WorldWideScience

Sample records for genetic interaction network

  1. The balance of weak and strong interactions in genetic networks.

    Directory of Open Access Journals (Sweden)

    Juan F Poyatos

    Full Text Available Genetic interactions are being quantitatively characterized in a comprehensive way in several model organisms. These data are then globally represented in terms of genetic networks. How are interaction strengths distributed in these networks? And what type of functional organization of the underlying genomic systems is revealed by such distribution patterns? Here, I found that weak interactions are important for the structure of genetic buffering between signaling pathways in Caenorhabditis elegans, and that the strength of the association between two genes correlates with the number of common interactors they exhibit. I also determined that this network includes genetic cascades balancing weak and strong links, and that its hubs act as particularly strong genetic modifiers; both patterns also identified in Saccharomyces cerevisae networks. In yeast, I further showed a relation, although weak, between interaction strengths and some phenotypic/evolutionary features of the corresponding target genes. Overall, this work demonstrates a non-random organization of interaction strengths in genetic networks, a feature common to other complex networks, and that could reflect in this context how genetic variation is eventually influencing the phenotype.

  2. Predicting genetic interactions with random walks on biological networks

    Directory of Open Access Journals (Sweden)

    Singh Ambuj K

    2009-01-01

    Full Text Available Abstract Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree

  3. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  4. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.

    Science.gov (United States)

    Hou, Lin; Wang, Lin; Berg, Arthur; Qian, Minping; Zhu, Yunping; Li, Fangting; Deng, Minghua

    2012-01-01

    The goal of network clustering algorithms detect dense clusters in a network, and provide a first step towards the understanding of large scale biological networks. With numerous recent advances in biotechnologies, large-scale genetic interactions are widely available, but there is a limited understanding of which clustering algorithms may be most effective. In order to address this problem, we conducted a systematic study to compare and evaluate six clustering algorithms in analyzing genetic interaction networks, and investigated influencing factors in choosing algorithms. The algorithms considered in this comparison include hierarchical clustering, topological overlap matrix, bi-clustering, Markov clustering, Bayesian discriminant analysis based community detection, and variational Bayes approach to modularity. Both experimentally identified and synthetically constructed networks were used in this comparison. The accuracy of the algorithms is measured by the Jaccard index in comparing predicted gene modules with benchmark gene sets. The results suggest that the choice differs according to the network topology and evaluation criteria. Hierarchical clustering showed to be best at predicting protein complexes; Bayesian discriminant analysis based community detection proved best under epistatic miniarray profile (EMAP) datasets; the variational Bayes approach to modularity was noticeably better than the other algorithms in the genome-scale networks.

  5. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

    Science.gov (United States)

    Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J; Vacic, Vladimir; Calderwood, Michael A; Roth, Frederick P; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M

    2014-04-11

    Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.

  6. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.

    Science.gov (United States)

    Hu, Ting; Darabos, Christian; Cricco, Maria E; Kong, Emily; Moore, Jason H

    2015-01-01

    The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease.

  7. Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7

    Directory of Open Access Journals (Sweden)

    Neszt Michael

    2008-07-01

    Full Text Available Abstract Background Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. Results We created a novel glc7 catalytic mutant (glc7-E101Q. Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. Conclusion We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes.

  8. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    2009-03-01

    Full Text Available Evidence from human genetic studies of several disorders suggests that interactions between alleles at multiple genes play an important role in influencing phenotypic expression. Analytical methods for identifying Mendelian disease genes are not appropriate when applied to common multigenic diseases, because such methods investigate association with the phenotype only one genetic locus at a time. New strategies are needed that can capture the spectrum of genetic effects, from Mendelian to multifactorial epistasis. Random Forests (RF and Relief-F are two powerful machine-learning methods that have been studied as filters for genetic case-control data due to their ability to account for the context of alleles at multiple genes when scoring the relevance of individual genetic variants to the phenotype. However, when variants interact strongly, the independence assumption of RF in the tree node-splitting criterion leads to diminished importance scores for relevant variants. Relief-F, on the other hand, was designed to detect strong interactions but is sensitive to large backgrounds of variants that are irrelevant to classification of the phenotype, which is an acute problem in genome-wide association studies. To overcome the weaknesses of these data mining approaches, we develop Evaporative Cooling (EC feature selection, a flexible machine learning method that can integrate multiple importance scores while removing irrelevant genetic variants. To characterize detailed interactions, we construct a genetic-association interaction network (GAIN, whose edges quantify the synergy between variants with respect to the phenotype. We use simulation analysis to show that EC is able to identify a wide range of interaction effects in genetic association data. We apply the EC filter to a smallpox vaccine cohort study of single nucleotide polymorphisms (SNPs and infer a GAIN for a collection of SNPs associated with adverse events. Our results suggest an important

  9. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  10. Exploitation of genetic interaction network topology for the prediction of epistatic behavior.

    Science.gov (United States)

    Alanis-Lobato, Gregorio; Cannistraci, Carlo Vittorio; Ravasi, Timothy

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks. We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks. Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab.

  11. The synthetic genetic interaction network reveals small molecules that target specific pathways in Sacchromyces cerevisiae.

    Science.gov (United States)

    Tamble, Craig M; St Onge, Robert P; Giaever, Guri; Nislow, Corey; Williams, Alexander G; Stuart, Joshua M; Lokey, R Scott

    2011-06-01

    High-throughput elucidation of synthetic genetic interactions (SGIs) has contributed to a systems-level understanding of genetic robustness and fault-tolerance encoded in the genome. Pathway targets of various compounds have been predicted by comparing chemical-genetic synthetic interactions to a network of SGIs. We demonstrate that the SGI network can also be used in a powerful reverse pathway-to-drug approach for identifying compounds that target specific pathways of interest. Using the SGI network, the method identifies an indicator gene that may serve as a good candidate for screening a library of compounds. The indicator gene is selected so that compounds found to produce sensitivity in mutants deleted for the indicator gene are likely to abrogate the target pathway. We tested the utility of the SGI network for pathway-to-drug discovery using the DNA damage checkpoint as the target pathway. An analysis of the compendium of synthetic lethal interactions in yeast showed that superoxide dismutase 1 (SOD1) has significant SGI connectivity with a large subset of DNA damage checkpoint and repair (DDCR) genes in Saccharomyces cerevisiae, and minimal SGIs with non-DDCR genes. We screened a sod1Δ strain against three National Cancer Institute (NCI) compound libraries using a soft agar high-throughput halo assay. Fifteen compounds out of ∼3100 screened showed selective toxicity toward sod1Δ relative to the isogenic wild type (wt) strain. One of these, 1A08, caused a transient increase in growth in the presence of sublethal doses of DNA damaging agents, suggesting that 1A08 inhibits DDCR signaling in yeast. Genome-wide screening of 1A08 against the library of viable homozygous deletion mutants further supported DDCR as the relevant targeted pathway of 1A08. When assayed in human HCT-116 colorectal cancer cells, 1A08 caused DNA-damage resistant DNA synthesis and blocked the DNA-damage checkpoint selectively in S-phase.

  12. Genetic programming-based approach to elucidate biochemical interaction networks from data.

    Science.gov (United States)

    Kandpal, Manoj; Kalyan, Chakravarthy Mynampati; Samavedham, Lakshminarayanan

    2013-02-01

    Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods.

  13. Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI.

    Directory of Open Access Journals (Sweden)

    Giosalba Burgio

    2008-06-01

    Full Text Available Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo.

  14. Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data.

    Science.gov (United States)

    Kogelman, Lisette J A; Kadarmideen, Haja N

    2014-01-01

    High-throughput genotype (HTG) data has been used primarily in genome-wide association (GWA) studies; however, GWA results explain only a limited part of the complete genetic variation of traits. In systems genetics, network approaches have been shown to be able to identify pathways and their underlying causal genes to unravel the biological and genetic background of complex diseases and traits, e.g., the Weighted Gene Co-expression Network Analysis (WGCNA) method based on microarray gene expression data. The main objective of this study was to develop a scale-free weighted genetic interaction network method using whole genome HTG data in order to detect biologically relevant pathways and potential genetic biomarkers for complex diseases and traits. We developed the Weighted Interaction SNP Hub (WISH) network method that uses HTG data to detect genome-wide interactions between single nucleotide polymorphism (SNPs) and its relationship with complex traits. Data dimensionality reduction was achieved by selecting SNPs based on its: 1) degree of genome-wide significance and 2) degree of genetic variation in a population. Network construction was based on pairwise Pearson's correlation between SNP genotypes or the epistatic interaction effect between SNP pairs. To identify modules the Topological Overlap Measure (TOM) was calculated, reflecting the degree of overlap in shared neighbours between SNP pairs. Modules, clusters of highly interconnected SNPs, were defined using a tree-cutting algorithm on the SNP dendrogram created from the dissimilarity TOM (1-TOM). Modules were selected for functional annotation based on their association with the trait of interest, defined by the Genome-wide Module Association Test (GMAT). We successfully tested the established WISH network method using simulated and real SNP interaction data and GWA study results for carcass weight in a pig resource population; this resulted in detecting modules and key functional and biological pathways

  15. Analysis of genetic interaction networks shows that alternatively spliced genes are highly versatile.

    Science.gov (United States)

    Talavera, David; Sheoran, Ritika; Lovell, Simon C

    2013-01-01

    Alternative splicing has the potential to increase the diversity of the transcriptome and proteome. Where more than one transcript arises from a gene they are often so different that they are quite unlikely to have the same function. However, it remains unclear if alternative splicing generally leads to a gene being involved in multiple biological processes or whether it alters the function within a single process. Knowing that genetic interactions occur between functionally related genes, we have used them as a proxy for functional versatility, and have analysed the sets of genes of two well-characterised model organisms: Caenorhabditis elegans and Drosophila melanogaster. Using network analyses we find that few genes are functionally homogenous (only involved in a few functionally-related biological processes). Moreover, there are differences between alternatively spliced genes and genes with a single transcript; specifically, genes with alternatively splicing are, on average, involved in more biological processes. Finally, we suggest that factors other than specific functional classes determine whether a gene is alternatively spliced.

  16. Expression Profiling of Human Genetic and Protein Interaction Networks in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Brunak, Søren; Bergholdt, R; Brorsson, C

    2009-01-01

    Proteins contributing to a complex disease are often members of the same functional pathways. Elucidation of such pathways may provide increased knowledge about functional mechanisms underlying disease. By combining genetic interactions in Type 1 Diabetes (T1D) with protein interaction data we have...

  17. Optimizing information flow in small genetic networks. II. Feed-forward interactions.

    Science.gov (United States)

    Walczak, Aleksandra M; Tkacik, Gasper; Bialek, William

    2010-04-01

    Central to the functioning of a living cell is its ability to control the readout or expression of information encoded in the genome. In many cases, a single transcription factor protein activates or represses the expression of many genes. As the concentration of the transcription factor varies, the target genes thus undergo correlated changes, and this redundancy limits the ability of the cell to transmit information about input signals. We explore how interactions among the target genes can reduce this redundancy and optimize information transmission. Our discussion builds on recent work [Tkacik, Phys. Rev. E 80, 031920 (2009)], and there are connections to much earlier work on the role of lateral inhibition in enhancing the efficiency of information transmission in neural circuits; for simplicity we consider here the case where the interactions have a feed forward structure, with no loops. Even with this limitation, the networks that optimize information transmission have a structure reminiscent of the networks found in real biological systems.

  18. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering.

    Science.gov (United States)

    Nishihara, Masahiro; Shimoda, Takeshi; Nakatsuka, Takashi; Arimura, Gen-Ichiro

    2013-06-26

    Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods.

  19. Controllability in protein interaction networks.

    Science.gov (United States)

    Wuchty, Stefan

    2014-05-13

    Recently, the focus of network research shifted to network controllability, prompting us to determine proteins that are important for the control of the underlying interaction webs. In particular, we determined minimum dominating sets of proteins (MDSets) in human and yeast protein interaction networks. Such groups of proteins were defined as optimized subsets where each non-MDSet protein can be reached by an interaction from an MDSet protein. Notably, we found that MDSet proteins were enriched with essential, cancer-related, and virus-targeted genes. Their central position allowed MDSet proteins to connect protein complexes and to have a higher impact on network resilience than hub proteins. As for their involvement in regulatory functions, MDSet proteins were enriched with transcription factors and protein kinases and were significantly involved in bottleneck interactions, regulatory links, phosphorylation events, and genetic interactions.

  20. Structural similarity of genetically interacting proteins

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2008-07-01

    Full Text Available Abstract Background The study of gene mutants and their interactions is fundamental to understanding gene function and backup mechanisms within the cell. The recent availability of large scale genetic interaction networks in yeast and worm allows the investigation of the biological mechanisms underlying these interactions at a global scale. To date, less than 2% of the known genetic interactions in yeast or worm can be accounted for by sequence similarity. Results Here, we perform a genome-scale structural comparison among protein pairs in the two species. We show that significant fractions of genetic interactions involve structurally similar proteins, spanning 7–10% and 14% of all known interactions in yeast and worm, respectively. We identify several structural features that are predictive of genetic interactions and show their superiority over sequence-based features. Conclusion Structural similarity is an important property that can explain and predict genetic interactions. According to the available data, the most abundant mechanism for genetic interactions among structurally similar proteins is a common interacting partner shared by two genetically interacting proteins.

  1. Local identification of piecewise deterministic models of genetic networks

    NARCIS (Netherlands)

    Cinquemani, Eugenio; Milias-Argeitis, Andreas; Summers, Sean; Lygeros, John

    2009-01-01

    We address the identification of genetic networks under stationary conditions. A stochastic hybrid description of the genetic interactions is considered and an approximation of it in stationary conditions is derived. Contrary to traditional structure identification methods based on fitting determini

  2. Genetic network models: a comparative study

    Science.gov (United States)

    van Someren, Eugene P.; Wessels, Lodewyk F. A.; Reinders, Marcel J. T.

    2001-06-01

    Currently, the need arises for tools capable of unraveling the functionality of genes based on the analysis of microarray measurements. Modeling genetic interactions by means of genetic network models provides a methodology to infer functional relationships between genes. Although a wide variety of different models have been introduced so far, it remains, in general, unclear what the strengths and weaknesses of each of these approaches are and where these models overlap and differ. This paper compares different genetic modeling approaches that attempt to extract the gene regulation matrix from expression data. A taxonomy of continuous genetic network models is proposed and the following important characteristics are suggested and employed to compare the models: inferential power; predictive power; robustness; consistency; stability and computational cost. Where possible, synthetic time series data are employed to investigate some of these properties. The comparison shows that although genetic network modeling might provide valuable information regarding genetic interactions, current models show disappointing results on simple artificial problems. For now, the simplest models are favored because they generalize better, but more complex models will probably prevail once their bias is more thoroughly understood and their variance is better controlled.

  3. Genetic interaction mapping with microfluidic-based single cell sequencing

    Science.gov (United States)

    Haliburton, John R.; Shao, Wenjun; Deutschbauer, Adam; Arkin, Adam; Abate, Adam R.

    2017-01-01

    Genetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing. Our approach is scalable and theoretically enables the pooling of entire interaction libraries to interrogate multiple pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our approach makes genetic interaction mapping viable for routine characterization, allowing the interaction network to be used as a universal read out for a variety of biology experiments, and for the elucidation of interaction networks in non-model organisms. PMID:28170417

  4. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  5. Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Sloep, P. (2009). Social Interaction in Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp 13-15). Berlin, Germany: Springer Verlag.

  6. Genome-Wide Prediction of C. elegans Genetic Interactions

    OpenAIRE

    Zhong, Weiwei; Sternberg, Paul W.

    2006-01-01

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms—Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster—and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understandin...

  7. Network Physiology: Mapping Interactions Between Networks of Physiologic Networks

    Science.gov (United States)

    Ivanov, Plamen Ch.; Bartsch, Ronny P.

    The human organism is an integrated network of interconnected and interacting organ systems, each representing a separate regulatory network. The behavior of one physiological system (network) may affect the dynamics of all other systems in the network of physiologic networks. Due to these interactions, failure of one system can trigger a cascade of failures throughout the entire network. We introduce a systematic method to identify a network of interactions between diverse physiologic organ systems, to quantify the hierarchical structure and dynamics of this network, and to track its evolution under different physiologic states. We find a robust relation between network structure and physiologic states: every state is characterized by specific network topology, node connectivity and links strength. Further, we find that transitions from one physiologic state to another trigger a markedly fast reorganization in the network of physiologic interactions on time scales of just a few minutes, indicating high network flexibility in response to perturbations. This reorganization in network topology occurs simultaneously and globally in the entire network as well as at the level of individual physiological systems, while preserving a hierarchical order in the strength of network links. Our findings highlight the need of an integrated network approach to understand physiologic function, since the framework we develop provides new information which can not be obtained by studying individual systems. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.

  8. Information transmission in genetic regulatory networks: a review

    Science.gov (United States)

    Tkačik, Gašper; Walczak, Aleksandra M.

    2011-04-01

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.

  9. Information transmission in genetic regulatory networks: a review.

    Science.gov (United States)

    Tkačik, Gašper; Walczak, Aleksandra M

    2011-04-20

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.

  10. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  11. Evolutionary algorithms in genetic regulatory networks model

    CERN Document Server

    Raza, Khalid

    2012-01-01

    Genetic Regulatory Networks (GRNs) plays a vital role in the understanding of complex biological processes. Modeling GRNs is significantly important in order to reveal fundamental cellular processes, examine gene functions and understanding their complex relationships. Understanding the interactions between genes gives rise to develop better method for drug discovery and diagnosis of the disease since many diseases are characterized by abnormal behaviour of the genes. In this paper we have reviewed various evolutionary algorithms-based approach for modeling GRNs and discussed various opportunities and challenges.

  12. Networks and Interactivity

    DEFF Research Database (Denmark)

    Considine, Mark; Lewis, Jenny

    2012-01-01

    The systemic reform of employment services in OECD countries was driven by New Public Management (NPM) and then post-NPM reforms, when first-phase changes such as privatization were amended with `joined up' processes to help manage fragmentation. This article examines the networking strategies...... of `street-level' employment services staff for the impacts of this. Contrary to expectations, networking has generally declined over the last decade. There are signs of path dependence in networking patterns within each country, but also a convergence of patterns for the UK and Australia......, but not The Netherlands. Networking appears to be mediated by policy and regulatory imperatives....

  13. State Observer Design for Delayed Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Li-Ping Tian

    2014-01-01

    Full Text Available Genetic regulatory networks are dynamic systems which describe the interactions among gene products (mRNAs and proteins. The internal states of a genetic regulatory network consist of the concentrations of mRNA and proteins involved in it, which are very helpful in understanding its dynamic behaviors. However, because of some limitations such as experiment techniques, not all internal states of genetic regulatory network can be effectively measured. Therefore it becomes an important issue to estimate the unmeasured states via the available measurements. In this study, we design a state observer to estimate the states of genetic regulatory networks with time delays from available measurements. Furthermore, based on linear matrix inequality (LMI approach, a criterion is established to guarantee that the dynamic of estimation error is globally asymptotically stable. A gene repressillatory network is employed to illustrate the effectiveness of our design approach.

  14. Propagation of genetic variation in gene regulatory networks.

    Science.gov (United States)

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  15. Genome-wide prediction of C. elegans genetic interactions.

    Science.gov (United States)

    Zhong, Weiwei; Sternberg, Paul W

    2006-03-10

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms-Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster-and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understanding of gene functions. We experimentally tested the predicted interactions for two human disease-related genes and identified 14 new modifiers.

  16. Interactive Network Exploration with Orange

    Directory of Open Access Journals (Sweden)

    Miha Štajdohar

    2013-04-01

    Full Text Available Network analysis is one of the most widely used techniques in many areas of modern science. Most existing tools for that purpose are limited to drawing networks and computing their basic general characteristics. The user is not able to interactively and graphically manipulate the networks, select and explore subgraphs using other statistical and data mining techniques, add and plot various other data within the graph, and so on. In this paper we present a tool that addresses these challenges, an add-on for exploration of networks within the general component-based environment Orange.

  17. Information transmission in genetic regulatory networks: a review

    CERN Document Server

    Walczak, Aleksandra M

    2011-01-01

    Genetic regulatory networks enable cells to respond to the changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between network's inputs and its outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary to understand recent work. We then discuss the functional complexity of gene regulation which arrises from the molecular nature of the regulatory interactions. We end by reviewing som...

  18. Network medicine approaches to the genetics of complex diseases.

    Science.gov (United States)

    Silverman, Edwin K; Loscalzo, Joseph

    2012-08-01

    Complex diseases are caused by perturbations of biological networks. Genetic analysis approaches focused on individual genetic determinants are unlikely to characterize the network architecture of complex diseases comprehensively. Network medicine, which applies systems biology and network science to complex molecular networks underlying human disease, focuses on identifying the interacting genes and proteins which lead to disease pathogenesis. The long biological path between a genetic risk variant and development of a complex disease involves a range of biochemical intermediates, including coding and non-coding RNA, proteins, and metabolites. Transcriptomics, proteomics, metabolomics, and other -omics technologies have the potential to provide insights into complex disease pathogenesis, especially if they are applied within a network biology framework. Most previous efforts to relate genetics to -omics data have focused on a single -omics platform; the next generation of complex disease genetics studies will require integration of multiple types of -omics data sets in a network context. Network medicine may also provide insight into complex disease heterogeneity, serve as the basis for new disease classifications that reflect underlying disease pathogenesis, and guide rational therapeutic and preventive strategies.

  19. Simulating genetic networks made easy: network construction with simple building blocks.

    Science.gov (United States)

    Vercruysse, Steven; Kuiper, Martin

    2005-01-15

    We present SIM-plex, a genetic network simulator with a very intuitive interface in which a user can easily specify interactions as simple 'if-then' statements. The simulator is based on the mathematical model of Piecewise Linear Differential Equations (PLDEs). With PLDEs, genetic interactions are approximated as acting in a switch-like manner. The Java program, examples and a tutorial are available at http://www.psb.ugent.be/cbd/ {stcru,makui}@psb.ugent.be

  20. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  1. A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Nike Bharucha

    2011-04-01

    Full Text Available The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans.Our strategy for this screen was based on the concept of complex haploinsufficiency (CHI. A heterozygous mutant of CBK1(cbk1Δ/CBK1, a key RAM pathway protein kinase, was subjected to transposon-mediated, insertional mutagenesis. The resulting double heterozygous mutants (6,528 independent strains were screened for decreased filamentation on SpiderMedium (SM. From the 441 mutants showing altered filamentation, 139 transposon insertion sites were sequenced,yielding 41 unique CBK1-interacting genes. This gene set was enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent protein kinase A (PKA pathway, suggesting an interaction between these two pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a common set of genes during morphogenesis and that hyperactivation of the PKA pathway may compensate for loss of RAM pathway function. Our data also indicate that the PKA–regulated transcription factor Efg1 primarily localizes to yeast phase cells while the RAM–pathway regulated transcription factor Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken together, our observations indicate that CHI–based screening is a useful approach to genetic interaction analysis in C. albicans and support a model in which these two pathways regulate a common set of genes at different stages of filamentation.

  2. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  3. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  4. Genetic Programming Neural Networks: A Powerful Bioinformatics Tool for Human Genetics.

    Science.gov (United States)

    Ritchie, Marylyn D; Motsinger, Alison A; Bush, William S; Coffey, Christopher S; Moore, Jason H

    2007-01-01

    The identification of genes that influence the risk of common, complex disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for detecting genetic effects that are dependent solely or partially on interactions. We have previously introduced a genetic programming neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of genetic and gene-environment combinations associated with disease risk. Previous empirical studies suggest GPNN has excellent power for identifying gene-gene and gene-environment interactions. The goal of this study was to compare the power of GPNN to stepwise logistic regression (SLR) and classification and regression trees (CART) for identifying gene-gene and gene-environment interactions. SLR and CART are standard methods of analysis for genetic association studies. Using simulated data, we show that GPNN has higher power to identify gene-gene and gene-environment interactions than SLR and CART. These results indicate that GPNN may be a useful pattern recognition approach for detecting gene-gene and gene-environment interactions in studies of human disease.

  5. Statistical Mechanics of Temporal and Interacting Networks

    Science.gov (United States)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide

  6. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus

    OpenAIRE

    Drost, Derek R.; Benedict, Catherine I.; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R. D. B.; Yu, Qibin; Dervinis, Christopher; Jessica M Maia; Yap, John; Miles, Brianna; Kirst, Matias

    2010-01-01

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leav...

  7. Application of genetic BP network to discriminating earthquakes and explosions

    Institute of Scientific and Technical Information of China (English)

    边银菊

    2002-01-01

    In this paper, we develop GA-BP algorithm by combining genetic algorithm (GA) with back propagation (BP) algorithm and establish genetic BP neural network. We also applied BP neural network based on BP algorithm and genetic BP neural network based on GA-BP algorithm to discriminate earthquakes and explosions. The obtained result shows that the discriminating performance of genetic BP network is slightly better than that of BP network.

  8. [Interactions between genetics and environment].

    Science.gov (United States)

    Vineis, P

    1998-01-01

    From a scientific point of view, the idea that genes exert an important role in explaining human pathology has gained much popularity in recent decades. However, according to Stephen Jay Gould, the "genetic fallacy" has been repeatedly used to avoid environmental action. In the case of occupational cancer, genetic screening of workers for their susceptibility to the action of chemical carcinogens, on the basis of "metabolic polymorphisms", would be unacceptable because of racial discrimination, related to uneven racial distribution of most polymorphisms, for example, 90% of Africans and 10% of Asians have the "slow" acetylator genotype. Therefore, not only technical and scientific aspects of genetic susceptibility to cancer, but also ethical and social implication have to be considered.

  9. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.

    Directory of Open Access Journals (Sweden)

    Eliska Vohradska

    Full Text Available Study of genetic networks has moved from qualitative description of interactions between regulators and regulated genes to the analysis of the interaction dynamics. This paper focuses on the analysis of dynamics of one particular network--the yeast cyclins network. Using a dedicated mathematical model of gene expression and a procedure for computation of the parameters of the model from experimental data, a complete numerical model of the dynamics of the cyclins genetic network was attained. The model allowed for performing virtual experiments on the network and observing their influence on the expression dynamics of the genes downstream in the regulatory cascade. Results show that when the network structure is more complicated, and the regulatory interactions are indirect, results of gene deletion are highly unpredictable. As a consequence of quantitative behavior of the genes and their connections within the network, causal relationship between a regulator and target gene may not be discovered by gene deletion. Without including the dynamics of the system into the network, its functional properties cannot be studied and interpreted correctly.

  10. Phenotypic evolution from genetic polymorphisms in a radial network architecture

    Directory of Open Access Journals (Sweden)

    Siegel Paul B

    2007-11-01

    Full Text Available Abstract Background The genetic architecture of a quantitative trait influences the phenotypic response to natural or artificial selection. One of the main objectives of genetic mapping studies is to identify the genetic factors underlying complex traits and understand how they contribute to phenotypic expression. Presently, we are good at identifying and locating individual loci with large effects, but there is a void in describing more complex genetic architectures. Although large networks of connected genes have been reported, there is an almost complete lack of information on how polymorphisms in these networks contribute to phenotypic variation and change. To date, most of our understanding comes from theoretical, model-based studies, and it remains difficult to assess how realistic their conclusions are as they lack empirical support. Results A previous study provided evidence that nearly half of the difference in eight-week body weight between two divergently selected lines of chickens was a result of four loci organized in a 'radial' network (one central locus interacting with three 'radial' loci that, in turn, only interacted with the central locus. Here, we study the relationship between phenotypic change and genetic polymorphism in this empirically detected network. We use a model-free approach to study, through individual-based simulations, the dynamic properties of this polymorphic and epistatic genetic architecture. The study provides new insights to how epistasis can modify the selection response, buffer and reveal effects of major loci leading to a progressive release of genetic variation. We also illustrate the difficulty of predicting genetic architecture from observed selection response, and discuss mechanisms that might lead to misleading conclusions on underlying genetic architectures from quantitative trait locus (QTL experiments in selected populations. Conclusion Considering both molecular (QTL and phenotypic (selection

  11. Research on Modeling of Genetic Networks Based on Information Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-wei; SHAO Shi-huang; ZHANG Ying; LI Hai-ying

    2006-01-01

    As the basis of network of biology organism, the genetic network is concerned by many researchers.Current modeling methods to genetic network, especially the Boolean networks modeling method are analyzed. For modeling the genetic network, the information theory is proposed to mining the relations between elements in network. Through calculating the values of information entropy and mutual entropy in a case, the effectiveness of the method is verified.

  12. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  13. Genetic flexibility of regulatory networks.

    Science.gov (United States)

    Hunziker, Alexander; Tuboly, Csaba; Horváth, Péter; Krishna, Sandeep; Semsey, Szabolcs

    2010-07-20

    Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.

  14. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.

    Directory of Open Access Journals (Sweden)

    Nathaniel D Maynard

    2010-07-01

    Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.

  15. Identification of Topological Network Modules in Perturbed Protein Interaction Networks

    Science.gov (United States)

    Sardiu, Mihaela E.; Gilmore, Joshua M.; Groppe, Brad; Florens, Laurence; Washburn, Michael P.

    2017-01-01

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks. PMID:28272416

  16. Multiple genetic interaction experiments provide complementary information useful for gene function prediction.

    Directory of Open Access Journals (Sweden)

    Magali Michaut

    Full Text Available Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and provide significant unique information. To exploit this information, we develop a novel method to combine individual genetic interaction data sets and show that the resulting network improves gene function prediction performance, demonstrating that individual networks provide complementary information. Our results support the notion that using diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function information produced by genetic interaction screens.

  17. A network characteristic that correlates environmental and genetic robustness.

    Directory of Open Access Journals (Sweden)

    Zeina Shreif

    2014-02-01

    Full Text Available As scientific advances in perturbing biological systems and technological advances in data acquisition allow the large-scale quantitative analysis of biological function, the robustness of organisms to both transient environmental stresses and inter-generational genetic changes is a fundamental impediment to the identifiability of mathematical models of these functions. An approach to overcoming this impediment is to reduce the space of possible models to take into account both types of robustness. However, the relationship between the two is still controversial. This work uncovers a network characteristic, transient responsiveness, for a specific function that correlates environmental imperturbability and genetic robustness. We test this characteristic extensively for dynamic networks of ordinary differential equations ranging up to 30 interacting nodes and find that there is a power-law relating environmental imperturbability and genetic robustness that tends to linearity as the number of nodes increases. Using our methods, we refine the classification of known 3-node motifs in terms of their environmental and genetic robustness. We demonstrate our approach by applying it to the chemotaxis signaling network. In particular, we investigate plausible models for the role of CheV protein in biochemical adaptation via a phosphorylation pathway, testing modifications that could improve the robustness of the system to environmental and/or genetic perturbation.

  18. Weighted protein interaction network analysis of frontotemporal dementia\\ud

    OpenAIRE

    Ferrari, Raffaele; Lovering, Ruth C.; Hardy, John; Lewis, Patrick A.; Manzoni, Claudia

    2016-01-01

    The genetic analysis of complex disorders has undoubtedly led to the identification of a wealth of associations between genes and specific traits. However, moving from genetics to biochemistry one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain the molecular basis of phenotypes. Here we present a novel approach, weighted protein−protein\\ud interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological...

  19. Discovering functional interaction patterns in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Can Tolga

    2008-06-01

    Full Text Available Abstract Background In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks. Results In this article, we map known functional annotations of proteins onto a PPI network in order to identify frequently occurring interaction patterns in the functional space. We propose a new frequent pattern identification technique, PPISpan, adapted specifically for PPI networks from a well-known frequent subgraph identification method, gSpan. Existing module discovery techniques either look for specific clique-like highly interacting protein clusters or linear paths of interaction. However, our goal is different; instead of single clusters or pathways, we look for recurring functional interaction patterns in arbitrary topologies. We have applied PPISpan on PPI networks of Saccharomyces cerevisiae and identified a number of frequently occurring functional interaction patterns. Conclusion With the help of PPISpan, recurring functional interaction patterns in an organism's PPI network can be identified. Such an analysis offers a new perspective on the modular organization of PPI networks. The complete list of identified functional interaction patterns is available at http://bioserver.ceng.metu.edu.tr/PPISpan/.

  20. Adaptation by Plasticity of Genetic Regulatory Networks

    Science.gov (United States)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  1. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    Science.gov (United States)

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  2. GKIN: a tool for drawing genetic networks

    Directory of Open Access Journals (Sweden)

    Jonathan Arnold

    2012-03-01

    Full Text Available We present GKIN, a simulator and a comprehensive graphical interface where one can draw the model specification of reactions between hypothesized molecular participants in a gene regulatory and biochemical reaction network (or genetic network for short. The solver is written in C++ in a nearly platform independentmanner to simulate large ensembles of models, which can run on PCs, Macintoshes, and UNIX machines, and its graphical user interface is written in Java which can run as a standalone or WebStart application. The drawing capability for rendering a network significantly enhances the ease of use of other reaction network simulators, such as KINSOLVER (Aleman-Meza et al., 2009 and enforces a correct semantic specification of the network. In a usability study with novice users, drawing the network with GKIN was preferred and faster in comparison with entry with a dialog-box guided interface in COPASI (Hoops, et al., 2006 with no difference in error rates between GKIN and COPASI in specifying the network. GKIN is freely available at http://faculty.cs.wit.edu/~ldeligia/PROJECTS/GKIN/.

  3. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  4. Protein Kinase C Epsilon and Genetic Networks in Osteosarcoma Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Atta, E-mail: atta.goudarzi@utoronto.ca [Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 (Canada); Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Gokgoz, Nalan; Gill, Mona; Pinnaduwage, Dushanthi [Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Merico, Daniele [The Centre for Applied Genomics, The Hospital for Sick Children, MaRS Centre-East Tower, 101 College Street Rm.14-701, Toronto, ON M5G 1L7 (Canada); Wunder, Jay S. [Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Andrulis, Irene L. [Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 (Canada); Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada)

    2013-04-08

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation.

  5. Learning Bayesian networks using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Chen Fei; Wang Xiufeng; Rao Yimei

    2007-01-01

    A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.

  6. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

  7. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

  8. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  9. Network Physiology: How Organ Systems Dynamically Interact.

    Directory of Open Access Journals (Sweden)

    Ronny P Bartsch

    Full Text Available We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS, we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  10. Effects of macromolecular crowding on genetic networks.

    Science.gov (United States)

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance.

  11. Explorers of the Universe: Interactive Electronic Network

    Science.gov (United States)

    Alvarez, Marino C.; Burks, Geoffrey; Busby, Michael R.; Cannon, Tiffani; Sotoohi, Goli; Wade, Montanez

    2000-01-01

    This paper details how the Interactive Electronic Network is being utilized by secondary and postsecondary students, and their teachers and professors, to facilitate learning and understanding. The Interactive Electronic Network is couched within the Explorers of the Universe web site in a restricted portion entitled Gateway.

  12. Interactive Genetic Algorithms with Fitness Adjustment

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-song; GONG Dun-wei; HAO Guo-sheng; ZHANG Yong

    2006-01-01

    Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user's preference mechanisms. Characteristics of the two noises are presented aiming at the application of interactive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual's fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm's performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises.

  13. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  14. The yeast noncoding RNA interaction network.

    Science.gov (United States)

    Panni, Simona; Prakash, Ananth; Bateman, Alex; Orchard, Sandra

    2017-10-01

    This article describes the creation of the first expert manually curated noncoding RNA interaction networks for S. cerevisiae The RNA-RNA and RNA-protein interaction networks have been carefully extracted from the experimental literature and made available through the IntAct database (www.ebi.ac.uk/intact). We provide an initial network analysis and compare their properties to the much larger protein-protein interaction network. We find that the proteins that bind to ncRNAs in the network contain only a small proportion of classical RNA binding domains. We also see an enrichment of WD40 domains suggesting their direct involvement in ncRNA interactions. We discuss the challenges in collecting noncoding RNA interaction data and the opportunities for worldwide collaboration to fill the unmet need for this data. © 2017 Panni et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Data Mining on Social Interaction Networks

    OpenAIRE

    Atzmueller, Martin

    2013-01-01

    Social media and social networks have already woven themselves into the very fabric of everyday life. This results in a dramatic increase of social data capturing various relations between the users and their associated artifacts, both in online networks and the real world using ubiquitous devices. In this work, we consider social interaction networks from a data mining perspective - also with a special focus on real-world face-to-face contact networks: We combine data mining and social netwo...

  16. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  17. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Science.gov (United States)

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  18. On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics.

    Science.gov (United States)

    Hou, Jing; Schacherer, Joseph

    2016-01-01

    Genetic variation within species is the substrate of evolution. Epistasis, which designates the non-additive interaction between loci affecting a specific phenotype, could be one of the possible outcomes of genetic diversity. Dissecting the basis of such interactions is of current interest in different fields of biology, from exploring the gene regulatory network, to complex disease genetics, to the onset of reproductive isolation and speciation. We present here a general workflow to identify epistatic interactions between independently evolving loci in natural populations of the yeast Saccharomyces cerevisiae. The idea is to exploit the genetic diversity present in the species by evaluating a large number of crosses and analyzing the phenotypic distribution in the offspring. For a cross of interest, both parental strains would have a similar phenotypic value, whereas the resulting offspring would have a bimodal distribution of the phenotype, possibly indicating the presence of epistasis. Classical segregation analysis of the tetrads uncovers the penetrance and complexity of the interaction. In addition, this segregation could serve as the guidelines for choosing appropriate mapping strategies to narrow down the genomic regions involved. Depending on the segregation patterns observed, we propose different mapping strategies based on bulk segregant analysis or consecutive backcrosses followed by high-throughput genome sequencing. Our method is generally applicable to all systems with a haplodiplobiontic life cycle and allows high resolution mapping of interacting loci that govern various DNA polymorphisms from single nucleotide mutations to large-scale structural variations.

  19. Critical dynamics in genetic regulatory networks: examples from four kingdoms.

    Science.gov (United States)

    Balleza, Enrique; Alvarez-Buylla, Elena R; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino

    2008-06-18

    The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us.

  20. Specialization for resistance in wild host-pathogen interaction networks

    Directory of Open Access Journals (Sweden)

    Luke eBarrett

    2015-09-01

    Full Text Available Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale and pathogen (Melampsora lini populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1 overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2 that specific network architecture can emerge under different evolutionary scenarios; and (3 network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions.

  1. Inferring modulators of genetic interactions with epistatic nested effects models.

    Science.gov (United States)

    Pirkl, Martin; Diekmann, Madeline; van der Wees, Marlies; Beerenwinkel, Niko; Fröhlich, Holger; Markowetz, Florian

    2017-04-01

    Maps of genetic interactions can dissect functional redundancies in cellular networks. Gene expression profiles as high-dimensional molecular readouts of combinatorial perturbations provide a detailed view of genetic interactions, but can be hard to interpret if different gene sets respond in different ways (called mixed epistasis). Here we test the hypothesis that mixed epistasis between a gene pair can be explained by the action of a third gene that modulates the interaction. We have extended the framework of Nested Effects Models (NEMs), a type of graphical model specifically tailored to analyze high-dimensional gene perturbation data, to incorporate logical functions that describe interactions between regulators on downstream genes and proteins. We benchmark our approach in the controlled setting of a simulation study and show high accuracy in inferring the correct model. In an application to data from deletion mutants of kinases and phosphatases in S. cerevisiae we show that epistatic NEMs can point to modulators of genetic interactions. Our approach is implemented in the R-package 'epiNEM' available from https://github.com/cbg-ethz/epiNEM and https://bioconductor.org/packages/epiNEM/.

  2. Dynamics of deceptive interactions in social networks

    CERN Document Server

    Barrio, Rafael A; Dunbar, Robin; Iñiguez, Gerardo; Kaski, Kimmo

    2015-01-01

    In this paper we examine the role of lies in human social relations by implementing some salient characteristics of deceptive interactions into an opinion formation model, so as to describe the dynamical behaviour of a social network more realistically. In this model we take into account such basic properties of social networks as the dynamics of the intensity of interactions, the influence of public opinion, and the fact that in every human interaction it might be convenient to deceive or withhold information depending on the instantaneous situation of each individual in the network. We find that lies shape the topology of social networks, especially the formation of tightly linked, small communities with loose connections between them. We also find that agents with a larger proportion of deceptive interactions are the ones that connect communities of different opinion, and in this sense they have substantial centrality in the network. We then discuss the consequences of these results for the social behaviou...

  3. Genetic Regulatory Networks in Embryogenesis and Evolution

    Science.gov (United States)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  4. Functional Localization of Genetic Network Programming

    Science.gov (United States)

    Eto, Shinji; Hirasawa, Kotaro; Hu, Jinglu

    According to the knowledge of brain science, it is suggested that there exists cerebral functional localization, which means that a specific part of the cerebrum is activated depending on various kinds of information human receives. The aim of this paper is to build an artificial model to realize functional localization based on Genetic Network Programming (GNP), a new evolutionary computation method recently developed. GNP has a directed graph structure suitable for realizing functional localization. We studied the basic characteristics of the proposed system by making GNP work in a functionally localized way.

  5. Genetic networks: between theory and experimentation

    Science.gov (United States)

    Bottani, Samuel; Mazurie, Aurélien

    Thanks to an increasing availability of data on cell components and progress in computers and computer science, a long awaited paradigm shift is running in biology from reductionism to holistic approaches. One of the consequences is the huge development of network-related representations of cell activity and an increasing involvement of researchers from computer science, physics and mathematics in their analysis. But what are the promises of these approaches for the biologist? What is the available biological data sustaining them and is it sufficient? After a presentation of the interaction network view of the cell, we shall focus on studies on gene network structure and dynamics. Then we shall discuss the difficulties of these approaches and their theoretical and practical usefulness for the biologist.

  6. Fashion sketch design by interactive genetic algorithms

    Science.gov (United States)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  7. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  8. Interactivity vs. fairness in networked linux systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenji; Crawford, Matt; /Fermilab

    2007-01-01

    In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive performance at the same time. However, our experiments and mathematical analysis have shown that the current Linux interactivity mechanism tends to incorrectly categorize non-interactive network applications as interactive, which can lead to serious fairness or starvation issues. In the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is due to the facts that: (1) network packets arrive at the receiver independently and discretely, and the 'relatively fast' non-interactive network process might frequently sleep to wait for packet arrival. Though each sleep lasts for a very short period of time, the wait-for-packet sleeps occur so frequently that they lead to interactive status for the process. (2) The current Linux interactivity mechanism provides the possibility that a non-interactive network process could receive a high CPU share, and at the same time be incorrectly categorized as 'interactive.' In this paper, we propose and test a possible solution to address the interactivity vs. fairness problems. Experiment results have proved the effectiveness of the proposed solution.

  9. SNMP Based Network Optimization Technique Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    M. Mohamed Surputheen

    2012-03-01

    Full Text Available Genetic Algorithms (GAs has innumerable applications through the optimization techniques and network optimization is one of them. SNMP (Simple Network Management Protocol is used as the basic network protocol for monitoring the network activities health of the systems. This paper deals with adding Intelligence to the various aspects of SNMP by adding optimization techniques derived out of genetic algorithms, which enhances the performance of SNMP processes like routing.

  10. Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions.

    Science.gov (United States)

    Oughtred, Rose; Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Chang, Christie S; Rust, Jennifer M; Theesfeld, Chandra L; Heinicke, Sven; Breitkreutz, Ashton; Chen, Daici; Hirschman, Jodi; Kolas, Nadine; Livstone, Michael S; Nixon, Julie; O'Donnell, Lara; Ramage, Lindsay; Winter, Andrew; Reguly, Teresa; Sellam, Adnane; Stark, Chris; Boucher, Lorrie; Dolinski, Kara; Tyers, Mike

    2016-01-04

    The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set. © 2016 Cold Spring Harbor Laboratory Press.

  11. Mutually-antagonistic interactions in baseball networks

    Science.gov (United States)

    Saavedra, Serguei; Powers, Scott; McCotter, Trent; Porter, Mason A.; Mucha, Peter J.

    2010-03-01

    We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit structural changes over time. We find interesting structure in the networks and examine their sensitivity to baseball’s rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to (1) compare the performance of players who competed under different conditions and (2) include information about which particular players a given player has faced. We find that a player’s position in the network does not correlate with his placement in the random walker ranking. However, network position does have a substantial effect on the robustness of ranking placement to changes in head-to-head matchups.

  12. Mutually-Antagonistic Interactions in Baseball Networks

    CERN Document Server

    Saavedra, Serguei; McCotter, Trent; Porter, Mason A; Mucha, Peter J

    2009-01-01

    We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit interesting structural changes over time. We also find that these networks exhibit a significant network structure that is sensitive to baseball's rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to compare the performance of players who competed under different conditions. We find that a player's position in the network does not correlate with his success in the random walker ranking but instead has a substantial effect on its sensitivity to changes in his own aggregate performance.

  13. Interacting personalities: behavioural ecology meets quantitative genetics.

    Science.gov (United States)

    Dingemanse, Niels J; Araya-Ajoy, Yimen G

    2015-02-01

    Behavioural ecologists increasingly study behavioural variation within and among individuals in conjunction, thereby integrating research on phenotypic plasticity and animal personality within a single adaptive framework. Interactions between individuals (cf. social environments) constitute a major causative factor of behavioural variation at both of these hierarchical levels. Social interactions give rise to complex 'interactive phenotypes' and group-level emergent properties. This type of phenotype has intriguing evolutionary implications, warranting a cohesive framework for its study. We detail here how a reaction-norm framework might be applied to usefully integrate social environment theory developed in behavioural ecology and quantitative genetics. The proposed emergent framework facilitates firm integration of social environments in adaptive research on phenotypic characters that vary within and among individuals.

  14. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network

    Directory of Open Access Journals (Sweden)

    Andrews Brenda

    2005-06-01

    Full Text Available Abstract Background Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. Results To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' – classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions – the 'compensatory complexes' theme. Thematic maps – networks rendered in terms of such themes – can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. Conclusion Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.

  15. Edge detection of range images using genetic neural networks

    Institute of Scientific and Technical Information of China (English)

    FAN Jian-ying; DU Ying; ZHOU Yang; WANG Yang

    2009-01-01

    Due to the complexity and asymmetrical illumination, the images of object are difficult to be effectively segmented by some routine method. In this paper, a kind of edge detection method based on image features and genetic algorithms neural network for range images was proposed. Fully considering the essential difference between an edge point and a noise point, some characteristic parameters were extracted from range maps as the input nodes of the network in the algorithm. Firstly, a genetic neural network was designed and implemented. The neural network is trained by genetic algorithm, and then genetic neural network algorithm is combined with the virtue of global optimization of genetic algorithm and the virtue of parallel computation of neural network, so that this algorithm is of good global property. The experimental results show that this method can get much faster and more accurate detection results than the classical differential algorithm, and has better anti-noise performance.

  16. Unraveling spurious properties of interaction networks with tailored random networks.

    Directory of Open Access Journals (Sweden)

    Stephan Bialonski

    Full Text Available We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  17. Unraveling spurious properties of interaction networks with tailored random networks.

    Science.gov (United States)

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  18. A candidate multimodal functional genetic network for thermal adaptation

    Directory of Open Access Journals (Sweden)

    Katharina C. Wollenberg Valero

    2014-09-01

    Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and

  19. Synchronization in networks with multiple interaction layers

    CERN Document Server

    del Genio, Charo I; Bonamassa, Ivan; Boccaletti, Stefano

    2016-01-01

    The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multi-layered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavour in mathematics and physics, and has potential applications to several societally relevant topics, such as power grids engineering and neural dynamics. We propose a general framework to assess stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the Master Stability Function approach. We validate our method applying it to a network of R\\"ossler oscillators with a double layer of interactions, and show that highly rich phenomenology emerges. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely due to the true multi-layer structure of the interact...

  20. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  1. Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

    CERN Document Server

    Bialonski, Stephan; Lehnertz, Klaus; 10.1371/journal.pone.0022826

    2012-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erd\\H{o}s-R\\'{e}nyi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way i...

  2. Genetic and logic networks with the signal-inhibitor-activator structure are dynamically robust

    Institute of Scientific and Technical Information of China (English)

    LI Fangting; TAN Ning

    2006-01-01

    The proteins, DNA and RNA interaction networks govern various biological functions in living cells, these networks should be dynamically robust in the intracellular and environmental fluctuations. Here, we use Boolean network to study the robust structure of both genetic and logic networks. First, SOS network in bacteria E. coli, which regulates cell survival and repair after DNA damage, is shown to be dynamically robust. Comparing with cell cycle network in budding yeast and flagella network in E. coli, we find the signal-inhibitor-activator (SIA) structure in transcription regulatory networks. Second, under the dynamical rule that inhibition is much stronger than activation, we have searched 3-node non-self-loop logical networks that are dynamically robust, and that if the attractive basin of a final attractor is as large as seven, and the final attractor has only one active node, then the active node acts as inhibitor, and the SIA and signal-inhibitor (SI) structures are fundamental architectures of robust networks. SIA and SI networks with dynamic robustness against environment uncertainties may be selected and maintained over the course of evolution, rather than blind trial-error testing and be ing an accidental consequence of particular evolutionary history. SIA network can perform a more complex process than SI network, andSIA might be used to design robust artificial genetic network. Our results provide dynamical support for why the inhibitors and SIA/SI structures are frequently employed in cellular regulatory networks.

  3. Genetic control of root growth: from genes to networks.

    Science.gov (United States)

    Slovak, Radka; Ogura, Takehiko; Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2016-01-01

    Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics. © The Author 2015. Published by

  4. A simple model for studying interacting networks

    Science.gov (United States)

    Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.

    2011-03-01

    Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.

  5. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  6. The conditional nature of genetic interactions: the consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen.

    Directory of Open Access Journals (Sweden)

    Sudarshan Chari

    Full Text Available The phenotypic outcome of a mutation cannot be simply mapped onto the underlying DNA variant. Instead, the phenotype is a function of the allele, the genetic background in which it occurs and the environment where the mutational effects are expressed. While the influence of genetic background on the expressivity of individual mutations is recognized, its consequences on the interactions between genes, or the genetic network they form, is largely unknown. The description of genetic networks is essential for much of biology; yet if, and how, the topologies of such networks are influenced by background is unknown. Furthermore, a comprehensive examination of the background dependent nature of genetic interactions may lead to identification of novel modifiers of biological processes. Previous work in Drosophila melanogaster demonstrated that wild-type genetic background influences the effects of an allele of scalloped (sd, with respect to both its principal consequence on wing development and its interactions with a mutation in optomotor blind. In this study we address whether the background dependence of mutational interactions is a general property of genetic systems by performing a genome wide dominant modifier screen of the sd(E3 allele in two wild-type genetic backgrounds using molecularly defined deletions. We demonstrate that ~74% of all modifiers of the sd(E3 phenotype are background-dependent due in part to differential sensitivity to genetic perturbation. These background dependent interactions include some with qualitative differences in the phenotypic outcome, as well as instances of sign epistasis. This suggests that genetic interactions are often contingent on genetic background, with flexibility in genetic networks due to segregating variation in populations. Such background dependent effects can substantially alter conclusions about how genes influence biological processes, the potential for genetic screens in alternative wild

  7. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1...... diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions....

  8. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission.

    Science.gov (United States)

    Zarrabi, Narges; Prosperi, Mattia; Belleman, Robert G; Colafigli, Manuela; De Luca, Andrea; Sloot, Peter M A

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks

  9. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Versatile RNA-sensing transcriptional regulators for engineering genetic networks.

    Science.gov (United States)

    Lucks, Julius B; Qi, Lei; Mutalik, Vivek K; Wang, Denise; Arkin, Adam P

    2011-05-24

    The widespread natural ability of RNA to sense small molecules and regulate genes has become an important tool for synthetic biology in applications as diverse as environmental sensing and metabolic engineering. Previous work in RNA synthetic biology has engineered RNA mechanisms that independently regulate multiple targets and integrate regulatory signals. However, intracellular regulatory networks built with these systems have required proteins to propagate regulatory signals. In this work, we remove this requirement and expand the RNA synthetic biology toolkit by engineering three unique features of the plasmid pT181 antisense-RNA-mediated transcription attenuation mechanism. First, because the antisense RNA mechanism relies on RNA-RNA interactions, we show how the specificity of the natural system can be engineered to create variants that independently regulate multiple targets in the same cell. Second, because the pT181 mechanism controls transcription, we show how independently acting variants can be configured in tandem to integrate regulatory signals and perform genetic logic. Finally, because both the input and output of the attenuator is RNA, we show how these variants can be configured to directly propagate RNA regulatory signals by constructing an RNA-meditated transcriptional cascade. The combination of these three features within a single RNA-based regulatory mechanism has the potential to simplify the design and construction of genetic networks by directly propagating signals as RNA molecules.

  11. Stabilization of perturbed Boolean network attractors through compensatory interactions

    Science.gov (United States)

    2014-01-01

    Background Understanding and ameliorating the effects of network damage are of significant interest, due in part to the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory activation or deactivation of system components. Here, we propose a complementary approach wherein interactions are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory cascade. Results We implement this approach in a Boolean dynamic framework, which has been shown to effectively model the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state (e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired network. We show that the approach is minimalistic in that few modifications are required to provide stability to a chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the approach to random Boolean networks, and further show that the method can in some cases successfully repair synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes. Code is made freely available through the software package BooleanNet. Conclusions The methodology introduced in this report offers a complementary way to manipulating node expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above" perspective; we anticipate that theoretical studies of interaction modification

  12. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  13. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    Science.gov (United States)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  14. From networks of protein interactions to networks of functional dependencies

    Directory of Open Access Journals (Sweden)

    Luciani Davide

    2012-05-01

    Full Text Available Abstract Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation. However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations, based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud or biological processes (e.g., cell budding of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.

  15. Dynamical and bursty interactions in social networks

    CERN Document Server

    Stehle, Juliette; Bianconi, Ginestra

    2010-01-01

    We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents' behavior at short time scales, in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group, or vice-versa. Different distributions of contact times and inter-contact times between individuals are obtained by considering transition probabilities with memory effects, i.e. the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change of state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended, and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information, or spreading of diseases.

  16. Network compression as a quality measure for protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Loic Royer

    Full Text Available With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients.

  17. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  18. Response of the mosquito protein interaction network to dengue infection

    Directory of Open Access Journals (Sweden)

    Pike Andrew D

    2010-06-01

    Full Text Available Abstract Background Two fifths of the world's population is at risk from dengue. The absence of effective drugs and vaccines leaves vector control as the primary intervention tool. Understanding dengue virus (DENV host interactions is essential for the development of novel control strategies. The availability of genome sequences for both human and mosquito host greatly facilitates genome-wide studies of DENV-host interactions. Results We developed the first draft of the mosquito protein interaction network using a computational approach. The weighted network includes 4,214 Aedes aegypti proteins with 10,209 interactions, among which 3,500 proteins are connected into an interconnected scale-free network. We demonstrated the application of this network for the further annotation of mosquito proteins and dissection of pathway crosstalk. Using three datasets based on physical interaction assays, genome-wide RNA interference (RNAi screens and microarray assays, we identified 714 putative DENV-associated mosquito proteins. An integrated analysis of these proteins in the network highlighted four regions consisting of highly interconnected proteins with closely related functions in each of replication/transcription/translation (RTT, immunity, transport and metabolism. Putative DENV-associated proteins were further selected for validation by RNAi-mediated gene silencing, and dengue viral titer in mosquito midguts was significantly reduced for five out of ten (50.0% randomly selected genes. Conclusions Our results indicate the presence of common host requirements for DENV in mosquitoes and humans. We discuss the significance of our findings for pharmacological intervention and genetic modification of mosquitoes for blocking dengue transmission.

  19. Genetic and Molecular Network Analysis of Behavior

    OpenAIRE

    Williams, Robert W.; Mulligan, Megan K.

    2012-01-01

    This chapter provides an introduction into the genetic control and analysis of behavioral variation using powerful online resources. We introduce you to the new field of systems genetics using "case studies" drawn from the world of behavioral genetics that exploit populations of genetically diverse lines of mice. These lines differ very widely in patterns of gene and protein expression in the brain and in patterns of behavior. In this chapter we address the following set of related questions:...

  20. Numeral eddy current sensor modelling based on genetic neural network

    Institute of Scientific and Technical Information of China (English)

    Yu A-Long

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.

  1. Canalization and symmetry in Boolean models for genetic regulatory networks

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, C J Olson [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bassler, Kevin E [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States)

    2007-04-20

    Canalization of genetic regulatory networks has been argued to be favoured by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for genetic regulatory networks onto a k-dimensional Ising hypercube (where k = K) to show that the functions can be divided into different classes strictly due to geometrical constraints. The classes can be counted and their properties determined using results from group theory and isomer chemistry. We demonstrate that partially canalizing functions completely dominate all possible Boolean functions, particularly for higher k. This indicates that partial canalization is extremely common, even in randomly chosen networks, and has implications for how much information can be obtained in experiments on native state genetic regulatory networks.

  2. Smart Business Networks Design and Business Genetics

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2006-01-01

    textabstractWith the emergence of smart business networks, agile networks, etc. as important research areas in management, for all the attractiveness of these concepts, a major issue remains around their design and the selection rules. While smart business networks should provide advantages due to

  3. Smart Business Networks Design and Business Genetics

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2006-01-01

    textabstractWith the emergence of smart business networks, agile networks, etc. as important research areas in management, for all the attractiveness of these concepts, a major issue remains around their design and the selection rules. While smart business networks should provide advantages due to t

  4. An Evolutionarily Conserved Synthetic Lethal Interaction Network Identifies FEN1 as a Broad-Spectrum Target for Anticancer Therapeutic Development

    OpenAIRE

    Derek M. van Pel; Barrett, Irene J.; Yoko Shimizu; Sajesh, Babu V.; Brent J Guppy; Tom Pfeifer; McManus, Kirk J.; Philip Hieter

    2013-01-01

    Harnessing genetic differences between cancerous and noncancerous cells offers a strategy for the development of new therapies. Extrapolating from yeast genetic interaction data, we used cultured human cells and siRNA to construct and evaluate a synthetic lethal interaction network comprised of chromosome instability (CIN) genes that are frequently mutated in colorectal cancer. A small number of genes in this network were found to have synthetic lethal interactions with a large number of canc...

  5. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  6. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

    NARCIS (Netherlands)

    Puig-Oliveras, A.; Ballester, M.; Corominas, J.; Revilla, M.; Estelle, J.; Fernandez, A.I.; Ramayo-Caldas, Y.; Folch, J.M.

    2014-01-01

    BACKGROUND: Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful

  7. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...

  8. Cooperative Tertiary Interaction Network Guides RNA Folding

    Energy Technology Data Exchange (ETDEWEB)

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan; Briber, R.M.; Woodson, Sarah A. (JHU); (Maryland)

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.

  9. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  10. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  11. Topology control based on quantum genetic algorithm in sensor networks

    Institute of Scientific and Technical Information of China (English)

    SUN Lijuan; GUO Jian; LU Kai; WANG Ruchuan

    2007-01-01

    Nowadays,two trends appear in the application of sensor networks in which both multi-service and quality of service (QoS)are supported.In terms of the goal of low energy consumption and high connectivity,the control on topology is crucial.The algorithm of topology control based on quantum genetic algorithm in sensor networks is proposed.An advantage of the quantum genetic algorithm over the conventional genetic algorithm is demonstrated in simulation experiments.The goals of high connectivity and low consumption of energy are reached.

  12. Multilayer Traffic Network Optimized by Multiobjective Genetic Clustering Algorithm

    Science.gov (United States)

    Wen, Feng; Gen, Mitsuo; Yu, Xinjie

    This paper introduces a multilayer traffic network model and traffic network clustering method for solving the route selection problem (RSP) in car navigation system (CNS). The purpose of the proposed method is to reduce the computation time of route selection substantially with acceptable loss of accuracy by preprocessing the large size traffic network into new network form. The proposed approach further preprocesses the traffic network than the traditional hierarchical network method by clustering method. The traffic network clustering considers two criteria. We specify a genetic clustering algorithm for traffic network clustering and use NSGA-II for calculating the multiple objective Pareto optimal set. The proposed method can overcome the size limitations when solving route selection in CNS. Solutions provided by the proposed algorithm are compared with the optimal solutions to analyze and quantify the loss of accuracy.

  13. Control of Complex Systems Using Bayesian Networks and Genetic Algorithm

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.

  14. BisoGenet: a new tool for gene network building, visualization and analysis

    Directory of Open Access Journals (Sweden)

    Miranda Jamilet

    2010-02-01

    Full Text Available Abstract Background The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics. Results BisoGenet is a multi-tier application for visualization and analysis of biomolecular relationships. The system consists of three tiers. In the data tier, an in-house database stores genomics information, protein-protein interactions, protein-DNA interactions, gene ontology and metabolic pathways. In the middle tier, a global network is created at server startup, representing the whole data on bioentities and their relationships retrieved from the database. The client tier is a Cytoscape plugin, which manages user input, communication with the Web Service, visualization and analysis of the resulting network. Conclusion BisoGenet is able to build and visualize biological networks in a fast and user-friendly manner. A feature of Bisogenet is the possibility to include coding relations to distinguish between genes and their products. This feature could be instrumental to achieve a finer grain representation of the bioentities and their relationships. The client application includes network analysis tools and interactive network expansion capabilities. In addition, an option is provided to allow other networks to be converted to BisoGenet. This feature facilitates the integration of our software with other tools available in the Cytoscape platform. BisoGenet is available at http://bio.cigb.edu.cu/bisogenet-cytoscape/.

  15. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Botstein David

    2006-06-01

    Full Text Available Abstract Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID (http://www.thebiogrid.org and SGD (http://www.yeastgenome.org/ databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks.

  16. Genetic spectrum assignment model with constraints in cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Fang Ye

    2011-06-01

    Full Text Available The interference constraints of genetic spectrum assignment model in cognitive radio networks are analyzed in this paper. An improved genetic spectrum assignment model is proposed. The population of genetic algorithm is divided into two sets, the feasible spectrum assignment strategies and the randomly updated spectrum assignment strategies. The penalty function is added to the utility function to achieve the spectrum assignment strategy that satisfies the interference constraints and has better fitness. The proposed method is applicable in both the genetic spectrum assignment model and the quantum genetic spectrum assignment mode. It can ensure the randomness of partial chromosomes in the population to some extent, and reduce the computational complexity caused by the constraints-free procedure after the update of population. Simulation results show that the proposed method can achieve better performance than the conventional genetic spectrum assignment model and quantum genetic spectrum assignment model

  17. Reliability of genetic networks is evolvable

    Science.gov (United States)

    Braunewell, Stefan; Bornholdt, Stefan

    2008-06-01

    Control of the living cell functions with remarkable reliability despite the stochastic nature of the underlying molecular networks—a property presumably optimized by biological evolution. We ask here to what extent the ability of a stochastic dynamical network to produce reliable dynamics is an evolvable trait. Using an evolutionary algorithm based on a deterministic selection criterion for the reliability of dynamical attractors, we evolve networks of noisy discrete threshold nodes. We find that, starting from any random network, reliability of the attractor landscape can often be achieved with only a few small changes to the network structure. Further, the evolvability of networks toward reliable dynamics while retaining their function is investigated and a high success rate is found.

  18. GENETIC ALGORITHM AND NEURAL NETWORK FOR OPTICAL CHARACTER RECOGNITION

    Directory of Open Access Journals (Sweden)

    Hendy Yeremia

    2013-01-01

    Full Text Available Computer system has been able to recognize writing as human brain does. The method mostly used for character recognition is the backpropagation network. Backpropagation network has been known for its accuracy because it allows itself to learn and improving itself thus it can achieve higher accuracy. On the other hand, backpropagation was less to be used because of its time length needed to train the network to achieve the best result possible. In this study, backpropagation network algorithm is combined with genetic algorithm to achieve both accuracy and training swiftness for recognizing alphabets. Genetic algorithm is used to define the best initial values for the network’s architecture and synapses’ weight thus within a shorter period of time, the network could achieve the best accuracy. The optimized backpropagation network has better accuracy and less training time than the standard backpropagation network. The accuracy in recognizing character differ by 10, 77%, with a success rate of 90, 77% for the optimized backpropagation and 80% accuracy for the standard backpropagation network. The training time needed for backpropagation learning phase improved significantly from 03 h, 14 min and 40 sec, a standard backpropagation training time, to 02 h 18 min and 1 sec for the optimized backpropagation network.

  19. Predictive Behavior Within Microbial Genetic Networks

    National Research Council Canada - National Science Library

    Ilias Tagkopoulos; Yir-Chung Liu; Saeed Tavazoie

    2008-01-01

    ... to metazoan nervous systems. We show that in silico biochemical networks, evolving randomly under precisely defined complex habitats, capture the dynamical, multidimensional structure of diverse environments by forming internal...

  20. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved...... by the musician through interactive evolutionary computation. Each timbre is produced by an oscillator, which is represented by a special type of artificial neural network (ANN) called a compositional pattern producing network (CPPN). While traditional ANNs compute only sigmoid functions at their hidden nodes......, CPPNs can theoretically compute any function and can build on those present in traditional synthesizers (e.g. square, sawtooth, triangle, and sine waves functions) to produce completely novel timbres. Evolved with NeuroEvolution of Augmenting Topologies (NEAT), the aim of this paper is to explore...

  1. Functional features and protein network of human sperm-egg interaction.

    Science.gov (United States)

    Sabetian, Soudabeh; Shamsir, Mohd Shahir; Abu Naser, Mohammed

    2014-12-01

    Elucidation of the sperm-egg interaction at the molecular level is one of the unresolved problems in sexual reproduction, and understanding the molecular mechanism is crucial in solving problems in infertility and failed in vitro fertilization (IVF). Many molecular interactions in the form of protein-protein interactions (PPIs) mediate the sperm-egg membrane interaction. Due to the complexity of the problem such as difficulties in analyzing in vivo membrane PPIs, many efforts have failed to comprehensively elucidate the fusion mechanism and the molecular interactions that mediate sperm-egg membrane fusion. The main purpose of this study was to reveal possible protein interactions and associated molecular function during sperm-egg interaction using a protein interaction network approach. Different databases have been used to construct the human sperm-egg interaction network. The constructed network revealed new interactions. These included CD151 and CD9 in human oocyte that interact with CD49 in sperm, and CD49 and ITGA4 in sperm that interact with CD63 and CD81, respectively, in the oocyte. These results showed that the different integrins in sperm may be involved in human sperm-egg interaction. It was also suggested that sperm ADAM2 plays a role as a protein candidate involved in sperm-egg membrane interaction by interacting with CD9 in the oocyte. Interleukin-4 receptor activity, receptor signaling protein tyrosine kinase activity, and manganese ion transmembrane transport activity are the major molecular functions in sperm-egg interaction protein network. The disease association analysis indicated that sperm-egg interaction defects are also reflected in other disease networks such as cardiovascular, hematological, and breast cancer diseases. By analyzing the network, we identified the major molecular functions and disease association genes in sperm-egg interaction protein. Further experimental studies will be required to confirm the significance of these new

  2. Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.

    Science.gov (United States)

    Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias

    2015-04-01

    Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.

  3. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  4. On an Interactive Network Security Measure

    Institute of Scientific and Technical Information of China (English)

    LUO Huiqiong; WANG Jiahao; ZHAO Qiang

    2004-01-01

    An interactive network security measure and a description of its function as well as its principle are presented.Based on the existing security loopholes and bugsin operating systems,this measure focuses on the restrictive condition of security and the establishment of configuration files.Under the control and administration of the secure management of configuration files,each system module brings much fiexibility,adaptability and high-level security.The security detecting and managing software used in UNIX based on this measure has obtained good results,achieving the goal of automatically detecting and handling inner and outer system-violation and system abuse.

  5. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network and pathway analyses

    Directory of Open Access Journals (Sweden)

    Lisette J. A. Kogelman

    2014-07-01

    Full Text Available Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH and differentially wired (DW networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g. NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g. metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways

  6. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses.

    Science.gov (United States)

    Kogelman, Lisette J A; Pant, Sameer D; Fredholm, Merete; Kadarmideen, Haja N

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie

  7. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Martine eTherrien

    2014-04-01

    Full Text Available Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS and frontotemporal degeneration (FTD. Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.

  8. A Full Bayesian Approach for Boolean Genetic Network Inference

    Science.gov (United States)

    Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan

    2014-01-01

    Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820

  9. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  10. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hongwei Li

    2013-12-01

    Full Text Available In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding and is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature limitation, as well as the corresponding network heat loss.

  11. Access Network Selection Based on Fuzzy Logic and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Mohammed Alkhawlani

    2008-01-01

    Full Text Available In the next generation of heterogeneous wireless networks (HWNs, a large number of different radio access technologies (RATs will be integrated into a common network. In this type of networks, selecting the most optimal and promising access network (AN is an important consideration for overall networks stability, resource utilization, user satisfaction, and quality of service (QoS provisioning. This paper proposes a general scheme to solve the access network selection (ANS problem in the HWN. The proposed scheme has been used to present and design a general multicriteria software assistant (SA that can consider the user, operator, and/or the QoS view points. Combined fuzzy logic (FL and genetic algorithms (GAs have been used to give the proposed scheme the required scalability, flexibility, and simplicity. The simulation results show that the proposed scheme and SA have better and more robust performance over the random-based selection.

  12. Wind power prediction based on genetic neural network

    Science.gov (United States)

    Zhang, Suhan

    2017-04-01

    The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.

  13. Energy Efficient Routing in Wireless Sensor Networks: A Genetic Approach

    CERN Document Server

    Chakraborty, Ayon; Naskar, Mrinal Kanti

    2011-01-01

    The key parameters that need to be addressed while designing protocols for sensor networks are its energy awareness and computational feasibility in resource constrained sensor nodes. Variation in the distances of nodes from the Base Station and differences in inter-nodal distances are primary factors causing unequal energy dissipation among the nodes. Thus energy difference among the nodes increases with time resulting in degraded network performance. The LEACH and PEGASIS schemes which provided elegant solutions to the problem suffer due to randomization of cluster heads and greedy chain formation respectively. In this paper, we propose a Genetic algorithm inspired ROUting Protocol (GROUP) which shows enhanced performance in terms of energy efficiency and network lifetime over other schemes. GROUP increases the network performance by ensuring a sub-optimal energy dissipation of the individual nodes despite their random deployment. It employs modern heuristics like Genetic Algorithms along with Simulated Ann...

  14. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  15. Template learning of cellular neural network using genetic programming.

    Science.gov (United States)

    Radwan, Elsayed; Tazaki, Eiichiro

    2004-08-01

    A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.

  16. Genetic Networks in Mouse Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Felix L Struebing

    2016-09-01

    Full Text Available Retinal ganglion cells (RGCs are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.

  17. Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms

    Science.gov (United States)

    Hernández-Lemus, Enrique; Velázquez-Fernández, David; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Herrera-Hernández, Miguel F.; Jiménez-Sánchez, Gerardo

    2009-12-01

    Most common pathologies in humans are not caused by the mutation of a single gene, rather they are complex diseases that arise due to the dynamic interaction of many genes and environmental factors. This plethora of interacting genes generates a complexity landscape that masks the real effects associated with the disease. To construct dynamic maps of gene interactions (also called genetic regulatory networks) we need to understand the interplay between thousands of genes. Several issues arise in the analysis of experimental data related to gene function: on the one hand, the nature of measurement processes generates highly noisy signals; on the other hand, there are far more variables involved (number of genes and interactions among them) than experimental samples. Another source of complexity is the highly nonlinear character of the underlying biochemical dynamics. To overcome some of these limitations, we generated an optimized method based on the implementation of a Maximum Entropy Formalism (MaxEnt) to deconvolute a genetic regulatory network based on the most probable meta-distribution of gene-gene interactions. We tested the methodology using experimental data for Papillary Thyroid Cancer (PTC) and Thyroid Goiter tissue samples. The optimal MaxEnt regulatory network was obtained from a pool of 25,593,993 different probability distributions. The group of observed interactions was validated by several (mostly in silico) means and sources. For the associated Papillary Thyroid Cancer Gene Regulatory Network (PTC-GRN) the majority of the nodes (genes) have very few links (interactions) whereas a small number of nodes are highly connected. PTC-GRN is also characterized by high clustering coefficients and network heterogeneity. These properties have been recognized as characteristic of topological robustness, and they have been largely described in relation to biological networks. A number of biological validity outcomes are discussed with regard to both the

  18. Competing dynamical processes on two interacting networks

    CERN Document Server

    Alvarez-Zuzek, L G; Braunstein, L A; Vazquez, F

    2016-01-01

    We propose and study a model for the competition between two different dynamical processes, one for opinion formation and the other for decision making, on two interconnected networks. The networks represent two interacting social groups, the society and the Congress. An opinion formation process takes place on the society, where the opinion S of each individual can take one of four possible values (S=-2,-1,1,2), describing its level of agreement on a given issue, from totally against (S=-2) to totally in favor (S=2). The dynamics is controlled by a reinforcement parameter r, which measures the ratio between the likelihood to become an extremist or a moderate. The dynamics of the Congress is akin to that of the Abrams-Strogatz model, where congressmen can adopt one of two possible positions, to be either in favor (+) or against (-) the issue. The probability that a congressman changes his decision is proportional to the fraction of interacting neighbors that hold the opposite opinion raised to a power $\\beta$...

  19. Criticality is an emergent property of genetic networks that exhibit evolvability.

    Directory of Open Access Journals (Sweden)

    Christian Torres-Sosa

    Full Text Available Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype while allowing for switching between multiple phenotypes (network states as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i preserve all the already acquired phenotypes (dynamical attractor states and (ii generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation while conserving the existing phenotypes (conservation suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

  20. myGRN: a database and visualisation system for the storage and analysis of developmental genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Bacha Jamil

    2009-06-01

    Full Text Available Abstract Background Biological processes are regulated by complex interactions between transcription factors and signalling molecules, collectively described as Genetic Regulatory Networks (GRNs. The characterisation of these networks to reveal regulatory mechanisms is a long-term goal of many laboratories. However compiling, visualising and interacting with such networks is non-trivial. Current tools and databases typically focus on GRNs within simple, single celled organisms. However, data is available within the literature describing regulatory interactions in multi-cellular organisms, although not in any systematic form. This is particularly true within the field of developmental biology, where regulatory interactions should also be tagged with information about the time and anatomical location of development in which they occur. Description We have developed myGRN (http://www.myGRN.org, a web application for storing and interrogating interaction data, with an emphasis on developmental processes. Users can submit interaction and gene expression data, either curated from published sources or derived from their own unpublished data. All interactions associated with publications are publicly visible, and unpublished interactions can only be shared between collaborating labs prior to publication. Users can group interactions into discrete networks based on specific biological processes. Various filters allow dynamic production of network diagrams based on a range of information including tissue location, developmental stage or basic topology. Individual networks can be viewed using myGRV, a tool focused on displaying developmental networks, or exported in a range of formats compatible with third party tools. Networks can also be analysed for the presence of common network motifs. We demonstrate the capabilities of myGRN using a network of zebrafish interactions integrated with expression data from the zebrafish database, ZFIN. Conclusion Here we

  1. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus.

    Science.gov (United States)

    Drost, Derek R; Benedict, Catherine I; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R D B; Yu, Qibin; Dervinis, Christopher; Maia, Jessica M; Yap, John; Miles, Brianna; Kirst, Matias

    2010-05-04

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.

  2. Modeling the Normal and Neoplastic Cell Cycle with 'Realistic Boolean Genetic Networks': Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies

    Science.gov (United States)

    Szallasi, Zoltan; Liang, Shoudan

    2000-01-01

    In this paper we show how Boolean genetic networks could be used to address complex problems in cancer biology. First, we describe a general strategy to generate Boolean genetic networks that incorporate all relevant biochemical and physiological parameters and cover all of their regulatory interactions in a deterministic manner. Second, we introduce 'realistic Boolean genetic networks' that produce time series measurements very similar to those detected in actual biological systems. Third, we outline a series of essential questions related to cancer biology and cancer therapy that could be addressed by the use of 'realistic Boolean genetic network' modeling.

  3. Investigating the Relationship between Topology and Evolution in a Dynamic Nematode Odor Genetic Network

    Directory of Open Access Journals (Sweden)

    David A. Fitzpatrick

    2012-01-01

    Full Text Available The relationship between biological network architectures and evolution is unclear. Within the phylum nematoda olfaction represents a critical survival tool. For nematodes, olfaction contributes to multiple processes including the finding of food, hosts, and reproductive partners, making developmental decisions, and evading predators. Here we examine a dynamic nematode odor genetic network to investigate how divergence, diversity, and contribution are shaped by network topology. Our findings describe connectivity frameworks and characteristics that correlate with molecular evolution and contribution across the olfactory network. Our data helps guide the development of a robust evolutionary description of the nematode odor network that may eventually aid in the prediction of interactive and functional qualities of novel nodes.

  4. Converting genetic network oscillations into somite spatial patterns

    Science.gov (United States)

    Mazzitello, K. I.; Arizmendi, C. M.; Hentschel, H. G. E.

    2008-08-01

    The segmentation of vertebrate embryos, a process known as somitogenesis, depends on a complex genetic network that generates highly dynamic gene expression in an oscillatory manner. A recent proposal for the mechanism underlying these oscillations involves negative-feedback regulation at transcriptional translational levels, also known as the “delay model” [J. Lewis Curr. Biol. 13, 1398 (2003)]. In addition, in the zebrafish a longitudinal positional information signal in the form of an Fgf8 gradient constitutes a determination front that could be used to transform these coupled intracellular temporal oscillations into the observed spatial periodicity of somites. Here we consider an extension of the delay model by taking into account the interaction of the oscillation clock with the determination front. Comparison is made with the known properties of somite formation in the zebrafish embryo. We also show that the model can mimic the anomalies formed when progression of the determination wave front is perturbed and make an experimental prediction that can be used to test the model.

  5. Cheating for Problem Solving: A Genetic Algorithm with Social Interactions

    CERN Document Server

    Lahoz-Beltra, Rafeal; Aickelin, Uwe

    2010-01-01

    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.

  6. Using genetic programming to discover nonlinear variable interactions.

    Science.gov (United States)

    Westbury, Chris; Buchanan, Lori; Sanderson, Michael; Rhemtulla, Mijke; Phillips, Leah

    2003-05-01

    Psychology has to deal with many interacting variables. The analyses usually used to uncover such relationships have many constraints that limit their utility. We briefly discuss these and describe recent work that uses genetic programming to evolve equations to combine variables in nonlinear ways in a number of different domains. We focus on four studies of interactions from lexical access experiments and psychometric problems. In all cases, genetic programming described nonlinear combinations of items in a manner that was subsequently independently verified. We discuss the general implications of genetic programming and related computational methods for multivariate problems in psychology.

  7. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    the cluster head intelligently using auction data of node i.e. its local battery power, topology strength and external battery support. The network lifetime is the centre focus of the research paper which explores intelligently selection of cluster head using auction based approach. The multi......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach....

  8. GeneNetwork: framework for web-based genetics

    NARCIS (Netherlands)

    Sloan, Zachary; Arends, Danny; Broman, Karl W.; Centeno, Arthur; Furlotte, Nicholas; Nijveen, H.; Yan, Lei; Zhou, Xiang; Williams, Robert W.; Prins, Pjotr

    2016-01-01

    GeneNetwork (GN) is a free and open source (FOSS) framework for web-based genetics that can be deployed anywhere. GN allows biologists to upload high-throughput experimental data, such as expression data from microarrays and RNA-seq, and also `classic' phenotypes, such as disease phenotypes. These p

  9. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  10. Sparse time series chain graphical models for reconstructing genetic networks

    NARCIS (Netherlands)

    Abegaz, Fentaw; Wit, Ernst

    2013-01-01

    We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of co

  11. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  12. Neural networks for predicting breeding values and genetic gains

    Directory of Open Access Journals (Sweden)

    Gabi Nunes Silva

    2014-12-01

    Full Text Available Analysis using Artificial Neural Networks has been described as an approach in the decision-making process that, although incipient, has been reported as presenting high potential for use in animal and plant breeding. In this study, we introduce the procedure of using the expanded data set for training the network. Wealso proposed using statistical parameters to estimate the breeding value of genotypes in simulated scenarios, in addition to the mean phenotypic value in a feed-forward back propagation multilayer perceptron network. After evaluating artificial neural network configurations, our results showed its superiority to estimates based on linear models, as well as its applicability in the genetic value prediction process. The results further indicated the good generalization performance of the neural network model in several additional validation experiments.

  13. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  14. Optimal Design Of Existng Water Distribution Network Using Genetics Algorithms.

    Directory of Open Access Journals (Sweden)

    A Saminu

    2016-07-01

    Full Text Available In this study EPANET, a widely used water distribution package was linked to OptiGa, a Visual Basic ActiveX control for implementation of genetic algorithm, through Visual Basic programming technique, to modify the computer software called OptiNetwork. OptiNetwork in its modifications, introduced means of selecting options for advanced genetic algorithm parameters (Top mate; Roulette cost; Random; Tournament methods; and one point crossover; two points crossover; uniform crossover methods and random seed number. Using Badarawa/Malali existing water distribution network consisting of 96 pipes of different materials, 75junctions, two tanks, and one overhead reservoir, and a source reservoir (i.e treatment plant from which water is pumped through a pumping main to the overhead reservoir and later distributed to the network by gravity .The modified software optiNetwork was applied to Badarawa / Malali networks distribution designs. The results obtained were compared with those obtained using commercial software package (OptiDesigner, The modified software has been able to obtained almost equal result with OptiDesigner software for the first optimization i.e before the application of advance GA, after the application of Advance GA It was observed that the least-cost design of $195,200.00 that satisfies the constraints requirements was obtained using optiNetwork, which is much lower than $435,118.00 obtained from OptiDesigner software. The results obtained show that the introduction of the advanced genetic parameters of OptiNetwork is justified. This is because, it has been able to improve the search method in terms of achieving the “least-cost” designed water distribution system that will supply sufficient water quantities at adequate pressure to the consumers.

  15. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution

    OpenAIRE

    2012-01-01

    During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct ...

  16. Modular genetic regulatory networks increase organization during pattern formation.

    Science.gov (United States)

    Mohamadlou, Hamid; Podgorski, Gregory J; Flann, Nicholas S

    2016-08-01

    Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.

  17. Electronic Circuit Analog of Synthetic Genetic Networks: Revisited

    CERN Document Server

    Hellen, Edward H

    2016-01-01

    Electronic circuits are useful tools for studying potential dynamical behaviors of synthetic genetic networks. The circuit models are complementary to numerical simulations of the networks, especially providing a framework for verification of dynamical behaviors in the presence of intrinsic and extrinsic noise of the electrical systems. Here we present an improved version of our previous design of an electronic analog of genetic networks that includes the 3-gene Repressilator and we show conversions between model parameters and real circuit component values to mimic the numerical results in experiments. Important features of the circuit design include the incorporation of chemical kinetics representing Hill function inhibition, quorum sensing coupling, and additive noise. Especially, we make a circuit design for a systematic change of initial conditions in experiment, which is critically important for studies of dynamical systems' behavior, particularly, when it shows multistability. This improved electronic ...

  18. Information theory and the ethylene genetic network.

    Science.gov (United States)

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  19. Information theory and the ethylene genetic network

    Science.gov (United States)

    González-García, José S

    2011-01-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  20. Game theory in communication networks cooperative resolution of interactive networking scenarios

    CERN Document Server

    Antoniou, Josephina

    2012-01-01

    A mathematical tool for scientists and researchers who work with computer and communication networks, Game Theory in Communication Networks: Cooperative Resolution of Interactive Networking Scenarios addresses the question of how to promote cooperative behavior in interactive situations between heterogeneous entities in communication networking scenarios. It explores network design and management from a theoretical perspective, using game theory and graph theory to analyze strategic situations and demonstrate profitable behaviors of the cooperative entities. The book promotes the use of Game T

  1. Evolution of biomolecular networks: lessons from metabolic and protein interactions.

    Science.gov (United States)

    Yamada, Takuji; Bork, Peer

    2009-11-01

    Despite only becoming popular at the beginning of this decade, biomolecular networks are now frameworks that facilitate many discoveries in molecular biology. The nodes of these networks are usually proteins (specifically enzymes in metabolic networks), whereas the links (or edges) are their interactions with other molecules. These networks are made up of protein-protein interactions or enzyme-enzyme interactions through shared metabolites in the case of metabolic networks. Evolutionary analysis has revealed that changes in the nodes and links in protein-protein interaction and metabolic networks are subject to different selection pressures owing to distinct topological features. However, many evolutionary constraints can be uncovered only if temporal and spatial aspects are included in the network analysis.

  2. Multiple Tipping Points and Optimal Repairing in Interacting Networks

    CERN Document Server

    Majdandzic, Antonio; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Stanley, H Eugene; Havlin, Shlomo

    2015-01-01

    Systems that comprise many interacting dynamical networks, such as the human body with its biological networks or the global economic network consisting of regional clusters, often exhibit complicated collective dynamics. To understand the collective behavior of these systems, we investigate a model of interacting networks exhibiting the fundamental processes of failure, damage spread, and recovery. We find a very rich phase diagram that becomes exponentially more complex as the number of networks is increased. In the simplest example of $n=2$ interacting networks we find two critical points, 4 triple points, 10 allowed transitions, and two "forbidden" transitions, as well as a manifold of metastable regions represented by complex hysteresis. Knowing and understanding the phase diagram have an immediate practical implication; it enables us to find the optimal strategy for repairing partially or fully damaged interconnected networks. To support our model, we analyze an example of real interacting financial net...

  3. A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder.

    Science.gov (United States)

    McEachin, Richard C; Chen, Haiming; Sartor, Maureen A; Saccone, Scott F; Keller, Benjamin J; Prossin, Alan R; Cavalcoli, James D; McInnis, Melvin G

    2010-11-19

    Lithium is an effective treatment for Bipolar Disorder (BD) and significantly reduces suicide risk, though the molecular basis of lithium's effectiveness is not well understood. We seek to improve our understanding of this effectiveness by posing hypotheses based on new experimental data as well as published data, testing these hypotheses in silico, and posing new hypotheses for validation in future studies. We initially hypothesized a gene-by-environment interaction where lithium, acting as an environmental influence, impacts signal transduction pathways leading to differential expression of genes important in the etiology of BD mania. Using microarray and rt-QPCR assays, we identified candidate genes that are differentially expressed with lithium treatment. We used a systems biology approach to identify interactions among these candidate genes and develop a network of genes that interact with the differentially expressed candidates. Notably, we also identified cocaine as having a potential influence on the network, consistent with the observed high rate of comorbidity for BD and cocaine abuse. The resulting network represents a novel hypothesis on how multiple genetic influences on bipolar disorder are impacted by both lithium treatment and cocaine use. Testing this network for association with BD and related phenotypes, we find that it is significantly over-represented for genes that participate in signal transduction, consistent with our hypothesized-gene-by environment interaction. In addition, it models related pharmacogenomic, psychiatric, and chemical dependence phenotypes. We offer a network model of gene-by-environment interaction associated with lithium's effectiveness in treating BD mania, as well as the observed high rate of comorbidity of BD and cocaine abuse. We identified drug targets within this network that represent immediate candidates for therapeutic drug testing. Posing novel hypotheses for validation in future work, we prioritized SNPs near

  4. Patterns of genetic connectivity in invertebrates of temperate MPA networks

    Directory of Open Access Journals (Sweden)

    Patricia Marti-Puig

    2013-11-01

    Full Text Available Temperate reefs are among the most threatened marine habitats due to impacts caused by high density of human settlements, coastal development, pollution, fisheries and tourism. Networks of marine protected areas (MPAs are an important tool for ensuring long-term health and conservation of ecological processes in the marine environment. Design of the MPA network has to be based on deep understanding of spatial patterns of species distribution, and on the make-up of connectivity among populations. Most benthic invertebrates are sessile and/or sedentary in the adult phase, and their dispersal relies mainly on the gametes and/or larval behaviours. Genetic markers allow us to quantify gene flow and structuring among populations, and to infer patterns of genetic connectivity. Based on the information available in the peer reviewed literature on genetic connectivity in benthic invertebrates of temperate MPAs, we provide a comment about the gaps and the needs. Moreover, we propose a rationale to plan and optimise future studies on this topic. A conceptual framework for planning effective studies on genetic connectivity in an MPAs network is provided, including general recommendations on sampling design, key species and molecular markers to use.

  5. Multiple tipping points and optimal repairing in interacting networks

    Science.gov (United States)

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-03-01

    Systems composed of many interacting dynamical networks--such as the human body with its biological networks or the global economic network consisting of regional clusters--often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two `forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  6. Electronic circuit analog of synthetic genetic networks: Revisited

    Science.gov (United States)

    Hellen, Edward H.; Kurths, Jürgen; Dana, Syamal K.

    2017-06-01

    Electronic circuits are useful tools for studying potential dynamical behaviors of synthetic genetic networks. The circuit models are complementary to numerical simulations of the networks, especially providing a framework for verification of dynamical behaviors in the presence of intrinsic and extrinsic noise of the electrical systems. Here we present an improved version of our previous design of an electronic analog of genetic networks that includes the 3-gene Repressilator and we show conversions between model parameters and real circuit component values to mimic the numerical results in experiments. Important features of the circuit design include the incorporation of chemical kinetics representing Hill function inhibition, quorum sensing coupling, and additive noise. Especially, we make a circuit design for a systematic change of initial conditions in experiment, which is critically important for studies of dynamical systems' behavior, particularly, when it shows multistability. This improved electronic analog of the synthetic genetic network allows us to extend our investigations from an isolated Repressilator to coupled Repressilators and to reveal the dynamical behavior's complexity.

  7. Road network extraction in classified SAR images using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    肖志强; 鲍光淑; 蒋晓确

    2004-01-01

    Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images.

  8. Enhancing the functional content of eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Gaurav Pandey

    Full Text Available Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over 100 GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the HC.cont measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks.

  9. Reconstructing direct and indirect interactions in networked public goods game

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

  10. Reconstructing direct and indirect interactions in networked public goods game.

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-22

    Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

  11. Enhanced energy transport in genetically engineered excitonic networks

    Science.gov (United States)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  12. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  13. Self-Adaptive Genetic Algorithm for LTE Backhaul Network

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-03-01

    Full Text Available Mobile communication evolution from 2G, 3G to LTE shows a broadband and IP-oriented trend and the architecture of LTE backhaul network turns to be flat. In order to fit these new features, layer 3 routing technology has to be adopted in backhaul network and needs to be modified to fit it. In this paper, a new algorithm, named Self-Adaptive Genetic Algorithm (SAGA, is proposed to meet the demand of providing a highly efficient and QoS guaranteed routing scheme for LTE backhaul network. It can be used in Open Shortest Path First protocol (OSPF as the core path selection algorithm. It is based on traditional genetic algorithm(GA but improves the population initialization process in it as well as proposes a new fitness calculation function for it. Simulation verifies it can balance not only the traffic of network but also the load of MME pools, which improves the utility efficiency of the whole network.

  14. Stochastic Oscillations in Genetic Regulatory Networks: Application to Microarray Experiments

    Directory of Open Access Journals (Sweden)

    Rosenfeld Simon

    2006-01-01

    Full Text Available We analyze the stochastic dynamics of genetic regulatory networks using a system of nonlinear differential equations. The system of -functions is applied to capture the role of RNA polymerase in the transcription-translation mechanism. Using probabilistic properties of chemical rate equations, we derive a system of stochastic differential equations which are analytically tractable despite the high dimension of the regulatory network. Using stationary solutions of these equations, we explain the apparently paradoxical results of some recent time-course microarray experiments where mRNA transcription levels are found to only weakly correlate with the corresponding transcription rates. Combining analytical and simulation approaches, we determine the set of relationships between the size of the regulatory network, its structural complexity, chemical variability, and spectrum of oscillations. In particular, we show that temporal variability of chemical constituents may decrease while complexity of the network is increasing. This finding provides an insight into the nature of "functional determinism" of such an inherently stochastic system as genetic regulatory network.

  15. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Escuela Politecnica Superior, Departamento de Electrotecnia y Electronica, Avda. Menendez Pidal s/n, Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)

    2011-02-15

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  16. On Natural Genetic Engineering: Structural Dynamism in Random Boolean Networks

    CERN Document Server

    Bull, Larry

    2012-01-01

    This short paper presents an abstract, tunable model of genomic structural change within the cell lifecycle and explores its use with simulated evolution. A well-known Boolean model of genetic regulatory networks is extended to include changes in node connectivity based upon the current cell state, e.g., via transposable elements. The underlying behaviour of the resulting dynamical networks is investigated before their evolvability is explored using a version of the NK model of fitness landscapes. Structural dynamism is found to be selected for in non-stationary environments and subsequently shown capable of providing a mechanism for evolutionary innovation when such reorganizations are inherited.

  17. Mining minimal motif pair sets maximally covering interactions in a protein-protein interaction network

    NARCIS (Netherlands)

    Boyen, P.; Neven, F.; Valentim, F.L.; Dijk, van A.D.J.

    2013-01-01

    Correlated motif covering (CMC) is the problem of finding a set of motif pairs, i.e., pairs of patterns, in the sequences of proteins from a protein-protein interaction network (PPI-network) that describe the interactions in the network as concisely as possible. In other words, a perfect solution fo

  18. Adaptive interactive genetic algorithms with individual interval fitness

    Institute of Scientific and Technical Information of China (English)

    Dunwei Gong; Guangsong Guo; Li Lu; Hongmei Ma

    2008-01-01

    It is necessary to enhance the performance of interactive genetic algorithms in order to apply them to complicated optimization problems successfully. An adaptive interactive genetic algorithm with individual interval fitness is proposed in this paper in which an individual fitness is expressed by an interval. Through analyzing the fitness, information reflecting the distribution of an evolutionary population is picked up, namely, the difference of evaluating superior individuals and the difference of evaluating a population. Based on these, the adaptive probabilities of crossover and mutation operators of an individual are presented. The algorithm proposed in this paper is applied to a fashion evolutionary design system, and the results show that it can find many satisfactory solutions per generation. The achievement of the paper provides a new approach to enhance the performance of interactive genetic algorithms.

  19. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds

    Directory of Open Access Journals (Sweden)

    Shannon Grover

    2010-06-01

    Full Text Available Abstract Background Soybean (Glycine max [L] Merr. seed isoflavones have long been considered a desirable trait to target in selection programs for their contribution to human health and plant defense systems. However, attempts to modify seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and complex. Undoubtedly, the extreme variability that seed isoflavones display over environments has obscured our understanding of the genetics involved. Results In this study, a mapping population of RILs with three replicates was analyzed in four different environments (two locations over two years. We found a total of thirty-five main-effect genomic regions and many epistatic interactions controlling genistein, daidzein, glycitein and total isoflavone accumulation in seeds. The use of distinct environments permitted detection of a great number of environment-modulated and minor-effect QTL. Our findings suggest that isoflavone seed concentration is controlled by a complex network of multiple minor-effect loci interconnected by a dense epistatic map of interactions. The magnitude and significance of the effects of many of the nodes and connections in the network varied depending on the environmental conditions. In an attempt to unravel the genetic architecture underlying the traits studied, we searched on a genome-wide scale for genomic regions homologous to the most important identified isoflavone biosynthetic genes. We identified putative candidate genes for several of the main-effect and epistatic QTL and for QTL reported by other groups. Conclusions To better understand the underlying genetics of isoflavone accumulation, we performed a large scale analysis to identify genomic regions associated with isoflavone concentrations. We not only identified a number of such regions, but also found that they can interact with one another and with the environment to form a complex adaptable network

  20. Laplacian Spectrum and Protein-Protein Interaction Networks

    CERN Document Server

    Banerjee, Anirban

    2007-01-01

    From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typical specific features that robustly distinguish protein-protein interaction networks from other classes of networks, in spite of possible statistical fluctuations of the underlying data.

  1. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    Science.gov (United States)

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  2. Neural Network Control Optimization based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhaoyin Zhang

    2013-08-01

    Full Text Available To clearly find the effect of factors in network classification, the classification process of PNN is analyzed in detail. The XOR problem is described by PNN and the elements in PNN are also studied. Through simulations and combined with genetic algorithm, a novel PNN supervised learning algorithm is proposed. This algorithm introduces the classification accuracy of training samples to the network parameter learning. It adopts genetic algorithm to train the PNN smoothing parameter and hidden centric vector. Then the effects of hidden neuron number, hidden centric vector and smoothing parameter in PNN are verified in the experiments. It is shown that this algorithm is superior to other PNN learning algorithms on classification effect.

  3. Genetic algorithm for network cost minimization using threshold based discounting

    Directory of Open Access Journals (Sweden)

    Hrvoje Podnar

    2003-01-01

    Full Text Available We present a genetic algorithm for heuristically solving a cost minimization problem applied to communication networks with threshold based discounting. The network model assumes that every two nodes can communicate and offers incentives to combine flow from different sources. Namely, there is a prescribed threshold on every link, and if the total flow on a link is greater than the threshold, the cost of this flow is discounted by a factor α. A heuristic algorithm based on genetic strategy is developed and applied to a benchmark set of problems. The results are compared with former branch and bound results using the CPLEX® solver. For larger data instances we were able to obtain improved solutions using less CPU time, confirming the effectiveness of our heuristic approach.

  4. Information theory, multivariate dependence, and genetic network inference

    CERN Document Server

    Nemenman, Ilya

    2007-01-01

    We define the concept of dependence among multiple variables using maximum entropy techniques and introduce a graphical notation to denote the dependencies. Direct inference of information theoretic quantities from data uncovers dependencies even in undersampled regimes when the joint probability distribution cannot be reliably estimated. The method is tested on synthetic data. We anticipate it to be useful for inference of genetic circuits and other biological signaling networks.

  5. Genetic Networks Activated by Blast Injury to the Eye

    Science.gov (United States)

    2014-08-01

    Major Finding: Collected retinas from 40 normal strains with 148 microarrays run. We have collected phenotypic data on corneal thickness, lOP and...pressure ( lOP ), central corneal thickness (CCT) and visual acuity. Task 2) Define the genetic networks activated by blast injury in the eye and in...retina. Accomplishments Under These Goals: Taskl: At the present time we have measured lOP and central corneal thickness on 27 strains of mice

  6. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  7. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  8. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Elizarraras

    2014-01-01

    Full Text Available The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15% compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput.

  9. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  10. Graph spectral analysis of protein interaction network evolution

    OpenAIRE

    Thorne, Thomas; Stumpf, Michael P. H.

    2012-01-01

    We present an analysis of protein interaction network data via the comparison of models of network evolution to the observed data. We take a Bayesian approach and perform posterior density estimation using an approximate Bayesian computation with sequential Monte Carlo method. Our approach allows us to perform model selection over a selection of potential network growth models. The methodology we apply uses a distance defined in terms of graph spectra which captures the network data more natu...

  11. Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    OpenAIRE

    Sourav Bandyopadhyay; Ryan Kelley; Krogan, Nevan J.; Trey Ideker

    2008-01-01

    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relat...

  12. The architecture of functional interaction networks in the retina.

    Science.gov (United States)

    Ganmor, Elad; Segev, Ronen; Schneidman, Elad

    2011-02-23

    Sensory information is represented in the brain by the joint activity of large groups of neurons. Recent studies have shown that, although the number of possible activity patterns and underlying interactions is exponentially large, pairwise-based models give a surprisingly accurate description of neural population activity patterns. We explored the architecture of maximum entropy models of the functional interaction networks underlying the response of large populations of retinal ganglion cells, in adult tiger salamander retina, responding to natural and artificial stimuli. We found that we can further simplify these pairwise models by neglecting weak interaction terms or by relying on a small set of interaction strengths. Comparing network interactions under different visual stimuli, we show the existence of local network motifs in the interaction map of the retina. Our results demonstrate that the underlying interaction map of the retina is sparse and dominated by local overlapping interaction modules.

  13. The computational power of interactive recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Siegelmann, Hava T

    2012-04-01

    In classical computation, rational- and real-weighted recurrent neural networks were shown to be respectively equivalent to and strictly more powerful than the standard Turing machine model. Here, we study the computational power of recurrent neural networks in a more biologically oriented computational framework, capturing the aspects of sequential interactivity and persistence of memory. In this context, we prove that so-called interactive rational- and real-weighted neural networks show the same computational powers as interactive Turing machines and interactive Turing machines with advice, respectively. A mathematical characterization of each of these computational powers is also provided. It follows from these results that interactive real-weighted neural networks can perform uncountably many more translations of information than interactive Turing machines, making them capable of super-Turing capabilities.

  14. Gene-Environment Interactions in Asthma: Genetic and Epigenetic Effects.

    Science.gov (United States)

    Lee, Jong-Uk; Kim, Jeong Dong; Park, Choon-Sik

    2015-07-01

    Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.

  15. Missing and spurious interactions and the reconstruction of complex networks

    CERN Document Server

    Guimera, R; 10.1073/pnas.0908366106

    2010-01-01

    Network analysis is currently used in a myriad of contexts: from identifying potential drug targets to predicting the spread of epidemics and designing vaccination strategies, and from finding friends to uncovering criminal activity. Despite the promise of the network approach, the reliability of network data is a source of great concern in all fields where complex networks are studied. Here, we present a general mathematical and computational framework to deal with the problem of data reliability in complex networks. In particular, we are able to reliably identify both missing and spurious interactions in noisy network observations. Remarkably, our approach also enables us to obtain, from those noisy observations, network reconstructions that yield estimates of the true network properties that are more accurate than those provided by the observations themselves. Our approach has the potential to guide experiments, to better characterize network data sets, and to drive new discoveries.

  16. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  17. A UV-induced genetic network links the RSC complex to nucleotide excision repair and shows dose-dependent rewiring.

    Science.gov (United States)

    Srivas, Rohith; Costelloe, Thomas; Carvunis, Anne-Ruxandra; Sarkar, Sovan; Malta, Erik; Sun, Su Ming; Pool, Marijke; Licon, Katherine; van Welsem, Tibor; van Leeuwen, Fred; McHugh, Peter J; van Attikum, Haico; Ideker, Trey

    2013-12-26

    Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER) with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  18. A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    Directory of Open Access Journals (Sweden)

    Rohith Srivas

    2013-12-01

    Full Text Available Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  19. Efficiency of the immunome protein interaction network increases during evolution.

    Science.gov (United States)

    Ortutay, Csaba; Vihinen, Mauno

    2008-04-22

    Details of the mechanisms and selection pressures that shape the emergence and development of complex biological systems, such as the human immune system, are poorly understood. A recent definition of a reference set of proteins essential for the human immunome, combined with information about protein interaction networks for these proteins, facilitates evolutionary study of this biological machinery. Here, we present a detailed study of the development of the immunome protein interaction network during eight evolutionary steps from Bilateria ancestors to human. New nodes show preferential attachment to high degree proteins. The efficiency of the immunome protein interaction network increases during the evolutionary steps, whereas the vulnerability of the network decreases. Our results shed light on selective forces acting on the emergence of biological networks. It is likely that the high efficiency and low vulnerability are intrinsic properties of many biological networks, which arise from the effects of evolutionary processes yet to be uncovered.

  20. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.

    Science.gov (United States)

    Tian, Xue W; Lim, Joon S

    2015-01-01

    Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.

  1. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    Science.gov (United States)

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  2. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage;

    2009-01-01

    region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  3. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Directory of Open Access Journals (Sweden)

    Anna R. Docherty

    2015-08-01

    Full Text Available We examined network properties of genetic covariance between average cortical thickness (CT and surface area (SA within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.

  4. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Science.gov (United States)

    Docherty, Anna R.; Sawyers, Chelsea K.; Panizzon, Matthew S.; Neale, Michael C.; Eyler, Lisa T.; Fennema-Notestine, Christine; Franz, Carol E.; Chen, Chi-Hua; McEvoy, Linda K.; Verhulst, Brad; Tsuang, Ming T.; Kremen, William S.

    2015-01-01

    We examined network properties of genetic covariance between average cortical thickness (CT) and surface area (SA) within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function. PMID:26347632

  5. Investigating physics learning with layered student interaction networks

    DEFF Research Database (Denmark)

    Bruun, Jesper; Traxler, Adrienne

    Centrality in student interaction networks (SINs) can be linked to variables like grades [1], persistence [2], and participation [3]. Recent efforts in the field of network science have been done to investigate layered - or multiplex - networks as mathematical objects [4]. These networks can be e......, this study investigates how target entropy [5,1] and pagerank [6,7] are affected when we take time and modes of interaction into account. We present our preliminary models and results and outline our future work in this area....

  6. Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZhangLiangjie; LiYanda; 等

    1997-01-01

    In this paper,a dynamic bandwidth allocation technique based on fuzz neural networks(FNNs) and genetic algorithm(GA)is proposed for preventive congestion control in ATM network.The traffic model based on FNN does not need the descriptive traffic parameters in detail,which greatly depend on the user's terminal.Genetic algorithm is used to predict the equivalent bandwidth of the accepted traffic in real-time.Thus,the proposed scheme can estimate the dynamic bandwidth of the network in the time scale from the call arrival to the call admission/rejection due to the fuzzy-tech and GA hardware implementation.Simulation results show that the scheme can perform accurate dynamic bandwidth allocation to DN/OFF bursty traffic in accordance with the required quality of service(QOS),and the bandwidth utilization is improved from the overall point of view.

  7. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  8. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  9. On the physical basis for ambiguity in genetic coding interactions.

    Science.gov (United States)

    Grosjean, H J; de Henau, S; Crothers, D M

    1978-02-01

    We report the relative stabilities, in the form of complex lifetimes, of complexes between the tRNAs complementary, or nearly so, in their anticodons. The results show striking parallels with the genetic coding rules, including the wobble interaction and the role of modified nucleotides S2U and V (a 5-oxyacetic acid derivative of U). One important difference between the genetic code and the pairing rules in the tRNA-tRNA interaction is the stability in the latter of the short wobble pairs, which the wobble hypothesis excludes. We stress the potential of U for translational errors, and suggest a simple stereochemical basis for ribosome-mediated discrimination against short wobble pairs. Surprisingly, the stability of anticodon-anticodon complexes does not vary systematically on base sequence. Because of the close similarity to the genetic coding rules, it is tempting to speculate that the interaction between two RNA loops may have been part of the physical basis for the evolutionary origin of the genetic code, and that this mechanism may still be utilized by folding the mRNA on the ribosome into a loop similar to the anticodon loop.

  10. Do networks of social interactions reflect patterns of kinship?

    Institute of Scientific and Technical Information of China (English)

    Joah R. MADDEN; Johanna F. NIEL SEN; Tim H. CLUTTON-BROCK

    2012-01-01

    The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal association between individuals,and is presumed to facilitate inclusive fitness benefits.Such structure may be evident at a finer,behavioural,scale with individuals preferentially interacting with kin.We tested whether kin structure within groups of meerkats Suricata suricatta matched three forms of social interaction networks:grooming,dominance or foraging competitions.Networks of dominance interactions were positively related to networks of kinship,with close relatives engaging in dominance interactions with each other.This relationship persisted even after excluding the breeding dominant pair and when we restricted the kinship network to only include links between first order kin,which are most likely to be able to discern kin through simple rules of thumb.Conversely,we found no relationship between kinship networks and either grooming networks or networks of foraging competitions.This is surprising because a positive association between kin in a grooming network,or a negative association between kin in a network of foraging competitions offers opportunities for inclusive fitness benefits.Indeed,the positive association between kin in a network of dominance interactions that we did detect does not offer clear inclusive fitness benefits to group members.We conclude that kin structure in behavioural interactions in meerkats may be driven by factors other than indirect fitness benefits,and that networks of cooperative behaviours such as grooming may be driven by direct benefits accruing to individuals perhaps through mutualism or manipulation [Current Zoology 58 (2):319-328,2012].

  11. Do networks of social interactions reflect patterns of kinship?

    Directory of Open Access Journals (Sweden)

    Joah R. MADDEN, Johanna F. NIELSEN, Tim H. CLUTTON-BROCK

    2012-04-01

    Full Text Available The underlying kin structure of groups of animals may be glimpsed from patterns of spatial position or temporal association between individuals, and is presumed to facilitate inclusive fitness benefits. Such structure may be evident at a finer, behavioural, scale with individuals preferentially interacting with kin. We tested whether kin structure within groups of meerkats Suricata suricatta matched three forms of social interaction networks: grooming, dominance or foraging competitions. Networks of dominance interactions were positively related to networks of kinship, with close relatives engaging in dominance interactions with each other. This relationship persisted even after excluding the breeding dominant pair and when we restricted the kinship network to only include links between first order kin, which are most likely to be able to discern kin through simple rules of thumb. Conversely, we found no relationship between kinship networks and either grooming networks or networks of foraging competitions. This is surprising because a positive association between kin in a grooming network, or a negative association between kin in a network of foraging competitions offers opportunities for inclusive fitness benefits. Indeed, the positive association between kin in a network of dominance interactions that we did detect does not offer clear inclusive fitness benefits to group members. We conclude that kin structure in behavioural interactions in meerkats may be driven by factors other than indirect fitness benefits, and that networks of cooperative behaviours such as grooming may be driven by direct benefits accruing to individuals perhaps through mutualism or manipulation [Current Zoology 58 (2: 319-328, 2012].

  12. Detecting instability in animal social networks: genetic fragmentation is associated with social instability in rhesus macaques.

    Science.gov (United States)

    Beisner, Brianne A; Jackson, Megan E; Cameron, Ashley N; McCowan, Brenda

    2011-01-26

    The persistence of biological systems requires evolved mechanisms which promote stability. Cohesive primate social groups are one example of stable biological systems, which persist in spite of regular conflict. We suggest that genetic relatedness and its associated kinship structure are a potential source of stability in primate social groups as kinship structure is an important organizing principle in many animal societies. We investigated the effect of average genetic relatedness per matrilineal family on the stability of matrilineal grooming and agonistic interactions in 48 matrilines from seven captive groups of rhesus macaques. Matrilines with low average genetic relatedness show increased family-level instability such as: more sub-grouping in their matrilineal groom network, more frequent fighting with kin, and higher rates of wounding. Family-level instability in multiple matrilines within a group is further associated with group-level instability such as increased wounding. Stability appears to arise from the presence of clear matrilineal structure in the rhesus macaque group hierarchy, which is derived from cohesion among kin in their affiliative and agonistic interactions with each other. We conclude that genetic relatedness and kinship structure are an important source of group stability in animal societies, particularly when dominance and/or affilative interactions are typically governed by kinship.

  13. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  14. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  15. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models.

    Directory of Open Access Journals (Sweden)

    Alex Greenfield

    Full Text Available BACKGROUND: Current technologies have lead to the availability of multiple genomic data types in sufficient quantity and quality to serve as a basis for automatic global network inference. Accordingly, there are currently a large variety of network inference methods that learn regulatory networks to varying degrees of detail. These methods have different strengths and weaknesses and thus can be complementary. However, combining different methods in a mutually reinforcing manner remains a challenge. METHODOLOGY: We investigate how three scalable methods can be combined into a useful network inference pipeline. The first is a novel t-test-based method that relies on a comprehensive steady-state knock-out dataset to rank regulatory interactions. The remaining two are previously published mutual information and ordinary differential equation based methods (tlCLR and Inferelator 1.0, respectively that use both time-series and steady-state data to rank regulatory interactions; the latter has the added advantage of also inferring dynamic models of gene regulation which can be used to predict the system's response to new perturbations. CONCLUSION/SIGNIFICANCE: Our t-test based method proved powerful at ranking regulatory interactions, tying for first out of methods in the DREAM4 100-gene in-silico network inference challenge. We demonstrate complementarity between this method and the two methods that take advantage of time-series data by combining the three into a pipeline whose ability to rank regulatory interactions is markedly improved compared to either method alone. Moreover, the pipeline is able to accurately predict the response of the system to new conditions (in this case new double knock-out genetic perturbations. Our evaluation of the performance of multiple methods for network inference suggests avenues for future methods development and provides simple considerations for genomic experimental design. Our code is publicly available at http://err.bio.nyu.edu/inferelator/.

  16. Modifier genes and the plasticity of genetic networks in mice.

    Directory of Open Access Journals (Sweden)

    Bruce A Hamilton

    Full Text Available Modifier genes are an integral part of the genetic landscape in both humans and experimental organisms, but have been less well explored in mammals than other systems. A growing number of modifier genes in mouse models of disease nonetheless illustrate the potential for novel findings, while new technical advances promise many more to come. Modifier genes in mouse models include induced mutations and spontaneous or wild-derived variations captured in inbred strains. Identification of modifiers among wild-derived variants in particular should detect disease modifiers that have been shaped by selection and might therefore be compatible with high fitness and function. Here we review selected examples and argue that modifier genes derived from natural variation may provide a bias for nodes in genetic networks that have greater intrinsic plasticity and whose therapeutic manipulation may therefore be more resilient to side effects than conventional targets.

  17. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  18. The role of social networking sites in medical genetics research.

    Science.gov (United States)

    Reaves, Allison Cook; Bianchi, Diana W

    2013-05-01

    Social networking sites (SNS) have potential value in the field of medical genetics as a means of research subject recruitment and source of data. This article examines the current role of SNS in medical genetics research and potential applications for these sites in future studies. Facebook is the primary SNS considered, given the prevalence of its use in the United States and role in a small but growing number of studies. To date, utilization of SNS in medical genetics research has been primarily limited to three studies that recruited subjects from populations of Facebook users [McGuire et al. (2009); Am J Bioeth 9: 3-10; Janvier et al. (2012); Pediatrics 130: 293-298; Leighton et al. (2012); Public Health Genomics 15: 11-21]. These studies and a number of other medical and public health studies that have used Facebook as a context for recruiting research subjects are discussed. Approaches for Facebook-based subject recruitment are identified, including paid Facebook advertising, snowball sampling, targeted searching and posting. The use of these methods in medical genetics research has the potential to facilitate cost-effective research on both large, heterogeneous populations and small, hard-to-access sub-populations.

  19. An interaction network of mental disorder proteins in neural stem cells.

    Science.gov (United States)

    Moen, M J; Adams, H H H; Brandsma, J H; Dekkers, D H W; Akinci, U; Karkampouna, S; Quevedo, M; Kockx, C E M; Ozgür, Z; van IJcken, W F J; Demmers, J; Poot, R A

    2017-04-04

    Mental disorders (MDs) such as intellectual disability (ID), autism spectrum disorders (ASD) and schizophrenia have a strong genetic component. Recently, many gene mutations associated with ID, ASD or schizophrenia have been identified by high-throughput sequencing. A substantial fraction of these mutations are in genes encoding transcriptional regulators. Transcriptional regulators associated with different MDs but acting in the same gene regulatory network provide information on the molecular relation between MDs. Physical interaction between transcriptional regulators is a strong predictor for their cooperation in gene regulation. Here, we biochemically purified transcriptional regulators from neural stem cells, identified their interaction partners by mass spectrometry and assembled a protein interaction network containing 206 proteins, including 68 proteins mutated in MD patients and 52 proteins significantly lacking coding variation in humans. Our network shows molecular connections between established MD proteins and provides a discovery tool for novel MD genes. Network proteins preferentially co-localize on the genome and cooperate in disease-relevant gene regulation. Our results suggest that the observed transcriptional regulators associated with ID, ASD or schizophrenia are part of a transcriptional network in neural stem cells. We find that more severe mutations in network proteins are associated with MDs that include lower intelligence quotient (IQ), suggesting that the level of disruption of a shared transcriptional network correlates with cognitive dysfunction.

  20. High Performance Data mining by Genetic Neural Network

    Directory of Open Access Journals (Sweden)

    Dadmehr Rahbari

    2013-10-01

    Full Text Available Data mining in computer science is the process of discovering interesting and useful patterns and relationships in large volumes of data. Most methods for mining problems is based on artificial intelligence algorithms. Neural network optimization based on three basic parameters topology, weights and the learning rate is a powerful method. We introduce optimal method for solving this problem. In this paper genetic algorithm with mutation and crossover operators change the network structure and optimized that. Dataset used for our work is stroke disease with twenty features that optimized number of that achieved by new hybrid algorithm. Result of this work is very well incomparison with other similar method. Low present of error show that our method is our new approach to efficient, high-performance data mining problems is introduced.

  1. Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The three-layer forward neural networks are used to establish the inverse kinem a tics models of robot manipulators. The fuzzy genetic algorithm based on the line ar scaling of the fitness value is presented to update the weights of neural net works. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the propo sed method improves considerably the precision of the inverse kinematics solutio ns for robot manipulators and guarantees a rapid global convergence and overcome s the drawbacks of SGA and the BP algorithm.

  2. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network.

    Science.gov (United States)

    Tewari, Muneesh; Hu, Patrick J; Ahn, Jin Sook; Ayivi-Guedehoussou, Nono; Vidalain, Pierre-Olivier; Li, Siming; Milstein, Stuart; Armstrong, Chris M; Boxem, Mike; Butler, Maurice D; Busiguina, Svetlana; Rual, Jean-François; Ibarrola, Nieves; Chaklos, Sabrina T; Bertin, Nicolas; Vaglio, Philippe; Edgley, Mark L; King, Kevin V; Albert, Patrice S; Vandenhaute, Jean; Pandey, Akhilesh; Riddle, Donald L; Ruvkun, Gary; Vidal, Marc

    2004-02-27

    To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.

  3. Neural network fault diagnosis method optimization with rough set and genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-yan; XIE Zhi-jiang; OUYANG Qi

    2006-01-01

    Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.

  4. Protein interaction network related to Helicobacter pylori infection response

    Institute of Scientific and Technical Information of China (English)

    Kyu Kwang Kim; Han Bok Kim

    2009-01-01

    AIM: To understand the complex reaction of gastric inflammation induced by Helicobacter pylori (H pylori ) in a systematic manner using a protein interaction network. METHODS: The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins. A network of protein interactions was constructed by searching the primary interactions of selected proteins. The constructed network was mathematically analyzed and its biological function was examined. In addition, the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them.RESULTS: The scale-free network showing the relationship between inflammation and carcinogenesis was constructed. Mathematical analysis showed hub and bottleneck proteins, and these proteins were mostly related to immune response. The network contained pathways and proteins related to H pylori infection, such as the JAK-STAT pathway triggered by interleukins. Activation of nuclear factor (NF)-kB, TLR4, and other proteins known to function as core proteins of immune response were also found.These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle, cell maintenance and proliferation, and transcription regulators such as BRCA1, FOS, REL, and zinc finger proteins. The extension of nodes showed interactions of the immune proteins with cancerrelated proteins. One extended network, the core network, a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION: Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins. The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer.

  5. Laplacian Spectrum and Protein-Protein Interaction Networks

    OpenAIRE

    Banerjee, Anirban; Jost, Jürgen

    2007-01-01

    From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typic...

  6. The networks as a new forms of international interaction

    OpenAIRE

    Dorosh, Lesya

    2013-01-01

    This article is devoted to the problem of modern treatments of the system of international relations, attention is paid to its network measurement. It’s analyzed the types of international networks and shown tendencies of transformation of the international interactions from the international anarchy with the priority of the state sovereignty to the horizontal cooperation on the branch self-government. It’s identified that the network of the international relations causes the changes of th...

  7. Ontology integration to identify protein complex in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Yang Zhihao

    2011-10-01

    Full Text Available Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.

  8. Development of Attention Networks and Their Interactions in Childhood

    Science.gov (United States)

    Pozuelos, Joan P.; Paz-Alonso, Pedro M.; Castillo, Alejandro; Fuentes, Luis J.; Rueda, M. Rosario

    2014-01-01

    In the present study, we investigated developmental trajectories of alerting, orienting, and executive attention networks and their interactions over childhood. Two cross-sectional experiments were conducted with different samples of 6-to 12-year-old children using modified versions of the attention network task (ANT). In Experiment 1 (N = 106),…

  9. Guidelines to foster interaction in online communities for Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Rusman, Ellen; Bitter-Rijpkema, Marlies; Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Berlanga, A., Rusman, E., Bitter-Rijpkema, M., & Sloep, P. B. (2009). Guidelines to foster interaction in online communities for Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp. 27-42).

  10. Interacting Social Processes on Interconnected Networks

    Science.gov (United States)

    Alvarez-Zuzek, Lucila G.; La Rocca, Cristian E.; Vazquez, Federico; Braunstein, Lidia A.

    2016-01-01

    We propose and study a model for the interplay between two different dynamical processes –one for opinion formation and the other for decision making– on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = −2,−1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = −1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r*(β), while a negative consensus happens for r βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*). PMID:27689698

  11. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  12. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  13. Stable evolutionary signal in a Yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Ferdig Michael T

    2006-01-01

    Full Text Available Abstract Background The recently emerged protein interaction network paradigm can provide novel and important insights into the innerworkings of a cell. Yet, the heavy burden of both false positive and false negative protein-protein interaction data casts doubt on the broader usefulness of these interaction sets. Approaches focusing on one-protein-at-a-time have been powerfully employed to demonstrate the high degree of conservation of proteins participating in numerous interactions; here, we expand his 'node' focused paradigm to investigate the relative persistence of 'link' based evolutionary signals in a protein interaction network of S. cerevisiae and point out the value of this relatively untapped source of information. Results The trend for highly connected proteins to be preferably conserved in evolution is stable, even in the context of tremendous noise in the underlying protein interactions as well as in the assignment of orthology among five higher eukaryotes. We find that local clustering around interactions correlates with preferred evolutionary conservation of the participating proteins; furthermore the correlation between high local clustering and evolutionary conservation is accompanied by a stable elevated degree of coexpression of the interacting proteins. We use this conserved interaction data, combined with P. falciparum /Yeast orthologs, as proof-of-principle that high-order network topology can be used comparatively to deduce local network structure in non-model organisms. Conclusion High local clustering is a criterion for the reliability of an interaction and coincides with preferred evolutionary conservation and significant coexpression. These strong and stable correlations indicate that evolutionary units go beyond a single protein to include the interactions among them. In particular, the stability of these signals in the face of extreme noise suggests that empirical protein interaction data can be integrated with

  14. Quantitative genetic-interaction mapping in mammalian cells

    Science.gov (United States)

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  15. Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.

    Science.gov (United States)

    Wilkins, Adam S

    2007-05-15

    The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.

  16. Building a glaucoma interaction network using a text mining approach.

    Science.gov (United States)

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of

  17. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity.

    Science.gov (United States)

    De, Rishika; Hu, Ting; Moore, Jason H; Gilbert-Diamond, Diane

    2015-01-01

    Recent findings have reemphasized the importance of epistasis, or gene-gene interactions, as a contributing factor to the unexplained heritability of obesity. Network-based methods such as statistical epistasis networks (SEN), present an intuitive framework to address the computational challenge of studying pairwise interactions between thousands of genetic variants. In this study, we aimed to analyze pairwise interactions that are associated with Body Mass Index (BMI) between SNPs from twelve genes robustly associated with obesity (BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, MC4R, MTCH2, NEGR1, SEC16B, SH2B1, and TMEM18). We used information gain measures to identify all SNP-SNP interactions among and between these genes that were related to obesity (BMI > 30 kg/m(2)) within the Framingham Heart Study Cohort; interactions exceeding a certain threshold were used to build an SEN. We also quantified whether interactions tend to occur more between SNPs from the same gene (dyadicity) or between SNPs from different genes (heterophilicity). We identified a highly connected SEN of 709 SNPs and 1241 SNP-SNP interactions. Combining the SEN framework with dyadicity and heterophilicity analyses, we found 1 dyadic gene (TMEM18, P-value = 0.047) and 3 heterophilic genes (KCTD15, P-value = 0.045; SH2B1, P-value = 0.003; and TMEM18, P-value = 0.001). We also identified a lncRNA SNP (rs4358154) as a key node within the SEN using multiple network measures. This study presents an analytical framework to characterize the global landscape of genetic interactions from genome-wide arrays and also to discover nodes of potential biological significance within the identified network.

  18. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  19. Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network

    National Research Council Canada - National Science Library

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Jr, Robert D; Chapman, Sherita N; Cole, John W; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J; Kleindorfer, Dawn O; Labovitz, Daniel L; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S; McArdle, Patrick F; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M; Rhodes, David; Rich, Stephen S; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M; Rundek, Tatjana; Sacco, Ralph L; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B; Meschia, James F

    2014-01-01

    ...)-SiGN (Stroke Genetics Network) is an international consortium of ischemic stroke studies that aims to generate high-quality phenotype data to identify the genetic basis of pathogenic stroke subtypes...

  20. Identifying the interactions in a colored dynamical network

    Institute of Scientific and Technical Information of China (English)

    吴召艳; 弓晓利

    2015-01-01

    The interactions of a colored dynamical network play a great role in its dynamical behaviour and are denoted by outer and inner coupling matrices. In this paper, the outer and inner coupling matrices are assumed to be unknown and need to be identified. A corresponding network estimator is designed for identifying the unknown interactions by adopting proper adaptive laws. Based on the Lyapunov function method and Barbalat’s lemma, the obtained result is analytically proved. A colored network coupled with chaotic Lorenz, Chen, and L ¨u systems is considered as a numerical example to illustrate the effectiveness of the proposed method.

  1. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

    Science.gov (United States)

    Puig-Oliveras, Anna; Ballester, Maria; Corominas, Jordi; Revilla, Manuel; Estellé, Jordi; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Folch, Josep M.

    2014-01-01

    Background Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. Results The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. Conclusions This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production. PMID:25503799

  2. A co-association network analysis of the genetic determination of pig conformation, growth and fatness.

    Directory of Open Access Journals (Sweden)

    Anna Puig-Oliveras

    Full Text Available Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits.The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes.This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production.

  3. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  4. Development of attention networks and their interactions in childhood.

    Science.gov (United States)

    Pozuelos, Joan P; Paz-Alonso, Pedro M; Castillo, Alejandro; Fuentes, Luis J; Rueda, M Rosario

    2014-10-01

    In the present study, we investigated developmental trajectories of alerting, orienting, and executive attention networks and their interactions over childhood. Two cross-sectional experiments were conducted with different samples of 6- to 12-year-old children using modified versions of the attention network task (ANT). In Experiment 1 (N = 106), alerting and orienting cues were independently manipulated, thus allowing examination of interactions between these 2 networks, as well as between them and the executive attention network. In Experiment 2 (N = 159), additional changes were made to the task in order to foster exogenous orienting cues. Results from both studies consistently revealed separate developmental trajectories for each attention network. Children younger than 7 years exhibited stronger benefits from having an alerting auditory signal prior to the target presentation. Developmental changes in orienting were mostly observed on response accuracy between middle and late childhood, whereas executive attention showed increases in efficiency between 7 years and older ages, and further improvements in late childhood. Of importance, across both experiments, significant interactions between alerting and orienting, as well as between each of these and the executive attention network, were observed. Alerting cues led to speeding shifts of attention and enhancing orienting processes. Also, both alerting and orienting cues modulated the magnitude of the flanker interference effect. These findings inform current theoretical models of human attention and its development, characterizing for the first time, the age-related course of attention networks interactions that, present in adults, stem from further refinements over childhood.

  5. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Xiaodong Cai

    Full Text Available Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this paper, sparse structural equation models (SEMs are employed to integrate both gene expression data and cis-expression quantitative trait loci (cis-eQTL, for modeling gene regulatory networks in accordance with biological evidence about genes regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum likelihood (SML is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL based scheme, and the QTL-directed dependency graph (QDG method. Computer simulations demonstrate that the novel SML algorithm offers significantly better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The SML method is further applied to infer a network of 39 human genes that are related to the immune function and are chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both gene expression and perturbation data to infer gene regulatory networks. An open-source computer program implementing the SML algorithm is freely available upon request.

  6. Cortico-cardio-respiratory network interactions during anesthesia.

    Directory of Open Access Journals (Sweden)

    Yuri Shiogai

    Full Text Available General anesthetics are used during medical and surgical procedures to reversibly induce a state of total unconsciousness in patients. Here, we investigate, from a dynamic network perspective, how the cortical and cardiovascular systems behave during anesthesia by applying nonparametric spectral techniques to cortical electroencephalography, electrocardiogram and respiratory signals recorded from anesthetized rats under two drugs, ketamine-xylazine (KX and pentobarbital (PB. We find that the patterns of low-frequency cortico-cardio-respiratory network interactions may undergo significant changes in network activity strengths and in number of network links at different depths of anesthesia dependent upon anesthetics used.

  7. Relevance of different prior knowledge sources for inferring gene interaction networks.

    Science.gov (United States)

    Olsen, Catharina; Bontempi, Gianluca; Emmert-Streib, Frank; Quackenbush, John; Haibe-Kains, Benjamin

    2014-01-01

    When inferring networks from high-throughput genomic data, one of the main challenges is the subsequent validation of these networks. In the best case scenario, the true network is partially known from previous research results published in structured databases or research articles. Traditionally, inferred networks are validated against these known interactions. Whenever the recovery rate is gauged to be high enough, subsequent high scoring but unknown inferred interactions are deemed good candidates for further experimental validation. Therefore such validation framework strongly depends on the quantity and quality of published interactions and presents serious pitfalls: (1) availability of these known interactions for the studied problem might be sparse; (2) quantitatively comparing different inference algorithms is not trivial; and (3) the use of these known interactions for validation prevents their integration in the inference procedure. The latter is particularly relevant as it has recently been showed that integration of priors during network inference significantly improves the quality of inferred networks. To overcome these problems when validating inferred networks, we recently proposed a data-driven validation framework based on single gene knock-down experiments. Using this framework, we were able to demonstrate the benefits of integrating prior knowledge and expression data. In this paper we used this framework to assess the quality of different sources of prior knowledge on their own and in combination with different genomic data sets in colorectal cancer. We observed that most prior sources lead to significant F-scores. Furthermore, their integration with genomic data leads to a significant increase in F-scores, especially for priors extracted from full text PubMed articles, known co-expression modules and genetic interactions. Lastly, we observed that the results are consistent for three different data sets: experimental knock-down data and two

  8. Evolutionary pressure on the topology of protein interface interaction networks.

    Science.gov (United States)

    Johnson, Margaret E; Hummer, Gerhard

    2013-10-24

    The densely connected structure of protein-protein interaction (PPI) networks reflects the functional need of proteins to cooperate in cellular processes. However, PPI networks do not adequately capture the competition in protein binding. By contrast, the interface interaction network (IIN) studied here resolves the modular character of protein-protein binding and distinguishes between simultaneous and exclusive interactions that underlie both cooperation and competition. We show that the topology of the IIN is under evolutionary pressure, and we connect topological features of the IIN to specific biological functions. To reveal the forces shaping the network topology, we use a sequence-based computational model of interface binding along with network analysis. We find that the more fragmented structure of IINs, in contrast to the dense PPI networks, arises in large part from the competition between specific and nonspecific binding. The need to minimize nonspecific binding favors specific network motifs, including a minimal number of cliques (i.e., fully connected subgraphs) and many disconnected fragments. Validating the model, we find that these network characteristics are closely mirrored in the IIN of clathrin-mediated endocytosis. Features unexpected on the basis of our motif analysis are found to indicate either exceptional binding selectivity or important regulatory functions.

  9. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  10. End of Interactive Emailing from the Technical Network

    CERN Multimedia

    2006-01-01

    According to the CNIC Security Policy for Control Systems (EDMS #584092), interactive emailing on PCs (and other devices) connected to the Technical Network is prohibited. Please note that from November 6th, neither reading emails nor sending emails interactively using e.g. Outlook or Pine mail clients on PCs connected to the Technical Network will be possible anymore. However, automatically generated emails will not be blocked and can still be sent off using CERNMX.CERN.CH as mail server. These restrictions DO NOT apply to PCs connected to any other network, like the General Purpose (or office) network. If you have questions, please do not hesitate to contact Uwe Epting, Pierre Charrue or Stefan Lueders (Technical-Network.Administrator@cern.ch). Your CNIC Working Group

  11. EVALUATING AUSTRALIAN FOOTBALL LEAGUE PLAYER CONTRIBUTIONS USING INTERACTIVE NETWORK SIMULATION

    Directory of Open Access Journals (Sweden)

    Jonathan Sargent

    2013-03-01

    Full Text Available This paper focuses on the contribution of Australian Football League (AFL players to their team's on-field network by simulating player interactions within a chosen team list and estimating the net effect on final score margin. A Visual Basic computer program was written, firstly, to isolate the effective interactions between players from a particular team in all 2011 season matches and, secondly, to generate a symmetric interaction matrix for each match. Negative binomial distributions were fitted to each player pairing in the Geelong Football Club for the 2011 season, enabling an interactive match simulation model given the 22 chosen players. Dynamic player ratings were calculated from the simulated network using eigenvector centrality, a method that recognises and rewards interactions with more prominent players in the team network. The centrality ratings were recorded after every network simulation and then applied in final score margin predictions so that each player's match contribution-and, hence, an optimal team-could be estimated. The paper ultimately demonstrates that the presence of highly rated players, such as Geelong's Jimmy Bartel, provides the most utility within a simulated team network. It is anticipated that these findings will facilitate optimal AFL team selection and player substitutions, which are key areas of interest to coaches. Network simulations are also attractive for use within betting markets, specifically to provide information on the likelihood of a chosen AFL team list "covering the line".

  12. Social network extraction and analysis based on multimodal dyadic interaction.

    Science.gov (United States)

    Escalera, Sergio; Baró, Xavier; Vitrià, Jordi; Radeva, Petia; Raducanu, Bogdan

    2012-01-01

    Social interactions are a very important component in people's lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times' Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links' weights are a measure of the "influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.

  13. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    Directory of Open Access Journals (Sweden)

    Bogdan Raducanu

    2012-02-01

    Full Text Available Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.

  14. Modeling the dynamical interaction between epidemics on overlay networks

    CERN Document Server

    Marceau, Vincent; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J

    2011-01-01

    Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes. Exploiting a correspondence between the propagation dynamics and a dynamical process performing progressive network generation, we develop an analytic approach that accurately captures the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population to hinder the propagation of an undesirable agent (e.g. the spread of preventive information in the context of an emerging infectious disease).

  15. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia.

    Science.gov (United States)

    Wang, Xiangpeng; Zhang, Wenwen; Sun, Yujing; Hu, Min; Chen, Antao

    2016-12-01

    Aberrant functional interactions between several large-scale networks, especially the central executive network (CEN), the default mode network (DMN) and the salience network (SN), have been postulated as core pathophysiologic features of schizophrenia; however, the attributing factors of which remain unclear. The study employed resting-state fMRI with 77 participants (42 patients and 35 controls). We performed dynamic functional connectivity (DFC) and functional connectivity (FC) analyses to explore the connectivity patterns of these networks. Furthermore, we performed a structural equation model (SEM) analysis to explore the possible role of the SN in modulating network interactions. The results were as follows: (1) The inter-network connectivity showed decreased connectivity strength and increased time-varying instability in schizophrenia; (2) The SN manifested schizophrenic intra-network dysfunctions in both the FC and DFC patterns; (3) The connectivity properties of the SN were effective in discriminating controls from patients; (4) In patients, the dynamic intra-SN connectivity negatively predicted the inter-network FC, and this effect was mediated by intra-SN connectivity strength. These findings suggest that schizophrenia show systematic deficits in temporal stability of large-scale network connectivity. Furthermore, aberrant network interactions in schizophrenia could be attributed to instable intra-SN connectivity and the dysfunction of the SN may be an intrinsic biomarker of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  17. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  18. Predicting protein interactions via parsimonious network history inference.

    Science.gov (United States)

    Patro, Rob; Kingsford, Carl

    2013-07-01

    Reconstruction of the network-level evolutionary history of protein-protein interactions provides a principled way to relate interactions in several present-day networks. Here, we present a general framework for inferring such histories and demonstrate how it can be used to determine what interactions existed in the ancestral networks, which present-day interactions we might expect to exist based on evolutionary evidence and what information extant networks contain about the order of ancestral protein duplications. Our framework characterizes the space of likely parsimonious network histories. It results in a structure that can be used to find probabilities for a number of events associated with the histories. The framework is based on a directed hypergraph formulation of dynamic programming that we extend to enumerate many optimal and near-optimal solutions. The algorithm is applied to reconstructing ancestral interactions among bZIP transcription factors, imputing missing present-day interactions among the bZIPs and among proteins from five herpes viruses, and determining relative protein duplication order in the bZIP family. Our approach more accurately reconstructs ancestral interactions than existing approaches. In cross-validation tests, we find that our approach ranks the majority of the left-out present-day interactions among the top 2 and 17% of possible edges for the bZIP and herpes networks, respectively, making it a competitive approach for edge imputation. It also estimates relative bZIP protein duplication orders, using only interaction data and phylogenetic tree topology, which are significantly correlated with sequence-based estimates. The algorithm is implemented in C++, is open source and is available at http://www.cs.cmu.edu/ckingsf/software/parana2. Supplementary data are available at Bioinformatics online.

  19. Medical Image Classification Using Genetic Optimized Elman Network

    Directory of Open Access Journals (Sweden)

    T. Baranidharan

    2012-01-01

    Full Text Available Problem statement: Advancements in the internet and digital images have resulted in a huge database of images. Most of the current search engines found in the web depends only on images that can be retrieved using metadata, which generates a lot of unwanted results in the results got. Content-Based Image Retrieval (CBIR system is the utilization of computer vision techniques in the predicament of image retrieval. In other words, it is used for searching and retrieving of the right digital image among a huge database using query image. CBIR finds extensive applications in the field of medicine as it helps medical professionals in diagnosis and plan treatment. Approach: Various methods have been proposed for CBIR using the images low level features like histogram, color, texture and shape. Similarly various classification algorithms like Naive Bayes classifier, Support Vector Machine, Decision tree induction algorithms and Neural Network based classifiers have been studied extensively. In this study it is proposed to extract global features using Hilbert Transform (HT, select features based on the correlation of the extracted vectors with respect to the class label and propose a enhanced Elman Neural Network Genetic Algorithm Optimized Elman (GAOE Neural Network. Results and Conclusion: The proposed method for feature extraction and the classification algorithm was tested on a dataset consisting of 180 medical images. The classification accuracy of 92.22% was obtained in the proposed method.

  20. Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Samanta B

    2004-01-01

    Full Text Available A study is presented to compare the performance of bearing fault detection using three types of artificial neural networks (ANNs, namely, multilayer perceptron (MLP, radial basis function (RBF network, and probabilistic neural network (PNN. The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to all three ANN classifiers: MLP, RBF, and PNN for two-class (normal or fault recognition. The characteristic parameters like number of nodes in the hidden layer of MLP and the width of RBF, in case of RBF and PNN along with the selection of input features, are optimized using genetic algorithms (GA. For each trial, the ANNs are trained with a subset of the experimental data for known machine conditions. The ANNs are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine with and without bearing faults. The results show the relative effectiveness of three classifiers in detection of the bearing condition.

  1. Major component analysis of dynamic networks of physiologic organ interactions

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  2. CIDeR: multifactorial interaction networks in human diseases.

    Science.gov (United States)

    Lechner, Martin; Höhn, Veit; Brauner, Barbara; Dunger, Irmtraud; Fobo, Gisela; Frishman, Goar; Montrone, Corinna; Kastenmüller, Gabi; Waegele, Brigitte; Ruepp, Andreas

    2012-07-18

    The pathobiology of common diseases is influenced by heterogeneous factors interacting in complex networks. CIDeR http://mips.helmholtz-muenchen.de/cider/ is a publicly available, manually curated, integrative database of metabolic and neurological disorders. The resource provides structured information on 18,813 experimentally validated interactions between molecules, bioprocesses and environmental factors extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make CIDeR a versatile knowledge base for biologists, analysis of large-scale data and systems biology approaches.

  3. Interaction Network, State Space and Control in Social Dynamics

    CERN Document Server

    Aydogdu, Aylin; McQuade, Sean; Piccoli, Benedetto; Duteil, Nastassia Pouradier; Rossi, Francesco; Trélat, Emmanuel

    2016-01-01

    In the present chapter we study the emergence of global patterns in large groups in first and second-order multi-agent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space determines the types of equilibrium that can be reached by the system. Meanwhile, convergence to specific equilibria depends on the connectivity of the interaction network and on the interaction potential. When the system does not satisfy the necessary conditions for convergence to the desired equilibrium, control can be exerted, both on finite-dimensional systems and on their mean-field limit.

  4. Geometric de-noising of protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Oleksii Kuchaiev

    2009-08-01

    Full Text Available Understanding complex networks of protein-protein interactions (PPIs is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H, tandem affinity purification (TAP and other high-throughput methods for protein-protein interaction (PPI detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.

  5. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  6. Pairwise interaction pattern in the weighted communication network

    CERN Document Server

    Xu, Xiao-Ke; Wu, Ye; Small, Michael

    2012-01-01

    Although recent studies show that both topological structures and human dynamics can strongly affect information spreading on social networks, the complicated interplay of the two significant factors has not yet been clearly described. In this work, we find a strong pairwise interaction based on analyzing the weighted network generated by the short message communication dataset within a Chinese tele-communication provider. The pairwise interaction bridges the network topological structure and human interaction dynamics, which can promote local information spreading between pairs of communication partners and in contrast can also suppress global information (e.g., rumor) cascade and spreading. In addition, the pairwise interaction is the basic pattern of group conversations and it can greatly reduce the waiting time of communication events between a pair of intimate friends. Our findings are also helpful for communication operators to design novel tariff strategies and optimize their communication services.

  7. Revealing physical interaction networks from statistics of collective dynamics

    Science.gov (United States)

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  8. Modeling human dynamics of face-to-face interaction networks

    CERN Document Server

    Starnini, Michele; Pastor-Satorras, Romualdo

    2013-01-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of inter-conversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents which perform a random walk in a two dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  9. A Study of Feature Interactions in Intelligent Networks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Plain Old Telephone Services (POTS) are used to establish the voice connection between two telephone users; and supplementary services such as call waiting, call forwarding, and call completion to busy subscribers, provide additional functions to POTS. In order to facilitate the communication between users, telecommunication networks should provide new services to end users in a quick way. However, the introduction of new telecommunication services into the existing network may interfere with the existing services, thus causing feature interactions. In many cases, feature interactions bring the unwanted or undesired system behavior to end users, decreasing the service quality. Although new technology like Intelligent Networks (IN) enables the quick introduction of new telecommunication services, but owing to the feature interaction, and the vast effort has to be put into checking the compatibility between telecommunication services. Feature interactions has become the bottle-neck problem to the development of new telecommunication services.

  10. How people interact in evolving online affiliation networks

    CERN Document Server

    Gallos, Lazaros K; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernan A

    2011-01-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We first show that an accurate estimation of these probabilistic tendencies can only be achieved by following the time evolution of the network. For example, actions that are attributed to the usual friend of a friend mechanism through a static snapshot of the network are overestimated by a factor of two. A detailed analysis of the dynamic network evolution shows that half of those triangles were generated through other mechanisms, in spite of the characteristic static pattern. We start by characterizing every single link when the tie was established in the network. This allows us to describe the probabilistic tendencies of tie formation and extract sociological conclusions as...

  11. Complex genetic interactions in a quantitative trait locus.

    Directory of Open Access Journals (Sweden)

    Himanshu Sinha

    2006-02-01

    Full Text Available Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs, characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg QTGs (MKT1, END3, and RHO2. We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3'UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae.

  12. Comprehensive assessment and network analysis of the emerging genetic susceptibility landscape of prostate cancer.

    Science.gov (United States)

    Hicks, Chindo; Miele, Lucio; Koganti, Tejaswi; Vijayakumar, Srinivasan

    2013-01-01

    Recent advances in high-throughput genotyping have made possible identification of genetic variants associated with increased risk of developing prostate cancer using genome-wide associations studies (GWAS). However, the broader context in which the identified genetic variants operate is poorly understood. Here we present a comprehensive assessment, network, and pathway analysis of the emerging genetic susceptibility landscape of prostate cancer. We created a comprehensive catalog of genetic variants and associated genes by mining published reports and accompanying websites hosting supplementary data on GWAS. We then performed network and pathway analysis using single nucleotide polymorphism (SNP)-containing genes to identify gene regulatory networks and pathways enriched for genetic variants. We identified multiple gene networks and pathways enriched for genetic variants including IGF-1, androgen biosynthesis and androgen signaling pathways, and the molecular mechanisms of cancer. The results provide putative functional bridges between GWAS findings and gene regulatory networks and biological pathways.

  13. Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.

  14. Protein interaction networks--more than mere modules.

    Directory of Open Access Journals (Sweden)

    Stefan Pinkert

    2010-01-01

    Full Text Available It is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular networks. A common view is that a "module" in a network is a cohesively linked group of nodes, densely connected internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in protein-interaction networks (PIN by searching for such cohesive groups of proteins. Here, we present an alternative approach independent of any prior definition of what actually constitutes a "module". In a self-consistent manner, proteins are grouped into "functional roles" if they interact in similar ways with other proteins according to their functional roles. Such grouping may well result in cohesive modules again, but only if the network structure actually supports this. We applied our method to the PIN from the Human Protein Reference Database (HPRD and found that a representation of the network in terms of cohesive modules, at least on a global scale, does not optimally represent the network's structure because it focuses on finding independent groups of proteins. In contrast, a decomposition into functional roles is able to depict the structure much better as it also takes into account the interdependencies between roles and even allows groupings based on the absence of interactions between proteins in the same functional role. This, for example, is the case for transmembrane proteins, which could never be recognized as a cohesive group of nodes in a PIN. When mapping experimental methods onto the groups, we identified profound differences in the coverage suggesting that our method is able to capture experimental bias in the data, too. For example yeast-two-hybrid data were highly overrepresented in one particular group. Thus, there is more structure in protein-interaction networks than cohesive modules alone and we believe this finding can significantly improve automated function

  15. Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network

    Science.gov (United States)

    Fang, Yi; Benjamin, William; Sun, Mengtian; Ramani, Karthik

    2011-01-01

    Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries. PMID:21559288

  16. Does self-construal predict activity in the social brain network? A genetic moderation effect

    Science.gov (United States)

    Ma, Yina; Han, Shihui

    2014-01-01

    Neural activity in the social brain network varies across individuals with different cultural traits and different genetic polymorphisms. It remains unknown whether a specific genetic polymorphism may influence the association between cultural traits and neural activity in the social brain network. We tested whether the serotonin transporter promoter polymorphism (5-HTTLPR) affects the association between self-construals and neural activity involved in reflection of personal attributes of oneself and a significant other (i.e., mother). Using functional MRI, we scanned Chinese adults with short/short (s/s) or long/long (l/l) variants of the 5-HTTLPR during reflection of personal attributes of oneself and one’s mother. We found that, while s/s and l/l genotype groups did not differ significantly in self-construals measured by the Self-Construal Scale, the relationship between self-construal scores and neural responses to reflection of oneself and mother was significantly different between the two genotype groups. Specifically, l/l but not s/s genotype group showed significant association between self-construal scores and activity in the medial prefrontal cortex, bilateral middle frontal cortex, temporoparietal junction, insula and hippocampus during reflection on mental attributes of oneself and mother. Our findings suggest that a specific genetic polymorphism may interact with a cultural trait to shape the neural substrates underlying social cognition. PMID:24009354

  17. Genetic Interactions of STAT3 and Anticancer Drug Development

    Directory of Open Access Journals (Sweden)

    Bingliang Fang

    2014-03-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  18. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  19. Inference of gene regulatory networks from genetic perturbations with linear regression model.

    Directory of Open Access Journals (Sweden)

    Zijian Dong

    Full Text Available It is an effective strategy to use both genetic perturbation data and gene expression data to infer regulatory networks that aims to improve the detection accuracy of the regulatory relationships among genes. Based on both types of data, the genetic regulatory networks can be accurately modeled by Structural Equation Modeling (SEM. In this paper, a linear regression (LR model is formulated based on the SEM, and a novel iterative scheme using Bayesian inference is proposed to estimate the parameters of the LR model (LRBI. Comparative evaluations of LRBI with other two algorithms, the Adaptive Lasso (AL-Based and the Sparsity-aware Maximum Likelihood (SML, are also presented. Simulations show that LRBI has significantly better performance than AL-Based, and overperforms SML in terms of power of detection. Applying the LRBI algorithm to experimental data, we inferred the interactions in a network of 35 yeast genes. An open-source program of the LRBI algorithm is freely available upon request.

  20. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  1. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    Science.gov (United States)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  2. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  3. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    National Research Council Canada - National Science Library

    Simonyan, Kristina; Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce...

  4. The interaction of intrinsic dynamics and network topology in determining network burst synchrony.

    Science.gov (United States)

    Gaiteri, Chris; Rubin, Jonathan E

    2011-01-01

    The pre-Bötzinger complex (pre-BötC), within the mammalian respiratory brainstem, represents an ideal system for investigating the synchronization properties of complex neuronal circuits via the interaction of cell-type heterogeneity and network connectivity. In isolation, individual respiratory neurons from the pre-BötC may be tonically active, rhythmically bursting, or quiescent. Despite this intrinsic heterogeneity, coupled networks of pre-BötC neurons en bloc engage in synchronized bursting that can drive inspiratory motor neuron activation. The region's connection topology has been recently characterized and features dense clusters of cells with occasional connections between clusters. We investigate how the dynamics of individual neurons (quiescent/bursting/tonic) and the betweenness centrality of neurons' positions within the network connectivity graph interact to govern network burst synchrony, by simulating heterogeneous networks of computational model pre-BötC neurons. Furthermore, we compare the prevalence and synchrony of bursting across networks constructed with a variety of connection topologies, analyzing the same collection of heterogeneous neurons in small-world, scale-free, random, and regularly structured networks. We find that several measures of network burst synchronization are determined by interactions of network topology with the intrinsic dynamics of neurons at central network positions and by the strengths of synaptic connections between neurons. Surprisingly, despite the functional role of synchronized bursting within the pre-BötC, we find that synchronized network bursting is generally weakest when we use its specific connection topology, which leads to synchrony within clusters but poor coordination across clusters. Overall, our results highlight the relevance of interactions between topology and intrinsic dynamics in shaping the activity of networks and the concerted effects of connectivity patterns and dynamic heterogeneities.

  5. Strategy selection in evolutionary game dynamics on group interaction networks.

    Science.gov (United States)

    Tan, Shaolin; Feng, Shasha; Wang, Pei; Chen, Yao

    2014-11-01

    Evolutionary game theory provides an appropriate tool for investigating the competition and diffusion of behavioral traits in biological or social populations. A core challenge in evolutionary game theory is the strategy selection problem: Given two strategies, which one is favored by the population? Recent studies suggest that the answer depends not only on the payoff functions of strategies but also on the interaction structure of the population. Group interactions are one of the fundamental interactive modes within populations. This work aims to investigate the strategy selection problem in evolutionary game dynamics on group interaction networks. In detail, the strategy selection conditions are obtained for some typical networks with group interactions. Furthermore, the obtained conditions are applied to investigate selection between cooperation and defection in populations. The conditions for evolution of cooperation are derived for both the public goods game and volunteer's dilemma game. Numerical experiments validate the above analytical results.

  6. Ecology 2.0: Coexistence and Domination of Interacting Networks

    CERN Document Server

    Kleineberg, Kaj-Kolja

    2014-01-01

    The overwhelming success of the web 2.0, with online social networks as key actors, has induced a paradigm shift in the nature of human interactions. The user-driven character of these services for the first time has allowed researchers to quantify large-scale social patterns. However, the mechanisms that determine the fate of networks at a system level are still poorly understood. For instance, the simultaneous existence of numerous digital services naturally raises the question under which conditions these services can coexist. In analogy to population dynamics, the digital world is forming a complex ecosystem of interacting networks whose fitnesses depend on their ability to attract and maintain users' attention, which constitutes a limited resource. In this paper, we introduce an ecological theory of the digital world which exhibits a stable coexistence of several networks as well as the domination of a single one, in contrast to the principle of competitive exclusion. Interestingly, our model also predic...

  7. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  8. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    Science.gov (United States)

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  9. The polarity sub-network in the yeast network of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Luca Paris

    2011-12-01

    Full Text Available Rare, but highly connected, hub proteins subdivide hierarchically global networks of interacting proteins into modular clusters. Most biological research, however, focuses on functionally defined sub-networks. Thus, it is important to know whether the sub-networks retain the same topology of the global networks, from which they derive. To address this issue, we have analyzed the protein-protein interaction sub-network that participates in the polarized growth of the budding yeast Saccharomyces cerevisiae and that is derived from the global network of this model organism. We have observed that, in contrast to global networks, the distribution of connectivity k (i.e., the number of interactions per protein does not follow a power law, but decays exponentially, which reflects the local absence of hub proteins. Nonetheless, far from being randomly organized, the polarity sub-network can be subdivided into functional modules. In addition, most non-hub connector proteins, besides ensuring communications among modules, are linked mutually and contribute to the formation of the polarisome, a structure that coordinates actin assembly with polarized growth. These findings imply that identifying critical proteins within sub-networks (e.g., for the aim of targeted therapy requires searching not only for hubs but also for key non-hub connectors, which might remain otherwise unnoticed due to their relatively low connectivity.

  10. Point Process Modeling for Directed Interaction Networks

    Science.gov (United States)

    2011-10-01

    Enron corporation between 1998 and 2002. These e-mail interaction data give rise to the following questions: Homophily To what extent are traits shared...methods Our example analysis uses publicly available data from the Enron e-mail corpus (Cohen, 2009), a large subset of the e-mail messages sent within...the Enron corporation between 1998 and 2002, and made public as the result of a subpoena by the U.S. Federal Energy Regulatory Commission during an

  11. Probing the Extent of Randomness in Protein Interaction Networks

    Science.gov (United States)

    2008-07-11

    elegans [16], Plasmodium falciparum [17], Campylobacter jejuni [18], and Homo sapiens [7]. A number of efforts to compile and, in some cases, curate the...Weighted Connectivity in Two PPI Networks. (A) Helicobacter pylori and (B) Campylobacter jejuni . For k1k2.10, probabilities of interaction P(k1,k2) were...Four PPI Networks and their DCDW Equivalents. (A) Drosophila melanogaster, (B) Campylobacter jejuni , (C) Escherichia coli (HT2), and (D) Escherichia

  12. Interacting epidemics and coinfection on contact networks

    CERN Document Server

    Newman, M E J

    2013-01-01

    The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.

  13. Interacting epidemics and coinfection on contact networks.

    Directory of Open Access Journals (Sweden)

    M E J Newman

    Full Text Available The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.

  14. Characterizing interactions in online social networks during exceptional events

    CERN Document Server

    Omodei, Elisa; Arenas, Alex

    2015-01-01

    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the...

  15. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Science.gov (United States)

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  16. Yeast Augmented Network Analysis (YANA: a new systems approach to identify therapeutic targets for human genetic diseases [v1; ref status: indexed, http://f1000r.es/3gk

    Directory of Open Access Journals (Sweden)

    David J. Wiley

    2014-06-01

    Full Text Available Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA approach and test it with the X-linked spinal muscular atrophy (SMA disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.

  17. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Côtôé

    2016-11-01

    Full Text Available Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo. To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli. Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms.

  18. The evolution of generalized reciprocity on social interaction networks.

    Science.gov (United States)

    van Doorn, Gerrit Sander; Taborsky, Michael

    2012-03-01

    Generalized reciprocity (help anyone, if helped by someone) is a minimal strategy capable of supporting cooperation between unrelated individuals. Its simplicity makes it an attractive model to explain the evolution of reciprocal altruism in animals that lack the information or cognitive skills needed for other types of reciprocity. Yet, generalized reciprocity is anonymous and thus defenseless against exploitation by defectors. Recognizing that animals hardly ever interact randomly, we investigate whether social network structure can mitigate this vulnerability. Our results show that heterogeneous interaction patterns strongly support the evolution of generalized reciprocity. The future probability of being rewarded for an altruistic act is inversely proportional to the average connectivity of the social network when cooperators are rare. Accordingly, sparse networks are conducive to the invasion of reciprocal altruism. Moreover, the evolutionary stability of cooperation is enhanced by a modular network structure. Communities of reciprocal altruists are protected against exploitation, because modularity increases the mean access time, that is, the average number of steps that it takes for a random walk on the network to reach a defector. Sparseness and community structure are characteristic properties of vertebrate social interaction patterns, as illustrated by network data from natural populations ranging from fish to primates.

  19. Evaluating Australian football league player contributions using interactive network simulation.

    Science.gov (United States)

    Sargent, Jonathan; Bedford, Anthony

    2013-01-01

    This paper focuses on the contribution of Australian Football League (AFL) players to their team's on-field network by simulating player interactions within a chosen team list and estimating the net effect on final score margin. A Visual Basic computer program was written, firstly, to isolate the effective interactions between players from a particular team in all 2011 season matches and, secondly, to generate a symmetric interaction matrix for each match. Negative binomial distributions were fitted to each player pairing in the Geelong Football Club for the 2011 season, enabling an interactive match simulation model given the 22 chosen players. Dynamic player ratings were calculated from the simulated network using eigenvector centrality, a method that recognises and rewards interactions with more prominent players in the team network. The centrality ratings were recorded after every network simulation and then applied in final score margin predictions so that each player's match contribution-and, hence, an optimal team-could be estimated. The paper ultimately demonstrates that the presence of highly rated players, such as Geelong's Jimmy Bartel, provides the most utility within a simulated team network. It is anticipated that these findings will facilitate optimal AFL team selection and player substitutions, which are key areas of interest to coaches. Network simulations are also attractive for use within betting markets, specifically to provide information on the likelihood of a chosen AFL team list "covering the line ". Key pointsA simulated interaction matrix for Australian Rules football players is proposedThe simulations were carried out by fitting unique negative binomial distributions to each player pairing in a sideEigenvector centrality was calculated for each player in a simulated matrix, then for the teamThe team centrality measure adequately predicted the team's winning marginA player's net effect on margin could hence be estimated by replacing him in

  20. Delay decomposition approach to [Formula: see text] filtering analysis of genetic oscillator networks with time-varying delays.

    Science.gov (United States)

    Revathi, V M; Balasubramaniam, P

    2016-04-01

    In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.

  1. Interface-resolved network of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Margaret E Johnson

    Full Text Available We define an interface-interaction network (IIN to capture the specificity and competition between protein-protein interactions (PPI. This new type of network represents interactions between individual interfaces used in functional protein binding and thereby contains the detail necessary to describe the competition and cooperation between any pair of binding partners. Here we establish a general framework for the construction of IINs that merges computational structure-based interface assignment with careful curation of available literature. To complement limited structural data, the inclusion of biochemical data is critical for achieving the accuracy and completeness necessary to analyze the specificity and competition between the protein interactions. Firstly, this procedure provides a means to clarify the information content of existing data on purported protein interactions and to remove indirect and spurious interactions. Secondly, the IIN we have constructed here for proteins involved in clathrin-mediated endocytosis (CME exhibits distinctive topological properties. In contrast to PPI networks with their global and relatively dense connectivity, the fragmentation of the IIN into distinctive network modules suggests that different functional pressures act on the evolution of its topology. Large modules in the IIN are formed by interfaces sharing specificity for certain domain types, such as SH3 domains distributed across different proteins. The shared and distinct specificity of an interface is necessary for effective negative and positive design of highly selective binding targets. Lastly, the organization of detailed structural data in a network format allows one to identify pathways of specific binding interactions and thereby predict effects of mutations at specific surfaces on a protein and of specific binding inhibitors, as we explore in several examples. Overall, the endocytosis IIN is remarkably complex and rich in features masked

  2. TP53 mutations, expression and interaction networks in human cancers.

    Science.gov (United States)

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  3. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrb(s-l and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9. We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B.

  4. Rapid Identification of Chemical Genetic Interactions in Saccharomyces cerevisiae

    Science.gov (United States)

    Dilworth, David; Nelson, Christopher J.

    2015-01-01

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described. PMID:25867090

  5. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability

  6. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  7. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  8. Evolutionary interaction networks of insect pathogenic fungi.

    Science.gov (United States)

    Boomsma, Jacobus J; Jensen, Annette B; Meyling, Nicolai V; Eilenberg, Jørgen

    2014-01-01

    Lineages of insect pathogenic fungi are concentrated in three major clades: Hypocreales (several genera), Entomophthoromycota (orders Entomophthorales and Neozygitales), and Onygenales (genus Ascosphaera). Our review focuses on aspects of the evolutionary biology of these fungi that have remained underemphasized in previous reviews. To ensure integration with the better-known domains of insect pathology research, we followed a conceptual framework formulated by Tinbergen, asking complementary questions on mechanism, ontogeny, phylogeny, and adaptation. We aim to provide an introduction to the merits of evolutionary approaches for readers with a background in invertebrate pathology research and to make the insect pathogenic fungi more accessible as model systems for evolutionary biologists. We identify a number of questions in which fundamental research can offer novel insights into the evolutionary forces that have shaped host specialization and life-history traits such as spore number and size, somatic growth rate, toxin production, and interactions with host immune systems.

  9. On the underlying assumptions of threshold Boolean networks as a model for genetic regulatory network behavior

    Science.gov (United States)

    Tran, Van; McCall, Matthew N.; McMurray, Helene R.; Almudevar, Anthony

    2013-01-01

    Boolean networks (BoN) are relatively simple and interpretable models of gene regulatory networks. Specifying these models with fewer parameters while retaining their ability to describe complex regulatory relationships is an ongoing methodological challenge. Additionally, extending these models to incorporate variable gene decay rates, asynchronous gene response, and synergistic regulation while maintaining their Markovian nature increases the applicability of these models to genetic regulatory networks (GRN). We explore a previously-proposed class of BoNs characterized by linear threshold functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional BoNs with unconstrained transition functions, these models require far fewer parameters and offer a more direct interpretation. However, the functional form of a TBN does result in a reduction in the regulatory relationships which can be modeled. We show that TBNs can be readily extended to permit self-degradation, with explicitly modeled degradation rates. We note that the introduction of variable degradation compromises the Markovian property fundamental to BoN models but show that a simple state augmentation procedure restores their Markovian nature. Next, we study the effect of assumptions regarding self-degradation on the set of possible steady states. Our findings are captured in two theorems relating self-degradation and regulatory feedback to the steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene response and asynergistic regulation and show that TBNs can be easily extended to relax these assumptions. Applying our methods to the budding yeast cell-cycle network revealed that although the network is complex, its steady state is simplified by the presence of self-degradation and lack of purely positive regulatory cycles. PMID:24376454

  10. Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2006-04-01

    Full Text Available Probabilistic Boolean networks (PBNs have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.

  11. Network Physiology: Mapping interactions between complex physiological systems

    OpenAIRE

    Ivanov, Plamen Ch.

    2016-01-01

    The human organism is an integrated network where multi-component organ systems, each with its own regulatory mechanisms, continuously interact to optimize and coordinate their function. Organ-to-organ interactions occur at multiple levels and spatiotemporal time scales to produce distinct physiologic states: wake and sleep; light and deep sleep; consciousness and unconsciousness. Disrupting organ communications can lead to dysfunction of individual systems or to collapse of the entire organ...

  12. Ecological interaction and phylogeny, studying functionality on composed networks

    Science.gov (United States)

    Cruz, Claudia P. T.; Fonseca, Carlos Roberto; Corso, Gilberto

    2012-02-01

    We study a class of composed networks that are formed by two tree networks, TP and TA, whose end points touch each other through a bipartite network BPA. We explore this network using a functional approach. We are interested in how much the topology, or the structure, of TX (X=A or P) determines the links of BPA. This composed structure is a useful model in evolutionary biology, where TP and TA are the phylogenetic trees of plants and animals that interact in an ecological community. We make use of ecological networks of dispersion of fruits, which are formed by frugivorous animals and plants with fruits; the animals, usually birds, eat fruits and disperse their seeds. We analyse how the phylogeny of TX determines or is correlated with BPA using a Monte Carlo approach. We use the phylogenetic distance among elements that interact with a given species to construct an index κ that quantifies the influence of TX over BPA. The algorithm is based on the assumption that interaction matrices that follows a phylogeny of TX have a total phylogenetic distance smaller than the average distance of an ensemble of Monte Carlo realisations. We find that the effect of phylogeny of animal species is more pronounced in the ecological matrix than plant phylogeny.

  13. Simulating market dynamics: interactions between consumer psychology and social networks.

    Science.gov (United States)

    Janssen, Marco A; Jager, Wander

    2003-01-01

    Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).

  14. Stability as a natural selection mechanism on interacting networks

    Directory of Open Access Journals (Sweden)

    Francisco A. Tamarit

    2010-02-01

    Full Text Available Biological networks of interacting agents exhibit similar topological properties for a wide range of scales, from cellular to ecological levels, suggesting the existence of a common evolutionary origin. A general evolutionary mechanism based on global stability has been proposed recently  [J I Perotti, et al., Phys. Rev. Lett. 103, 108701 (2009]. This mechanism was incorporated into a  model of a growing network of interacting agents in which each new agent's membership in the network is determined by the agent's effect on the network's global stability. In this work, we analyze different quantities that characterize the topology of the emerging networks, such as global connectivity, clustering and average nearest neighbors degree, showing that they reproduce scaling behaviors frequently observed in several biological systems. The influence of the stability selection  mechanism on the dynamics associated to the resulting network, as well as  the interplay  between some topological and functional features are also analyzed.Received: 17 July 2010; Accepted: 27 September 2010; Edited by: D. H. Zanette; Reviewed by: V. M. Eguiluz, Inst. Fisica Interdisciplinar y Sist. Complejos, Palma de Mallorca, Spain; DOI: 10.4279/PIP.020005

  15. Design of Supply Chain Networks with Supply Disruptions using Genetic Algorithm

    OpenAIRE

    2014-01-01

    The design of supply chain networks subject to disruptions is tackled. A genetic algorithm with the objective of minimizing the design cost and regret cost is developed to achieve a reliable supply chain network. The improvement of supply chain network reliability is measured against the supply chain cost.

  16. Design of Supply Chain Networks with Supply Disruptions using Genetic Algorithm

    OpenAIRE

    Taha, Raghda; Abdallah, Khaled; Sadek, Yomma; El-Kharbotly, Amin; Afia, Nahid

    2014-01-01

    The design of supply chain networks subject to disruptions is tackled. A genetic algorithm with the objective of minimizing the design cost and regret cost is developed to achieve a reliable supply chain network. The improvement of supply chain network reliability is measured against the supply chain cost.

  17. An integrated text mining framework for metabolic interaction network reconstruction.

    Science.gov (United States)

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  18. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  19. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution

    Science.gov (United States)

    Hsu, Chieh; Scherrer, Simone; Buetti-Dinh, Antoine; Ratna, Prasuna; Pizzolato, Julia; Jaquet, Vincent; Becskei, Attila

    2012-01-01

    During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit. PMID:22353713

  20. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Science.gov (United States)

    Acencio, Marcio Luis; Bovolenta, Luiz Augusto; Camilo, Esther; Lemke, Ney

    2013-01-01

    Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research

  1. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Directory of Open Access Journals (Sweden)

    Marcio Luis Acencio

    Full Text Available Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI. This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved

  2. Signed Networks, Triadic Interactions and the Evolution of Cooperation

    Directory of Open Access Journals (Sweden)

    Károly Takács

    2013-09-01

    Full Text Available We outline a model to study the evolution of cooperation in a population of agents playing the prisoner's dilemma in signed networks. We highlight that if only dyadic interactions are taken into account, cooperation never evolves. However, when triadic considerations are introduced, a window of opportunity for emergence of cooperation as a stable behaviour emerges.

  3. Communicating, Networking: Interacting: The International Year of Global Understanding - IYGU

    National Research Council Canada - National Science Library

    Margaret E. Robertson

    2016-01-01

    ... for the world’s people, and the health of the planet, is an ongoing project.IYGU recognises the integral roles of networking and communication systems, as well as interactions between people, near and far, as fundamental for building better futures...

  4. Robust collaborative process interactions under system crash and network failures

    NARCIS (Netherlands)

    Wang, Lei; Wombacher, Andreas; Ferreira Pires, Luis; van Sinderen, Marten J.; Chi, Chihung

    2013-01-01

    With the possibility of system crashes and network failures, the design of robust client/server interactions for collaborative process execution is a challenge. If a business process changes its state, it sends messages to the relevant processes to inform about this change. However, server crashes

  5. Dynamic modularity in protein interaction networks predicts breast cancer outcome

    DEFF Research Database (Denmark)

    Taylor, Ian W; Linding, Rune; Warde-Farley, David

    2009-01-01

    Changes in the biochemical wiring of oncogenic cells drives phenotypic transformations that directly affect disease outcome. Here we examine the dynamic structure of the human protein interaction network (interactome) to determine whether changes in the organization of the interactome can be used...

  6. Evaluation of the efficiency of artificial neural networks for genetic value prediction.

    Science.gov (United States)

    Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M

    2016-03-28

    Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.

  7. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    Science.gov (United States)

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. © The Author (2015). Published by Oxford University Press on behalf

  8. Etiologic Ischemic Stroke Phenotypes in the NINDS Stroke Genetics Network

    Science.gov (United States)

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Robert D.; Chapman, Sherita N.; Cole, John W.; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P.; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J.; Kleindorfer, Dawn O.; Labovitz, Daniel L.; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S.; McArdle, Patrick F.; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M.; Rhodes, David; Rich, Stephen S.; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M.; Rundek, Tatjana; Sacco, Ralph L.; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B.; Meschia, James F.

    2014-01-01

    Background and Purpose NINDS Stroke Genetics Network (SiGN) is an international consortium of ischemic stroke studies that aims to generate high quality phenotype data to identify the genetic basis of etiologic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. Methods Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major etiologic groups without weighting towards the most likely cause) and causative ischemic stroke subtypes in 16,954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded re-adjudication of 1509 randomly selected cases. Results The distribution of etiologic categories varied by study, age, sex, and race (pstroke etiology (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (kappa 0.72, 95%CI:0.69-0.75) and phenotypic classifications (kappa 0.73, 95%CI:0.70-0.75). Conclusions This study demonstrates that etiologic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a stroke patient does not necessarily mean that it is the cause of stroke. PMID:25378430

  9. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  10. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates

    Science.gov (United States)

    Boloc, Daniel; Castillo-Lara, Sergio; Marfany, Gemma; Gonzàlez-Duarte, Roser; Abril, Josep F.

    2015-01-01

    Background Retinitis pigmentosa (RP) is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA). The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies. Methodology We have built an RP-specific network (RPGeNet) by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space. Conclusions In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates. PMID:26267445

  11. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.

  12. How People Interact in Evolving Online Affiliation Networks

    Science.gov (United States)

    Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.

    2012-07-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  13. On the underlying assumptions of threshold Boolean networks as a model for genetic regulatory network behavior

    Directory of Open Access Journals (Sweden)

    Van eTran

    2013-12-01

    Full Text Available Boolean networks (BoN are relatively simple and interpretable models of gene regulatorynetworks. Specifying these models with fewer parameters while retaining their ability to describe complex regulatory relationships is an ongoing methodological challenge. Additionally, extending these models to incorporate variable gene decay rates, asynchronous gene response, and synergistic regulation while maintaining their Markovian nature increases the applicability of these models to genetic regulatory networks.We explore a previously-proposed class of BoNs characterized by linear threshold functions, which we refer to as threshold Boolean networks (TBN. Compared to traditional BoNs with unconstrained transition functions, these models require far fewer parameters and offer a more direct interpretation. However, the functional form of a TBN does result in a reduction in the regulatory relationships which can be modeled.We show that TBNs can be readily extended to permit self-degradation, with explicitly modeled degradation rates. We note that the introduction of variable degradation compromises the Markovian property fundamental to BoN models but show that a simple state augmentation procedure restores their Markovian nature. Next, we study the effect of assumptions regarding self-degradation on the set of possible steady states. Our findings are captured in two theorems relating self-degradation and regulatory feedback to the steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene response and asynergistic regulation and show that TBNs can be easily extended to relax these assumptions.Applying our methods to the budding yeast cell-cycle network revealed that although the network is complex, its steady state is simplified by the presence of self-degradation and lack of purely positive regulatory cycles.

  14. Neighbor overlap is enriched in the yeast interaction network: analysis and implications.

    Directory of Open Access Journals (Sweden)

    Ariel Feiglin

    Full Text Available The yeast protein-protein interaction network has been shown to have distinct topological features such as a scale free degree distribution and a high level of clustering. Here we analyze an additional feature which is called Neighbor Overlap. This feature reflects the number of shared neighbors between a pair of proteins. We show that Neighbor Overlap is enriched in the yeast protein-protein interaction network compared with control networks carefully designed to match the characteristics of the yeast network in terms of degree distribution and clustering coefficient. Our analysis also reveals that pairs of proteins with high Neighbor Overlap have higher sequence similarity, more similar GO annotations and stronger genetic interactions than pairs with low ones. Finally, we demonstrate that pairs of proteins with redundant functions tend to have high Neighbor Overlap. We suggest that a combination of three mechanisms is the basis for this feature: The abundance of protein complexes, selection for backup of function, and the need to allow functional variation.

  15. Visualizing Gene - Interactions within the Rice and Maize Network

    Science.gov (United States)

    Sampong, A.; Feltus, A.; Smith, M.

    2014-12-01

    The purpose of this research was to design a simpler visualization tool for comparing or viewing gene interaction graphs in systems biology. This visualization tool makes it possible and easier for a researcher to visualize the biological metadata of a plant and interact with the graph on a webpage. Currently available visualization software like Cytoscape and Walrus are difficult to interact with and do not scale effectively for large data sets, limiting the ability to visualize interactions within a biological system. The visualization tool developed is useful for viewing and interpreting the dataset of a gene interaction network. The graph layout drawn by this visualization tool is an improvement from the previous method of comparing lines of genes in two separate data files to, now having the ability to visually see the layout of the gene networks and how the two systems are related. The graph layout presented by the visualization tool draws a graph of the sample rice and maize gene networks, linking the common genes found in both plants and highlighting the functions served by common genes from each plant. The success of this visualization tool will enable Dr. Feltus to continue his investigations and draw conclusions on the biological evolution of the sorghum plant as well. REU Funded by NSF ACI Award 1359223 Vetria L. Byrd, PI

  16. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Science.gov (United States)

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  17. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Directory of Open Access Journals (Sweden)

    Recep Colak

    Full Text Available BACKGROUND: Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. METHODOLOGY/PRINCIPAL FINDINGS: We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. CONCLUSION/SIGNIFICANCE: We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze

  18. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish

    Science.gov (United States)

    Hu, Peng; Liu, Mingli; Liu, Yimeng; Wang, Jinfeng; Zhang, Dong; Niu, Hongbo; Jiang, Shouwen; Wang, Jian; Zhang, Dongsheng; Han, Bingshe; Xu, Qianghua; Chen, Liangbiao

    2016-01-01

    Transcriptional plasticity is a major driver of phenotypic differences between species. The lower temperature limit (LTL), namely the lower end of survival temperature, is an important trait delimiting the geographical distribution of a species, however, the genetic mechanisms are poorly understood. We investigated the inter-species transcriptional diversification in cold responses between zebrafish Danio rerio and tilapia Oreochromis niloticus, which were reared at a common temperature (28 °C) but have distinct LTLs. We identified significant expressional divergence between the two species in the orthologous genes from gills when the temperature cooled to the LTL of tilapia (8 °C). Five KEGG pathways were found sequentially over-represented in the zebrafish/tilapia divergently expressed genes in the duration (12 hour) of 8 °C exposure, forming a signaling cascade from metabolic regulation to apoptosis via FoxO signaling. Consistently, we found differential progression of apoptosis in the gills of the two species in which zebrafish manifested a delayed and milder apoptotic phenotype than tilapia, corresponding with a lower LTL of zebrafish. We identified diverged expression in 25 apoptosis-related transcription factors between the two species which forms an interacting network with diverged factors involving the FoxO signaling and metabolic regulation. We propose a genetic network which regulates LTL in fishes. PMID:27356472

  19. Counting statistics for genetic switches based on effective interaction approximation

    Science.gov (United States)

    Ohkubo, Jun

    2012-09-01

    Applicability of counting statistics for a system with an infinite number of states is investigated. The counting statistics has been studied a lot for a system with a finite number of states. While it is possible to use the scheme in order to count specific transitions in a system with an infinite number of states in principle, we have non-closed equations in general. A simple genetic switch can be described by a master equation with an infinite number of states, and we use the counting statistics in order to count the number of transitions from inactive to active states in the gene. To avoid having the non-closed equations, an effective interaction approximation is employed. As a result, it is shown that the switching problem can be treated as a simple two-state model approximately, which immediately indicates that the switching obeys non-Poisson statistics.

  20. Counting statistics for genetic switches based on effective interaction approximation

    CERN Document Server

    Ohkubo, Jun

    2012-01-01

    Applicability of counting statistics for a system with an infinite number of states is investigated. The counting statistics has been studied a lot for a system with a finite number of states. While it is possible to use the scheme in order to count specific transitions in a system with an infinite number of states in principle, we have non-closed equations in general. A simple genetic switch can be described by a master equation with an infinite number of states, and we use the counting statistics in order to count the number of transitions from inactive to active states in the gene. To avoid to have the non-closed equations, an effective interaction approximation is employed. As a result, it is shown that the switching problem can be treated as a simple two-state model approximately, which immediately indicates that the switching obeys non-Poisson statistics.

  1. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Science.gov (United States)

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  2. The genetics of phenotypic plasticity. XIII. Interactions with developmental instability.

    Science.gov (United States)

    Scheiner, Samuel M

    2014-04-01

    In a heterogeneous environment, natural selection on a trait can lead to a variety of outcomes, including phenotypic plasticity and bet-hedging through developmental instability. These outcomes depend on the magnitude and pattern of that heterogeneity and the spatial and temporal distribution of individuals. However, we do not know if and how those two outcomes might interact with each other. I examined the joint evolution of plasticity and instability through the use of an individual-based simulation in which each could be genetically independent or pleiotropically linked. When plasticity and instability were determined by different loci, the only effect on the evolution of plasticity was the elimination of plasticity as a bet-hedging strategy. In contrast, the effects on the evolution of instability were more substantial. If conditions were such that the population was likely to evolve to the optimal reaction norm, then instability was disfavored. Instability was favored only when the lack of a reliable environmental cue disfavored plasticity. When plasticity and instability were determined by the same loci, instability acted as a strong limitation on the evolution of plasticity. Under some conditions, selection for instability resulted in maladaptive plasticity. Therefore, before testing any models of plasticity or instability evolution, or interpreting empirical patterns, it is important to know the ecological, life history, developmental, and genetic contexts of trait phenotypic plasticity and developmental instability.

  3. Comparison of protein interaction networks reveals species conservation and divergence

    Directory of Open Access Journals (Sweden)

    Teng Maikun

    2006-10-01

    Full Text Available Abstract Background Recent progresses in high-throughput proteomics have provided us with a first chance to characterize protein interaction networks (PINs, but also raised new challenges in interpreting the accumulating data. Results Motivated by the need of analyzing and interpreting the fast-growing data in the field of proteomics, we propose a comparative strategy to carry out global analysis of PINs. We compare two PINs by combining interaction topology and sequence similarity to identify conserved network substructures (CoNSs. Using this approach we perform twenty-one pairwise comparisons among the seven recently available PINs of E.coli, H.pylori, S.cerevisiae, C.elegans, D.melanogaster, M.musculus and H.sapiens. In spite of the incompleteness of data, PIN comparison discloses species conservation at the network level and the identified CoNSs are also functionally conserved and involve in basic cellular functions. We investigate the yeast CoNSs and find that many of them correspond to known complexes. We also find that different species harbor many conserved interaction regions that are topologically identical and these regions can constitute larger interaction regions that are topologically different but similar in framework. Based on the species-to-species difference in CoNSs, we infer potential species divergence. It seems that different species organize orthologs in similar but not necessarily the same topology to achieve similar or the same function. This attributes much to duplication and divergence of genes and their associated interactions. Finally, as the application of CoNSs, we predict 101 protein-protein interactions (PPIs, annotate 339 new protein functions and deduce 170 pairs of orthologs. Conclusion Our result demonstrates that the cross-species comparison strategy we adopt is powerful for the exploration of biological problems from the perspective of networks.

  4. Epidemic Modelling by Ripple-Spreading Network and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jian-Qin Liao

    2013-01-01

    Full Text Available Mathematical analysis and modelling is central to infectious disease epidemiology. This paper, inspired by the natural ripple-spreading phenomenon, proposes a novel ripple-spreading network model for the study of infectious disease transmission. The new epidemic model naturally has good potential for capturing many spatial and temporal features observed in the outbreak of plagues. In particular, using a stochastic ripple-spreading process simulates the effect of random contacts and movements of individuals on the probability of infection well, which is usually a challenging issue in epidemic modeling. Some ripple-spreading related parameters such as threshold and amplifying factor of nodes are ideal to describe the importance of individuals’ physical fitness and immunity. The new model is rich in parameters to incorporate many real factors such as public health service and policies, and it is highly flexible to modifications. A genetic algorithm is used to tune the parameters of the model by referring to historic data of an epidemic. The well-tuned model can then be used for analyzing and forecasting purposes. The effectiveness of the proposed method is illustrated by simulation results.

  5. Multiquadric Spline-Based Interactive Segmentation of Vascular Networks.

    Science.gov (United States)

    Meena, Sachin; Surya Prasath, V B; Kassim, Yasmin M; Maude, Richard J; Glinskii, Olga V; Glinsky, Vladislav V; Huxley, Virginia H; Palaniappan, Kannappan

    2016-08-01

    Commonly used drawing tools for interactive image segmentation and labeling include active contours or boundaries, scribbles, rectangles and other shapes. Thin vessel shapes in images of vascular networks are difficult to segment using automatic or interactive methods. This paper introduces the novel use of a sparse set of user-defined seed points (supervised labels) for precisely, quickly and robustly segmenting complex biomedical images. A multiquadric spline-based binary classifier is proposed as a unique approach for interactive segmentation using as features color values and the location of seed points. Epifluorescence imagery of the dura mater microvasculature are difficult to segment for quantitative applications due to challenging tissue preparation, imaging conditions, and thin, faint structures. Experimental results based on twenty epifluorescence images is used to illustrate the benefits of using a set of seed points to obtain fast and accurate interactive segmentation compared to four interactive and automatic segmentation approaches.

  6. Digital Ecology: Coexistence and Domination among Interacting Networks

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2015-05-01

    The overwhelming success of Web 2.0, within which online social networks are key actors, has induced a paradigm shift in the nature of human interactions. The user-driven character of Web 2.0 services has allowed researchers to quantify large-scale social patterns for the first time. However, the mechanisms that determine the fate of networks at the system level are still poorly understood. For instance, the simultaneous existence of multiple digital services naturally raises questions concerning which conditions these services can coexist under. Analogously to the case of population dynamics, the digital world forms a complex ecosystem of interacting networks. The fitness of each network depends on its capacity to attract and maintain users’ attention, which constitutes a limited resource. In this paper, we introduce an ecological theory of the digital world which exhibits stable coexistence of several networks as well as the dominance of an individual one, in contrast to the competitive exclusion principle. Interestingly, our theory also predicts that the most probable outcome is the coexistence of a moderate number of services, in agreement with empirical observations.

  7. Passing messages between biological networks to refine predicted interactions.

    Directory of Open Access Journals (Sweden)

    Kimberly Glass

    Full Text Available Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation, a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  8. Passing messages between biological networks to refine predicted interactions.

    Science.gov (United States)

    Glass, Kimberly; Huttenhower, Curtis; Quackenbush, John; Yuan, Guo-Cheng

    2013-01-01

    Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  9. Protein-protein interaction network of celiac disease.

    Science.gov (United States)

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease.

  10. Graph theory and stability analysis of protein complex interaction networks.

    Science.gov (United States)

    Huang, Chien-Hung; Chen, Teng-Hung; Ng, Ka-Lok

    2016-04-01

    Protein complexes play an essential role in many biological processes. Complexes can interact with other complexes to form protein complex interaction network (PCIN) that involves in important cellular processes. There are relatively few studies on examining the interaction topology among protein complexes; and little is known about the stability of PCIN under perturbations. We employed graph theoretical approach to reveal hidden properties and features of four species PCINs. Two main issues are addressed, (i) the global and local network topological properties, and (ii) the stability of the networks under 12 types of perturbations. According to the topological parameter classification, we identified some critical protein complexes and validated that the topological analysis approach could provide meaningful biological interpretations of the protein complex systems. Through the Kolmogorov-Smimov test, we showed that local topological parameters are good indicators to characterise the structure of PCINs. We further demonstrated the effectiveness of the current approach by performing the scalability and data normalization tests. To measure the robustness of PCINs, we proposed to consider eight topological-based perturbations, which are specifically applicable in scenarios of targeted, sustained attacks. We found that the degree-based, betweenness-based and brokering-coefficient-based perturbations have the largest effect on network stability.

  11. Determination of Activation Functions in A Feedforward Neural Network by using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Oğuz ÜSTÜN

    2009-03-01

    Full Text Available In this study, activation functions of all layers of the multilayered feedforward neural network have been determined by using genetic algorithm. The main criteria that show the efficiency of the neural network is to approximate to the desired output with the same number nodes and connection weights. One of the important parameter to determine this performance is to choose a proper activation function. In the classical neural network designing, a network is designed by choosing one of the generally known activation function. In the presented study, a table has been generated for the activation functions. The ideal activation function for each node has been chosen from this table by using the genetic algorithm. Two dimensional regression problem clusters has been used to compare the performance of the classical static neural network and the genetic algorithm based neural network. Test results reveal that the proposed method has a high level approximation capacity.

  12. SNP-SNP interaction network in angiogenesis genes associated with prostate cancer aggressiveness.

    Directory of Open Access Journals (Sweden)

    Hui-Yi Lin

    Full Text Available Angiogenesis has been shown to be associated with prostate cancer development. The majority of prostate cancer studies focused on individual single nucleotide polymorphisms (SNPs while SNP-SNP interactions are suggested having a great impact on unveiling the underlying mechanism of complex disease. Using 1,151 prostate cancer patients in the Cancer Genetic Markers of Susceptibility (CGEMS dataset, 2,651 SNPs in the angiogenesis genes associated with prostate cancer aggressiveness were evaluated. SNP-SNP interactions were primarily assessed using the two-stage Random Forests plus Multivariate Adaptive Regression Splines (TRM approach in the CGEMS group, and were then re-evaluated in the Moffitt group with 1,040 patients. For the identified gene pairs, cross-evaluation was applied to evaluate SNP interactions in both study groups. Five SNP-SNP interactions in three gene pairs (MMP16+ ROBO1, MMP16+ CSF1, and MMP16+ EGFR were identified to be associated with aggressive prostate cancer in both groups. Three pairs of SNPs (rs1477908+ rs1387665, rs1467251+ rs7625555, and rs1824717+ rs7625555 were in MMP16 and ROBO1, one pair (rs2176771+ rs333970 in MMP16 and CSF1, and one pair (rs1401862+ rs6964705 in MMP16 and EGFR. The results suggest that MMP16 may play an important role in prostate cancer aggressiveness. By integrating our novel findings and available biomedical literature, a hypothetical gene interaction network was proposed. This network demonstrates that our identified SNP-SNP interactions are biologically relevant and shows that EGFR may be the hub for the interactions. The findings provide valuable information to identify genotype combinations at risk of developing aggressive prostate cancer and improve understanding on the genetic etiology of angiogenesis associated with prostate cancer aggressiveness.

  13. Identifying dysregulated pathways in cancers from pathway interaction networks

    Directory of Open Access Journals (Sweden)

    Liu Ke-Qin

    2012-06-01

    Full Text Available Abstract Background Cancers, a group of multifactorial complex diseases, are generally caused by mutation of multiple genes or dysregulation of pathways. Identifying biomarkers that can characterize cancers would help to understand and diagnose cancers. Traditional computational methods that detect genes differentially expressed between cancer and normal samples fail to work due to small sample size and independent assumption among genes. On the other hand, genes work in concert to perform their functions. Therefore, it is expected that dysregulated pathways will serve as better biomarkers compared with single genes. Results In this paper, we propose a novel approach to identify dysregulated pathways in cancer based on a pathway interaction network. Our contribution is three-fold. Firstly, we present a new method to construct pathway interaction network based on gene expression, protein-protein interactions and cellular pathways. Secondly, the identification of dysregulated pathways in cancer is treated as a feature selection problem, which is biologically reasonable and easy to interpret. Thirdly, the dysregulated pathways are identified as subnetworks from the pathway interaction networks, where the subnetworks characterize very well the functional dependency or crosstalk between pathways. The benchmarking results on several distinct cancer datasets demonstrate that our method can obtain more reliable and accurate results compared with existing state of the art methods. Further functional analysis and independent literature evidence also confirm that our identified potential pathogenic pathways are biologically reasonable, indicating the effectiveness of our method. Conclusions Dysregulated pathways can serve as better biomarkers compared with single genes. In this work, by utilizing pathway interaction networks and gene expression data, we propose a novel approach that effectively identifies dysregulated pathways, which can not only be used

  14. Crossover Method for Interactive Genetic Algorithms to Estimate Multimodal Preferences

    Directory of Open Access Journals (Sweden)

    Misato Tanaka

    2013-01-01

    Full Text Available We apply an interactive genetic algorithm (iGA to generate product recommendations. iGAs search for a single optimum point based on a user’s Kansei through the interaction between the user and machine. However, especially in the domain of product recommendations, there may be numerous optimum points. Therefore, the purpose of this study is to develop a new iGA crossover method that concurrently searches for multiple optimum points for multiple user preferences. The proposed method estimates the locations of the optimum area by a clustering method and then searches for the maximum values of the area by a probabilistic model. To confirm the effectiveness of this method, two experiments were performed. In the first experiment, a pseudouser operated an experiment system that implemented the proposed and conventional methods and the solutions obtained were evaluated using a set of pseudomultiple preferences. With this experiment, we proved that when there are multiple preferences, the proposed method searches faster and more diversely than the conventional one. The second experiment was a subjective experiment. This experiment showed that the proposed method was able to search concurrently for more preferences when subjects had multiple preferences.

  15. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery.

    Science.gov (United States)

    Chen, Yang; Xu, Rong

    2015-01-01

    Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cross-species network to integrate human-human, parasite-parasite and human-parasite protein interactions. Then we extended the random walk algorithm on this network, and used known malaria genes as the seeds to find novel candidate genes for malaria. We validated our algorithms using 77 known malaria genes: 14 human genes and 63 parasite genes were ranked averagely within top 2% and top 4%, respectively among human and parasite genomes. We also evaluated our method for predicting novel malaria genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked malaria genes through pathway analysis. In summary, the candidate malaria-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-malaria drug discovery.

  16. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions.

    Directory of Open Access Journals (Sweden)

    Erika Garay

    2014-02-01

    Full Text Available Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.

  17. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions.

    Science.gov (United States)

    Garay, Erika; Campos, Sergio E; González de la Cruz, Jorge; Gaspar, Ana P; Jinich, Adrian; Deluna, Alexander

    2014-02-01

    Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis) among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.

  18. Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation

    Directory of Open Access Journals (Sweden)

    Shen Li

    2010-09-01

    Full Text Available Abstract Background An exciting application of genetic network is to predict phenotypic consequences for environmental cues or genetic perturbations. However, de novo prediction for quantitative phenotypes based on network topology is always a challenging task. Results Using yeast sporulation as a model system, we have assembled a genetic network from literature and exploited Boolean network to predict sporulation efficiency change upon deleting individual genes. We observe that predictions based on the curated network correlate well with the experimentally measured values. In addition, computational analysis reveals the robustness and hysteresis of the yeast sporulation network and uncovers several patterns of sporulation efficiency change caused by double gene deletion. These discoveries may guide future investigation of underlying mechanisms. We have also shown that a hybridized genetic network reconstructed from both temporal microarray data and literature is able to achieve a satisfactory prediction accuracy of the same quantitative phenotypes. Conclusions This case study illustrates the value of predicting quantitative phenotypes based on genetic network and provides a generic approach.

  19. [Constructing the network of classic genetic knowledge and developing self-learning ability of students in genetic classroom].

    Science.gov (United States)

    Luo, Pei-Gao

    2010-04-01

    With the quick increase of new knowledge in genetics, undergraduate teaching of genetics is becoming a challenge for many teachers. In this paper, the author suggested that it would be important to construct the knowledge network of genetics and to develop the self-learning ability of students. This could help students to read textbooks "from the thicker to the thinner in classroom" and "from the thinner to the thicker outside classroom", so that students would turn to be the talents with new ideas and have more competent ability in biology-related fields.

  20. A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor

    Institute of Scientific and Technical Information of China (English)

    Along Yu; Zheng Li

    2006-01-01

    In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method,the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).

  1. Topology-free querying of protein interaction networks.

    Science.gov (United States)

    Bruckner, Sharon; Hüffner, Falk; Karp, Richard M; Shamir, Ron; Sharan, Roded

    2010-03-01

    In the network querying problem, one is given a protein complex or pathway of species A and a protein-protein interaction network of species B; the goal is to identify subnetworks of B that are similar to the query in terms of sequence, topology, or both. Existing approaches mostly depend on knowledge of the interaction topology of the query in the network of species A; however, in practice, this topology is often not known. To address this problem, we develop a topology-free querying algorithm, which we call Torque. Given a query, represented as a set of proteins, Torque seeks a matching set of proteins that are sequence-similar to the query proteins and span a connected region of the network, while allowing both insertions and deletions. The algorithm uses alternatively dynamic programming and integer linear programming for the search task. We test Torque with queries from yeast, fly, and human, where we compare it to the QNet topology-based approach, and with queries from less studied species, where only topology-free algorithms apply. Torque detects many more matches than QNet, while giving results that are highly functionally coherent.

  2. Games as Actors - Interaction, Play, Design, and Actor Network Theory

    DEFF Research Database (Denmark)

    Jessen, Jari Due; Jessen, Carsten

    2014-01-01

    When interacting with computer games, users are forced to follow the rules of the game in return for the excitement, joy, fun, or other pursued experiences. In this paper, we investigate how games a chieve these experiences in the perspective of Actor Network Theory (ANT). Based on a qualitative......, and by doing so they create in humans what in modern play theory is known as a “state of play”...

  3. Consensus of Multiagent Networks with Intermittent Interaction and Directed Topology

    Directory of Open Access Journals (Sweden)

    Li Xiao

    2014-01-01

    Full Text Available Intermittent interaction control is introduced to solve the consensus problem for second-order multiagent networks due to the limited sensing abilities and environmental changes periodically. And, we get some sufficient conditions for the agents to reach consensus with linear protocol from the theoretical findings by using the Lyapunov control approach. Finally, the validity of the theoretical results is validated through the numerical example.

  4. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  5. Simulation and Optimization for Thermally Coupled Distillation Using Artificial Neural Network and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    王延敏; 姚平经

    2003-01-01

    In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neural network based on the simulation results with ASPEN PLUS. Modified genetic algorithm was used to optimize the model. With the proposed model and optimization arithmetic, mathematical model can be calculated, decision variables and target value can be reached automatically and quickly. A practical example is used to demonstrate the algorithm.

  6. Power graph compression reveals dominant relationships in genetic transcription networks.

    Science.gov (United States)

    Ahnert, Sebastian E

    2013-11-01

    We introduce a framework for the discovery of dominant relationship patterns in transcription networks, by compressing the network into a power graph with overlapping power nodes. Our application of this approach to the transcription networks of S. cerevisiae and E. coli, paired with GO term enrichment analysis, provides a highly informative overview of the most prominent relationships in the gene regulatory networks of these two organisms.

  7. LSSVM Network Flow Prediction Based on the Self-adaptive Genetic Algorithm Optimization

    Directory of Open Access Journals (Sweden)

    Liao Wenjing

    2013-02-01

    Full Text Available In order to change the insufficiency of traditional network flow prediction and improve its accuracy, the paper proposed a kind of network flow prediction method based on the self-adaptive genetic least square support vector machine optimization. Through analyzing the individual parameter of the LS-SVM principle and self-adaptive remains algorithm, the network flow prediction model structure of GA-LSSVM, and the genetic model global operation parameters, this paper would conduct a performance test to the network flow simulation experiment. The simulation result showed that: compared with the traditional forecasting methods, the accuracy of its network flow prediction was higher than the traditional forecasting methods by using the least square support vector machine genetic optimization.

  8. Reconstituting Protein Interaction Networks Using Parameter-Dependent Domain-Domain Interactions

    Science.gov (United States)

    2013-05-07

    that approximately 80% of eukaryotic proteins and 67% of prokaryotic proteins have multiple domains [13,14]. Most annotation databases characterize...domain annotations, Domain-domain interactions, Protein-protein interaction networks Background The living cell is a dynamic, interconnected system...detailed in Methods. Here, we illustrate its application on a well- annotated single- cell organism. We created a merged set of protein-domain annotations

  9. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

    National Research Council Canada - National Science Library

    Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O‧Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason

    ...‐scale sequencing efforts. Using genome‐scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co...

  10. KNOWNET: Exploring Interactive Knowledge Networking across Insurance Supply Chains

    Directory of Open Access Journals (Sweden)

    Susan Grant

    2014-01-01

    Full Text Available Social media has become an extremely powerful phenomenon with millions of users who post status updates, blog, links and pictures on social networking sites such as Facebook, LinkedIn, and Twitter. However, social networking has so far spread mainly among consumers. Businesses are only now beginning to acknowledge the benefits of using social media to enhance employee and supplier collaboration to support new ideas and innovation through knowledge sharing across functions and organizational boundaries. Many businesses are still trying to understand the various implications of integrating internal communication systems with social media tools and private collaboration and networking platforms. Indeed, a current issue in organizations today is to explore the value of social media mechanisms across a range of functions within their organizations and across their supply chains.The KNOWNET project (an EC funded Marie Curie IAPP seeks to assess the value of social networking for knowledge exchange across Insurance supply chains. A key objective of the project being to develop and build a web based interactive environment - a Supplier Social Network or SSN, to support and facilitate exchange of good ideas, insights, knowledge, innovations etc across a diverse group of suppliers within a multi level supply chain within the Insurance sector.

  11. Strongly Resilient Non-Interactive Key Predistribution For Hierarchical Networks

    CERN Document Server

    Chen, Hao

    2010-01-01

    Key establishment is the basic necessary tool in the network security, by which pairs in the network can establish shared keys for protecting their pairwise communications. There have been some key agreement or predistribution schemes with the property that the key can be established without the interaction (\\cite{Blom84,BSHKY92,S97}). Recently the hierarchical cryptography and the key management for hierarchical networks have been active topics(see \\cite{BBG05,GHKRRW08,GS02,HNZI02,HL02,Matt04}. ). Key agreement schemes for hierarchical networks were presented in \\cite{Matt04,GHKRRW08} which is based on the Blom key predistribution scheme(Blom KPS, [1]) and pairing. In this paper we introduce generalized Blom-Blundo et al key predistribution schemes. These generalized Blom-Blundo et al key predistribution schemes have the same security functionality as the Blom-Blundo et al KPS. However different and random these KPSs can be used for various parts of the networks for enhancing the resilience. We also presentk...

  12. Interactive control over a programmable computer network using a multi-touch surface

    NARCIS (Netherlands)

    Strijkers, R.J.; Muller, L.; Cristea, M.; Belleman, R.; Laat, C. de; Sloot, P.; Meijer, R.J.

    2009-01-01

    This article introduces the Interactive Network concept and describes the design and implementation of the first prototype. In an Interactive Network humans become an integral part of the control system to manage programmable networks and grid networks. The implementation consists of a multi-touch t

  13. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    Science.gov (United States)

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  15. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Silva-Filho Marcio C

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

  16. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

    Directory of Open Access Journals (Sweden)

    J R Managbanag

    Full Text Available BACKGROUND: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of

  17. Control of Synchronization Regimes in Networks of Mobile Interacting Agents

    Science.gov (United States)

    Perez-Diaz, Fernando; Zillmer, Ruediger; Groß, Roderich

    2017-05-01

    We investigate synchronization in a population of mobile pulse-coupled agents with a view towards implementations in swarm-robotics systems and mobile sensor networks. Previous theoretical approaches dealt with range and nearest-neighbor interactions. In the latter case, a synchronization-hindering regime for intermediate agent mobility is found. We investigate the robustness of this intermediate regime under practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of a suitable metric of the phase response curve. Furthermore, we study more-realistic K -nearest-neighbor and cone-of-vision interactions, showing that it is possible to control the extent of the synchronization-hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we analyze the propagation of perturbations over the network and draw an analogy between the response in the hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime is validated experimentally using a swarm of physical robots interacting with cone-of-vision interactions.

  18. The nature of protein domain evolution: shaping the interaction network.

    Science.gov (United States)

    Bagowski, Christoph P; Bruins, Wouter; Te Velthuis, Aartjan J W

    2010-08-01

    The proteomes that make up the collection of proteins in contemporary organisms evolved through recombination and duplication of a limited set of domains. These protein domains are essentially the main components of globular proteins and are the most principal level at which protein function and protein interactions can be understood. An important aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the information in the amino acid sequence. Changes in this information may bring about new folds, functions and protein architectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such investigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen pathways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Additionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution that have provided valuable new insights in the field of comparative genomics and protein interaction networks.

  19. Automated identification of pathways from quantitative genetic interaction data

    Science.gov (United States)

    Battle, Alexis; Jonikas, Martin C; Walter, Peter; Weissman, Jonathan S; Koller, Daphne

    2010-01-01

    High-throughput quantitative genetic interaction (GI) measurements provide detailed information regarding the structure of the underlying biological pathways by reporting on functional dependencies between genes. However, the analytical tools for fully exploiting such information lag behind the ability to collect these data. We present a novel Bayesian learning method that uses quantitative phenotypes of double knockout organisms to automatically reconstruct detailed pathway structures. We applied our method to a recent data set that measures GIs for endoplasmic reticulum (ER) genes, using the unfolded protein response as a quantitative phenotype. The results provided reconstructions of known functional pathways including N-linked glycosylation and ER-associated protein degradation. It also contained novel relationships, such as the placement of SGT2 in the tail-anchored biogenesis pathway, a finding that we experimentally validated. Our approach should be readily applicable to the next generation of quantitative GI data sets, as assays become available for additional phenotypes and eventually higher-level organisms. PMID:20531408

  20. Chemical Genetic Dissection of Brassinosteroid-Ethylene Interaction

    Institute of Scientific and Technical Information of China (English)

    Joshua M.Gendron; Asif Haque; Nathan Gendron; Timothy Chang; Tadao Asami; Zhi-Yong Wang

    2008-01-01

    We undertook a chemical genetics screen to identify chemical inhibitors of brassinosteroid (BR) action.From a chemical library of 10,000 small molecules,one compound was found to inhibit hypocotyl length and activate the expression of a BR-repressed reporter gene (CPD::GUS) in Arabidopsis,and it was named brassinopride (BRP).These effects of BRP could be reversed by co-treatment with brassinolide,suggesting that BRP either directly or indirectly inhibits BR biosynthesis.Interestingly,the compound causes exaggerated apical hooks,similar to that caused by ethylene treatment.The BRP-induced apical hook phenotype can be blocked by a chemical inhibitor of ethylene perception or an ethylene-insensitive mutant,suggesting that,in addition to inhibiting BR,BRP activates ethylene response.Analysis of BRP analogs provided clues about structural features important for its effects on two separate targets in the BR and ethylene pathways.Analyses of the responses of various BR and ethylene mutants to BRP,ethylene,and BR treatments revealed modes of cross-talk between ethylene and BR in dark-grown seedlings.Our results suggest that active downstream BR signaling,but not BR synthesis or a BR gradient,is required for ethylene-induced apical hook formation.The BRP-related compounds can be useful tools for manipulating plant growth and studying hormone interactions.

  1. Protein-protein interaction network of celiac disease

    Science.gov (United States)

    Zamanian Azodi, Mona; Peyvandi, Hassan; Rostami-Nejad, Mohammad; Safaei, Akram; Rostami, Kamran; Vafaee, Reza; Heidari, Mohammadhossein; Hosseini, Mostafa; Zali, Mohammad Reza

    2016-01-01

    Aim: The aim of this study is to investigate the Protein-Protein Interaction Network of Celiac Disease. Background: Celiac disease (CD) is an autoimmune disease with susceptibility of individuals to gluten of wheat, rye and barley. Understanding the molecular mechanisms and involved pathway may lead to the development of drug target discovery. The protein interaction network is one of the supportive fields to discover the pathogenesis biomarkers for celiac disease. Material and methods: In the present study, we collected the articles that focused on the proteomic data in celiac disease. According to the gene expression investigations of these articles, 31 candidate proteins were selected for this study. The networks of related differentially expressed protein were explored using Cytoscape 3.3 and the PPI analysis methods such as MCODE and ClueGO. Results: According to the network analysis Ubiquitin C, Heat shock protein 90kDa alpha (cytosolic and Grp94); class A, B and 1 member, Heat shock 70kDa protein, and protein 5 (glucose-regulated protein, 78kDa), T-complex, Chaperon in containing TCP1; subunit 7 (beta) and subunit 4 (delta) and subunit 2 (beta), have been introduced as hub-bottlnecks proteins. HSP90AA1, MKKS, EZR, HSPA14, APOB and CAD have been determined as seed proteins. Conclusion: Chaperons have a bold presentation in curtail area in network therefore these key proteins beside the other hub-bottlneck proteins may be a suitable candidates biomarker panel for diagnosis, prognosis and treatment processes in celiac disease. PMID:27895852

  2. Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-guang; SHI Zhong-kun

    2006-01-01

    The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.

  3. Optimization of the Compensation of a Meshed MV Network by a Modified Genetic Algorithm

    DEFF Research Database (Denmark)

    Nielsen, Hans; Paar, M.; Toman, P.

    2007-01-01

    The article discusses the utilization of a modified genetic algorithm (GA) for the optimization of the shunt compensation in meshed and radial MV distribution networks. The algorithm looks for minimum costs of the network power losses and minimum capital and operating costs of applied capacitors...

  4. Optimization of the Compensation of a Meshed MV Network by a Modified Genetic Algorithm

    DEFF Research Database (Denmark)

    Nielsen, Hans; Paar, M.; Toman, P.

    2007-01-01

    The article discusses the utilization of a modified genetic algorithm (GA) for the optimization of the shunt compensation in meshed and radial MV distribution networks. The algorithm looks for minimum costs of the network power losses and minimum capital and operating costs of applied capacitors...

  5. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  6. Lightweight Interactions for Reciprocal Cooperation in a Social Network Game

    CERN Document Server

    Takano, Masanori; Fukuda, Ichiro

    2016-01-01

    The construction of reciprocal relationships requires cooperative interactions during the initial meetings. However, cooperative behavior with strangers is risky because the strangers may be exploiters. In this study, we show that people increase the likelihood of cooperativeness of strangers by using lightweight non-risky interactions in risky situations based on the analysis of a social network game (SNG). They can construct reciprocal relationships in this manner. The interactions involve low-cost signaling because they are not generated at any cost to the senders and recipients. Theoretical studies show that low-cost signals are not guaranteed to be reliable because the low-cost signals from senders can lie at any time. However, people used low-cost signals to construct reciprocal relationships in an SNG, which suggests the existence of mechanisms for generating reliable, low-cost signals in human evolution.

  7. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets

    NARCIS (Netherlands)

    Lu, X.; Kensche, P.R.; Huynen, M.A.; Notebaart, R.A.

    2013-01-01

    Genetic interactions reveal insights into cellular function and can be used to identify drug targets. Here we construct a new model to predict negative genetic interactions in protein complexes by exploiting the evolutionary history of genes in parallel converging pathways in metabolism. We evaluate

  8. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    Science.gov (United States)

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  9. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    Science.gov (United States)

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  10. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2008-06-01

    Full Text Available Abstract Background Cancer is caused by genetic abnormalities, such as mutations of oncogenes or tumor suppressor genes, which alter downstream signal transduction pathways and protein-protein interactions. Comparisons of the interactions of proteins in cancerous and normal cells can shed light on the mechanisms of carcinogenesis. Results We constructed initial networks of protein-protein interactions involved in the apoptosis of cancerous and normal cells by use of two human yeast two-hybrid data sets and four online databases. Next, we applied a nonlinear stochastic model, maximum likelihood parameter estimation, and Akaike Information Criteria (AIC to eliminate false-positive protein-protein interactions in our initial protein interaction networks by use of microarray data. Comparisons of the networks of apoptosis in HeLa (human cervical carcinoma cells and in normal primary lung fibroblasts provided insight into the mechanism of apoptosis and allowed identification of potential drug targets. The potential targets include BCL2, caspase-3 and TP53. Our comparison of cancerous and normal cells also allowed derivation of several party hubs and date hubs in the human protein-protein interaction networks involved in caspase activation. Conclusion Our method allows identification of cancer-perturbed protein-protein interactions involved in apoptosis and identification of potential molecular targets for development of anti-cancer drugs.

  11. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions.

    Directory of Open Access Journals (Sweden)

    Hadiseh Safdari

    Full Text Available In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of "commonly accepted beliefs" seems rarely studied. In this paper, we examine how the growth process of a (social network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node's age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model.

  12. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions

    Science.gov (United States)

    Safdari, Hadiseh; Zare Kamali, Milad; Shirazi, Amirhossein; Khalighi, Moein; Jafari, Gholamreza; Ausloos, Marcel

    2016-01-01

    In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of “commonly accepted beliefs” seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node’s age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model. PMID:27171424

  13. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    Directory of Open Access Journals (Sweden)

    Paul Pawelzyk

    Full Text Available Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1 and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.

  14. Rule Extraction from Trained Artificial Neural Network Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jian; ZHANG Li-xia

    2002-01-01

    This paper discusses how to extract symbolic rules from trained artificial neural network (ANN) in domains involving classification using genetic algorithms (GA). Previous methods based on an exhaustive analysis of network connections and output values have already been demonstrated to be intractable in that the scale-up factor increases with the number of nodes and connections in the network.Some experiments explaining effectiveness of the presented method are given as well.

  15. A Genetic Algorithm for Routing in Packet—Switched Communication Networks

    Institute of Scientific and Technical Information of China (English)

    HeCuihong; OuYishan; 等

    1997-01-01

    This paper addresses the problem of routing in a packet-switched communication network in order to minimize the average delay encountered by messages.The problem was modeled as a network of M/M/1 queues.We present an genetic algorithm to solve this problem.Extensive computational results across a variety of networks are reported.These results indicate that our solution procedure outperforms and is effective for a wide range of traffic loads.

  16. Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm

    OpenAIRE

    Shekarchizadeh, Hajar; Tikani, Reza; Kadivar, Mahdi

    2012-01-01

    Cocoa butter analog was prepared from camel hump fat and tristearin by enzymatic interesterification in supercritical carbon dioxide (SC-CO2) using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM) as a biocatalyst. Optimal process conditions were determined using neural networks and genetic algorithm optimization. Response surfaces methodology was used to design the experiments to collect data for the neural network modelling. A general regression neural network model was developed...

  17. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling

    Science.gov (United States)

    Tegnér, Jesper; Yeung, M. K. Stephen; Hasty, Jeff; Collins, James J.

    2003-01-01

    While the fundamental building blocks of biology are being tabulated by the various genome projects, microarray technology is setting the stage for the task of deducing the connectivity of large-scale gene networks. We show how the perturbation of carefully chosen genes in a microarray experiment can be used in conjunction with a reverse engineering algorithm to reveal the architecture of an underlying gene regulatory network. Our iterative scheme identifies the network topology by analyzing the steady-state changes in gene expression resulting from the systematic perturbation of a particular node in the network. We highlight the validity of our reverse engineering approach through the successful deduction of the topology of a linear in numero gene network and a recently reported model for the segmentation polarity network in Drosophila melanogaster. Our method may prove useful in identifying and validating specific drug targets and in deconvolving the effects of chemical compounds. PMID:12730377

  18. MiRTargetLink--miRNAs, Genes and Interaction Networks.

    Science.gov (United States)

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-04-14

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink.

  19. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.

    Directory of Open Access Journals (Sweden)

    Karl Fogelmark

    Full Text Available Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated.To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved networks, and predictions are validated against the transcriptional network of E. coli.We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.

  20. Genetic Algorithm for Multiuser Discrete Network Design Problem under Demand Uncertainty

    Directory of Open Access Journals (Sweden)

    Wu Juan

    2012-01-01

    Full Text Available Discrete network design is an important part of urban transportation planning. The purpose of this paper is to present a bilevel model for discrete network design. The upper-level model aims to minimize the total travel time under a stochastic demand to design a discrete network. In the lower-level model, demands are assigned to the network through a multiuser traffic equilibrium assignment. Generally, discrete network could affect path selections of demands, while the results of the multiuser traffic equilibrium assignment need to reconstruct a new discrete network. An iterative approach including an improved genetic algorithm and Frank-Wolfe algorithm is used to solve the bi-level model. The numerical results on Nguyen Dupuis network show that the model and the related algorithms were effective for discrete network design.

  1. Securing a mobile adhoc network from routing attacks through the application of genetic algorithm

    CERN Document Server

    Nikhil, Kumar; Sharma, Pankaj

    2012-01-01

    In recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. GA's are able to find, if not the shortest, at least an optimal path between source and destination in mobile ad-hoc network nodes. And we obtain the alternative path or backup path to avoid reroute discovery in the case of link failure or node failure.

  2. Untangling genetic networks of panic, phobia, fear and anxiety

    Science.gov (United States)

    Villafuerte, Sandra; Burmeister, Margit

    2003-01-01

    As is the case for normal individual variation in anxiety levels, the conditions panic disorder, agoraphobia and other phobias have a significant genetic basis. Recent reports have started to untangle the genetic relationships between predispositions to anxiety and anxiety disorders. PMID:12914652

  3. A theoretical molecular network for dyslexia: integrating available genetic findings

    NARCIS (Netherlands)

    Poelmans, G.J.V.; Buitelaar, J.K.; Pauls, D.L.; Franke, B.

    2011-01-01

    Developmental dyslexia is a common specific childhood learning disorder with a strong heritable component. Previous studies using different genetic approaches have identified several genetic loci and candidate genes for dyslexia. In this article, we have integrated the current knowledge on 14 dyslex

  4. A developmental systems perspective on epistasis: computational exploration of mutational interactions in model developmental regulatory networks.

    Directory of Open Access Journals (Sweden)

    Jayson Gutiérrez

    Full Text Available The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks. Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/- feedback and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1 the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2 the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of

  5. Systems pharmacology - Towards the modeling of network interactions.

    Science.gov (United States)

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  6. Inspiration from genetics to promote recognition and protection within ad hoc sensor networks

    CERN Document Server

    Korsnes, Reinert

    2009-01-01

    This work illustrates potentials for recognition within {\\em ad hoc} sensor networks if their nodes possess individual inter-related biologically inspired genetic codes. The work takes ideas from natural immune systems protecting organisms from infection. Nodes in the present proposal have individual gene sets fitting into a self organised phylogenetic tree. Members of this population are genetically ''relatives''. Outsiders cannot easily copy or introduce a new node in the network without going through a process of conception between two nodes in the population. Related nodes can locally decide to check each other for their genetic relation without directly revealing their gene sets. A copy/clone of a gene sequence or a random gene set will appear as alien. Nodes go through a cycle of introduction (conception or ''birth'') with parents in the network and later exit from it (''death''). Hence the phylogenetic tree is dynamic or possesses a genetic drift. Typical lifetimes of gene sets and number of offspring ...

  7. Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem

    Science.gov (United States)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.

  8. Using genetic algorithms to select architecture of a feedforward artificial neural network

    Science.gov (United States)

    Arifovic, Jasmina; Gençay, Ramazan

    2001-01-01

    This paper proposes a model selection methodology for feedforward network models based on the genetic algorithms and makes a number of distinct but inter-related contributions to the model selection literature for the feedforward networks. First, we construct a genetic algorithm which can search for the global optimum of an arbitrary function as the output of a feedforward network model. Second, we allow the genetic algorithm to evolve the type of inputs, the number of hidden units and the connection structure between the inputs and the output layers. Third, we study how introduction of a local elitist procedure which we call the election operator affects the algorithm's performance. We conduct a Monte Carlo simulation to study the sensitiveness of the global approximation properties of the studied genetic algorithm. Finally, we apply the proposed methodology to the daily foreign exchange returns.

  9. Supply Chain Management: from Linear Interactions to Networked Processes

    Directory of Open Access Journals (Sweden)

    Doina FOTACHE

    2006-01-01

    Full Text Available Supply Chain Management is a distinctive product, with a tremendous impact on the software applications market. SCM applications are back-end solutions intended to link suppliers, manufacturers, distributors and resellers in a production and distribution network, which allows the enterprise to track and consolidate the flows of materials and data trough the process of manufacturing and distribution of goods/services. The advent of the Web as a major means of conducting business transactions and business-tobusiness communications, coupled with evolving web-based supply chain management (SCM technology, has resulted in a transition period from “linear” supply chain models to "networked" supply chain models. The technologies to enable dynamic process changes and real time interactions between extended supply chain partners are emerging and being deployed at an accelerated pace.

  10. Quantum networks with chiral light--matter interaction in waveguides

    CERN Document Server

    Mahmoodian, Sahand; Sørensen, Anders S

    2016-01-01

    We design and analyze a simple on-chip photonic circuit that can form a universal building block of a quantum network. The circuit consists of a single-photon source, and two quantum emitters positioned in two arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to act as photon sources to herald internode entanglement, and to perform high-fidelity intranode two-qubit gates within a single chip without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities ${\\cal F} \\sim 0.998$ achievable in state-of-the-art quantum dot systems.

  11. An Interactive Network Laboratory for Electronic Engineering Education

    Institute of Scientific and Technical Information of China (English)

    Shao-Chun Fan; Jian-Jun Jiang; Wen-Qing Liu

    2007-01-01

    The advantage of the network laboratory is the better flexibility of lab experiments by allowing remote control from different locations at a freely chosen time. In engineering education, the work should not only be focused on the technical realization of virtual or remote access experiments, but also on the achievement of its pedagogical goals. In this paper, an interactive laboratory is introduced which is based on the online tutoring system, virtual and remote access experiments. It has been piloted in the Department of Electronic Science and Technology, HUST. Some pedagogical issues for electronic engineering laboratory design, the development of a multi-server-based distributed architecture for the reduction of network latency and implementations of the function module are presented. Finally, the system is proved valid by an experiment.

  12. Quantum Networks with Chiral-Light-Matter Interaction in Waveguides

    Science.gov (United States)

    Mahmoodian, Sahand; Lodahl, Peter; Sørensen, Anders S.

    2016-12-01

    We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F ˜0.998 achievable in state-of-the-art quantum dot systems.

  13. Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study

    Directory of Open Access Journals (Sweden)

    Wernimont Susan M

    2011-11-01

    Full Text Available Abstract Background Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease. Methods 330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models. Results Using a nominal P ≤ 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified. Conclusions No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val, is predictive of cardiovascular disease biomarkers.

  14. Genetic and systems level analysis of Drosophila sticky/citron kinase and dFmr1 mutants reveals common regulation of genetic networks

    Directory of Open Access Journals (Sweden)

    Zarnescu Daniela C

    2008-11-01

    Full Text Available Abstract Background In Drosophila, the genes sticky and dFmr1 have both been shown to regulate cytoskeletal dynamics and chromatin structure. These genes also genetically interact with Argonaute family microRNA regulators. Furthermore, in mammalian systems, both genes have been implicated in neuronal development. Given these genetic and functional similarities, we tested Drosophila sticky and dFmr1 for a genetic interaction and measured whole genome expression in both mutants to assess similarities in gene regulation. Results We found that sticky mutations can dominantly suppress a dFmr1 gain-of-function phenotype in the developing eye, while phenotypes produced by RNAi knock-down of sticky were enhanced by dFmr1 RNAi and a dFmr1 loss-of-function mutation. We also identified a large number of transcripts that were misexpressed in both mutants suggesting that sticky and dFmr1 gene products similarly regulate gene expression. By integrating gene expression data with a protein-protein interaction network, we found that mutations in sticky and dFmr1 resulted in misexpression of common gene networks, and consequently predicted additional specific phenotypes previously not known to be associated with either gene. Further phenotypic analyses validated these predictions. Conclusion These findings establish a functional link between two previously unrelated genes. Microarray analysis indicates that sticky and dFmr1 are both required for regulation of many developmental genes in a variety of cell types. The diversity of transcripts regulated by these two genes suggests a clear cause of the pleiotropy that sticky and dFmr1 mutants display and provides many novel, testable hypotheses about the functions of these genes. As both of these genes are implicated in the development and function of the mammalian brain, these results have relevance to human health as well as to understanding more general biological processes.

  15. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    Science.gov (United States)

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network.

  16. Social and Genetic Networks of HIV-1 Transmission in New York City

    Science.gov (United States)

    Wertheim, Joel O.; Kosakovsky Pond, Sergei L.; Forgione, Lisa A.; Mehta, Sanjay R.; Murrell, Ben; Shah, Sharmila; Smith, Davey M.; Scheffler, Konrad; Torian, Lucia V.

    2017-01-01

    Background Sexually transmitted infections spread across contact networks. Partner elicitation and notification are commonly used public health tools to identify, notify, and offer testing to persons linked in these contact networks. For HIV-1, a rapidly evolving pathogen with low per-contact transmission rates, viral genetic sequences are an additional source of data that can be used to infer or refine transmission networks. Methods and Findings The New York City Department of Health and Mental Hygiene interviews individuals newly diagnosed with HIV and elicits names of sexual and injection drug using partners. By law, the Department of Health also receives HIV sequences when these individuals enter healthcare and their physicians order resistance testing. Our study used both HIV sequence and partner naming data from 1342 HIV-infected persons in New York City between 2006 and 2012 to infer and compare sexual/drug-use named partner and genetic transmission networks. Using these networks, we determined a range of genetic distance thresholds suitable for identifying potential transmission partners. In 48% of cases, named partners were infected with genetically closely related viruses, compatible with but not necessarily representing or implying, direct transmission. Partner pairs linked through the genetic similarity of their HIV sequences were also linked by naming in 53% of cases. Persons who reported high-risk heterosexual contact were more likely to name at least one partner with a genetically similar virus than those reporting their risk as injection drug use or men who have sex with men. Conclusions We analyzed an unprecedentedly large and detailed partner tracing and HIV sequence dataset and determined an empirically justified range of genetic distance thresholds for identifying potential transmission partners. We conclude that genetic linkage provides more reliable evidence for identifying potential transmission partners than partner naming, highlighting the

  17. Social and Genetic Networks of HIV-1 Transmission in New York City.

    Directory of Open Access Journals (Sweden)

    Joel O Wertheim

    2017-01-01

    Full Text Available Sexually transmitted infections spread across contact networks. Partner elicitation and notification are commonly used public health tools to identify, notify, and offer testing to persons linked in these contact networks. For HIV-1, a rapidly evolving pathogen with low per-contact transmission rates, viral genetic sequences are an additional source of data that can be used to infer or refine transmission networks.The New York City Department of Health and Mental Hygiene interviews individuals newly diagnosed with HIV and elicits names of sexual and injection drug using partners. By law, the Department of Health also receives HIV sequences when these individuals enter healthcare and their physicians order resistance testing. Our study used both HIV sequence and partner naming data from 1342 HIV-infected persons in New York City between 2006 and 2012 to infer and compare sexual/drug-use named partner and genetic transmission networks. Using these networks, we determined a range of genetic distance thresholds suitable for identifying potential transmission partners. In 48% of cases, named partners were infected with genetically closely related viruses, compatible with but not necessarily representing or implying, direct transmission. Partner pairs linked through the genetic similarity of their HIV sequences were also linked by naming in 53% of cases. Persons who reported high-risk heterosexual contact were more likely to name at least one partner with a genetically similar virus than those reporting their risk as injection drug use or men who have sex with men.We analyzed an unprecedentedly large and detailed partner tracing and HIV sequence dataset and determined an empirically justified range of genetic distance thresholds for identifying potential transmission partners. We conclude that genetic linkage provides more reliable evidence for identifying potential transmission partners than partner naming, highlighting the importance and

  18. Adding protein context to the human protein-protein interaction network to reveal meaningful interactions.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    Full Text Available Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs, which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer's disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the

  19. Genome-wide association data reveal a global map of genetic interactions among protein complexes.

    Directory of Open Access Journals (Sweden)

    Gregory Hannum

    2009-12-01

    Full Text Available This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.

  20. Mapping genetic factors controlling potato/cyst nematode interactions.

    NARCIS (Netherlands)

    Rouppe van der Voort, J.N.A.M.

    1998-01-01

    The thesis describes strategies for genetic mapping of the genomes of the potato cyst nematode and potato. Mapping in cyst nematodes was achieved by AFLP genotyping of single cysts and subsequent segregation analysis in a family of sibling populations. The genetic map of Globodera rostochiensis comp

  1. The role of the interaction network in the emergence of diversity of behavior

    Science.gov (United States)

    Tabacof, Pedro; Von Zuben, Fernando J.

    2017-01-01

    How can systems in which individuals’ inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells’ behaviors in the best cellular automata found—most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior. PMID:28234962

  2. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation.

    Science.gov (United States)

    Zhang, Ke K; Xiang, Menglan; Zhou, Lun; Liu, Jielin; Curry, Nathan; Heine Suñer, Damian; Garcia-Pavia, Pablo; Zhang, Xiaohua; Wang, Qin; Xie, Linglin

    2016-03-15

    Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny.

  3. Treatment of multiple network parameter errors through a genetic-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stacchini de Souza, Julio C.; Do Coutto Filho, Milton B.; Meza, Edwin B. Mitacc [Department of Electrical Engineering, Institute of Computing, Fluminense Federal University, Rua Passo da Patria, 156 - Sao Domingos, 24210-240 Niteroi, Rio de Janeiro (Brazil)

    2009-11-15

    This paper proposes a genetic algorithm-based methodology for network parameter estimation and correction. Network parameter errors may come from many different sources, such as: imprecise data provided by manufacturers, poor estimation of transmission lines lengths and changes in transmission network design which are not adequately updated in the corresponding database. Network parameter data are employed by almost all power system analysis tools, from real time monitoring to long-term planning. The presence of parameter errors contaminates the results obtained by these tools and compromises decision-making processes. To get rid of single or multiple network parameter errors, a methodology that combines genetic algorithms and power system state estimation is proposed. Tests with the IEEE 14-bus system and a real Brazilian system are performed to illustrate the proposed method. (author)

  4. Evolving neural networks with genetic algorithms to study the string landscape

    Science.gov (United States)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  5. Retrospective analysis of main and interaction effects in genetic association studies of human complex traits

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Brasch-Andersen, Charlotte;

    2007-01-01

    BACKGROUND: The etiology of multifactorial human diseases involves complex interactions between numerous environmental factors and alleles of many genes. Efficient statistical tools are demanded in identifying the genetic and environmental variants that affect the risk of disease development....... This paper introduces a retrospective polytomous logistic regression model to measure both the main and interaction effects in genetic association studies of human discrete and continuous complex traits. In this model, combinations of genotypes at two interacting loci or of environmental exposure...... regression model can be used as a convenient tool for assessing both main and interaction effects in genetic association studies of human multifactorial diseases involving genetic and non-genetic factors as well as categorical or continuous traits....

  6. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    Omar Jehovani López Orozco

    2007-12-01

    Full Text Available Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  7. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    García JoséAPérez

    2008-01-01

    Full Text Available Abstract Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  8. Using cable television networks for interactive home telemedicine services.

    Science.gov (United States)

    Valero, M A; Arredondo, M T; del Nogal, F; Rodríguez, J M; Torres, D

    1999-01-01

    Most recent cable television network infrastructures can be used to deliver broadband interactive telemedicine services to the home. These facilities allow the provision of social and health services like medical televisiting for elderly, disabled and chronically ill patients; health tele-education; and teleconsultation on demand. Large numbers of patients could benefit from these services. There is also the increasing European tendency to offer customized home-care services. These applications are being developed and validated by a pilot project in Madrid as part of the ATTRACT project of the European Commission. The long-term aim is to develop broadband applications on a large scale to support low-cost interactive home telemedicine services for both patients and institutions.

  9. Modeling dark energy through an Ising fluid with network interactions

    CERN Document Server

    Luongo, Orlando

    2013-01-01

    We show that the dark energy effects can be modeled by using an \\emph{Ising perfect fluid} with network interactions, whose low redshift equation of state, i.e. $\\omega_0$, becomes $\\omega_0=-1$ as in the $\\Lambda$CDM model. In our picture, dark energy is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding equation of state mimics the effects of a variable dark energy term, whose limiting case reduces to the cosmological constant $\\Lambda$. This permits us to avoid the introduction of a vacuum energy as dark energy source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia, baryonic acoustic oscillation and cosmic microwave background measurements. Finally, we perform the AIC and BIC selection criteria, showing t...

  10. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    Science.gov (United States)

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  11. Node-weighted interacting network measures improve the representation of real-world complex systems

    CERN Document Server

    Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen

    2013-01-01

    Network theory provides a rich toolbox consisting of methods, measures, and models for studying the structure and dynamics of complex systems found in nature, society, or technology. Recently, it has been pointed out that many real-world complex systems are more adequately mapped by networks of interacting or interdependent networks, e.g., a power grid showing interdependency with a communication network. Additionally, in many real-world situations it is reasonable to include node weights into complex network statistics to reflect the varying size or importance of subsystems that are represented by nodes in the network of interest. E.g., nodes can represent vastly different surface area in climate networks, volume in brain networks or economic capacity in trade networks. In this letter, combining both ideas, we derive a novel class of statistical measures for analysing the structure of networks of interacting networks with heterogeneous node weights. Using a prototypical spatial network model, we show that th...

  12. Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure

    Directory of Open Access Journals (Sweden)

    José Alexandre Felizola Diniz Filho

    2006-01-01

    Full Text Available Conservation genetics has been focused on the ecological and evolutionary persistence of targets (species or other intraspecific units, especially when dealing with narrow-ranged species, and no generalized solution regarding the problem of where to concentrate conservation efforts for multiple genetic targets has yet been achieved. Broadly distributed and abundant species allow the identification of evolutionary significant units, management units, phylogeographical units or other spatial patterns in genetic variability, including those generated by effects of habitat fragmentation caused by human activities. However, these genetic units are rarely considered as priority conservation targets in regional conservation planning procedures. In this paper, we discuss a theoretical framework in which target persistence and genetic representation of targets defined using multiple genetic criteria can be explicitly incorporated into the broad-scale reserve network models used to optimize biodiversity conservation based on multiple species data. When genetic variation can be considered discrete in geographical space, the solution is straightforward, and each spatial unit must be considered as a distinct target. But methods for dealing with continuous genetic variation in space are not trivial and optimization procedures must still be developed. We present a simple heuristic and sequential algorithm to deal with this problem by combining multiple networks of local populations of multiple species in which minimum separation distance between conserved populations is a function of spatial autocorrelation patterns of genetic variability within each species.

  13. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim

    2012-01-01

    The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.

  14. A Network Model of a Cooperative Genetic Landscape in Brain Tumors

    Science.gov (United States)

    Bredel, Markus; Scholtens, Denise M.; Harsh, Griffith R.; Bredel, Claudia; Chandler, James P.; Renfrow, Jaclyn J.; Yadav, Ajay K.; Vogel, Hannes; Scheck, Adrienne C.; Tibshirani, Robert; Sikic, Branimir I.

    2015-01-01

    Context Gliomas, particularly glioblastomas, are among the deadliest of human tumors. Gliomas emerge through the accumulation of recurrent chromosomal alterations, some of which target yet-to-be-discovered cancer genes. A persistent question concerns the biological basis for the coselection of these alterations during gliomagenesis. Objectives To describe a network model of a cooperative genetic landscape in gliomas and to evaluate its clinical relevance. Design, Setting, and Patients Multidimensional genomic profiles and clinical profiles of 501 patients with gliomas (45 tumors in an initial discovery set collected between 2001 and 2004 and 456 tumors in validation sets made public between 2006 and 2008) from multiple academic centers in the United States and The Cancer Genome Atlas Pilot Project (TCGA). Main Outcome Measures Identification of genes with coincident genetic alterations, correlated gene dosage and gene expression, and multiple functional interactions; association between those genes and patient survival. Results Gliomas select for a nonrandom genetic landscape—a consistent pattern of chromosomal alterations—that involves altered regions (“territories”) on chromosomes 1p, 7, 8q, 9p, 10, 12q, 13q, 19q, 20, and 22q (false-discovery rate–corrected P<.05). A network model shows that these territories harbor genes with putative synergistic, tumor-promoting relationships. The coalteration of the most interactive of these genes in glioblastoma is associated with unfavorable patient survival. A multigene risk scoring model based on 7 landscape genes (POLD2, CYCS, MYC, AKR1C3, YME1L1, ANXA7, and PDCD4) is associated with the duration of overall survival in 189 glioblastoma samples from TCGA (global log-rank P=.02 comparing 3 survival curves for patients with 0–2, 3–4, and 5–7 dosage-altered genes). Groups of patients with 0 to 2 (low-risk group) and 5 to 7 (high-risk group) dosage-altered genes experienced 49.24 and 79.56 deaths per 100 person

  15. Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting networks ensembles

    CERN Document Server

    Halu, Arda; Bianconi, Ginestra

    2013-01-01

    Spatial networks range from the brain networks, to transportation networks and infrastructures. Recently interacting and multiplex networks are attracting great attention because their dynamics and robustness cannot be understood without treating at the same time several networks. Here we present maximal entropy ensembles of spatial multiplex and spatial interacting networks that can be used in order to model spatial multilayer network structures and to build null models of real datasets. We show that spatial multiplex naturally develop a significant overlap of the links, a noticeable property of many multiplexes that can affect significantly the dynamics taking place on them. Additionally, we characterize ensembles of spatial interacting networks and we analyse the structure of interacting airport and railway networks in India, showing the effect of space in determining the link probability.

  16. Blastocyst-endometrium interaction: intertwining a cytokine network

    Directory of Open Access Journals (Sweden)

    W.A. Castro-Rendón

    2006-11-01

    Full Text Available The successful implantation of the blastocyst depends on adequate interactions between the embryo and the uterus. The development of the embryo begins with the fertilized ovum, a single totipotent cell which undergoes mitosis and gives rise to a multicellular structure named blastocyst. At the same time, increasing concentrations of ovarian steroid hormones initiate a complex signaling cascade that stimulates the differentiation of endometrial stromal cells to decidual cells, preparing the uterus to lodge the embryo. Studies in humans and in other mammals have shown that cytokines and growth factors are produced by the pre-implantation embryo and cells of the reproductive tract; however, the interactions between these factors that converge for successful implantation are not well understood. This review focuses on the actions of interleukin-1, leukemia inhibitory factor, epidermal growth factor, heparin-binding epidermal growth factor, and vascular endothelial growth factor, and on the network of their interactions leading to early embryo development, peri-implantatory endometrial changes, embryo implantation and trophoblast differentiation. We also propose therapeutical approaches based on current knowledge on cytokine interactions.

  17. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  18. Accessing Wireless Sensor Networks Via Dynamically Reconfigurable Interaction Models

    Directory of Open Access Journals (Sweden)

    Maria Cecília Gomes

    2012-12-01

    Full Text Available The Wireless Sensor Networks (WSNs technology is already perceived as fundamental for science across many domains, since it provides a low cost solution for environment monitoring. WSNs representation via the service concept and its inclusion in Web environments, e.g. through Web services, supports particularly their open/standard access and integration. Although such Web enabled WSNs simplify data access, network parameterization and aggregation, the existing interaction models and run-time adaptation mechanisms available to clients are still scarce. Nevertheless, applications increasingly demand richer and more flexible accesses besides the traditional client/server. For instance, applications may require a streaming model in order to avoid sequential data requests, or the asynchronous notification of subscribed data through the publish/subscriber. Moreover, the possibility to automatically switch between such models at runtime allows applications to define flexible context-based data acquisition. To this extent, this paper discusses the relevance of the session and pattern abstractions on the design of a middleware prototype providing richer and dynamically reconfigurable interaction models to Web enabled WSNs.

  19. Coevolving complex networks in the model of social interactions

    Science.gov (United States)

    Raducha, Tomasz; Gubiec, Tomasz

    2017-04-01

    We analyze Axelrod's model of social interactions on coevolving complex networks. We introduce four extensions with different mechanisms of edge rewiring. The models are intended to catch two kinds of interactions-preferential attachment, which can be observed in scientists or actors collaborations, and local rewiring, which can be observed in friendship formation in everyday relations. Numerical simulations show that proposed dynamics can lead to the power-law distribution of nodes' degree and high value of the clustering coefficient, while still retaining the small-world effect in three models. All models are characterized by two phase transitions of a different nature. In case of local rewiring we obtain order-disorder discontinuous phase transition even in the thermodynamic limit, while in case of long-distance switching discontinuity disappears in the thermodynamic limit, leaving one continuous phase transition. In addition, we discover a new and universal characteristic of the second transition point-an abrupt increase of the clustering coefficient, due to formation of many small complete subgraphs inside the network.

  20. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  1. User-Centric Secure Cross-Site Interaction Framework for Online Social Networking Services

    Science.gov (United States)

    Ko, Moo Nam

    2011-01-01

    Social networking service is one of major technological phenomena on Web 2.0. Hundreds of millions of users are posting message, photos, and videos on their profiles and interacting with other users, but the sharing and interaction are limited within the same social networking site. Although users can share some content on a social networking site…

  2. Prediction of drug-target interaction by label propagation with mutual interaction information derived from heterogeneous network.

    Science.gov (United States)

    Yan, Xiao-Ying; Zhang, Shao-Wu; Zhang, Song-Yao

    2016-02-01

    The identification of potential drug-target interaction pairs is very important, which is useful not only for providing greater understanding of protein function, but also for enhancing drug research, especially for drug function repositioning. Recently, numerous machine learning-based algorithms (e.g. kernel-based, matrix factorization-based and network-based inference methods) have been developed for predicting drug-target interactions. All these methods implicitly utilize the assumption that similar drugs tend to target similar proteins and yield better results for predicting interactions between drugs and target proteins. To further improve the accuracy of prediction, a new method of network-based label propagation with mutual interaction information derived from heterogeneous networks, namely LPMIHN, is proposed to infer the potential drug-target interactions. LPMIHN separately performs label propagation on drug and target similarity networks, but the initial label information of the target (or drug) network comes from the drug (or target) label network and the known drug-target interaction bipartite network. The independent label propagation on each similarity network explores the cluster structure in its network, and the label information from the other network is used to capture mutual interactions (bicluster structures) between the nodes in each pair of the similarity networks. As compared to other recent state-of-the-art methods on the four popular benchmark datasets of binary drug-target interactions and two quantitative kinase bioactivity datasets, LPMIHN achieves the best results in terms of AUC and AUPR. In addition, many of the promising drug-target pairs predicted from LPMIHN are also confirmed on the latest publicly available drug-target databases such as ChEMBL, KEGG, SuperTarget and Drugbank. These results demonstrate the effectiveness of our LPMIHN method, indicating that LPMIHN has a great potential for predicting drug-target interactions.

  3. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  4. Dynamic patterns and their interactions in networks of excitable elements.

    Science.gov (United States)

    Gong, Pulin; Steel, Harrison; Robinson, Peter; Qi, Yang

    2013-10-01

    Formation of localized propagating patterns is a fascinating self-organizing phenomenon that happens in a wide range of spatially extended, excitable systems in which individual elements have resting, activated, and refractory states. Here we study a type of stochastic three-state excitable network model that has been recently developed; this model is able to generate a rich range of pattern dynamics, including localized wandering patterns and localized propagating patterns with crescent shapes and long-range propagation. The collective dynamics of these localized patterns have anomalous subdiffusive dynamics before symmetry breaking and anomalous superdiffusive dynamics after that, showing long-range spatiotemporal coherence in the system. In this study, the stability of the localized wandering patterns is analyzed by treating an individual localized pattern as a subpopulation to develop its average response function. This stability analysis indicates that when the average refractory period is greater than a certain value, there are too many elements in the refractory state after being activated to allow the subpopulation to support a self-sustained pattern; this is consistent with symmetry breaking identified by using an order parameter. Furthermore, in a broad parameter space, the simple network model is able to generate a range of interactions between different localized propagating patterns including repulsive collisions and partial and full annihilations, and interactions between localized propagating patterns and the refractory wake behind others; in this study, these interaction dynamics are systematically quantified based on their relative propagation directions and the resultant angles between them before and after their collisions. These results suggest that the model potentially provides a modeling framework to understand the formation of localized propagating patterns in a broad class of systems with excitable properties.

  5. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  6. Disentangling genetic and environmental risk factors for individual diseases from multiplex comorbidity networks

    CERN Document Server

    Klimek, Peter; Thurner, Stefan

    2016-01-01

    Most disorders are caused by a combination of multiple genetic and/or environmental factors. If two diseases are caused by the same molecular mechanism, they tend to co-occur in patients. Here we provide a quantitative method to disentangle how much genetic or environmental risk factors contribute to the pathogenesis of 358 individual diseases, respectively. We pool data on genetic, pathway-based, and toxicogenomic disease-causing mechanisms with disease co-occurrence data obtained from almost two million patients. From this data we construct a multilayer network where nodes represent disorders that are connected by links that either represent phenotypic comorbidity of the patients or the involvement of a certain molecular mechanism. From the similarity of phenotypic and mechanism-based networks for each disorder we derive measure that allows us to quantify the relative importance of various molecular mechanisms for a given disease. We find that most diseases are dominated by genetic risk factors, while envir...

  7. An Improved Genetic Algorithm for the Large-Scale Rural Highway Network Layout

    Directory of Open Access Journals (Sweden)

    Changxi Ma

    2014-01-01

    Full Text Available For the layout problem of rural highway network, which is often characterized by a cluster of geographically dispersed nodes, neither the Prim algorithm nor the Kruskal algorithm can be readily applied, because the calculating speed and accuracy are by no means satisfactory. Rather than these two polynomial algorithms and the traditional genetic algorithm, this paper proposes an improved genetic algorithm. It encodes the minimum spanning trees of large-scale rural highway network layout with Prufer array, a method which can reduce the length of chromosome; it decodes Prufer array by using an efficient algorithm with time complexity o(n and adopting the single transposition method and orthoposition exchange method, substitutes for traditional crossover and mutation operations, which can effectively overcome the prematurity of genetic algorithm. Computer simulation tests and case study confirm that the improved genetic algorithm is better than the traditional one.

  8. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways.

    Science.gov (United States)

    Sun, Changhui; Chen, Dan; Fang, Jun; Wang, Pingrong; Deng, Xiaojian; Chu, Chengcai

    2014-12-01

    Although the molecular basis of flowering time control is well dissected in the long day (LD) plant Arabidopsis, it is still largely unknown in the short day (SD) plant rice. Rice flowering time (heading date) is an important agronomic trait for season adaption and grain yield, which is affected by both genetic and environmental factors. During the last decade, as the nature of florigen was identified, notable progress has been made on exploration how florigen gene expression is genetically controlled. In Arabidopsis expression of certain key flowering integrators such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) are also epigenetically regulated by various chromatin modifications, however, very little is known in rice on this aspect until very recently. This review summarized the advances of both genetic networks and chromatin modifications in rice flowering time control, attempting to give a complete view of the genetic and epigenetic architecture in complex network of rice flowering pathways.

  9. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  10. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  11. Peer Observed Interaction and Structured Evaluation (POISE): a Canadian experience with peer supervision for genetic counselors.

    Science.gov (United States)

    Goldsmith, Claire; Honeywell, Christina; Mettler, Gabrielle

    2011-04-01

    Peer observation, while often used in other professions, has not been formally applied in genetic counseling. The objective of this study was to pilot a method of peer evaluation whereby genetic counselors observed, and were observed by, each other during patient interaction. All of the available genetic counselors participated in both rounds of the pilot study (six in round one, seven in round two). The genetic counselors that observed the session used an observation room. Most participants reported learning a new skill. Sensitivity to, and comfort with, the feedback process improved. We conclude that Peer-Observed Interaction and Structured Evaluation (POISE) provides an opportunity to refresh counseling approaches and develop feedback skills without causing undue team discord. This new approach to peer supervision in genetic counselling offers a live observation approach for genetic counsellor supervision.

  12. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  13. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  14. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    Science.gov (United States)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  15. Design of artificial genetic regulatory networks with multiple delayed adaptive responses

    CERN Document Server

    Kaluza, Pablo

    2016-01-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways.

  16. Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network

    Institute of Scientific and Technical Information of China (English)

    杨淑霞

    2008-01-01

    Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption.

  17. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  18. Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Science.gov (United States)

    Wolen, Aaron R.; Phillips, Charles A.; Langston, Michael A.; Putman, Alex H.; Vorster, Paul J.; Bruce, Nathan A.; York, Timothy P.; Williams, Robert W.; Miles, Michael F.

    2012-01-01

    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ∼2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence

  19. Migration selection of strategies for parallel genetic algorithms: implementation on networks on chips

    Science.gov (United States)

    Mourelle, L.; Ferreira, R. E.; Nedjah, N.

    2010-10-01

    The aim of the work described in this article is to investigate migration strategies for the execution of parallel genetic algorithms in a multi-processor system-on-chip (MPSoC). Some multimedia and internet applications for wireless communications are using genetic algorithms and can benefit from the advantages provided by parallel processing on MPSoCs. In order to run such algorithms, we use a network-on-chip platform, which provides the interconnection network required for the communication between processors. Two migration strategies are employed in order to analyse the speedup and efficiency each one can provide, considering the communication costs they require.

  20. A Four-color Matching Method Combining Neural Networks with Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Su Xiaohong(苏小红); Wang Yadong; Zhang Tianwen

    2003-01-01

    A brief review of color-matching technology and its application of printing RGB images by CMY or CMYK ink-jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in color-matching. Then, a four-color matching method combining neural network with genetic algorithm is proposed. The initial weights and thresholds of the BP neural network for RGB-to-CMY color conversion are optimized by the new genetic algorithm based on evolutionarily stable strategy. The fourth component K is generated by using GCR (Gray Component Replacement) concept. Simulation experiments show that it is well behaved in both accuracy and generalization performance.

  1. A hybrid Genetic and Simulated Annealing Algorithm for Chordal Ring implementation in large-scale networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2011-01-01

    The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology...... of the networks. There have been many use of evolutionary algorithms to solve the problems which are in combinatory complexity nature, and extremely hard to solve by exact approaches. Both Genetic and Simulated annealing algorithms are similar in using controlled stochastic method to search the solution....... The paper combines the algorithms in order to analyze the impact of implementation performance....

  2. A Less Conservative Stability Criterion for Delayed Stochastic Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Tingting Yu

    2014-01-01

    Full Text Available This paper concerns the problem of stability analysis for delayed stochastic genetic regulatory networks. By introducing an appropriate Lyapunov-Krasovskii functional and employing delay-range partition approach, a new stability criterion is given to ensure the mean square stability of genetic regulatory networks with time-varying delays and stochastic disturbances. The stability criterion is given in the form of linear matrix inequalities, which can be easily tested by the LMI Toolbox of MATLAB. Moreover, it is theoretically shown that the obtained stability criterion is less conservative than the one in W. Zhang et al., 2012. Finally, a numerical example is presented to illustrate our theory.

  3. Identification Simulation for Dynamical System Based on Genetic Algorithm and Recurrent Multilayer Neural Network

    Institute of Scientific and Technical Information of China (English)

    鄢田云; 张翠芳; 靳蕃

    2003-01-01

    Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).

  4. Protein Interaction Networks Reveal Novel Autism Risk Genes within GWAS Statistical Noise

    Science.gov (United States)

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion tha