Drug Development

    International Nuclear Information System (INIS)

    Fang, Bingliang

    2014-01-01

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors

  3. The genetics of childhood obesity and interaction with dietary macronutrients.

    Science.gov (United States)

    Garver, William S; Newman, Sara B; Gonzales-Pacheco, Diana M; Castillo, Joseph J; Jelinek, David; Heidenreich, Randall A; Orlando, Robert A

    2013-05-01

    The genes contributing to childhood obesity are categorized into three different types based on distinct genetic and phenotypic characteristics. These types of childhood obesity are represented by rare monogenic forms of syndromic or non-syndromic childhood obesity, and common polygenic childhood obesity. In some cases, genetic susceptibility to these forms of childhood obesity may result from different variations of the same gene. Although the prevalence for rare monogenic forms of childhood obesity has not increased in recent times, the prevalence of common childhood obesity has increased in the United States and developing countries throughout the world during the past few decades. A number of recent genome-wide association studies and mouse model studies have established the identification of susceptibility genes contributing to common childhood obesity. Accumulating evidence suggests that this type of childhood obesity represents a complex metabolic disease resulting from an interaction with environmental factors, including dietary macronutrients. The objective of this article is to provide a review on the origins, mechanisms, and health consequences of obesity susceptibility genes and interaction with dietary macronutrients that predispose to childhood obesity. It is proposed that increased knowledge of these obesity susceptibility genes and interaction with dietary macronutrients will provide valuable insight for individual, family, and community preventative lifestyle intervention, and eventually targeted nutritional and medicinal therapies.

  4. A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Keller Benjamin J

    2010-11-01

    Full Text Available Abstract Background Lithium is an effective treatment for Bipolar Disorder (BD and significantly reduces suicide risk, though the molecular basis of lithium's effectiveness is not well understood. We seek to improve our understanding of this effectiveness by posing hypotheses based on new experimental data as well as published data, testing these hypotheses in silico, and posing new hypotheses for validation in future studies. We initially hypothesized a gene-by-environment interaction where lithium, acting as an environmental influence, impacts signal transduction pathways leading to differential expression of genes important in the etiology of BD mania. Results Using microarray and rt-QPCR assays, we identified candidate genes that are differentially expressed with lithium treatment. We used a systems biology approach to identify interactions among these candidate genes and develop a network of genes that interact with the differentially expressed candidates. Notably, we also identified cocaine as having a potential influence on the network, consistent with the observed high rate of comorbidity for BD and cocaine abuse. The resulting network represents a novel hypothesis on how multiple genetic influences on bipolar disorder are impacted by both lithium treatment and cocaine use. Testing this network for association with BD and related phenotypes, we find that it is significantly over-represented for genes that participate in signal transduction, consistent with our hypothesized-gene-by environment interaction. In addition, it models related pharmacogenomic, psychiatric, and chemical dependence phenotypes. Conclusions We offer a network model of gene-by-environment interaction associated with lithium's effectiveness in treating BD mania, as well as the observed high rate of comorbidity of BD and cocaine abuse. We identified drug targets within this network that represent immediate candidates for therapeutic drug testing. Posing novel

  5. EVALUATING AUSTRALIAN FOOTBALL LEAGUE PLAYER CONTRIBUTIONS USING INTERACTIVE NETWORK SIMULATION

    Directory of Open Access Journals (Sweden)

    Jonathan Sargent

    2013-03-01

    Full Text Available This paper focuses on the contribution of Australian Football League (AFL players to their team's on-field network by simulating player interactions within a chosen team list and estimating the net effect on final score margin. A Visual Basic computer program was written, firstly, to isolate the effective interactions between players from a particular team in all 2011 season matches and, secondly, to generate a symmetric interaction matrix for each match. Negative binomial distributions were fitted to each player pairing in the Geelong Football Club for the 2011 season, enabling an interactive match simulation model given the 22 chosen players. Dynamic player ratings were calculated from the simulated network using eigenvector centrality, a method that recognises and rewards interactions with more prominent players in the team network. The centrality ratings were recorded after every network simulation and then applied in final score margin predictions so that each player's match contribution-and, hence, an optimal team-could be estimated. The paper ultimately demonstrates that the presence of highly rated players, such as Geelong's Jimmy Bartel, provides the most utility within a simulated team network. It is anticipated that these findings will facilitate optimal AFL team selection and player substitutions, which are key areas of interest to coaches. Network simulations are also attractive for use within betting markets, specifically to provide information on the likelihood of a chosen AFL team list "covering the line".

  6. Structural stability of interaction networks against negative external fields

    Science.gov (United States)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  7. End of Interactive Emailing from the Technical Network

    CERN Multimedia

    2006-01-01

    According to the CNIC Security Policy for Control Systems (EDMS #584092), interactive emailing on PCs (and other devices) connected to the Technical Network is prohibited. Please note that from November 6th, neither reading emails nor sending emails interactively using e.g. Outlook or Pine mail clients on PCs connected to the Technical Network will be possible anymore. However, automatically generated emails will not be blocked and can still be sent off using CERNMX.CERN.CH as mail server. These restrictions DO NOT apply to PCs connected to any other network, like the General Purpose (or office) network. If you have questions, please do not hesitate to contact Uwe Epting, Pierre Charrue or Stefan Lueders (Technical-Network.Administrator@cern.ch). Your CNIC Working Group

  8. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  9. Evidence of probabilistic behaviour in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2008-01-01

    Full Text Available Abstract Background Data from high-throughput experiments of protein-protein interactions are commonly used to probe the nature of biological organization and extract functional relationships between sets of proteins. What has not been appreciated is that the underlying mechanisms involved in assembling these networks may exhibit considerable probabilistic behaviour. Results We find that the probability of an interaction between two proteins is generally proportional to the numerical product of their individual interacting partners, or degrees. The degree-weighted behaviour is manifested throughout the protein-protein interaction networks studied here, except for the high-degree, or hub, interaction areas. However, we find that the probabilities of interaction between the hubs are still high. Further evidence is provided by path length analyses, which show that these hubs are separated by very few links. Conclusion The results suggest that protein-protein interaction networks incorporate probabilistic elements that lead to scale-rich hierarchical architectures. These observations seem to be at odds with a biologically-guided organization. One interpretation of the findings is that we are witnessing the ability of proteins to indiscriminately bind rather than the protein-protein interactions that are actually utilized by the cell in biological processes. Therefore, the topological study of a degree-weighted network requires a more refined methodology to extract biological information about pathways, modules, or other inferred relationships among proteins.

  10. Robust and global delay-dependent stability for genetic regulatory networks with parameter uncertainties.

    Science.gov (United States)

    Tian, Li-Ping; Wang, Jianxin; Wu, Fang-Xiang

    2012-09-01

    The study of stability is essential for designing or controlling genetic regulatory networks, which can be described by nonlinear differential equations with time delays. Much attention has been paid to the study of delay-independent stability of genetic regulatory networks and as a result, many sufficient conditions have been derived for delay-independent stability. Although it might be more interesting in practice, delay-dependent stability of genetic regulatory networks has been studied insufficiently. Based on the linear matrix inequality (LMI) approach, in this study we will present some delay-dependent stability conditions for genetic regulatory networks. Then we extend these results to genetic regulatory networks with parameter uncertainties. To illustrate the effectiveness of our theoretical results, gene repressilatory networks are analyzed .

  11. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    Science.gov (United States)

    Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter

    2015-01-01

    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796

  12. Major component analysis of dynamic networks of physiologic organ interactions

    International Nuclear Information System (INIS)

    Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P

    2015-01-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)

  13. Network traffic intelligence using a low interaction honeypot

    Science.gov (United States)

    Nyamugudza, Tendai; Rajasekar, Venkatesh; Sen, Prasad; Nirmala, M.; Madhu Viswanatham, V.

    2017-11-01

    Advancements in networking technology have seen more and more devices becoming connected day by day. This has given organizations capacity to extend their networks beyond their boundaries to remote offices and remote employees. However as the network grows security becomes a major challenge since the attack surface also increases. There is need to guard the network against different types of attacks like intrusion and malware through using different tools at different networking levels. This paper describes how network intelligence can be acquired through implementing a low-interaction honeypot which detects and track network intrusion. Honeypot allows an organization to interact and gather information about an attack earlier before it compromises the network. This process is important because it allows the organization to learn about future attacks of the same nature and allows them to develop counter measures. The paper further shows how honeypot-honey net based model for interruption detection system (IDS) can be used to get the best valuable information about the attacker and prevent unexpected harm to the network.

  14. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  15. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  16. Stability analysis of delayed genetic regulatory networks with stochastic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Qi, E-mail: zhouqilhy@yahoo.com.c [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Chen Bing [Institute of Complexity Science, Qingdao University, Qingdao 266071, Shandong (China); Li Hongyi [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2009-10-05

    This Letter considers the problem of stability analysis of a class of delayed genetic regulatory networks with stochastic disturbances. The delays are assumed to be time-varying and bounded. By utilizing Ito's differential formula and Lyapunov-Krasovskii functionals, delay-range-dependent and rate-dependent (rate-independent) stability criteria are proposed in terms of linear matrices inequalities. An important feature of the proposed results is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another important feature is that the obtained stability conditions are less conservative than certain existing ones in the literature due to introducing some appropriate free-weighting matrices. A simulation example is employed to illustrate the applicability and effectiveness of the proposed methods.

  17. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  18. eQTL Networks Reveal Complex Genetic Architecture in the Immature Soybean Seed

    Directory of Open Access Journals (Sweden)

    Yung-Tsi Bolon

    2014-03-01

    Full Text Available The complex network of regulatory factors and interactions involved in transcriptional regulation within the seed is not well understood. To evaluate gene expression regulation in the immature seed, we utilized a genetical genomics approach on a soybean [ (L. Merr.] recombinant inbred line (RIL population and produced a genome-wide expression quantitative trait loci (eQTL dataset. The validity of the dataset was confirmed by mapping the eQTL hotspot for flavonoid biosynthesis-related genes to a region containing repeats of chalcone synthase (CHS genes known to correspond to the soybean inhibitor locus that regulates seed color. We then identified eQTL for genes with seed-specific expression and discovered striking eQTL hotspots at distinct genomic intervals on chromosomes (Chr 20, 7, and 13. The main eQTL hotspot for transcriptional regulation of fatty acid biosynthesis genes also coincided with regulation of oleosin genes. Transcriptional upregulation of genesets from eQTL with opposite allelic effects were also found. Gene–eQTL networks were constructed and candidate regulatory genes were identified from these three key loci specific to seed expression and enriched in genes involved in seed oil accumulation. Our data provides new insight into the complex nature of gene networks in the immature soybean seed and the genetic architecture that contributes to seed development.

  19. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  20. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrb(s-l and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9. We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B.

  1. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    the space of potential sounds that can be generated through such compositional sound synthesis networks (CSSNs). To study the effect of evolution on subjective appreciation, participants in a listener study ranked evolved timbres by personal preference, resulting in preferences skewed toward the first......While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved...

  2. Dynamic Interactions for Network Visualization and Simulation

    Science.gov (United States)

    2009-03-01

    projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of

  3. Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.

    Science.gov (United States)

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-02-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.

  4. Genetic prediction of type 2 diabetes using deep neural network.

    Science.gov (United States)

    Kim, J; Kim, J; Kwak, M J; Bajaj, M

    2018-04-01

    Type 2 diabetes (T2DM) has strong heritability but genetic models to explain heritability have been challenging. We tested deep neural network (DNN) to predict T2DM using the nested case-control study of Nurses' Health Study (3326 females, 45.6% T2DM) and Health Professionals Follow-up Study (2502 males, 46.5% T2DM). We selected 96, 214, 399, and 678 single-nucleotide polymorphism (SNPs) through Fisher's exact test and L1-penalized logistic regression. We split each dataset randomly in 4:1 to train prediction models and test their performance. DNN and logistic regressions showed better area under the curve (AUC) of ROC curves than the clinical model when 399 or more SNPs included. DNN was superior than logistic regressions in AUC with 399 or more SNPs in male and 678 SNPs in female. Addition of clinical factors consistently increased AUC of DNN but failed to improve logistic regressions with 214 or more SNPs. In conclusion, we show that DNN can be a versatile tool to predict T2DM incorporating large numbers of SNPs and clinical information. Limitations include a relatively small number of the subjects mostly of European ethnicity. Further studies are warranted to confirm and improve performance of genetic prediction models using DNN in different ethnic groups. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Class II HLA interactions modulate genetic risk for multiple sclerosis

    Science.gov (United States)

    Dilthey, Alexander T; Xifara, Dionysia K; Ban, Maria; Shah, Tejas S; Patsopoulos, Nikolaos A; Alfredsson, Lars; Anderson, Carl A; Attfield, Katherine E; Baranzini, Sergio E; Barrett, Jeffrey; Binder, Thomas M C; Booth, David; Buck, Dorothea; Celius, Elisabeth G; Cotsapas, Chris; D’Alfonso, Sandra; Dendrou, Calliope A; Donnelly, Peter; Dubois, Bénédicte; Fontaine, Bertrand; Fugger, Lars; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Hemmer, Bernhard; Hillert, Jan; Kockum, Ingrid; Leslie, Stephen; Lill, Christina M; Martinelli-Boneschi, Filippo; Oksenberg, Jorge R; Olsson, Tomas; Oturai, Annette; Saarela, Janna; Søndergaard, Helle Bach; Spurkland, Anne; Taylor, Bruce; Winkelmann, Juliane; Zipp, Frauke; Haines, Jonathan L; Pericak-Vance, Margaret A; Spencer, Chris C A; Stewart, Graeme; Hafler, David A; Ivinson, Adrian J; Harbo, Hanne F; Hauser, Stephen L; De Jager, Philip L; Compston, Alastair; McCauley, Jacob L; Sawcer, Stephen; McVean, Gil

    2016-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles. PMID:26343388

  6. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Science.gov (United States)

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  7. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  8. Detecting Friendship Within Dynamic Online Interaction Networks

    OpenAIRE

    Merritt, Sears; Jacobs, Abigail Z.; Mason, Winter; Clauset, Aaron

    2013-01-01

    In many complex social systems, the timing and frequency of interactions between individuals are observable but friendship ties are hidden. Recovering these hidden ties, particularly for casual users who are relatively less active, would enable a wide variety of friendship-aware applications in domains where labeled data are often unavailable, including online advertising and national security. Here, we investigate the accuracy of multiple statistical features, based either purely on temporal...

  9. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.

    Science.gov (United States)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-12-23

    Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.

  10. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  11. Interacting epidemics and coinfection on contact networks.

    Science.gov (United States)

    Newman, M E J; Ferrario, Carrie R

    2013-01-01

    The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.

  12. Interacting epidemics and coinfection on contact networks.

    Directory of Open Access Journals (Sweden)

    M E J Newman

    Full Text Available The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.

  13. Yeast Augmented Network Analysis (YANA: a new systems approach to identify therapeutic targets for human genetic diseases [v1; ref status: indexed, http://f1000r.es/3gk

    Directory of Open Access Journals (Sweden)

    David J. Wiley

    2014-06-01

    Full Text Available Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA approach and test it with the X-linked spinal muscular atrophy (SMA disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.

  14. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    Science.gov (United States)

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  15. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    Science.gov (United States)

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.

  16. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  17. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    2015-01-01

    Full Text Available Systemic sclerosis (SSc is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6-12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected

  18. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  19. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Integrated multimedia information system on interactive CATV network

    Science.gov (United States)

    Lee, Meng-Huang; Chang, Shin-Hung

    1998-10-01

    In the current CATV system architectures, they provide one- way delivery of a common menu of entertainment to all the homes through the cable network. Through the technologies evolution, the interactive services (or two-way services) can be provided in the cable TV systems. They can supply customers with individualized programming and support real- time two-way communications. With a view to the service type changed from the one-way delivery systems to the two-way interactive systems, `on demand services' is a distinct feature of multimedia systems. In this paper, we present our work of building up an integrated multimedia system on interactive CATV network in Shih Chien University. Besides providing the traditional analog TV programming from the cable operator, we filter some channels to reserve them as our campus information channels. In addition to the analog broadcasting channel, the system also provides the interactive digital multimedia services, e.g. Video-On- Demand (VOD), Virtual Reality, BBS, World-Wide-Web, and Internet Radio Station. These two kinds of services are integrated in a CATV network by the separation of frequency allocation for the analog broadcasting service and the digital interactive services. Our ongoing work is to port our previous work of building up a VOD system conformed to DAVIC standard (for inter-operability concern) on Ethernet network into the current system.

  1. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability

  2. Genetic and environmental factors interact to influence anxiety.

    Science.gov (United States)

    Gross, Cornelius; Hen, René

    2004-01-01

    Both genetic and environmental factors influence normal anxiety traits as well as anxiety disorders. In addition it is becoming increasingly clear that these factors interact to produce specific anxiety-related behaviors. For example, in humans and in monkeys mutations in the gene encoding for the serotonin transporter result in increased anxiety in adult life when combined with a stressful environment during development. Another recent example comes from twin studies suggesting that a small hippocampus can be a predisposing condition that renders individuals susceptible to post traumatic stress disorder. Such examples illustrate how specific mutations leading to abnormal brain development may increase vulnerability to environmental insults which may in turn lead to specific anxiety disorders.

  3. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Science.gov (United States)

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  4. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Directory of Open Access Journals (Sweden)

    Xuanping Zhang

    2013-01-01

    Full Text Available Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR, which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds.

  5. SLiM 2: Flexible, Interactive Forward Genetic Simulations.

    Science.gov (United States)

    Haller, Benjamin C; Messer, Philipp W

    2017-01-01

    Modern population genomic datasets hold immense promise for revealing the evolutionary processes operating in natural populations, but a crucial prerequisite for this goal is the ability to model realistic evolutionary scenarios and predict their expected patterns in genomic data. To that end, we present SLiM 2: an evolutionary simulation framework that combines a powerful, fast engine for forward population genetic simulations with the capability of modeling a wide variety of complex evolutionary scenarios. SLiM achieves this flexibility through scriptability, which provides control over most aspects of the simulated evolutionary scenarios with a simple R-like scripting language called Eidos. An example SLiM simulation is presented to illustrate the power of this approach. SLiM 2 also includes a graphical user interface for simulation construction, interactive runtime control, and dynamic visualization of simulation output, facilitating easy and fast model development with quick prototyping and visual debugging. We conclude with a performance comparison between SLiM and two other popular forward genetic simulation packages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Design of Supply Chain Networks with Supply Disruptions using Genetic Algorithm

    OpenAIRE

    Taha, Raghda; Abdallah, Khaled; Sadek, Yomma; El-Kharbotly, Amin; Afia, Nahid

    2014-01-01

    The design of supply chain networks subject to disruptions is tackled. A genetic algorithm with the objective of minimizing the design cost and regret cost is developed to achieve a reliable supply chain network. The improvement of supply chain network reliability is measured against the supply chain cost.

  7. Modeling human dynamics of face-to-face interaction networks

    OpenAIRE

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-01-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of inter-conversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here ...

  8. Epidemic spreading in networks with nonrandom long-range interactions

    Science.gov (United States)

    Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba

    2011-09-01

    An “infection,” understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.

  9. Epidemic spreading in networks with nonrandom long-range interactions.

    Science.gov (United States)

    Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba

    2011-09-01

    An "infection," understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both "close" contacts and "casual" encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called "conductance" controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.

  10. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  11. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.

  12. Simulating market dynamics: interactions between consumer psychology and social networks.

    Science.gov (United States)

    Janssen, Marco A; Jager, Wander

    2003-01-01

    Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).

  13. Drug-domain interaction networks in myocardial infarction.

    Science.gov (United States)

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco; Zhao, Xing-Ming

    2013-09-01

    It has been well recognized that the pace of the development of new drugs and therapeutic interventions lags far behind biological knowledge discovery. Network-based approaches have emerged as a promising alternative to accelerate the discovery of new safe and effective drugs. Based on the integration of several biological resources including two recently published datasets i.e., Drug-target interactions in myocardial infarction (My-DTome) and drug-domain interaction network, this paper reports the association between drugs and protein domains in the context of myocardial infarction (MI). A MI drug-domain interaction network, My-DDome, was firstly constructed, followed by topological analysis and functional characterization of the network. The results show that My-DDome has a very clear modular structure, where drugs interacting with the same domain(s) within each module tend to have similar therapeutic effects. Moreover it has been found that drugs acting on blood and blood forming organs (ATC code B) and sensory organs (ATC code S) are significantly enriched in My-DDome (p drugs, their known targets, and seemingly unrelated proteins can be revealed.

  14. Robust collaborative process interactions under system crash and network failures

    NARCIS (Netherlands)

    Wang, Lei; Wombacher, Andreas; Ferreira Pires, Luis; van Sinderen, Marten J.; Chi, Chihung

    2013-01-01

    With the possibility of system crashes and network failures, the design of robust client/server interactions for collaborative process execution is a challenge. If a business process changes its state, it sends messages to the relevant processes to inform about this change. However, server crashes

  15. Characterizing interactions in online social networks during exceptional events

    Science.gov (United States)

    Omodei, Elisa; De Domenico, Manlio; Arenas, Alex

    2015-08-01

    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events.

  16. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  17. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Directory of Open Access Journals (Sweden)

    Recep Colak

    2010-10-01

    Full Text Available Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented.We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples.We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely

  18. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Science.gov (United States)

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  19. Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.

    Directory of Open Access Journals (Sweden)

    Xia Jiang

    Full Text Available The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges. In particular, it is difficult to discover predictive variables, when each variable has little marginal effect. An example concerns Genome-wide Association Studies (GWAS datasets, which involve millions of single nucleotide polymorphism (SNPs, where some of the SNPs interact epistatically to affect disease status. Towards determining these interacting SNPs, researchers developed techniques that addressed this specific problem. However, the problem is more general, and so these techniques are applicable to other problems concerning interactions. A difficulty with many of these techniques is that they do not distinguish whether a learned interaction is actually an interaction or whether it involves several variables with strong marginal effects.We address this problem using information gain and Bayesian network scoring. First, we identify candidate interactions by determining whether together variables provide more information than they do separately. Then we use Bayesian network scoring to see if a candidate interaction really is a likely model. Our strategy is called MBS-IGain. Using 100 simulated datasets and a real GWAS Alzheimer's dataset, we investigated the performance of MBS-IGain.When analyzing the simulated datasets, MBS-IGain substantially out-performed nine previous methods at locating interacting predictors, and at identifying interactions exactly. When analyzing the real Alzheimer's dataset, we obtained new results and results that substantiated previous findings. We conclude that MBS-IGain is highly effective at finding interactions in high-dimensional datasets. This result is significant because we have increasingly

  20. How People Interact in Evolving Online Affiliation Networks

    Science.gov (United States)

    Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.

    2012-07-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  1. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  2. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2008-03-01

    Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

  3. Digital Ecology: Coexistence and Domination among Interacting Networks

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2015-05-01

    The overwhelming success of Web 2.0, within which online social networks are key actors, has induced a paradigm shift in the nature of human interactions. The user-driven character of Web 2.0 services has allowed researchers to quantify large-scale social patterns for the first time. However, the mechanisms that determine the fate of networks at the system level are still poorly understood. For instance, the simultaneous existence of multiple digital services naturally raises questions concerning which conditions these services can coexist under. Analogously to the case of population dynamics, the digital world forms a complex ecosystem of interacting networks. The fitness of each network depends on its capacity to attract and maintain users’ attention, which constitutes a limited resource. In this paper, we introduce an ecological theory of the digital world which exhibits stable coexistence of several networks as well as the dominance of an individual one, in contrast to the competitive exclusion principle. Interestingly, our theory also predicts that the most probable outcome is the coexistence of a moderate number of services, in agreement with empirical observations.

  4. Myths on Bi-direction Communication of Web 2.0 Based Social Networks: Is Social Network Truly Interactive?

    Science.gov (United States)

    2011-03-10

    more and more social interactions are happening on the on-line. Especially recent uptake of the social network sites (SNSs), such as Facebook (http...Smart phones • Live updates within social networks • Facebook & Twitters Solution: WebMon for Risk Management Need for New WebMon for Social Networks ...Title: Myths on bi-direction communication of Web 2.0 based social networks : Is social network truly interactive

  5. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  6. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    Science.gov (United States)

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  7. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    Science.gov (United States)

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  8. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks

    Science.gov (United States)

    Li, Yuhong

    2018-01-01

    In this paper, we propose a novel algorithm—parallel adaptive quantum genetic algorithm—which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes. PMID:29554140

  9. Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation

    Directory of Open Access Journals (Sweden)

    Shen Li

    2010-09-01

    Full Text Available Abstract Background An exciting application of genetic network is to predict phenotypic consequences for environmental cues or genetic perturbations. However, de novo prediction for quantitative phenotypes based on network topology is always a challenging task. Results Using yeast sporulation as a model system, we have assembled a genetic network from literature and exploited Boolean network to predict sporulation efficiency change upon deleting individual genes. We observe that predictions based on the curated network correlate well with the experimentally measured values. In addition, computational analysis reveals the robustness and hysteresis of the yeast sporulation network and uncovers several patterns of sporulation efficiency change caused by double gene deletion. These discoveries may guide future investigation of underlying mechanisms. We have also shown that a hybridized genetic network reconstructed from both temporal microarray data and literature is able to achieve a satisfactory prediction accuracy of the same quantitative phenotypes. Conclusions This case study illustrates the value of predicting quantitative phenotypes based on genetic network and provides a generic approach.

  10. Self-organization of social hierarchy on interaction networks

    International Nuclear Information System (INIS)

    Fujie, Ryo; Odagaki, Takashi

    2011-01-01

    In order to examine the effects of interaction network structures on the self-organization of social hierarchy, we introduce the agent-based model: each individual as on a node of a network has its own power and its internal state changes by fighting with its neighbors and relaxation. We adopt three different networks: regular lattice, small-world network and scale-free network. For the regular lattice, we find the emergence of classes distinguished by the internal state. The transition points where each class emerges are determined analytically, and we show that each class is characterized by the local ranking relative to their neighbors. We also find that the antiferromagnetic-like configuration emerges just above the critical point. For the heterogeneous networks, individuals become winners (or losers) in descending order of the number of their links. By using mean-field analysis, we reveal that the transition point is determined by the maximum degree and the degree distribution in its neighbors

  11. Wise regulates bone deposition through genetic interactions with Lrp5.

    Science.gov (United States)

    Ellies, Debra L; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise-/- mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development.

  12. Community Structure Analysis of Gene Interaction Networks in Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Tejaswini Narayanan

    Full Text Available Duchenne Muscular Dystrophy (DMD is an important pathology associated with the human skeletal muscle and has been studied extensively. Gene expression measurements on skeletal muscle of patients afflicted with DMD provides the opportunity to understand the underlying mechanisms that lead to the pathology. Community structure analysis is a useful computational technique for understanding and modeling genetic interaction networks. In this paper, we leverage this technique in combination with gene expression measurements from normal and DMD patient skeletal muscle tissue to study the structure of genetic interactions in the context of DMD. We define a novel framework for transforming a raw dataset of gene expression measurements into an interaction network, and subsequently apply algorithms for community structure analysis for the extraction of topological communities. The emergent communities are analyzed from a biological standpoint in terms of their constituent biological pathways, and an interpretation that draws correlations between functional and structural organization of the genetic interactions is presented. We also compare these communities and associated functions in pathology against those in normal human skeletal muscle. In particular, differential enhancements are observed in the following pathways between pathological and normal cases: Metabolic, Focal adhesion, Regulation of actin cytoskeleton and Cell adhesion, and implication of these mechanisms are supported by prior work. Furthermore, our study also includes a gene-level analysis to identify genes that are involved in the coupling between the pathways of interest. We believe that our results serve to highlight important distinguishing features in the structural/functional organization of constituent biological pathways, as it relates to normal and DMD cases, and provide the mechanistic basis for further biological investigations into specific pathways differently regulated

  13. Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data.

    Science.gov (United States)

    Li, Cheng-Wei; Chen, Bor-Sen

    2016-01-01

    Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects.

  14. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    Science.gov (United States)

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  15. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  16. Auditing Medical Records Accesses via Healthcare Interaction Networks

    Science.gov (United States)

    Chen, You; Nyemba, Steve; Malin, Bradley

    2012-01-01

    Healthcare organizations are deploying increasingly complex clinical information systems to support patient care. Traditional information security practices (e.g., role-based access control) are embedded in enterprise-level systems, but are insufficient to ensure patient privacy. This is due, in part, to the dynamic nature of healthcare, which makes it difficult to predict which care providers need access to what and when. In this paper, we show that modeling operations at a higher level of granularity (e.g., the departmental level) are stable in the context of a relational network, which may enable more effective auditing strategies. We study three months of access logs from a large academic medical center to illustrate that departmental interaction networks exhibit certain invariants, such as the number, strength, and reciprocity of relationships. We further show that the relations extracted from the network can be leveraged to assess the extent to which a patient’s care satisfies expected organizational behavior. PMID:23304277

  17. Games as Actors - Interaction, Play, Design, and Actor Network Theory

    DEFF Research Database (Denmark)

    Jessen, Jari Due; Jessen, Carsten

    2014-01-01

    When interacting with computer games, users are forced to follow the rules of the game in return for the excitement, joy, fun, or other pursued experiences. In this paper, we investigate how games a chieve these experiences in the perspective of Actor Network Theory (ANT). Based on a qualitative......, and by doing so they create in humans what in modern play theory is known as a “state of play”...

  18. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  19. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  20. Modeling of intracerebral interictal epileptic discharges: Evidence for network interactions.

    Science.gov (United States)

    Meesters, Stephan; Ossenblok, Pauly; Colon, Albert; Wagner, Louis; Schijns, Olaf; Boon, Paul; Florack, Luc; Fuster, Andrea

    2018-06-01

    The interictal epileptic discharges (IEDs) occurring in stereotactic EEG (SEEG) recordings are in general abundant compared to ictal discharges, but difficult to interpret due to complex underlying network interactions. A framework is developed to model these network interactions. To identify the synchronized neuronal activity underlying the IEDs, the variation in correlation over time of the SEEG signals is related to the occurrence of IEDs using the general linear model. The interdependency is assessed of the brain areas that reflect highly synchronized neural activity by applying independent component analysis, followed by cluster analysis of the spatial distributions of the independent components. The spatiotemporal interactions of the spike clusters reveal the leading or lagging of brain areas. The analysis framework was evaluated for five successfully operated patients, showing that the spike cluster that was related to the MRI-visible brain lesions coincided with the seizure onset zone. The additional value of the framework was demonstrated for two more patients, who were MRI-negative and for whom surgery was not successful. A network approach is promising in case of complex epilepsies. Analysis of IEDs is considered a valuable addition to routine review of SEEG recordings, with the potential to increase the success rate of epilepsy surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  2. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    Science.gov (United States)

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Network characteristics emerging from agent interactions in balanced distributed system.

    Science.gov (United States)

    Salman, Mahdi Abed; Bertelle, Cyrille; Sanlaville, Eric

    2015-01-01

    A distributed computing system behaves like a complex network, the interactions between nodes being essential information exchanges and migrations of jobs or services to execute. These actions are performed by software agents, which behave like the members of social networks, cooperating and competing to obtain knowledge and services. The load balancing consists in distributing the load evenly between system nodes. It aims at enhancing the resource usage. A load balancing strategy specifies scenarios for the cooperation. Its efficiency depends on quantity, accuracy, and distribution of available information. Nevertheless, the distribution of information on the nodes, together with the initial network structure, may create different logical network structures. In this paper, different load balancing strategies are tested on different network structures using a simulation. The four tested strategies are able to distribute evenly the load so that the system reaches a steady state (the mean response time of the jobs is constant), but it is shown that a given strategy indeed behaves differently according to structural parameters and information spreading. Such a study, devoted to distributed computing systems (DCSs), can be useful to understand and drive the behavior of other complex systems.

  4. KNOWNET: Exploring Interactive Knowledge Networking across Insurance Supply Chains

    Directory of Open Access Journals (Sweden)

    Susan Grant

    2014-01-01

    Full Text Available Social media has become an extremely powerful phenomenon with millions of users who post status updates, blog, links and pictures on social networking sites such as Facebook, LinkedIn, and Twitter. However, social networking has so far spread mainly among consumers. Businesses are only now beginning to acknowledge the benefits of using social media to enhance employee and supplier collaboration to support new ideas and innovation through knowledge sharing across functions and organizational boundaries. Many businesses are still trying to understand the various implications of integrating internal communication systems with social media tools and private collaboration and networking platforms. Indeed, a current issue in organizations today is to explore the value of social media mechanisms across a range of functions within their organizations and across their supply chains.The KNOWNET project (an EC funded Marie Curie IAPP seeks to assess the value of social networking for knowledge exchange across Insurance supply chains. A key objective of the project being to develop and build a web based interactive environment - a Supplier Social Network or SSN, to support and facilitate exchange of good ideas, insights, knowledge, innovations etc across a diverse group of suppliers within a multi level supply chain within the Insurance sector.

  5. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  6. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Teyssedou, A.; Dipama, J.; Sorin, M.

    2004-01-01

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective

  7. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    , as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network

  8. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

    Directory of Open Access Journals (Sweden)

    J R Managbanag

    Full Text Available BACKGROUND: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of

  9. Mapping genetic factors controlling potato - cyst nematode interactions

    NARCIS (Netherlands)

    Rouppe van der Voort, J.N.A.M.

    1998-01-01

    The thesis describes strategies for genetic mapping of the genomes of the potato cyst nematode and potato. Mapping in cyst nematodes was achieved by AFLP genotyping of single cysts and subsequent segregation analysis in a family of sibling populations. The genetic map of Globodera

  10. Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes

    DEFF Research Database (Denmark)

    Min, Josine L; Nicholson, George; Halgrimsdottir, Ingileif

    2012-01-01

    Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue...... and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU) = 0.89), seven of which were associated with MetS (FDR P100,000 individuals; rs10282458, affecting expression of RARRES2...... and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations....

  11. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model....

  12. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  13. Social and genetic interactions drive fitness variation in a free-living dolphin population.

    Science.gov (United States)

    Frère, Celine H; Krützen, Michael; Mann, Janet; Connor, Richard C; Bejder, Lars; Sherwin, William B

    2010-11-16

    The evolutionary forces that drive fitness variation in species are of considerable interest. Despite this, the relative importance and interactions of genetic and social factors involved in the evolution of fitness traits in wild mammalian populations are largely unknown. To date, a few studies have demonstrated that fitness might be influenced by either social factors or genes in natural populations, but none have explored how the combined effect of social and genetic parameters might interact to influence fitness. Drawing from a long-term study of wild bottlenose dolphins in the eastern gulf of Shark Bay, Western Australia, we present a unique approach to understanding these interactions. Our study shows that female calving success depends on both genetic inheritance and social bonds. Moreover, we demonstrate that interactions between social and genetic factors also influence female fitness. Therefore, our study represents a major methodological advance, and provides critical insights into the interplay of genetic and social parameters of fitness.

  14. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.

    Science.gov (United States)

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.

  15. Scaling laws and universality for the strength of genetic interactions in yeast

    Science.gov (United States)

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2012-02-01

    Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.

  16. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  17. Genetic and systems level analysis of Drosophila sticky/citron kinase and dFmr1 mutants reveals common regulation of genetic networks

    Directory of Open Access Journals (Sweden)

    Zarnescu Daniela C

    2008-11-01

    Full Text Available Abstract Background In Drosophila, the genes sticky and dFmr1 have both been shown to regulate cytoskeletal dynamics and chromatin structure. These genes also genetically interact with Argonaute family microRNA regulators. Furthermore, in mammalian systems, both genes have been implicated in neuronal development. Given these genetic and functional similarities, we tested Drosophila sticky and dFmr1 for a genetic interaction and measured whole genome expression in both mutants to assess similarities in gene regulation. Results We found that sticky mutations can dominantly suppress a dFmr1 gain-of-function phenotype in the developing eye, while phenotypes produced by RNAi knock-down of sticky were enhanced by dFmr1 RNAi and a dFmr1 loss-of-function mutation. We also identified a large number of transcripts that were misexpressed in both mutants suggesting that sticky and dFmr1 gene products similarly regulate gene expression. By integrating gene expression data with a protein-protein interaction network, we found that mutations in sticky and dFmr1 resulted in misexpression of common gene networks, and consequently predicted additional specific phenotypes previously not known to be associated with either gene. Further phenotypic analyses validated these predictions. Conclusion These findings establish a functional link between two previously unrelated genes. Microarray analysis indicates that sticky and dFmr1 are both required for regulation of many developmental genes in a variety of cell types. The diversity of transcripts regulated by these two genes suggests a clear cause of the pleiotropy that sticky and dFmr1 mutants display and provides many novel, testable hypotheses about the functions of these genes. As both of these genes are implicated in the development and function of the mammalian brain, these results have relevance to human health as well as to understanding more general biological processes.

  18. Nuclear reactors project optimization based on neural network and genetic algorithm

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  19. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    Science.gov (United States)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  20. Exploring drug-target interaction networks of illicit drugs.

    Science.gov (United States)

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network

  1. Measuring the genetic influence on human life span: gene-environment interaction and sex-specific genetic effects

    DEFF Research Database (Denmark)

    Tan, Qihua; De Benedictis, G; Yashin, Annatoli

    2001-01-01

    New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic and demographicinf......New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic...

  2. Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

    Science.gov (United States)

    Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve

    2008-04-15

    Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait

  3. Network of interactions between ciliates and phytoplankton during spring

    Directory of Open Access Journals (Sweden)

    Thomas ePosch

    2015-11-01

    Full Text Available The annually recurrent spring phytoplankton blooms in freshwater lakes initiate pronounced successions of planktonic ciliate species. Although there is considerable knowledge on the taxonomic diversity of these ciliates, their species-specific interactions with other microorganisms are still not well understood. Here we present the succession patterns of 20 morphotypes of ciliates during spring in Lake Zurich, Switzerland, and we relate their abundances to phytoplankton genera, flagellates, heterotrophic bacteria, and abiotic parameters. Interspecific relationships were analyzed by contemporaneous correlations and time-lagged co-occurrence and visualized as association networks. The contemporaneous network pointed to the pivotal role of distinct ciliate species (e.g., Balanion planctonicum, Rimostrombidium humile as primary consumers of cryptomonads, revealed a clear overclustering of mixotrophic / omnivorous species, and highlighted the role of Halteria / Pelagohalteria as important bacterivores. By contrast, time-lagged statistical approaches (like local similarity analyses, LSA proved to be inadequate for the evaluation of high-frequency sampling data. LSA led to a conspicuous inflation of significant associations, making it difficult to establish ecologically plausible interactions between ciliates and other microorganisms. Nevertheless, if adequate statistical procedures are selected, association networks can be powerful tools to formulate testable hypotheses about the autecology of only recently described ciliate species.

  4. Systems pharmacology - Towards the modeling of network interactions.

    Science.gov (United States)

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  5. Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2016-08-01

    Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.

  6. A developmental systems perspective on epistasis: computational exploration of mutational interactions in model developmental regulatory networks.

    Directory of Open Access Journals (Sweden)

    Jayson Gutiérrez

    2009-09-01

    Full Text Available The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks. Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/- feedback and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1 the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2 the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of

  7. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2014-08-11

    Aug 11, 2014 ... of chemical measures for the control and management of blast, which are not .... tion of genetic components of variation, epistasis model and gene effects in two .... and environmental variance is estimated from mean variance.

  8. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  9. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  10. Interactive social contagions and co-infections on complex networks

    Science.gov (United States)

    Liu, Quan-Hui; Zhong, Lin-Feng; Wang, Wei; Zhou, Tao; Eugene Stanley, H.

    2018-01-01

    What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.

  11. Supply Chain Management: from Linear Interactions to Networked Processes

    Directory of Open Access Journals (Sweden)

    Doina FOTACHE

    2006-01-01

    Full Text Available Supply Chain Management is a distinctive product, with a tremendous impact on the software applications market. SCM applications are back-end solutions intended to link suppliers, manufacturers, distributors and resellers in a production and distribution network, which allows the enterprise to track and consolidate the flows of materials and data trough the process of manufacturing and distribution of goods/services. The advent of the Web as a major means of conducting business transactions and business-tobusiness communications, coupled with evolving web-based supply chain management (SCM technology, has resulted in a transition period from “linear” supply chain models to "networked" supply chain models. The technologies to enable dynamic process changes and real time interactions between extended supply chain partners are emerging and being deployed at an accelerated pace.

  12. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  13. Visualization of protein interaction networks: problems and solutions

    Directory of Open Access Journals (Sweden)

    Agapito Giuseppe

    2013-01-01

    Full Text Available Abstract Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins and edges (interactions, the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i technology, i.e. availability/license of the software and supported OS (Operating System platforms; (ii interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the

  14. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    Science.gov (United States)

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  15. Interacting loop-current model of superconducting networks

    International Nuclear Information System (INIS)

    Chi, C.C.; Santhanam, P.; Bloechl, P.E.

    1992-01-01

    The authors review their recent approximation scheme to calculate the normal-superconducting phase boundary, T c (H), of a superconducting wire network in a magnetic field in terms of interacting loop currents. The theory is based on the London approximation of the linearized Ginzburg-Landau equation. An approximate general formula is derived for any two-dimensional space-filling lattice comprising tiles of two shapes. Many examples are provided illustrating the use of this method, with a particular emphasis on the fluxoid distribution. In addition to periodic lattices, quasiperiodic lattices and fractal Sierpinski gaskets are also discussed

  16. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks.

    Science.gov (United States)

    Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang

    2011-05-01

    A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.

  18. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  19. Coevolution of Synchronization and Cooperation in Costly Networked Interactions

    Science.gov (United States)

    Antonioni, Alberto; Cardillo, Alessio

    2017-06-01

    Despite the large number of studies on synchronization, the hypothesis that interactions bear a cost for involved individuals has seldom been considered. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring any cost, waiting for others to get synchronized to his or her state. Thus, the emergence of synchronization may be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit-to-cost ratio they accrued in the past. We study the onset of cooperation and synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We also display how different classes of topology foster synchronization differently both at microscopic and macroscopic levels.

  20. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    García JoséAPérez

    2008-01-01

    Full Text Available Abstract Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  1. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    Omar Jehovani López Orozco

    2007-12-01

    Full Text Available Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  2. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana [Centre for Systems, Dynamics and Control and Department of Mathematics, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-09-15

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  3. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    Science.gov (United States)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  4. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim

    2012-01-01

    The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.

  5. Gene interactions and genetics for yield and its attributes in grass pea

    Indian Academy of Sciences (India)

    [Parihar A. K., Dixit G. P. and Singh D. 2016 Gene interactions and genetics for yield and its attributes .... Biological yield. Seed yield factors. Plant height. Primary branches plant pod ..... indicates that these traits are under the control of several.

  6. Genetic Vulnerability Interacts with Parenting and Early Care and Education to Predict Increasing Externalizing Behavior

    Science.gov (United States)

    Lipscomb, Shannon T.; Laurent, Heidemarie; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David; Leve, Leslie D.

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental…

  7. Family Conflict Interacts with Genetic Liability in Predicting Childhood and Adolescent Depression

    Science.gov (United States)

    Rice, Frances; Harold, Gordon T.; Shelton, Katherine H.; Thapar, Anita

    2006-01-01

    Objective: To test for gene-environment interaction with depressive symptoms and family conflict. Specifically, to first examine whether the influence of family conflict in predicting depressive symptoms is increased in individuals at genetic risk of depression. Second, to test whether the genetic component of variance in depressive symptoms…

  8. The genetics of music accomplishment: evidence for gene-environment correlation and interaction.

    Science.gov (United States)

    Hambrick, David Z; Tucker-Drob, Elliot M

    2015-02-01

    Theories of skilled performance that emphasize training history, such as K. Anders Ericsson and colleagues' deliberate-practice theory, have received a great deal of recent attention in both the scientific literature and the popular press. Twin studies, however, have demonstrated evidence for moderate-to-strong genetic influences on skilled performance. Focusing on musical accomplishment in a sample of over 800 pairs of twins, we found evidence for gene-environment correlation, in the form of a genetic effect on music practice. However, only about one quarter of the genetic effect on music accomplishment was explained by this genetic effect on music practice, suggesting that genetically influenced factors other than practice contribute to individual differences in music accomplishment. We also found evidence for gene-environment interaction, such that genetic effects on music accomplishment were most pronounced among those engaging in music practice, suggesting that genetic potentials for skilled performance are most fully expressed and fostered by practice.

  9. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  10. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  11. Sequence memory based on coherent spin-interaction neural networks.

    Science.gov (United States)

    Xia, Min; Wong, W K; Wang, Zhijie

    2014-12-01

    Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.

  12. Graph theoretic analysis of protein interaction networks of eukaryotes

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2005-11-01

    Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.

  13. The paradox of caffeine-zolpidem interaction: a network analysis.

    Science.gov (United States)

    Myslobodsky, Michael

    2009-10-01

    A widely prescribed and potent short-acting hypnotic, zolpidem has become the mainstay for the treatment of middle-of-the-night sleeplessness. It is expected to be antagonized by caffeine. Paradoxically, in some cases caffeine appears to slightly enhance zolpidem sedation. The pharmacokinetic and pharmacodynamic nature of this odd effect remains unexplored. The purpose of this study is to reproduce a hypothetical molecular network recruited by caffeine when co-administered with zolpidem using Ingenuity Pathway Analysis. Thus generated, network drew attention to several possible contributors to caffeine sedation, such as tachykinin precursor 1, cannabinoid, and GABA receptors. The present overview is centered on the possibility that caffeine potentiation of zolpidem sedation does not involve a centralized interaction of specific neurotransmitters, but rather is contributed by its antioxidant capacity. It is proposed that by modifying the cellular redox state, caffeine ultimately reduces the pool of reactive oxygen species, thereby increasing the bioavailability of endogenous melatonin for interaction with zolpidem. This side effect of caffeine encourages further studies of multiple antioxidants as an attractive way to potentially increasing somnolence.

  14. Accessing Wireless Sensor Networks Via Dynamically Reconfigurable Interaction Models

    Directory of Open Access Journals (Sweden)

    Maria Cecília Gomes

    2012-12-01

    Full Text Available The Wireless Sensor Networks (WSNs technology is already perceived as fundamental for science across many domains, since it provides a low cost solution for environment monitoring. WSNs representation via the service concept and its inclusion in Web environments, e.g. through Web services, supports particularly their open/standard access and integration. Although such Web enabled WSNs simplify data access, network parameterization and aggregation, the existing interaction models and run-time adaptation mechanisms available to clients are still scarce. Nevertheless, applications increasingly demand richer and more flexible accesses besides the traditional client/server. For instance, applications may require a streaming model in order to avoid sequential data requests, or the asynchronous notification of subscribed data through the publish/subscriber. Moreover, the possibility to automatically switch between such models at runtime allows applications to define flexible context-based data acquisition. To this extent, this paper discusses the relevance of the session and pattern abstractions on the design of a middleware prototype providing richer and dynamically reconfigurable interaction models to Web enabled WSNs.

  15. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  16. Associations between genetic risk, functional brain network organization and neuroticism

    NARCIS (Netherlands)

    Servaas, Michelle N.; Geerligs, Linda; Bastiaansen, Jojanneke A.; Renken, Remco J.; Marsman, Jan-Bernard C.; Nolte, Ilja M.; Ormel, Johan; Aleman, Andre; Riese, Harriette

    2017-01-01

    Neuroticism and genetic variation in the serotonin-transporter (SLC6A4) and catechol-O-methyltransferase (COMT) gene are risk factors for psychopathology. Alterations in the functional integration and segregation of neural circuits have recently been found in individuals scoring higher on

  17. Reverse engineering large-scale genetic networks: synthetic versus ...

    Indian Academy of Sciences (India)

    2010-04-19

    Apr 19, 2010 ... process computationally to describe the structure of the sys- tem and ... to the different mathematical formalisms used to model net-. Keywords. gene ..... All the algorithms were implemented in MATLAB 7.0 and run on all the 'gold ..... De Jong H. 2002 Medeling and simulation of genetic regulatory systems: a ...

  18. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    Science.gov (United States)

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  19. Multi-species genetic connectivity in a terrestrial habitat network.

    Science.gov (United States)

    Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J

    2017-01-01

    Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area

  20. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    Science.gov (United States)

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  1. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    Science.gov (United States)

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  2. Genetic algorithm and neural network hybrid approach for job-shop scheduling

    OpenAIRE

    Zhao, Kai; Yang, Shengxiang; Wang, Dingwei

    1998-01-01

    Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...

  3. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  4. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms.

    Directory of Open Access Journals (Sweden)

    Eric J Foss

    2011-09-01

    Full Text Available Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.

  5. Design and Implementation of the International Genetics and Translational Research in Transplantation Network.

    Science.gov (United States)

    2015-11-01

    Genetic association studies of transplantation outcomes have been hampered by small samples and highly complex multifactorial phenotypes, hindering investigations of the genetic architecture of a range of comorbidities which significantly impact graft and recipient life expectancy. We describe here the rationale and design of the International Genetics & Translational Research in Transplantation Network. The network comprises 22 studies to date, including 16494 transplant recipients and 11669 donors, of whom more than 5000 are of non-European ancestry, all of whom have existing genomewide genotype data sets. We describe the rich genetic and phenotypic information available in this consortium comprising heart, kidney, liver, and lung transplant cohorts. We demonstrate significant power in International Genetics & Translational Research in Transplantation Network to detect main effect association signals across regions such as the MHC region as well as genomewide for transplant outcomes that span all solid organs, such as graft survival, acute rejection, new onset of diabetes after transplantation, and for delayed graft function in kidney only. This consortium is designed and statistically powered to deliver pioneering insights into the genetic architecture of transplant-related outcomes across a range of different solid-organ transplant studies. The study design allows a spectrum of analyses to be performed including recipient-only analyses, donor-recipient HLA mismatches with focus on loss-of-function variants and nonsynonymous single nucleotide polymorphisms.

  6. Genetic Evaluation of Children with Global Developmental Delay—Current Status of Network Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Yong-Lin Foo

    2015-08-01

    Full Text Available This review article aims to introduce the screening and referral network of genetic evaluation for children with developmental delay in Taiwan. For these children, integrated systems provide services from the medical, educational, and social welfare sectors. All cities and counties in Taiwan have established a network for screening, detection, referral, evaluation, and intervention services. Increased awareness improves early detection and intervention. There remains a gap between supply and demand, especially with regard to financial resources and professional manpower. Genetic etiology has a major role in prenatal causes of developmental delay. A summary of reports on some related genetic disorders in the Taiwanese population is included in this review. Genetic diagnosis allows counseling with regard to recurrence risk and prevention. Networking with neonatal screening, laboratory diagnosis, genetic counseling, and orphan drugs logistics systems can provide effective treatment for patients. In Taiwan, several laboratories provide genetic tests for clinical diagnosis. Accessibility to advanced expensive tests such as gene chips or whole exome sequencing is limited because of funding problems; however, the service system in Taiwan can still operate in a relatively cost-effective manner. This experience in Taiwan may serve as a reference for other countries.

  7. Genetic Evaluation of Children with Global Developmental Delay--Current Status of Network Systems in Taiwan.

    Science.gov (United States)

    Foo, Yong-Lin; Chow, Julie Chi; Lai, Ming-Chi; Tsai, Wen-Hui; Tung, Li-Chen; Kuo, Mei-Chin; Lin, Shio-Jean

    2015-08-01

    This review article aims to introduce the screening and referral network of genetic evaluation for children with developmental delay in Taiwan. For these children, integrated systems provide services from the medical, educational, and social welfare sectors. All cities and counties in Taiwan have established a network for screening, detection, referral, evaluation, and intervention services. Increased awareness improves early detection and intervention. There remains a gap between supply and demand, especially with regard to financial resources and professional manpower. Genetic etiology has a major role in prenatal causes of developmental delay. A summary of reports on some related genetic disorders in the Taiwanese population is included in this review. Genetic diagnosis allows counseling with regard to recurrence risk and prevention. Networking with neonatal screening, laboratory diagnosis, genetic counseling, and orphan drugs logistics systems can provide effective treatment for patients. In Taiwan, several laboratories provide genetic tests for clinical diagnosis. Accessibility to advanced expensive tests such as gene chips or whole exome sequencing is limited because of funding problems; however, the service system in Taiwan can still operate in a relatively cost-effective manner. This experience in Taiwan may serve as a reference for other countries. Copyright © 2014. Published by Elsevier B.V.

  8. Social Networking Sites as Communication, Interaction, and Learning Environments: Perceptions and Preferences of Distance Education Students

    Science.gov (United States)

    Bozkurt, Aras; Karadeniz, Abdulkadir; Kocdar, Serpil

    2017-01-01

    The advent of Web 2.0 technologies transformed online networks into interactive spaces in which user-generated content has become the core material. With the possibilities that emerged from Web 2.0, social networking sites became very popular. The capability of social networking sites promises opportunities for communication and interaction,…

  9. User-Centric Secure Cross-Site Interaction Framework for Online Social Networking Services

    Science.gov (United States)

    Ko, Moo Nam

    2011-01-01

    Social networking service is one of major technological phenomena on Web 2.0. Hundreds of millions of users are posting message, photos, and videos on their profiles and interacting with other users, but the sharing and interaction are limited within the same social networking site. Although users can share some content on a social networking site…

  10. [Exploration and practice of genetics teaching assisted by network technology platform].

    Science.gov (United States)

    Li, Ya-Xuan; Zhang, Fei-Xiong; Zhao, Xin; Cai, Min-Hua; Yan, Yue-Ming; Hu, Ying-Kao

    2010-04-01

    More teaching techniques have been brought out gradually along with the development of new technologies. On the basis of those traditional teaching methods, a new platform has been set up by the network technology for teaching process. In genetics teaching, it is possible to use the network platform to guide student studying, promote student's learning interest and study independently by themselves. It has been proved, after exploring and applying for many years, that network teaching is one of the most useful methods and has inimitable advantage comparing to the traditional ones in genetics teaching. The establishment of network teaching platform, the advantage and deficiency and relevant strategies were intro-duced in this paper.

  11. Dynamic Load Balanced Clustering using Elitism based Random Immigrant Genetic Approach for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    K. Mohaideen Pitchai

    2017-07-01

    Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.

  12. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    Science.gov (United States)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  13. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Unknown

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and ... In a bacterial system where the complete genome sequence is available, it is an arduous ... teins (primary mutations) are useful in these studies. ... of interaction of this antibiotic with the central enzyme.

  14. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  15. Genetic Networks Activated by Blast Injury to the Eye

    Science.gov (United States)

    2015-08-01

    Eye Center, Emory University, 6 Atlanta, GA 30322; 2Department of Anatomy and Neurobiology and Center for 7 Integrative and Translational Genomics...Sox11 is also required to maintain proper levels of hedgehog signaling, and mutations have been associated with coloboma due to improper optic fissure...OJ, Morris AC. Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis. PLoS Genet 2014; 10(7

  16. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    Science.gov (United States)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  17. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  18. Modeling attacker-defender interactions in information networks.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael Joseph

    2010-09-01

    The simplest conceptual model of cybersecurity implicitly views attackers and defenders as acting in isolation from one another: an attacker seeks to penetrate or disrupt a system that has been protected to a given level, while a defender attempts to thwart particular attacks. Such a model also views all non-malicious parties as having the same goal of preventing all attacks. But in fact, attackers and defenders are interacting parts of the same system, and different defenders have their own individual interests: defenders may be willing to accept some risk of successful attack if the cost of defense is too high. We have used game theory to develop models of how non-cooperative but non-malicious players in a network interact when there is a substantial cost associated with effective defensive measures. Although game theory has been applied in this area before, we have introduced some novel aspects of player behavior in our work, including: (1) A model of how players attempt to avoid the costs of defense and force others to assume these costs; (2) A model of how players interact when the cost of defending one node can be shared by other nodes; and (3) A model of the incentives for a defender to choose less expensive, but less effective, defensive actions.

  19. [The international network and Italian modernization. Ruggero Ceppellini, genetics, and HLA].

    Science.gov (United States)

    Capocci, Mauro

    2014-01-01

    The paper reconstructs the scientific career of Ruggero Ceppellini, focusing especially on his role in the discovery of the genetic system underlying the Human Leucocyte Antigen. From his earliest investigations in blood group genetics, Ceppellini quickly became an internationally acknowledged authority in the field of immunogenetics--the study of genetics by means of immunological tools--and participated to the endeavor that ultimately yelded a new meaning for the word: thanks to the pioneering research in the HLA field, immunogenetics became the study of the genetic control of immune system. The paper will also place Ceppellini's scientific work against the backdrop of the modernization of Italian genetics after WWII, resulting from the efforts of a handful of scientists to connect to international networks and adopting new methodologies in life sciences.

  20. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    Science.gov (United States)

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  1. Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Yongjun Mei

    Full Text Available Genetic architecture of branch traits has large influences on the morphological structure, photosynthetic capacity, planting density, and yield of Upland cotton (Gossypium hirsutum L.. This research aims to reveal the genetic effects of six branch traits, including bottom fruit branch node number (BFBNN, bottom fruit branch length (BFBL, middle fruit branch node number (MFBNN, middle fruit branch length (MFBL, upper fruit branch node number (UFBNN, and upper fruit branch length (UFBL. Association mapping was conducted for these traits of 39 lines and their 178 F1 hybrids in three environments. There were 20 highly significant Quantitative Trait SSRs (QTSs detected by mixed linear model approach analyzing a full genetic model with genetic effects of additive, dominance, epistasis and their environment interaction. The phenotypic variation explained by genetic effects ranged from 32.64 ~ 91.61%, suggesting these branch traits largely influenced by genetic factors.

  2. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    Science.gov (United States)

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we

  3. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Directory of Open Access Journals (Sweden)

    Arthur Brady

    Full Text Available As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all. We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  4. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    Science.gov (United States)

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  5. Gene Prioritization by Integrated Analysis of Protein Structural and Network Topological Properties for the Protein-Protein Interaction Network of Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Yashna Paul

    2016-01-01

    Full Text Available Neurological disorders are known to show similar phenotypic manifestations like anxiety, depression, and cognitive impairment. There is a need to identify shared genetic markers and molecular pathways in these diseases, which lead to such comorbid conditions. Our study aims to prioritize novel genetic markers that might increase the susceptibility of patients affected with one neurological disorder to other diseases with similar manifestations. Identification of pathways involving common candidate markers will help in the development of improved diagnosis and treatments strategies for patients affected with neurological disorders. This systems biology study for the first time integratively uses 3D-structural protein interface descriptors and network topological properties that characterize proteins in a neurological protein interaction network, to aid the identification of genes that are previously not known to be shared between these diseases. Results of protein prioritization by machine learning have identified known as well as new genetic markers which might have direct or indirect involvement in several neurological disorders. Important gene hubs have also been identified that provide an evidence for shared molecular pathways in the neurological disease network.

  6. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.; Voss, U.; Wilson, M.; Bennett, M.; Byrne, H.; De Smet, I.; Hodgman, C.; King, J.

    2013-01-01

    thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based

  7. NatalieQ: A web server for protein-protein interaction network querying

    NARCIS (Netherlands)

    El-Kebir, M.; Brandt, B.W.; Heringa, J.; Klau, G.W.

    2014-01-01

    Background Molecular interactions need to be taken into account to adequately model the complex behavior of biological systems. These interactions are captured by various types of biological networks, such as metabolic, gene-regulatory, signal transduction and protein-protein interaction networks.

  8. Drug-Drug Interaction Extraction via Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Shengyu Liu

    2016-01-01

    Full Text Available Drug-drug interaction (DDI extraction as a typical relation extraction task in natural language processing (NLP has always attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM with a large number of manually defined features. Recently, convolutional neural networks (CNN, a robust machine learning method which almost does not need manually defined features, has exhibited great potential for many NLP tasks. It is worth employing CNN for DDI extraction, which has never been investigated. We proposed a CNN-based method for DDI extraction. Experiments conducted on the 2013 DDIExtraction challenge corpus demonstrate that CNN is a good choice for DDI extraction. The CNN-based DDI extraction method achieves an F-score of 69.75%, which outperforms the existing best performing method by 2.75%.

  9. Determine point-to-point networking interactions using regular expressions

    Directory of Open Access Journals (Sweden)

    Konstantin S. Deev

    2015-06-01

    Full Text Available As Internet growth and becoming more popular, the number of concurrent data flows start to increasing, which makes sense in bandwidth requested. Providers and corporate customers need ability to identify point-to-point interactions. The best is to use special software and hardware implementations that distribute the load in the internals of the complex, using the principles and approaches, in particular, described in this paper. This paper represent the principles of building system, which searches for a regular expression match using computing on graphics adapter in server station. A significant computing power and capability to parallel execution on modern graphic processor allows inspection of large amounts of data through sets of rules. Using the specified characteristics can lead to increased computing power in 30…40 times compared to the same setups on the central processing unit. The potential increase in bandwidth capacity could be used in systems that provide packet analysis, firewalls and network anomaly detectors.

  10. Specialization of mutualistic interaction networks decreases toward tropical latitudes

    DEFF Research Database (Denmark)

    Schleuning, M.; Fründ, J.; Klein, A.-M.

    2012-01-01

    that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers......] or differences in plant diversity [10, 11]. Thus, the direction of the latitudinal specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past...... and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting...

  11. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission

    NARCIS (Netherlands)

    Zarrabi, N.; Prosperi, M.; Belleman, R.G.; Colafigli, M.; De Luca, A.; Sloot, P.M.A.

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current

  12. Co-creating value through agents interaction within service network

    Energy Technology Data Exchange (ETDEWEB)

    Okdinawati, L.; Simatupang, T.M.; Sunitiyoso, Y.

    2017-07-01

    The purpose of this paper is to gives further understanding on value co-creation mechanisms in B-to-B service network by reinforcing the processes, the relationships, and influences of other agents where Collaborative Transportation Management (CTM) forms might be best employed. Design/methodology/approach: In order to model the interactions among agents in the collaboration processes and the value co-creation processes, this research used three collaboration cases in Indonesia. Then, the agent-based simulation was used to capture both the collaboration process and the value co-creation process of the three collaboration cases. Findings: The interactions among the agents both inside and outside their collaboration environment determined agent’s role as a value co-creator. The willingness of an agent to accept the opinion of another agent determined the degree of their willingness to co-operate and to change their strategies, and perceptions. Therefore, influenced the size of the value obtained by them in each collaboration process. Research limitations/implications: The findings of the simulations subject to assumptions based on the collaboration cases. Further research is related to how to encourage agents to co-operate and adjust their perceptions. Practical implications: It is crucial for the practitioners to interact with another agent both inside and outside their collaboration environment. The opinions of another agent inside the collaboration environment also need to be considered. Originality/value: This research is derived from its emphasis on how a value is co-created by reinforcing both the collaborative processes and the interactions among agents as well as on how CTM might be best employed.

  13. Co-creating value through agents interaction within service network

    International Nuclear Information System (INIS)

    Okdinawati, L.; Simatupang, T.M.; Sunitiyoso, Y.

    2017-01-01

    The purpose of this paper is to gives further understanding on value co-creation mechanisms in B-to-B service network by reinforcing the processes, the relationships, and influences of other agents where Collaborative Transportation Management (CTM) forms might be best employed. Design/methodology/approach: In order to model the interactions among agents in the collaboration processes and the value co-creation processes, this research used three collaboration cases in Indonesia. Then, the agent-based simulation was used to capture both the collaboration process and the value co-creation process of the three collaboration cases. Findings: The interactions among the agents both inside and outside their collaboration environment determined agent’s role as a value co-creator. The willingness of an agent to accept the opinion of another agent determined the degree of their willingness to co-operate and to change their strategies, and perceptions. Therefore, influenced the size of the value obtained by them in each collaboration process. Research limitations/implications: The findings of the simulations subject to assumptions based on the collaboration cases. Further research is related to how to encourage agents to co-operate and adjust their perceptions. Practical implications: It is crucial for the practitioners to interact with another agent both inside and outside their collaboration environment. The opinions of another agent inside the collaboration environment also need to be considered. Originality/value: This research is derived from its emphasis on how a value is co-created by reinforcing both the collaborative processes and the interactions among agents as well as on how CTM might be best employed.

  14. Assessment of genetic and nongenetic interactions for the prediction of depressive symptomatology: an analysis of the Wisconsin Longitudinal Study using machine learning algorithms.

    Science.gov (United States)

    Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S

    2013-10-01

    We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.

  15. Pleistocene megafaunal interaction networks became more vulnerable after human arrival.

    Science.gov (United States)

    Pires, Mathias M; Koch, Paul L; Fariña, Richard A; de Aguiar, Marcus A M; dos Reis, Sérgio F; Guimarães, Paulo R

    2015-09-07

    The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions. © 2015 The Author(s).

  16. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  17. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    Science.gov (United States)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  18. Global Stability of Complex-Valued Genetic Regulatory Networks with Delays on Time Scales

    Directory of Open Access Journals (Sweden)

    Wang Yajing

    2016-01-01

    Full Text Available In this paper, the global exponential stability of complex-valued genetic regulatory networks with delays is investigated. Besides presenting conditions guaranteeing the existence of a unique equilibrium pattern, its global exponential stability is discussed. Some numerical examples for different time scales.

  19. Robust symptom networks in recurrent major depression across different levels of genetic and environmental risk

    NARCIS (Netherlands)

    van Loo, H.M.; Van Borkulo, C.D.; Peterson, R.E.; Fried, E.I.; Aggen, S.H.; Borsboom, D.; Kendler, K.S.

    BACKGROUND: Genetic risk and environmental adversity-both important risk factors for major depression (MD)-are thought to differentially impact on depressive symptom types and associations. Does heterogeneity in these risk factors result in different depressive symptom networks in patients with MD?

  20. A hybrid Genetic and Simulated Annealing Algorithm for Chordal Ring implementation in large-scale networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2011-01-01

    The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...

  1. Interaction between microbiome and host genetics in psoriatic arthritis.

    Science.gov (United States)

    Chimenti, Maria Sole; Perricone, Carlo; Novelli, Lucia; Caso, Francesco; Costa, Luisa; Bogdanos, Dimitrios; Conigliaro, Paola; Triggianese, Paola; Ciccacci, Cinzia; Borgiani, Paola; Perricone, Roberto

    2018-03-01

    Psoriatic arthritis (PsA) is a chronic inflammatory joint disease, seen in combination with psoriasis. Both genetic and environmental factors are responsible for the development of PsA, however little is known about the different weight of these two distinctive components in the pathogenesis of the disease. Genomic variability in PsA is associated with the disease and/or some peculiar clinical phenotypes. Candidate genes involved are crucial in inflammation, immune system, and epithelial permeability. Moreover, the genesis and regulation of inflammation are influenced by the composition of the human intestinal microbiome that is able to modulate both mucosal and systemic immune system. It is possible that pro-inflammatory responses initiated in gut mucosa could contribute to the induction and progression of autoimmune conditions. Given such premises, the aim of this review is to summarize immune-mediated response and specific bacterial changes in the composition of fecal microbiota in PsA patients and to analyze the relationships between bacterial changes, immune system, and host genetic background. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.; Rocco S, C.M.

    2012-01-01

    In this paper, an analysis of the vulnerability of the Italian high-voltage (380 kV) electrical transmission network (HVIET) is carried out for the identification of the groups of links (or edges, or arcs) most critical considering the network structure and flow. Betweenness centrality and network connection efficiency variations are considered as measures of the importance of the network links. The search of the most critical ones is carried out within a multi-objective optimization problem aimed at the maximization of the importance of the groups and minimization of their dimension. The problem is solved using a genetic algorithm. The analysis is based only on information on the topology of the network and leads to the identification of the most important single component, couples of components, triplets and so forth. The comparison of the results obtained with those reported by previous analyses indicates that the proposed approach provides useful complementary information.

  3. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  4. A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N.C. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia); Prasad, K. [Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia)

    2006-11-15

    This paper presents a fuzzy genetic approach for reconfiguration of radial distribution systems (RDS) so as to maximize the voltage stability of the network for a specific set of loads. The network reconfiguration involves a mechanism for selection of the best set of branches to be opened, one from each loop, such that the reconfigured RDS possesses desired performance characteristics. This discrete solution space is better handled by the proposed scheme, which maximizes a suitable optimizing function (computed using two different approaches). In the first approach, this function is chosen as the average of a voltage stability index of all the buses in the RDS, while in the second approach, the complete RDS is reduced to a two bus equivalent system and the optimizing function is the voltage stability index of this reduced two bus system. The fuzzy genetic algorithm uses a suitable coding and decoding scheme for maintaining the radial nature of the network at every stage of genetic evolution, and it also uses a fuzzy rule based mutation controller for efficient search of the solution space. This method, tested on 69 bus and 33 bus RDSs, shows promising results for the both approaches. It is also observed that the network losses are reduced when the voltage stability is enhanced by the network reconfiguration. (author)

  5. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    Science.gov (United States)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  6. A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems

    International Nuclear Information System (INIS)

    Sahoo, N.C.; Prasad, K.

    2006-01-01

    This paper presents a fuzzy genetic approach for reconfiguration of radial distribution systems (RDS) so as to maximize the voltage stability of the network for a specific set of loads. The network reconfiguration involves a mechanism for selection of the best set of branches to be opened, one from each loop, such that the reconfigured RDS possesses desired performance characteristics. This discrete solution space is better handled by the proposed scheme, which maximizes a suitable optimizing function (computed using two different approaches). In the first approach, this function is chosen as the average of a voltage stability index of all the buses in the RDS, while in the second approach, the complete RDS is reduced to a two bus equivalent system and the optimizing function is the voltage stability index of this reduced two bus system. The fuzzy genetic algorithm uses a suitable coding and decoding scheme for maintaining the radial nature of the network at every stage of genetic evolution, and it also uses a fuzzy rule based mutation controller for efficient search of the solution space. This method, tested on 69 bus and 33 bus RDSs, shows promising results for the both approaches. It is also observed that the network losses are reduced when the voltage stability is enhanced by the network reconfiguration

  7. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork

    Directory of Open Access Journals (Sweden)

    Druka Arnis

    2008-11-01

    Full Text Available Abstract Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits. Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By

  8. Physiology and Genetics of Tree-Phytophage Interactions

    Science.gov (United States)

    Frances Lieutier; William J. Mattson; Michael R. Wagner

    1999-01-01

    Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...

  9. Class II HLA interactions modulate genetic risk for multiple sclerosis

    DEFF Research Database (Denmark)

    Moutsianas, Loukas; Jostins, Luke; Beecham, Ashley H

    2015-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17...

  10. Interaction between 5 genetic variants and allergy in glioma risk

    DEFF Research Database (Denmark)

    Schoemaker, Minouk J; Robertson, Lindsay; Wigertz, Annette

    2010-01-01

    , CDKN2A-CDKN2B), 11q23.3 (rs498872, PHLDB1), and 20q13.33 (rs6010620, RTEL1) as determinants of glioma risk. The authors investigated whether there is interaction between the effects of allergy and these 5 variants on glioma risk. Data from 5 case-control studies carried out in Denmark, Finland, Sweden...

  11. Opinion dynamics on interacting networks: media competition and social influence.

    Science.gov (United States)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-27

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  12. Opinion dynamics on interacting networks: media competition and social influence

    Science.gov (United States)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-01

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  13. Genetic interactions matter more in less-optimal environments: a focused review

    Directory of Open Access Journals (Sweden)

    Dustin A. Landers

    2014-08-01

    Full Text Available An increase in the distribution of data points indicates the presence of genetic or environmental modifiers. Mapping of the genetic control of the spread of points, the uniformity, allows us to allocate genetic difference in point distribution to adjacent, cis effects or to independently segregating, trans genetic effects. Our genetic architecture-mapping experiment elucidated the ‘environmental context specificity’ of modifiers, the number and effect size of positive and negative alleles important for uniformity in single and combined stress, and the extent of additivity in estimated allele effects in combined stress environments. We found no alleles for low uniformity in combined stress treatments in the maize mapping population we examined.The major advances in this research area since early 2011 have been in improved methods for modeling of distributions and means and detection of important loci. Double hierarchical general linear models and, more recently, a likelihood ratio formulation have been developed to better model and estimate the genetic and environmental effects in populations. These new methods have been applied to real data sets by the method authors and we now encourage additional development of the software and wider application of the methods. We also propose that simulations of genetic regulatory network models to examine differences in uniformity and systematic exploration of models using shared simulations across communities of researchers would be constructive avenues for developing further insight into the genetic mechanisms of variation control.

  14. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Benjamin A Logsdon

    Full Text Available Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL, which provide a sufficient set of independent perturbations for maximum network resolution. We compare the performance of our network reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm, all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network relationships between a tyrosine biosynthesis gene (TYR1, and genes involved in endocytosis (RCY1, the spindle checkpoint (BUB2, sulfonate catabolism (JLP1, and cell-cell communication (PRM7. Our algorithm provides a synthesis of feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships from the analysis of population level genetic and gene expression data.

  15. Generation of intervention strategy for a genetic regulatory network represented by a family of Markov Chains.

    Science.gov (United States)

    Berlow, Noah; Pal, Ranadip

    2011-01-01

    Genetic Regulatory Networks (GRNs) are frequently modeled as Markov Chains providing the transition probabilities of moving from one state of the network to another. The inverse problem of inference of the Markov Chain from noisy and limited experimental data is an ill posed problem and often generates multiple model possibilities instead of a unique one. In this article, we address the issue of intervention in a genetic regulatory network represented by a family of Markov Chains. The purpose of intervention is to alter the steady state probability distribution of the GRN as the steady states are considered to be representative of the phenotypes. We consider robust stationary control policies with best expected behavior. The extreme computational complexity involved in search of robust stationary control policies is mitigated by using a sequential approach to control policy generation and utilizing computationally efficient techniques for updating the stationary probability distribution of a Markov chain following a rank one perturbation.

  16. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  17. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy.

    Directory of Open Access Journals (Sweden)

    Adham Elshahabi

    Full Text Available Idiopathic/genetic generalized epilepsy (IGE/GGE is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease.

  18. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Chen Xue-wen

    2011-07-01

    Full Text Available Abstract Background Detecting epistatic interactions plays a significant role in improving pathogenesis, prevention, diagnosis and treatment of complex human diseases. A recent study in automatic detection of epistatic interactions shows that Markov Blanket-based methods are capable of finding genetic variants strongly associated with common diseases and reducing false positives when the number of instances is large. Unfortunately, a typical dataset from genome-wide association studies consists of very limited number of examples, where current methods including Markov Blanket-based method may perform poorly. Results To address small sample problems, we propose a Bayesian network-based approach (bNEAT to detect epistatic interactions. The proposed method also employs a Branch-and-Bound technique for learning. We apply the proposed method to simulated datasets based on four disease models and a real dataset. Experimental results show that our method outperforms Markov Blanket-based methods and other commonly-used methods, especially when the number of samples is small. Conclusions Our results show bNEAT can obtain a strong power regardless of the number of samples and is especially suitable for detecting epistatic interactions with slight or no marginal effects. The merits of the proposed approach lie in two aspects: a suitable score for Bayesian network structure learning that can reflect higher-order epistatic interactions and a heuristic Bayesian network structure learning method.

  19. Daf-2, Daf-16 and Daf-23: Genetically Interacting Genes Controlling Dauer Formation in Caenorhabditis Elegans

    OpenAIRE

    Gottlieb, S.; Ruvkun, G.

    1994-01-01

    Under conditions of high population density and low food, Caenorhabditis elegans forms an alternative third larval stage, called the dauer stage, which is resistant to desiccation and harsh environments. Genetic analysis of some dauer constitutive (Daf-c) and dauer defective (Daf-d) mutants has revealed a complex pathway that is likely to function in particular neurons and/or responding tissues. Here we analyze the genetic interactions between three genes which comprise a branch of the dauer ...

  20. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Directory of Open Access Journals (Sweden)

    Tim van Opijnen

    2016-09-01

    Full Text Available The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  1. Genetic algorithm-based neural network for accidents diagnosis of research reactors on FPGA

    International Nuclear Information System (INIS)

    Ghuname, A.A.A.

    2012-01-01

    The Nuclear Research Reactors plants are expected to be operated with high levels of reliability, availability and safety. In order to achieve and maintain system stability and assure satisfactory and safe operation, there is increasing demand for automated systems to detect and diagnose such failures. Artificial Neural Networks (ANNs) are one of the most popular solutions because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. The genetic algorithms (GAs) which are search algorithms (optimization techniques), in recent years, have been used to find the optimum construction of a neural network for definite application, as one of the advantages of its usage. Nowadays, Field Programmable Gate Arrays (FPGAs) are being an important implementation method of neural networks due to their high performance and they can easily be made parallel. The VHDL, which stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description Language, have been used to describe the design behaviorally in addition to schematic and other description languages. The description of designs in synthesizable language such as VHDL make them reusable and be implemented in upgradeable systems like the Nuclear Research Reactors plants. In this thesis, the work was carried out through three main parts.In the first part, the Nuclear Research Reactors accident's pattern recognition is tackled within the artificial neural network approach. Such patterns are introduced initially without noise. And, to increase the reliability of such neural network, the noise ratio up to 50% was added for training in order to ensure the recognition of these patterns if it introduced with noise.The second part is concerned with the construction of Artificial Neural Networks (ANNs) using Genetic algorithms (GAs) for the nuclear accidents diagnosis. MATLAB ANNs toolbox and GAs toolbox are employed to optimize an ANN for this purpose. The results obtained show

  2. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  3. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Directory of Open Access Journals (Sweden)

    Paula Moran

    2016-01-01

    Full Text Available The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  4. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  5. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  6. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  7. Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm

    Science.gov (United States)

    Hao, Yufang; Xie, Shaodong

    2018-03-01

    Air quality monitoring networks play a significant role in identifying the spatiotemporal patterns of air pollution, and they need to be deployed efficiently, with a minimum number of sites. The revision and optimal adjustment of existing monitoring networks is crucial for cities that have undergone rapid urban expansion and experience temporal variations in pollution patterns. The approach based on the Weather Research and Forecasting-California PUFF (WRF-CALPUFF) model and genetic algorithm (GA) was developed to design an optimal monitoring network. The maximization of coverage with minimum overlap and the ability to detect violations of standards were developed as the design objectives for redistributed networks. The non-dominated sorting genetic algorithm was applied to optimize the network size and site locations simultaneously for Shijiazhuang city, one of the most polluted cities in China. The assessment on the current network identified the insufficient spatial coverage of SO2 and NO2 monitoring for the expanding city. The optimization results showed that significant improvements were achieved in multiple objectives by redistributing the original network. Efficient coverage of the resulting designs improved to 60.99% and 76.06% of the urban area for SO2 and NO2, respectively. The redistributing design for multi-pollutant including 8 sites was also proposed, with the spatial representation covered 52.30% of the urban area and the overlapped areas decreased by 85.87% compared with the original network. The abilities to detect violations of standards were not improved as much as the other two objectives due to the conflicting nature between the multiple objectives. Additionally, the results demonstrated that the algorithm was slightly sensitive to the parameter settings, with the number of generations presented the most significant effect. Overall, our study presents an effective and feasible procedure for air quality network optimization at a city scale.

  8. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  9. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  10. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

    Science.gov (United States)

    Yoon, Yourim; Kim, Yong-Hyuk

    2013-10-01

    Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

  11. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.

    Science.gov (United States)

    Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D

    2018-05-10

    The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.

  12. The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder: an explorative study.

    Science.gov (United States)

    Lekman, Magnus; Hössjer, Ola; Andrews, Peter; Källberg, Henrik; Uvehag, Daniel; Charney, Dennis; Manji, Husseini; Rush, John A; McMahon, Francis J; Moore, Jason H; Kockum, Ingrid

    2014-01-01

    Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from β3) value = 4.99) the area under the curve (AUC) estimates were low (< 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (< 0.15). We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously

  13. One for all and all for One: Improving replication of genetic studies through network diffusion.

    Directory of Open Access Journals (Sweden)

    Daniel Lancour

    2018-04-01

    Full Text Available Improving accuracy in genetic studies would greatly accelerate understanding the genetic basis of complex diseases. One approach to achieve such an improvement for risk variants identified by the genome wide association study (GWAS approach is to incorporate previously known biology when screening variants across the genome. We developed a simple approach for improving the prioritization of candidate disease genes that incorporates a network diffusion of scores from known disease genes using a protein network and a novel integration with GWAS risk scores, and tested this approach on a large Alzheimer disease (AD GWAS dataset. Using a statistical bootstrap approach, we cross-validated the method and for the first time showed that a network approach improves the expected replication rates in GWAS studies. Several novel AD genes were predicted including CR2, SHARPIN, and PTPN2. Our re-prioritized results are enriched for established known AD-associated biological pathways including inflammation, immune response, and metabolism, whereas standard non-prioritized results were not. Our findings support a strategy of considering network information when investigating genetic risk factors.

  14. Cancer genetics education in a low- to middle-income country: evaluation of an interactive workshop for clinicians in Kenya.

    Directory of Open Access Journals (Sweden)

    Jessica A Hill

    Full Text Available Clinical genetic testing is becoming an integral part of medical care for inherited disorders. While genetic testing and counseling are readily available in high-income countries, in low- and middle-income countries like Kenya genetic testing is limited and genetic counseling is virtually non-existent. Genetic testing is likely to become widespread in Kenya within the next decade, yet there has not been a concomitant increase in genetic counseling resources. To address this gap, we designed an interactive workshop for clinicians in Kenya focused on the genetics of the childhood eye cancer retinoblastoma. The objectives were to increase retinoblastoma genetics knowledge, build genetic counseling skills and increase confidence in those skills.The workshop was conducted at the 2013 Kenyan National Retinoblastoma Strategy meeting. It included a retinoblastoma genetics presentation, small group discussion of case studies and genetic counseling role-play. Knowledge was assessed by standardized test, and genetic counseling skills and confidence by questionnaire.Knowledge increased significantly post-workshop, driven by increased knowledge of retinoblastoma causative genetics. One-year post-workshop, participant knowledge had returned to baseline, indicating that knowledge retention requires more frequent reinforcement. Participants reported feeling more confident discussing genetics with patients, and had integrated more genetic counseling into patient interactions.A comprehensive retinoblastoma genetics workshop can increase the knowledge and skills necessary for effective retinoblastoma genetic counseling.

  15. Cancer genetics education in a low- to middle-income country: evaluation of an interactive workshop for clinicians in Kenya.

    Science.gov (United States)

    Hill, Jessica A; Lee, Su Yeon; Njambi, Lucy; Corson, Timothy W; Dimaras, Helen

    2015-01-01

    Clinical genetic testing is becoming an integral part of medical care for inherited disorders. While genetic testing and counseling are readily available in high-income countries, in low- and middle-income countries like Kenya genetic testing is limited and genetic counseling is virtually non-existent. Genetic testing is likely to become widespread in Kenya within the next decade, yet there has not been a concomitant increase in genetic counseling resources. To address this gap, we designed an interactive workshop for clinicians in Kenya focused on the genetics of the childhood eye cancer retinoblastoma. The objectives were to increase retinoblastoma genetics knowledge, build genetic counseling skills and increase confidence in those skills. The workshop was conducted at the 2013 Kenyan National Retinoblastoma Strategy meeting. It included a retinoblastoma genetics presentation, small group discussion of case studies and genetic counseling role-play. Knowledge was assessed by standardized test, and genetic counseling skills and confidence by questionnaire. Knowledge increased significantly post-workshop, driven by increased knowledge of retinoblastoma causative genetics. One-year post-workshop, participant knowledge had returned to baseline, indicating that knowledge retention requires more frequent reinforcement. Participants reported feeling more confident discussing genetics with patients, and had integrated more genetic counseling into patient interactions. A comprehensive retinoblastoma genetics workshop can increase the knowledge and skills necessary for effective retinoblastoma genetic counseling.

  16. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.

    Science.gov (United States)

    Verkhivker, Gennady M

    2016-01-01

    The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling

  17. Transgene x environment interactions in genetically modified wheat.

    Science.gov (United States)

    Zeller, Simon L; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard

    2010-07-12

    The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  18. Transgene x environment interactions in genetically modified wheat.

    Directory of Open Access Journals (Sweden)

    Simon L Zeller

    Full Text Available BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  19. Discordant patterns of genetic and phenotypic differentiation in five grasshopper species codistributed across a microreserve network.

    Science.gov (United States)

    Ortego, Joaquín; García-Navas, Vicente; Noguerales, Víctor; Cordero, Pedro J

    2015-12-01

    Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal-related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large-scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation. © 2015 John Wiley & Sons Ltd.

  20. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  1. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  2. Fault Diagnosis of Hydraulic Servo Valve Based on Genetic Optimization RBF-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-04-01

    Full Text Available Electro-hydraulic servo valves are core components of the hydraulic servo system of rolling mills. It is necessary to adopt an effective fault diagnosis method to keep the hydraulic servo valve in a good work state. In this paper, RBF and BP neural network are integrated effectively to build a double hidden layers RBF-BP neural network for fault diagnosis. In the process of training the neural network, genetic algorithm (GA is used to initialize and optimize the connection weights and thresholds of the network. Several typical fault states are detected by the constructed GA-optimized fault diagnosis scheme. Simulation results shown that the proposed fault diagnosis scheme can give satisfactory effect.

  3. Optimization of the Compensation of a Meshed MV Network by a Modified Genetic Algorithm

    DEFF Research Database (Denmark)

    Nielsen, Hans; Paar, M.; Toman, P.

    2007-01-01

    The article discusses the utilization of a modified genetic algorithm (GA) for the optimization of the shunt compensation in meshed and radial MV distribution networks. The algorithm looks for minimum costs of the network power losses and minimum capital and operating costs of applied capacitors......, all of this under limitations specified by a multicriteria penalization function. The parallel evolution branches in the GA are used for the purpose of the optimization accelaration. The application of this GA has been implemented in Matlab. The evaluation part of the GA implementation is based...... on the steady-state analysis using a linear one-line diagram model of a power network. The results of steady-state solutions are compared with the results from the DIgSILENT PowerFactory program. Its practical applicability is demonstrated on examples of 22 kV and meshed overhead distribution networks....

  4. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming.

    Science.gov (United States)

    Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G

    2018-02-01

    In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).

  5. The interaction between network ties and business modeling : Case studies of sustainability-oriented innovations

    NARCIS (Netherlands)

    Oskam, Inge; Bossink, Bart; de Man, Ard Pieter

    2018-01-01

    A stream of literature is emerging where network development and business modeling intersect. Various authors emphasize that networks influence business models. This paper extends this stream of literature by studying two cases in which we analyze how business modeling and networking interact over

  6. The Interaction between network ties and business modeling : case studies of sustainability-oriented innovations

    NARCIS (Netherlands)

    Oskam, Inge; Bossink, Bart; de Man, Ard-Pieter

    2018-01-01

    A stream of literature is emerging where network development and business modeling intersect. Various authors emphasize that networks influence business models. This paper extends this stream of literature by studying two cases in which we analyze how business modeling and networking interact over

  7. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    . Conclusions We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  8. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    Science.gov (United States)

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  9. Strategic interactions in DRAM and RISC technology: A network approach

    NARCIS (Netherlands)

    Duysters, G.M.; Vanhaverbeke, W.P.M.

    1996-01-01

    Interorganizational cooperation in some high-tech industries is no longer confined to two-company alliances, but entails industry-wide alliance networks. This article examines how industry analysis and network analysis can be combined to provide a thorough understanding of how network positions, and

  10. Interaction in agent-based economics: A survey on the network approach

    Science.gov (United States)

    Bargigli, Leonardo; Tedeschi, Gabriele

    2014-04-01

    In this paper we aim to introduce the reader to some basic concepts and instruments used in a wide range of economic networks models. In particular, we adopt the theory of random networks as the main tool to describe the relationship between the organization of interaction among individuals within different components of the economy and overall aggregate behavior. The focus is on the ways in which economic agents interact and the possible consequences of their interaction on the system. We show that network models are able to introduce complex phenomena in economic systems by allowing for the endogenous evolution of networks.

  11. Analysis of protein-protein interaction networks by means of annotated graph mining algorithms

    NARCIS (Netherlands)

    Rahmani, Hossein

    2012-01-01

    This thesis discusses solutions to several open problems in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery. PPI networks are usually represented as undirected graphs, with nodes corresponding to proteins and edges representing interactions among protein pairs. A large

  12. Impedance-Based Harmonic Instability Assessment in Multiple Electric Trains and Traction Network Interaction System

    DEFF Research Database (Denmark)

    Tao, Haidong; Hu, Haitao; Wang, Xiongfei

    2018-01-01

    This paper presents an impedance-based method to systematically investigate the interaction between multi-train and traction networks, focusing on evaluating the harmonic instability problems. Firstly, the interaction mechanism of multi-train and the traction network is represented as a feedback ...

  13. Interaction between common breast cancer susceptibility variants, genetic ancestry, and nongenetic risk factors in Hispanic women.

    Science.gov (United States)

    Fejerman, Laura; Stern, Mariana C; John, Esther M; Torres-Mejía, Gabriela; Hines, Lisa M; Wolff, Roger K; Baumgartner, Kathy B; Giuliano, Anna R; Ziv, Elad; Pérez-Stable, Eliseo J; Slattery, Martha L

    2015-11-01

    Most genetic variants associated with breast cancer risk have been discovered in women of European ancestry, and only a few genome-wide association studies (GWAS) have been conducted in minority groups. This research disparity persists in post-GWAS gene-environment interaction analyses. We tested the interaction between hormonal and lifestyle risk factors for breast cancer, and ten GWAS-identified SNPs among 2,107 Hispanic women with breast cancer and 2,587 unaffected controls, to gain insight into a previously reported gene by ancestry interaction in this population. We estimated genetic ancestry with a set of 104 ancestry-informative markers selected to discriminate between Indigenous American and European ancestry. We used logistic regression models to evaluate main effects and interactions. We found that the rs13387042-2q35(G/A) SNP was associated with breast cancer risk only among postmenopausal women who never used hormone therapy [per A allele OR: 0.94 (95% confidence intervals, 0.74-1.20), 1.20 (0.94-1.53), and 1.49 (1.28-1.75) for current, former, and never hormone therapy users, respectively, Pinteraction 0.002] and premenopausal women who breastfed >12 months [OR: 1.01 (0.72-1.42), 1.19 (0.98-1.45), and 1.69 (1.26-2.26) for never, 12 months breastfeeding, respectively, Pinteraction 0.014]. The correlation between genetic ancestry, hormone replacement therapy use, and breastfeeding behavior partially explained a previously reported interaction between a breast cancer risk variant and genetic ancestry in Hispanic women. These results highlight the importance of understanding the interplay between genetic ancestry, genetics, and nongenetic risk factors and their contribution to breast cancer risk. ©2015 American Association for Cancer Research.

  14. Non-criticality of interaction network over system's crises: A percolation analysis.

    Science.gov (United States)

    Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya

    2017-11-20

    Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.

  15. How Genetic and Other Biological Factors Interact with Smoking Decisions.

    Science.gov (United States)

    Bierut, Laura; Cesarini, David

    2015-09-01

    Despite clear links between genes and smoking, effective public policy requires far richer measurement of the feedback between biological, behavioral, and environmental factors. The Kavli HUMAN Project (KHP) plans to exploit the plummeting costs of data gathering and to make creative use of new technologies to construct a longitudinal panel data set that would compare favorably to existing longitudinal surveys, both in terms of the richness of the behavioral measures and the cost-effectiveness of the data collection. By developing a more comprehensive approach to characterizing behavior than traditional methods, KHP will allow researchers to paint a much richer picture of an individual's life-cycle trajectory of smoking, alcohol, and drug use, and interactions with other choices and environmental factors. The longitudinal nature of KHP will be particularly valuable in light of the increasing evidence for how smoking behavior affects physiology and health. The KHP could have a transformative impact on the understanding of the biology of addictive behaviors such as smoking, and of a rich range of prevention and amelioration policies.

  16. Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC mouse

    Directory of Open Access Journals (Sweden)

    Belknap John

    2010-10-01

    Full Text Available Abstract Background The current study focused on the extent genetic diversity within a species (Mus musculus affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS formed from the same eight inbred strains that have been used to create the collaborative cross (CC. The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6 × DBA/2J (D2 F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA. Results Genes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes. Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented. Conclusions Despite the marked

  17. A Selfish Constraint Satisfaction Genetic Algorithms for Planning a Long-Distance Transportation Network

    Science.gov (United States)

    Onoyama, Takashi; Maekawa, Takuya; Kubota, Sen; Tsuruta, Setuso; Komoda, Norihisa

    To build a cooperative logistics network covering multiple enterprises, a planning method that can build a long-distance transportation network is required. Many strict constraints are imposed on this type of problem. To solve these strict-constraint problems, a selfish constraint satisfaction genetic algorithm (GA) is proposed. In this GA, each gene of an individual satisfies only its constraint selfishly, disregarding the constraints of other genes in the same individuals. Moreover, a constraint pre-checking method is also applied to improve the GA convergence speed. The experimental result shows the proposed method can obtain an accurate solution in a practical response time.

  18. Interactions between neural networks: a mechanism for tuning chaos and oscillations.

    Science.gov (United States)

    Wang, Lipo

    2007-06-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.

  19. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation...... in metabolomic networks. This suggests that cytoplasmic genomes must be included in any future analysis of natural variation....

  20. A Neural Network: Family Competition Genetic Algorithm and Its Applications in Electromagnetic Optimization

    Directory of Open Access Journals (Sweden)

    P.-Y. Chen

    2009-01-01

    Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.

  1. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  2. On the use of sibling recurrence risks to select environmental factors liable to interact with genetic risk factors. : GxE interaction and sibling recurrence risk

    OpenAIRE

    Kazma, Rémi; Bonaïti-Pellié, Catherine; Norris, Jill,; Génin, Emmanuelle

    2010-01-01

    International audience; Gene-environment interactions are likely to be involved in the susceptibility to multifactorial diseases but are difficult to detect. Available methods usually concentrate on some particular genetic and environmental factors. In this paper, we propose a new method to determine whether a given exposure is susceptible to interact with unknown genetic factors. Rather than focusing on a specific genetic factor, the degree of familial aggregation is used as a surrogate for ...

  3. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana.

    Science.gov (United States)

    García-Gómez, Mónica L; Azpeitia, Eugenio; Álvarez-Buylla, Elena R

    2017-04-01

    The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell type. Our results

  4. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Mónica L García-Gómez

    2017-04-01

    Full Text Available The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell

  5. Interacting with Networks : How Does Structure Relate to Controllability in Single-Leader, Consensus Networks?

    NARCIS (Netherlands)

    Egerstedt, Magnus; Martini, Simone; Cao, Ming; Camlibel, Kanat; Bicchi, Antonio

    As networked dynamical systems appear around us at an increasing rate, questions concerning how to manage and control such systems are becoming more important. Examples include multiagent robotics, distributed sensor networks, interconnected manufacturing chains, and data networks. In response to

  6. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  7. Genetic vulnerability interacts with parenting and early care education to predict increasing externalizing behavior.

    Science.gov (United States)

    Lipscomb, Shannon T; Laurent, Heidemarie; Neiderhiser, Jenae M; Shaw, Daniel S; Natsuaki, Misaki N; Reiss, David; Leve, Leslie D

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental regulation. Early environments included both family (overreactive parenting) and out-of-home factors (center-based Early Care and Education; ECE). Overreactive parenting predicted more child externalizing behaviors. Attending center-based ECE was associated with increasing externalizing behaviors only for children with genetic liability for dysregulation. Additionally, children who were at risk for externalizing behaviors due to both genetic variability and exposure to center-based ECE were more sensitive to the effects of overreactive parenting on externalizing behavior than other children.

  8. Bowling alone but tweeting together: the evolution of human interaction in the social networking era

    OpenAIRE

    Antoci, Angelo; Sabatini, Fabio; Sodini, Mauro

    2011-01-01

    The objective of this paper is to theoretically analyze how human interaction may evolve in a world characterized by the explosion of online networking and other Web-mediated ways of building and nurturing relationships. The analysis shows that online networking yields a storage mechanism through which any individual contribution - e.g. a blog post, a comment, or a photo - is stored within a particular network and ready for virtual access by each member who connects to the network. When someo...

  9. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

    International Nuclear Information System (INIS)

    Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana

    2008-01-01

    This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

  10. A comparison between genetic algorithms and neural networks for optimizing fuel recharges in BWR

    International Nuclear Information System (INIS)

    Ortiz J, J.; Requena, I.

    2002-01-01

    In this work the results of a genetic algorithm (AG) and a neural recurrent multi state network (RNRME) for optimizing the fuel reload of 5 cycles of the Laguna Verde nuclear power plant (CNLV) are presented. The fuel reload obtained by both methods are compared and it was observed that the RNRME creates better fuel distributions that the AG. Moreover a comparison of the utility for using one or another one techniques is make. (Author)

  11. Glucose levels and genetic variants across transcriptional pathways: interaction effects with BMI

    NARCIS (Netherlands)

    Povel, C.M.; Feskens, E.J.M.; Imholz, S.; Blaak, E.E.; Boer, J.M.A.; Dollé, M.E.T.

    2010-01-01

    Objective: Much of the genetic variation in glucose levels remains to be discovered. Especially, research on gene–environment interactions is scarce. Overweight is one of the main risk factors for hyperglycemia. As transcriptional regulation is important for both weight maintenance and glucose

  12. The Interaction of Selective Attention and Cognitive Development on Achievement in Nigerian Secondary School Genetics

    Science.gov (United States)

    Okoye, Namdi N. S.

    2009-01-01

    The study tried to examine the interaction between two independent variables of selective attention and cognitive development on Achievement in Genetics at the Secondary School level. In looking at the problem of this study three null hypotheses were generated for testing at 0.05 level of significance. Factorial Analysis of Variance design with…

  13. Interactive genetic counseling role-play: a novel educational strategy for family physicians.

    Science.gov (United States)

    Blaine, Sean M; Carroll, June C; Rideout, Andrea L; Glendon, Gord; Meschino, Wendy; Shuman, Cheryl; Telner, Deanna; Van Iderstine, Natasha; Permaul, Joanne

    2008-04-01

    Family physicians (FPs) are increasingly involved in delivering genetic services. Familiarization with aspects of genetic counseling may enable FPs to help patients make informed choices. Exploration of interactive role-play as a means to raise FPs' awareness of the process and content of genetic counseling. FPs attending two large Canadian family medicine conferences in 2005 were eligible -- 93 participated. FPs discussed a case during a one-on-one session with a genetic counselor. Evaluation involved pre and post intervention questionnaires FPs' baseline genetic knowledge was self-rated as uniformly poor. Baseline confidence was highest in eliciting family history and providing psychosocial support and lowest in discussing risks/benefits of genetic testing and counseling process. Post-intervention, 80% of FPs had better appreciation of family history and 97% indicated this was an effective learning experience. Role-play with FPs is effective in raising awareness of the process and content of genetic counseling and may be applied to other health disciplines.

  14. Interactive analysis of geographically distributed population imaging data collections over light-path data networks

    Science.gov (United States)

    van Lew, Baldur; Botha, Charl P.; Milles, Julien R.; Vrooman, Henri A.; van de Giessen, Martijn; Lelieveldt, Boudewijn P. F.

    2015-03-01

    The cohort size required in epidemiological imaging genetics studies often mandates the pooling of data from multiple hospitals. Patient data, however, is subject to strict privacy protection regimes, and physical data storage may be legally restricted to a hospital network. To enable biomarker discovery, fast data access and interactive data exploration must be combined with high-performance computing resources, while respecting privacy regulations. We present a system using fast and inherently secure light-paths to access distributed data, thereby obviating the need for a central data repository. A secure private cloud computing framework facilitates interactive, computationally intensive exploration of this geographically distributed, privacy sensitive data. As a proof of concept, MRI brain imaging data hosted at two remote sites were processed in response to a user command at a third site. The system was able to automatically start virtual machines, run a selected processing pipeline and write results to a user accessible database, while keeping data locally stored in the hospitals. Individual tasks took approximately 50% longer compared to a locally hosted blade server but the cloud infrastructure reduced the total elapsed time by a factor of 40 using 70 virtual machines in the cloud. We demonstrated that the combination light-path and private cloud is a viable means of building an analysis infrastructure for secure data analysis. The system requires further work in the areas of error handling, load balancing and secure support of multiple users.

  15. A new approach to self-organizing fuzzy polynomial neural networks guided by genetic optimization

    International Nuclear Information System (INIS)

    Oh, Sung-Kwun; Pedrycz, Witold

    2005-01-01

    In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks (FPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology. The underlying methodology involves mechanisms of genetic optimization, especially genetic algorithms (GAs). Let us recall that the design of the 'conventional' FPNNs uses an extended Group Method of Data Handling (GMDH) and exploits a fixed fuzzy inference type located at each FPN of the FPNN as well as considers a fixed number of input nodes at FPNs (or nodes) located in each layer. The proposed FPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. The structural optimization is realized via GAs whereas in the case of the parametric optimization we proceed with a standard least square method based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. The performance of the proposed gFPNN is quantified through experimentation that exploits standard data already being used in fuzzy modeling. The results reveal superiority of the proposed networks over the existing fuzzy and neural models

  16. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    Science.gov (United States)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  17. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    Science.gov (United States)

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  18. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    Science.gov (United States)

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  19. The management of interaction networks. The ???in-between??? concept within social work and counseling

    OpenAIRE

    Hern??ndez-Aristu, Jes??s

    2015-01-01

    We are familiar with the field of group interaction through the traditional work of Kurt Lewin and also systemic thinking talks about network interaction that builds up the system. Martin Buber also discusses the ???in-between??? concept as the third element.The therapist or counselor, social worker and clients are part of an interaction network, representing therapeutic and social working situations. Success in treatment and reflective processes, depends on the perception and managemen...

  20. Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats.

    Science.gov (United States)

    Gass, N; Becker, R; Schwarz, A J; Weber-Fahr, W; Clemm von Hohenberg, C; Vollmayr, B; Sartorius, A

    2016-12-06

    Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the specificity of the involved brain circuits. The rat strain bred for negative cognitive state (NC) represents a genetic animal model of TRD with high face, construct and predictive validity. Vice versa, the positive cognitive state (PC) strain represents a stress-resilient phenotype. Although NC rats show depressive-like behavior, some symptoms such as anhedonia require an external trigger, i.e. a stressful event, which is similar to humans when stressful event induces a depressive episode in genetically predisposed individuals (gene-environment interaction). We aimed to distinguish neurobiological predisposition from the depressogenic pathology at the level of brain-network reorganization. For this purpose, resting-state functional magnetic resonance imaging time series were acquired at 9.4 Tesla scanner in NC (N=11) and PC (N=7) rats before and after stressful event. We used a graph theory analytical approach to calculate the brain-network global and local properties. There was no difference in the global characteristics between the strains. At the local level, the response in the risk strain was characterized with an increased internodal role and reduced local clustering and efficiency of the anterior cingulate cortex (ACC) and prelimbic cortex compared to the stress-resilient strain. We suggest that the increased internodal role of these prefrontal regions could be due to the enhancement of some of their long-range connections, given their connectivity with the amygdala and other default-mode-like network hubs, which could create a bias to attend to negative information characteristic for depression.

  1. Dynamics of Moment Neuronal Networks with Intra- and Inter-Interactions

    Directory of Open Access Journals (Sweden)

    Xuyan Xiang

    2015-01-01

    Full Text Available A framework of moment neuronal networks with intra- and inter-interactions is presented. It is to show how the spontaneous activity is propagated across the homogeneous and heterogeneous network. The input-output firing relationship and the stability are first explored for a homogeneous network. For heterogeneous network without the constraint of the correlation coefficients between neurons, a more sophisticated dynamics is then explored. With random interactions, the network gets easily synchronized. However, desynchronization is produced by a lateral interaction such as Mexico hat function. It is the external intralayer input unit that offers a more sophisticated and unexpected dynamics over the predecessors. Hence, the work further opens up the possibility of carrying out a stochastic computation in neuronal networks.

  2. STUDY OF SENSITIVITY OF THE PARAMETERS OF A GENETIC ALGORITHM FOR DESIGN OF WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    Pedro L. Iglesias

    2007-01-01

    Full Text Available The Genetic Algorithms (GAs are a technique of optimization used for water distribution networks design. This work has been made with a modified pseudo genetic algorithm (PGA, whose main variation with a classical GA is a change in the codification of the chromosomes, which is made of numerical form instead of the binary codification. This variation entails a series of special characteristics in the codification and in the definition of the operations of mutation and crossover. Initially, the work displays the results of the PGA on a water network studied in the literature. The results show the kindness of the method. Also is made a statistical analysis of the obtained solutions. This analysis allows verifying the values of mutation and crossing probability more suitable for the proposed method. Finally, in the study of the analyzed water supply networks the concept of reliability in introduced. This concept is essential to understand the validity of the obtained results. The second part, starting with values optimized for the probability of crossing and mutation, the influence of the population size is analyzed in the final solutions on the network of Hanoi, widely studied in the bibliography. The aim is to find the most suitable configuration of the problem, so that good solutions are obtained in the less time.

  3. STUDY OF SENSITIVITY OF THE PARAMETERS OF A GENETIC ALGORITHM FOR DESIGN OF WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    Pedro L. Iglesias

    2007-12-01

    Full Text Available The Genetic Algorithms (GAs are a technique of optimization used for water distribution networks design. This work has been made with a modified pseudo genetic algorithm (PGA, whose main variation with a classical GA is a change in the codification of the chromosomes, which is made of numerical form instead of the binary codification. This variation entails a series of special characteristics in the codification and in the definition of the operations of mutation and crossover. Initially, the work displays the results of the PGA on a water network studied in the literature. The results show the kindness of the method. Also is made a statistical analysis of the obtained solutions. This analysis allows verifying the values of mutation and crossing probability more suitable for the proposed method. Finally, in the study of the analyzed water supply networks the concept of reliability in introduced. This concept is essential to understand the validity of the obtained results. The second part, starting with values optimized for the probability of crossing and mutation, the influence of the population size is analyzed in the final solutions on the network of Hanoi, widely studied in the bibliography. The aim is to find the most suitable configuration of the problem, so that good solutions are obtained in the less time.

  4. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  5. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    Science.gov (United States)

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

  6. Network reconfiguration for loss reduction in electrical distribution system using genetic algorithm

    International Nuclear Information System (INIS)

    Adail, A.S.A.A.

    2012-01-01

    Distribution system is a critical links between the utility and the nuclear installation. During feeding electricity to that installation there are power losses. The quality of the network depends on the reduction of these losses. Distribution system which feeds the nuclear installation must have a higher quality power. For example, in Inshas site, electrical power is supplied to it from two incoming feeders (one from new abu-zabal substation and the other from old abu-zabal substation). Each feeder is designed to carry the full load, while the operator preferred to connect with a new abu-zabal substation, which has a good power quality. Bad power quality affects directly the nuclear reactor and has a negative impact on the installed sensitive equipment's of the operation. The thesis is Studying the electrical losses in a distribution system (causes and effected factors), feeder reconfiguration methods, and applying of genetic algorithm in an electric distribution power system. In the end, this study proposes an optimization technique based on genetic algorithms for distribution network reconfiguration to reduce the network losses to minimum. The proposed method is applied to IEEE test network; that contain 3 feeders and 16 nodes. The technique is applied through two groups, distribution have general loads, and nuclear loads. In the groups the technique applied to seven cases at normal operation state, system fault condition as well as different loads conditions. Simulated results are drawn to show the accuracy of the technique.

  7. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Oyang Yen-Jen

    2010-10-01

    Full Text Available Abstract Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy.

  8. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    Directory of Open Access Journals (Sweden)

    David eBerry

    2014-05-01

    Full Text Available Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics, construct co-occurrence networks, and evaluate how well networks reveal the underlying interactions, and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  9. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    Science.gov (United States)

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  10. DyNet: visualization and analysis of dynamic molecular interaction networks.

    Science.gov (United States)

    Goenawan, Ivan H; Bryan, Kenneth; Lynn, David J

    2016-09-01

    : The ability to experimentally determine molecular interactions on an almost proteome-wide scale under different conditions is enabling researchers to move from static to dynamic network analysis, uncovering new insights into how interaction networks are physically rewired in response to different stimuli and in disease. Dynamic interaction data presents a special challenge in network biology. Here, we present DyNet, a Cytoscape application that provides a range of functionalities for the visualization, real-time synchronization and analysis of large multi-state dynamic molecular interaction networks enabling users to quickly identify and analyze the most 'rewired' nodes across many network states. DyNet is available at the Cytoscape (3.2+) App Store (http://apps.cytoscape.org/apps/dynet). david.lynn@sahmri.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. The alliance between genetic biobanks and patient organisations: the experience of the telethon network of genetic biobanks

    Directory of Open Access Journals (Sweden)

    Chiara Baldo

    2016-10-01

    Full Text Available Abstract Background Rare diseases (RDs are often neglected because they affect a small percentage of the population (6–8 %, which makes research and development of new therapies challenging processes. Easy access to high-quality samples and associated clinical data is therefore a key prerequisite for biomedical research. In this context, Genetic Biobanks are critical to developing basic, translational and clinical research on RDs. The Telethon Network of Genetic Biobanks (TNGB is aware of the importance of biobanking as a service for patients and has started a dialogue with RD-Patient Organisations via promotion of dedicated meetings and round-tables, as well as by including their representatives on the TNGB Advisory Board. This has enabled the active involvement of POs in drafting biobank policies and procedures, including those concerning ethical issues. Here, we report on our experience with RD-Patient Organisations who have requested the services of existing biobanks belonging to TNGB and describe how these relationships were established, formalised and maintained. Results The process of patient engagement has proven to be successful both for lay members, who increased their understanding of the complex processes of biobanking, and for professionals, who gained awareness of the needs and expectations of the people involved. This collaboration has resulted in a real interest on the part of Patient Organisations in the biobanking service, which has led to 13 written agreements designed to formalise this process. These agreements enabled the centralisation of rare genetic disease biospecimens and their related data, thus making them available to the scientific community. Conclusions The TNGB experience has proven to be an example of good practice with regard to patient engagement in biobanking and may serve as a model of collaboration between disease-oriented Biobanks and Patient Organisations. Such collaboration serves to enhance awareness

  12. The alliance between genetic biobanks and patient organisations: the experience of the telethon network of genetic biobanks.

    Science.gov (United States)

    Baldo, Chiara; Casareto, Lorena; Renieri, Alessandra; Merla, Giuseppe; Garavaglia, Barbara; Goldwurm, Stefano; Pegoraro, Elena; Moggio, Maurizio; Mora, Marina; Politano, Luisa; Sangiorgi, Luca; Mazzotti, Raffaella; Viotti, Valeria; Meloni, Ilaria; Pellico, Maria Teresa; Barzaghi, Chiara; Wang, Chiuhui Mary; Monaco, Lucia; Filocamo, Mirella

    2016-10-24

    Rare diseases (RDs) are often neglected because they affect a small percentage of the population (6-8 %), which makes research and development of new therapies challenging processes. Easy access to high-quality samples and associated clinical data is therefore a key prerequisite for biomedical research. In this context, Genetic Biobanks are critical to developing basic, translational and clinical research on RDs. The Telethon Network of Genetic Biobanks (TNGB) is aware of the importance of biobanking as a service for patients and has started a dialogue with RD-Patient Organisations via promotion of dedicated meetings and round-tables, as well as by including their representatives on the TNGB Advisory Board. This has enabled the active involvement of POs in drafting biobank policies and procedures, including those concerning ethical issues. Here, we report on our experience with RD-Patient Organisations who have requested the services of existing biobanks belonging to TNGB and describe how these relationships were established, formalised and maintained. The process of patient engagement has proven to be successful both for lay members, who increased their understanding of the complex processes of biobanking, and for professionals, who gained awareness of the needs and expectations of the people involved. This collaboration has resulted in a real interest on the part of Patient Organisations in the biobanking service, which has led to 13 written agreements designed to formalise this process. These agreements enabled the centralisation of rare genetic disease biospecimens and their related data, thus making them available to the scientific community. The TNGB experience has proven to be an example of good practice with regard to patient engagement in biobanking and may serve as a model of collaboration between disease-oriented Biobanks and Patient Organisations. Such collaboration serves to enhance awareness and trust and to encourage the scientific community to

  13. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  14. Self-organized criticality in a network of interacting neurons

    NARCIS (Netherlands)

    Cowan, J.D.; Neuman, J.; Kiewiet, B.; van Drongelen, W.

    2013-01-01

    This paper contains an analysis of a simple neural network that exhibits self-organized criticality. Such criticality follows from the combination of a simple neural network with an excitatory feedback loop that generates bistability, in combination with an anti-Hebbian synapse in its input pathway.

  15. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    Science.gov (United States)

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  16. Limitation of degree information for analyzing the interaction evolution in online social networks

    Science.gov (United States)

    Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke

    2014-04-01

    Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.

  17. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    Science.gov (United States)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  18. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    Science.gov (United States)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yua