WorldWideScience

Sample records for genetic influences microbial

  1. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Luigi Nibali

    2014-02-01

    Full Text Available Thousands of bacterial phylotypes colonise the human body and the host response to this bacterial challenge greatly influences our state of health or disease. The concept of infectogenomics highlights the importance of host genetic factors in determining the composition of human microbial biofilms and the response to this microbial challenge. We hereby introduce the term ‘genetic dysbiosis’ to highlight the role of human genetic variants affecting microbial recognition and host response in creating an environment conducive to changes in the normal microbiota. Such changes can, in turn, predispose to, and influence, diseases such as: cancer, inflammatory bowel disease, rheumatoid arthritis, psoriasis, bacterial vaginosis and periodontitis. This review presents the state of the evidence on host genetic factors affecting dysbiosis and microbial misrecognition (i.e. an aberrant response to the normal microbiota and highlights the need for further research in this area.

  2. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  3. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  4. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

    OpenAIRE

    van Belkum, Alex; Struelens, Marc; de Visser, Arjan; Verbrugh, Henri; Tibayrenc, Michel

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. ...

  5. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology.

    OpenAIRE

    Belkum, Alex; Struelens, M.; Visser, Arjan; Verbrugh, Henri; Tibayrench, M.

    2001-01-01

    textabstractCurrently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiologi...

  6. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    Science.gov (United States)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  7. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

    Science.gov (United States)

    van Belkum, Alex; Struelens, Marc; de Visser, Arjan; Verbrugh, Henri; Tibayrenc, Michel

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made. PMID:11432813

  8. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology.

    NARCIS (Netherlands)

    Belkum, van A.; Struelens, M.; Visser, de J.A.G.M.; Verburgh, H.; Tibayrenc., M.

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing

  9. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  10. Governing the management and use of pooled microbial genetic resources: Lessons from the global crop commons

    Directory of Open Access Journals (Sweden)

    Michael Halewood

    2010-01-01

    Full Text Available The paper highlights lessons learned over the last thirty years establishing a governance structure for the global crop commons that are of relevance to current champions of the microbial commons. It argues that the political, legal and biophysical situation in which microbial genetic resources (and their users are located today are similar to the situation of plant genetic resources in the mid-1990s, before the International Treaty on Plant Genetic Resources was negotiated. Consequently, the paper suggests that it may be useful to look to the model of global network of ex situ plant genetic resources collections as a precedent to follow – even if only loosely – in developing an intergovernmentally endorsed legal substructure and governance framework for the microbial commons.

  11. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration

    Directory of Open Access Journals (Sweden)

    Laura A. Zinke

    2018-06-01

    Full Text Available Cool hydrothermal systems (CHSs are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I, Alphaproteobacteria (Rhodospirillales, Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

  12. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; McConnell, J.W. Jr.

    1993-03-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  13. Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs.

    Science.gov (United States)

    Camarinha-Silva, Amelia; Maushammer, Maria; Wellmann, Robin; Vital, Marius; Preuss, Siegfried; Bennewitz, Jörn

    2017-07-01

    The aim of the present study was to analyze the interplay between gastrointestinal tract (GIT) microbiota, host genetics, and complex traits in pigs using extended quantitative-genetic methods. The study design consisted of 207 pigs that were housed and slaughtered under standardized conditions, and phenotyped for daily gain, feed intake, and feed conversion rate. The pigs were genotyped with a standard 60 K SNP chip. The GIT microbiota composition was analyzed by 16S rRNA gene amplicon sequencing technology. Eight from 49 investigated bacteria genera showed a significant narrow sense host heritability, ranging from 0.32 to 0.57. Microbial mixed linear models were applied to estimate the microbiota variance for each complex trait. The fraction of phenotypic variance explained by the microbial variance was 0.28, 0.21, and 0.16 for daily gain, feed conversion, and feed intake, respectively. The SNP data and the microbiota composition were used to predict the complex traits using genomic best linear unbiased prediction (G-BLUP) and microbial best linear unbiased prediction (M-BLUP) methods, respectively. The prediction accuracies of G-BLUP were 0.35, 0.23, and 0.20 for daily gain, feed conversion, and feed intake, respectively. The corresponding prediction accuracies of M-BLUP were 0.41, 0.33, and 0.33. Thus, in addition to SNP data, microbiota abundances are an informative source of complex trait predictions. Since the pig is a well-suited animal for modeling the human digestive tract, M-BLUP, in addition to G-BLUP, might be beneficial for predicting human predispositions to some diseases, and, consequently, for preventative and personalized medicine. Copyright © 2017 by the Genetics Society of America.

  14. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques

    Directory of Open Access Journals (Sweden)

    Anna Gałązka

    2018-01-01

    Full Text Available Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS, reduced tillage (RT, full tillage (FT, and crop rotation (CR. Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation. The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895, genus level (P = 0.026, F = 3.313 and on the species level (P = 0.033, F = 2.718. This study has shown that: (1 fungal diversity was changed

  15. Microbial Genetic Memory to Study Heterogeneous Soil Processes

    Science.gov (United States)

    Fulk, E. M.; Silberg, J. J.; Masiello, C. A.

    2017-12-01

    Microbes can be engineered to sense environmental conditions and produce a detectable output. These microbial biosensors have traditionally used visual outputs that are difficult to detect in soil. However, recently developed gas-producing biosensors can be used to noninvasively monitor complex soil processes such as horizontal gene transfer or cell-cell signaling. While these biosensors report on the fraction of a microbial population exposed to a process or chemical signal at the time of measurement, they do not record a "memory" of past exposure. Synthetic biologists have recently developed a suite of genetically encoded memory circuits capable of reporting on historical exposure to the signal rather than just the current state. We will provide an overview of the microbial memory systems that may prove useful to studying microbial decision-making in response to environmental conditions. Simple memory circuits can give a yes/no report of any past exposure to the signal (for example anaerobic conditions, osmotic stress, or high nitrate concentrations). More complicated systems can report on the order of exposure of a population to multiple signals or the experiences of spatially distinct populations, such as those in root vs. bulk soil. We will report on proof-of-concept experiments showing the function of a simple permanent memory system in soil-cultured microbes, and we will highlight additional applications. Finally, we will discuss challenges still to be addressed in applying these memory circuits for biogeochemical studies.

  16. Genetic influence on prolonged gestation

    DEFF Research Database (Denmark)

    Laursen, Maja; Bille, Camilla; Olesen, Annette Wind

    2004-01-01

    OBJECTIVE: The purpose of this study was to test a possible genetic component to prolonged gestation. STUDY DESIGN: The gestational duration of single, first pregnancies by both female and male twins was obtained by linking the Danish Twin Registry, The Danish Civil Registration System, and the D...... factors. CONCLUSION: Maternal genes influence prolonged gestation. However, a substantial paternal genetic influence through the fetus was not found....

  17. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  18. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  19. Genetic influences on alcohol-related hangover.

    Science.gov (United States)

    Slutske, Wendy S; Piasecki, Thomas M; Nathanson, Lisa; Statham, Dixie J; Martin, Nicholas G

    2014-12-01

    To quantify the relative contributions of genetic and environmental factors to alcohol hangover. Biometric models were used to partition the variance in hangover phenotypes. A community-based sample of Australian twins. Members of the Australian Twin Registry, Cohort II who reported consuming alcohol in the past year when surveyed in 2004-07 (n = 4496). Telephone interviews assessed participants' frequency of drinking to intoxication and frequency of hangover the day after drinking. Analyses examined three phenotypes: hangover frequency, hangover susceptibility (i.e. residual variance in hangover frequency after accounting for intoxication frequency) and hangover resistance (a dichotomous variable defined as having been intoxicated at least once in the past year with no reported hangovers). Genetic factors accounted for 45% [95% confidence interval (CI) = 37-53%] and 40% (95% CI = 33-48%) of the variation in hangover frequency in men and women, respectively. Most of the genetic variation in hangover frequency overlapped with genetic contributions to intoxication frequency. Genetic influences accounted for 24% (95% CI = 14-35%) and 16% (95% CI = 8-25%) of the residual hangover susceptibility variance in men and women, respectively. Forty-three per cent (95% CI = 22-63%) of the variation in hangover resistance was explained by genetic influences, with no evidence for significant sex differences. There was no evidence for shared environmental influences for any of the hangover phenotypes. Individual differences in the propensity to experience a hangover and of being resistant to hangover at a given level of alcohol use are genetically influenced. © 2014 Society for the Study of Addiction.

  20. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  1. An imaging genetics approach to understanding social influence

    Directory of Open Access Journals (Sweden)

    Emily eFalk

    2012-06-01

    Full Text Available Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain’s reward system. We next review neuroimaging evidence linking social punishment (exclusion to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both, which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.

  2. An imaging genetics approach to understanding social influence.

    Science.gov (United States)

    Falk, Emily B; Way, Baldwin M; Jasinska, Agnes J

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuroimaging evidence linking social punishment (exclusion) to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both), which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.

  3. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  4. Genetic and environmental influence on asthma

    DEFF Research Database (Denmark)

    Skadhauge, L.R.; Christensen, Kaare; Kyvik, Kirsten Ohm

    1999-01-01

    The aim of this study was to estimate the relative influence of genetic and environmental factors on the aetiology of asthma. The classic twin study design was used to analyse data on self-reported asthma obtained by a questionnaire mailed to 34,076 individuals, aged 12-41 yrs and originating from...... in the monozygotic than in the dizygotic twins. Using biometric modelling, a model including additive genetic and nonshared environmental effects provided the best overall fit to the data. According to this model, 73% of the variation in liability to asthma was explained by genetic factors. No sex difference or age......-dependency in the magnitude of genetic effects was observed. The biometric analysis emphasized a major influence of genetic factors in the aetiology of asthma. However, a substantial part of the variation in liability to asthma is due to the impact of environmental factors specific to the individual. There is no evidence...

  5. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

  6. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings▿†

    Science.gov (United States)

    Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana

    2011-01-01

    The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678

  7. Metabolomic applications to decipher gut microbial metabolic influence in health and disease

    Directory of Open Access Journals (Sweden)

    Francois-Pierre eMartin

    2012-04-01

    Full Text Available Dietary preferences and nutrients composition have been shown to influence human and gut microbial metabolism, which ultimately has specific effects on health and diseases’ risk. Increasingly, results from molecular biology and microbiology demonstrate the key role of the gut microbiota metabolic interface to the overall mammalian host’s health status. There is therefore raising interest in nutrition research to characterize the molecular foundations of the gut microbial mammalian cross-talk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology approaches, such as metabolomics, to underpin the highly complex metabolic exchanges between diverse biological compartments, including organs, systemic biofluids and microbial symbionts. By the development of specific biomarkers for prediction of health and disease, metabolomics is increasingly used in clinical applications as regard to disease aetiology, diagnostic stratification and potentially mechanism of action of therapeutical and nutraceutical solutions. Surprisingly, an increasing number of metabolomics investigations in pre-clinical and clinical studies based on proton nuclear magnetic resonance (1H NMR spectroscopy and mass spectrometry (MS provided compelling evidence that system wide and organ-specific biochemical processes are under the influence of gut microbial metabolism. This review aims at describing recent applications of metabolomics in clinical fields where main objective is to discern the biochemical mechanisms under the influence of the gut microbiota, with insight into gastrointestinal health and diseases diagnostics and improvement of homeostasis metabolic regulation.

  8. Genetic Influences on Growth Traits of BMI

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob V B; Fagnani, Corrado; Silventoinen, Karri

    2008-01-01

    Objective:To investigate the interplay between genetic factors influencing baseline level and changes in BMI in adulthood.Methods and Procedures:A longitudinal twin study of the cohort of Finnish twins (N = 10,556 twin individuals) aged 20-46 years at baseline was conducted and followed up 15 years....... Data on weight and height were obtained from mailed surveys in 1975, 1981, and 1990.Results:Latent growth models revealed a substantial genetic influence on BMI level at baseline in males and females (heritability (h(2)) 80% (95% confidence interval 0.79-0.80) for males and h(2) = 82% (0.81, 0.......84) for females) and a moderate-to-high influence on rate of change in BMI (h(2) = 58% (0.50, 0.69) for males and h(2) = 64% (0.58, 0.69) for females). Only very weak evidence for genetic pleiotropy was observed; the genetic correlation between baseline and rate of change in BMI was very modest (-0.070 (-0.13, -0...

  9. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  10. Influence of glyphosate, other herbicides and genetically modified ...

    African Journals Online (AJOL)

    HT) is said to adversely affect soil microbial biodiversity, thus negatively influencing the soil ecosystem. Concern has also been raised regarding the potential increase in crop disease incidence and severity caused by the increased cultivation ...

  11. Socioeconomic status and genetic influences on cognitive development.

    Science.gov (United States)

    Figlio, David N; Freese, Jeremy; Karbownik, Krzysztof; Roth, Jeffrey

    2017-12-19

    Accurate understanding of environmental moderation of genetic influences is vital to advancing the science of cognitive development as well as for designing interventions. One widely reported idea is increasing genetic influence on cognition for children raised in higher socioeconomic status (SES) families, including recent proposals that the pattern is a particularly US phenomenon. We used matched birth and school records from Florida siblings and twins born in 1994-2002 to provide the largest, most population-diverse consideration of this hypothesis to date. We found no evidence of SES moderation of genetic influence on test scores, suggesting that articulating gene-environment interactions for cognition is more complex and elusive than previously supposed.

  12. Genome-wide association study of Arabidopsis thaliana leaf microbial community.

    Science.gov (United States)

    Horton, Matthew W; Bodenhausen, Natacha; Beilsmith, Kathleen; Meng, Dazhe; Muegge, Brian D; Subramanian, Sathish; Vetter, M Madlen; Vilhjálmsson, Bjarni J; Nordborg, Magnus; Gordon, Jeffrey I; Bergelson, Joy

    2014-11-10

    Identifying the factors that influence the outcome of host-microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.

  13. The impact of genetically modified crops on soil microbial communities.

    Science.gov (United States)

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  14. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mg O2 L -1 , which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Social Relationships Moderate Genetic Influences on Heavy Drinking in Young Adulthood.

    Science.gov (United States)

    Barr, Peter B; Salvatore, Jessica E; Maes, Hermine H; Korhonen, Tellervo; Latvala, Antti; Aliev, Fazil; Viken, Richard; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M

    2017-11-01

    Social relationships, such as committed partnerships, limit risky behaviors like heavy drinking, in part, because of increased social control. The current analyses examine whether involvement in committed relationships or social support extend beyond a main effect to limit genetic liability in heavy drinking (gene-environment interaction) during young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (n = 3,269), we tested whether involvement in romantic partnerships or social support moderated genetic influences on heavy drinking using biometric twin modeling for gene-environment interaction. Involvement in a romantic partnership was associated with a decline in genetic variance in both males and females, although the overall magnitude of genetic influence was greater in males. Sex differences emerged for social support: increased social support was associated with increased genetic influence for females and reduced genetic influence for males. These findings demonstrate that social relationships are important moderators of genetic influences on young adult alcohol use. Mechanisms of social control that are important in limiting genetic liability during adolescence extend into young adulthood. In addition, although some relationships limit genetic liability equally, others, such as extensive social networks, may operate differently across sex.

  16. Evolution with a seed bank: The population genetic consequences of microbial dormancy.

    Science.gov (United States)

    Shoemaker, William R; Lennon, Jay T

    2018-01-01

    Dormancy is a bet-hedging strategy that allows organisms to persist through conditions that are suboptimal for growth and reproduction by entering a reversible state of reduced metabolic activity. Dormancy allows a population to maintain a reservoir of genetic and phenotypic diversity (i.e., a seed bank) that can contribute to the long-term survival of a population. This strategy can be potentially adaptive and has long been of interest to ecologists and evolutionary biologists. However, comparatively little is known about how dormancy influences the fundamental evolutionary forces of genetic drift, mutation, selection, recombination, and gene flow. Here, we investigate how seed banks affect the processes underpinning evolution by reviewing existing theory, implementing novel simulations, and determining how and when dormancy can influence evolution as a population genetic process. We extend our analysis to examine how seed banks can alter macroevolutionary processes, including rates of speciation and extinction. Through the lens of population genetic theory, we can understand the extent that seed banks influence the evolutionary dynamics of microorganisms as well as other taxa.

  17. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Microbially influenced corrosion communities associated with fuel-grade ethanol environments.

    Science.gov (United States)

    Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R

    2015-08-01

    Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.

  19. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.

    Science.gov (United States)

    Stegen, James C; Johnson, Tim; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Fansler, Sarah J; Graham, Emily B; Kennedy, David W; Resch, Charles T; Tfaily, Malak; Zachara, John

    2018-02-08

    The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.

  20. Genetic variation in social influence on mate preferences

    Science.gov (United States)

    Rebar, Darren; Rodríguez, Rafael L.

    2013-01-01

    Patterns of phenotypic variation arise in part from plasticity owing to social interactions, and these patterns contribute, in turn, to the form of selection that shapes the variation we observe in natural populations. This proximate–ultimate dynamic brings genetic variation in social environments to the forefront of evolutionary theory. However, the extent of this variation remains largely unknown. Here, we use a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess how mate preferences are influenced by genetic variation in the social environment. We used full-sibling split-families as ‘treatment’ social environments, and reared focal females alongside each treatment family, describing the mate preferences of the focal females. With this method, we detected substantial genetic variation in social influence on mate preferences. The mate preferences of focal females varied according to the treatment families along with which they grew up. We discuss the evolutionary implications of the presence of such genetic variation in social influence on mate preferences, including potential contributions to the maintenance of genetic variation, the promotion of divergence, and the adaptive evolution of social effects on fitness-related traits. PMID:23698010

  1. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  2. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  3. Factors influencing the microbial safety of fresh produce: a review.

    Science.gov (United States)

    Olaimat, Amin N; Holley, Richard A

    2012-10-01

    Increased consumption, larger scale production and more efficient distribution of fresh produce over the past two decades have contributed to an increase in the number of illness outbreaks caused by this commodity. Pathogen contamination of fresh produce may originate before or after harvest, but once contaminated produce is difficult to sanitize. The prospect that some pathogens invade the vascular system of plants and establish "sub-clinical" infection needs to be better understood to enable estimation of its influence upon risk of human illness. Conventional surface sanitation methods can reduce the microbial load, but cannot eliminate pathogens if present. Chlorine dioxide, electrolyzed water, UV light, cold atmospheric plasma, hydrogen peroxide, organic acids and acidified sodium chlorite show promise, but irradiation at 1 kGy in high oxygen atmospheres may prove to be the most effective means to assure elimination of both surface and internal contamination of produce by pathogens. Pathogens of greatest current concern are Salmonella (tomatoes, seed sprouts and spices) and Escherichia coli O157:H7 on leafy greens (spinach and lettuce). This review considers new information on illness outbreaks caused by produce, identifies factors which influence their frequency and size and examines intervention effectiveness. Research needed to increase our understanding of the factors influencing microbial safety of fresh produce is addressed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Influence of a Low Frequency Electromagnetic field in the Microbial Flora of a Mango Nectar

    Directory of Open Access Journals (Sweden)

    Yaima Torres-Ferrer

    2016-07-01

    Full Text Available In this work an evaluation of the influence of a low frequency electromagnetic field on the microbial flora of mango nectar in order to study their behavior after each treatment is presented. Experiments are designed and implemented with one factor in which the influence of a low frequency electromagnetic field is determined at various levels (0, 90, 95 Gauss, in a homogeneous and completely randomized unit on the microbial load of nectar mango. Magnetic conditioning device used in the tests with approximate average values of magnetic induction of 90 to 95 characterized Gauss. It is established that the application of the magnetic field in the range of values used (90, 95 Gauss causes a stimulation in the values of total count of mesophilic, leading to increased microbial load present in mango nectar studied.

  5. 40 CFR 158.2110 - Microbial pesticides data requirements.

    Science.gov (United States)

    2010-07-01

    ... of the product. (b) Additional data requirements for genetically modified microbial pesticides. Additional requirements for genetically modified microbial pesticides may include but are not limited to... patterns” under which the individual data are required, with variations including all use patterns, food...

  6. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems

    NARCIS (Netherlands)

    Cotta, Simone Raposo; Franco Dias, Armando Cavalcante; Marriel, Ivanildo Evodio; Gomes, Eliane Aparecida; van Elsas, Jan Dirk; Seldin, Lucy

    The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the

  7. White Matter Hyperintensities Are Under Strong Genetic Influence.

    Science.gov (United States)

    Sachdev, Perminder S; Thalamuthu, Anbupalam; Mather, Karen A; Ames, David; Wright, Margaret J; Wen, Wei

    2016-06-01

    The genetic basis of white matter hyperintensities (WMH) is still unknown. This study examines the heritability of WMH in both sexes and in different brain regions, and the influence of age. Participants from the Older Australian Twins Study were recruited (n=320; 92 monozygotic and 68 dizygotic pairs) who volunteered for magnetic resonance imaging scans and medical assessments. Heritability, that is, the ratio of the additive genetic variance to the total phenotypic variance, was estimated using the twin design. Heritability was high for total WMH volume (0.76), and for periventricular WMH (0.64) and deep WMH (0.77), and varied from 0.18 for the cerebellum to 0.76 for the occipital lobe. The genetic correlation between deep and periventricular WMH regions was 0.85, with one additive genetics factor accounting for most of the shared variance. Heritability was consistently higher in women in the cerebral regions. Heritability in deep but not periventricular WMH declined with age, in particular after the age of 75. WMH have a strong genetic influence but this is not uniform through the brain, being higher for deep than periventricular WMH and in the cerebral regions. The genetic influence is higher in women, and there is an age-related decline, most markedly for deep WMH. The data suggest some heterogeneity in the pathogenesis of WMH for different brain regions and for men and women. © 2016 American Heart Association, Inc.

  8. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.; Sharp, J. O.; Saikaly, Pascal; Ali, Shahjahan; Alidina, M.; Alarawi, M. S.; Keller, S.; Hoppe-Jones, C.; Drewes, J. E.

    2012-01-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  9. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.

    2012-07-13

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  10. Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Saikaly, Pascal E; Ali, Shahjahan; Alidina, Mazahirali; Alarawi, Mohammed S; Keller, Stephanie; Hoppe-Jones, Christiane; Drewes, Jörg E

    2012-10-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  11. Genetic influences on political ideologies

    DEFF Research Database (Denmark)

    Hatemi, Peter K; Medland, Sarah E; Klemmensen, Robert

    2014-01-01

    Almost 40 years ago, evidence from large studies of adult twins and their relatives suggested that between 30 and 60 % of the variance in social and political attitudes could be explained by genetic influences. However, these findings have not been widely accepted or incorporated into the dominant...... paradigms that explain the etiology of political ideology. This has been attributed in part to measurement and sample limitations, as well the relative absence of molecular genetic studies. Here we present results from original analyses of a combined sample of over 12,000 twins pairs, ascertained from nine...... different studies conducted in five democracies, sampled over the course of four decades. We provide evidence that genetic factors play a role in the formation of political ideology, regardless of how ideology is measured, the era, or the population sampled. The only exception is a question that explicitly...

  12. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  13. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  14. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla R.; Huang, Yurong; Karpen, Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  15. Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen liquid of the progeny in beef cattle.

    Directory of Open Access Journals (Sweden)

    Emma Hernandez-Sanabria

    Full Text Available This study aimed to evaluate whether the host genetic background impact the ruminal microbial communities of the progeny of sires from three different breeds under different diets. Eighty five bacterial and twenty eight methanogen phylotypes from 49 individuals of diverging sire breed (Angus, ANG; Charolais, CHA; and Hybrid, HYB, fed high energy density (HE and low energy density (LE diets were determined and correlated with breed, rumen fermentation and phenotypic variables, using multivariate statistical approaches. When bacterial phylotypes were compared between diets, ANG offspring showed the lowest number of diet-associated phylotypes, whereas CHA and HYB progenies had seventeen and twenty-three diet-associated phylotypes, respectively. For the methanogen phylotypes, there were no sire breed-associated phylotypes; however, seven phylotypes were significantly different among breeds on either diet (P<0.05. Sire breed did not influence the metabolic variables measured when high energy diet was fed. A correlation matrix of all pairwise comparisons among frequencies of bacterial and methanogen phylotypes uncovered their relationships with sire breed. A cluster containing methanogen phylotypes M16 (Methanobrevibacter gottschalkii and M20 (Methanobrevibacter smithii, and bacterial phylotype B62 (Robinsoniella sp. in Angus offspring fed low energy diet reflected the metabolic interactions among microbial consortia. The clustering of the phylotype frequencies from the three breeds indicated that phylotypes detected in CHA and HYB progenies are more similar among them, compared to ANG animals. Our results revealed that the frequency of particular microbial phylotypes in the progeny of cattle may be influenced by the sire breed when different diets are fed and ultimately further impact host metabolic functions, such as feed efficiency.

  16. On-line electrochemical monitoring of microbially influenced corrosion

    International Nuclear Information System (INIS)

    Dowling, N.J.E.; Stansbury, E.E.; White, D.C.; Borenstein, S.W.; Danko, J.C.

    1989-01-01

    Newly emerging electrochemical measurement techniques can provide on-line, non-destructive monitoring of the average corrosion rate and indications of localized pitting corrosion together with insight into fundamental electrochemical mechanisms responsible for the corrosion process. This information is relevant to evaluating, monitoring, understanding and controlling microbially influenced corrosion (MIC). MIC of coupons exposed in sidestream devices on site or in laboratory-based experiments, where the corrosion response is accelerated by exposure to active consortia of microbes recovered from specific sites, can be utilized to evaluate mitigation strategies. The average corrosion rates can be determined by small amplitude cyclic voltametry (SACV), and AC impedance spectroscopy (EIS). EIS can also give insight into the mechanisms of the MIC and indications of localized corrosion. Pitting corrosion can be detected non-destructively with open circuit potential monitoring (OCP). OCP also responds to bacterial biofilm activities such as oxygen depletion and other electrochemical activities. Utilizing these methods, accelerated tests can be designed to direct the selection of materials, surface treatments of materials, and welding filler materials, as well as the optimization of chemical and mechanical countermeasures with the microbial consortia recovered and characterized from the specific sites of interest

  17. Sleep Reactivity and Insomnia: Genetic and Environmental Influences

    Science.gov (United States)

    Drake, Christopher L.; Friedman, Naomi P.; Wright, Kenneth P.; Roth, Thomas

    2011-01-01

    Study Objectives: Determine the genetic and environmental contributions to sleep reactivity and insomnia. Design: Population-based twin cohort. Participants: 1782 individual twins (988 monozygotic or MZ; 1,086 dizygotic or DZ), including 744 complete twin pairs (377 MZ and 367 DZ). Mean age was 22.5 ± 2.8 years; gender distribution was 59% women. Measurements: Sleep reactivity was measured using the Ford Insomnia Response to Stress Test (FIRST). The criterion for insomnia was having difficulty falling asleep, staying asleep, or nonrefreshing sleep “usually or always” for ≥ 1 month, with at least “somewhat” interference with daily functioning. Results: The prevalence of insomnia was 21%. Heritability estimates for sleep reactivity were 29% for females and 43% for males. The environmental variance for sleep reactivity was greater for females and entirely due to nonshared effects. Insomnia was 43% to 55% heritable for males and females, respectively; the sex difference was not significant. The genetic variances in insomnia and FIRST scores were correlated (r = 0.54 in females, r = 0.64 in males), as were the environmental variances (r = 0.32 in females, r = 0.37 in males). In terms of individual insomnia symptoms, difficulty staying asleep (25% to 35%) and nonrefreshing sleep (34% to 35%) showed relatively more genetic influences than difficulty falling asleep (0%). Conclusions: Sleep reactivity to stress has a substantial genetic component, as well as an environmental component. The finding that FIRST scores and insomnia symptoms share genetic influences is consistent with the hypothesis that sleep reactivity may be a genetic vulnerability for developing insomnia. Citation: Drake CL; Friedman NP; Wright KP; Roth T. Sleep reactivity and insomnia: genetic and environmental influences. SLEEP 2011;34(9):1179-1188. PMID:21886355

  18. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  19. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer.

    Science.gov (United States)

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A

    2016-07-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.

  20. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    International Nuclear Information System (INIS)

    Wolfram, J. H.; Mizia, R. E.; Jex, R.; Nelson, L.; Garcia, K. M.

    1996-01-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination

  1. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  2. Genetic variants in CHI3L1 influencing YKL-40 levels

    DEFF Research Database (Denmark)

    Kjaergaard, Alisa D; Johansen, Julia S; Nordestgaard, Børge G

    2013-01-01

    Despite its important role in many serious diseases, the genetic background for plasma YKL-40 has still not been systematically catalogued. Therefore, we aimed at identifying genetic variants in CHI3L1 influencing plasma YKL-40 levels in the general population.......Despite its important role in many serious diseases, the genetic background for plasma YKL-40 has still not been systematically catalogued. Therefore, we aimed at identifying genetic variants in CHI3L1 influencing plasma YKL-40 levels in the general population....

  3. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome

    DEFF Research Database (Denmark)

    Xie, Hailiang; Guo, Ruijin; Zhong, Huanzi

    2016-01-01

    The gut microbiota has been typically viewed as an environmental factor for human health. Twins are well suited for investigating the concordance of their gut microbiomes and decomposing genetic and environmental influences. However, existing twin studies utilizing metagenomic shotgun sequencing...... have included only a few samples. Here, we sequenced fecal samples from 250 adult twins in the TwinsUK registry and constructed a comprehensive gut microbial reference gene catalog. We demonstrate heritability of many microbial taxa and functional modules in the gut microbiome, including those...... associated with diseases. Moreover, we identified 8 million SNPs in the gut microbiome and observe a high similarity in microbiome SNPs between twins that slowly decreases after decades of living apart. The results shed new light on the genetic and environmental influences on the composition and function...

  4. Genetic influence demonstrated for MEG-recorded somatosensory evoked responses

    NARCIS (Netherlands)

    van 't Ent, D.; van Soelen, I.L.C.; Stam, K.J.; de Geus, E.J.C.; Boomsma, D.I.

    2010-01-01

    We tested for a genetic influence on magnetoencephalogram (MEG)-recorded somatosensory evoked fields (SEFs) in 20 monozygotic (MZ) and 14 dizygotic (DZ) twin pairs. Previous electroencephalogram (EEG) studies that demonstrated a genetic contribution to evoked responses generally focused on

  5. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.

    Science.gov (United States)

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2

  6. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites

    Directory of Open Access Journals (Sweden)

    Baknoon Ham

    2017-11-01

    Full Text Available Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II and one control site with low CO2 content (group III. Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking

  7. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    Science.gov (United States)

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  8. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  9. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities

    International Nuclear Information System (INIS)

    Lock, K.; Janssen, C.R.

    2005-01-01

    Pollution induced community tolerance (PICT) is based on the phenomenon that toxic effects reduce survival of the most sensitive organisms, thus increasing community tolerance. Community tolerance for a contaminant is thus a strong indicator for the presence of that contaminant at the level of adverse concentrations. Here we assessed PICT in 11 soils contaminated with zinc runoff from galvanised electricity pylons and 11 reference soils sampled at 10 m distance from these pylons. Using PICT, the influence of background concentration and bioavailability of zinc on zinc sensitivity and functional diversity of microbial communities was assessed. Zinc sensitivity of microbial communities decreased significantly with increasing zinc concentrations in pore water and calcium chloride extracted fraction while no significant relationship was found with total zinc concentration in the soil. It was also found that functional diversity of microbial communities decreased with increasing zinc concentrations, indicating that increased tolerance is indeed an undesirable phenomenon when environmental quality is considered. The hypothesis that zinc sensitivity of microbial communities is related to background zinc concentration in pore water could not be confirmed. - Zinc sensitivity of microbial communities and functional diversity decrease with increasing zinc concentration in the pore water

  10. Genetic influences are virtually absent for trust.

    Directory of Open Access Journals (Sweden)

    Paul A M Van Lange

    Full Text Available Over the past decades, numerous twin studies have revealed moderate to high heritability estimates for individual differences in a wide range of human traits, including cognitive ability, psychiatric disorders, and personality traits. Even factors that are generally believed to be environmental in nature have been shown to be under genetic control, albeit modest. Is such heritability also present in social traits that are conceptualized as causes and consequences of social interactions or in other ways strongly shaped by behavior of other people? Here we examine a population-based sample of 1,012 twins and relatives. We show that the genetic influence on generalized trust in other people (trust-in-others: h2 = 5%, ns, and beliefs regarding other people's trust in the self (trust-in-self: h2 = 13%, ns, is virtually absent. As test-retest reliability for both scales were found to be moderate or high (r = .76 and r = .53, respectively in an independent sample, we conclude that all variance in trust is likely to be accounted for by non-shared environmental influences. We show that, relative to cognitive abilities, psychiatric disorders, and classic personality variables, genetic influences are smaller for trust, and propose that experiences with or observations of the behavior of other people shape trust more strongly than other traits.

  11. Microbially influenced corrosion of copper nuclear fuel waste containers in a Canadian disposal vault

    Energy Technology Data Exchange (ETDEWEB)

    King, F

    1996-11-01

    An assessment of the potential for microbially influenced corrosion (MIC) of copper nuclear fuel waste containers in a Canadian disposal vault is presented. The assessment is based on a consideration of the microbial activity within a disposal vault, the reported cases of MIC of Cu alloys in the literature and the known corrosion behaviour of Cu. Because of the critical role of biofilms in the reported cases of MIC, their formation and properties are discussed in detail. Next, the literature on the MIC of Cu alloys is briefly reviewed. The various MIC mechanisms proposed are critically discussed and the implications for the corrosion of Cu containers considered. In the majority of literature cases, MIC depends on alternating aerated and deaerated environments, with accelerated corrosion being observed when fresh aerated water replaces stagnant water, e.g., the MIC of Cu-Ni heat exchangers in polluted seawater and the microbially influenced pitting of Cu water pipes. Finally, because of the predominance of corrosion by sulphate-reducing bacteria (SRB) in the MIC literature, the abiotic behaviour of Cu alloys in sulphide solutions is also reviewed. The effect of the evolving environment in a disposal vault on the extent and location of microbial activity is discussed. Biofilm formation on the container surface is considered unlikely throughout the container lifetime, but especially initially when the environmental conditions will be particularly aggressive. Microbial activity in areas of the vault away from the container is possible, however. Corrosion of the container could then occur if microbial metabolic by-products diffuse to the container surface. Sulphide, produced by the action of SRB are considered to be the most likely cause of container corrosion. It is concluded that the only likely form of MIC of Cu containers will result from sulphide produced by SRB diffusing to the container surface. A modelling procedure for predicting the extent of corrosion is

  12. Microbially influenced corrosion of copper nuclear fuel waste containers in a Canadian disposal vault

    International Nuclear Information System (INIS)

    King, F.

    1996-11-01

    An assessment of the potential for microbially influenced corrosion (MIC) of copper nuclear fuel waste containers in a Canadian disposal vault is presented. The assessment is based on a consideration of the microbial activity within a disposal vault, the reported cases of MIC of Cu alloys in the literature and the known corrosion behaviour of Cu. Because of the critical role of biofilms in the reported cases of MIC, their formation and properties are discussed in detail. Next, the literature on the MIC of Cu alloys is briefly reviewed. The various MIC mechanisms proposed are critically discussed and the implications for the corrosion of Cu containers considered. In the majority of literature cases, MIC depends on alternating aerated and deaerated environments, with accelerated corrosion being observed when fresh aerated water replaces stagnant water, e.g., the MIC of Cu-Ni heat exchangers in polluted seawater and the microbially influenced pitting of Cu water pipes. Finally, because of the predominance of corrosion by sulphate-reducing bacteria (SRB) in the MIC literature, the abiotic behaviour of Cu alloys in sulphide solutions is also reviewed. The effect of the evolving environment in a disposal vault on the extent and location of microbial activity is discussed. Biofilm formation on the container surface is considered unlikely throughout the container lifetime, but especially initially when the environmental conditions will be particularly aggressive. Microbial activity in areas of the vault away from the container is possible, however. Corrosion of the container could then occur if microbial metabolic by-products diffuse to the container surface. Sulphide, produced by the action of SRB are considered to be the most likely cause of container corrosion. It is concluded that the only likely form of MIC of Cu containers will result from sulphide produced by SRB diffusing to the container surface. A modelling procedure for predicting the extent of corrosion is

  13. An imaging genetics approach to understanding social influence

    OpenAIRE

    Emily eFalk; Emily eFalk; Baldwin eWay; Agnes eJasinska

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain’s reward system. We next review neur...

  14. An imaging genetics approach to understanding social influence

    OpenAIRE

    Falk, Emily B.; Way, Baldwin M.; Jasinska, Agnes J.

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuro...

  15. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  16. Microbial Therapeutics Designed for Infant Health.

    LENUS (Irish Health Repository)

    Watkins, Claire

    2017-10-01

    Acknowledgment of the gut microbiome as a vital asset to health has led to multiple studies attempting to elucidate its mechanisms of action. During the first year of life, many factors can cause fluctuation in the developing gut microbiome. Host genetics, maternal health status, mode of delivery, gestational age, feeding regime, and perinatal antibiotic usage, are known factors which can influence the development of the infant gut microbiome. Thus, the microbiome of vaginally born, exclusively breastfed infants at term, with no previous exposure to antibiotics, either directly or indirectly from the mother, is to be considered the "gold standard." Moreover, the use of prebiotics as an aid for the development of a healthy gut microbiome is equally as important in maintaining gut homeostasis. Breastmilk, a natural prebiotic source, provides optimal active ingredients for the growth of beneficial microbial species. However, early life disorders such as necrotising enterocolitis, childhood obesity, and even autism have been associated with an altered\\/disturbed gut microbiome. Subsequently, microbial therapies have been introduced, in addition to suitable prebiotic ingredients, which when administered, may aid in the prevention of a microbial disturbance in the gastrointestinal tract. The aim of this mini-review is to highlight the beneficial effects of different probiotic and prebiotic treatments in early life, with particular emphasis on the different conditions which negatively impact microbial colonisation at birth.

  17. Microbial Therapeutics Designed for Infant Health

    Directory of Open Access Journals (Sweden)

    Claire Watkins

    2017-10-01

    Full Text Available Acknowledgment of the gut microbiome as a vital asset to health has led to multiple studies attempting to elucidate its mechanisms of action. During the first year of life, many factors can cause fluctuation in the developing gut microbiome. Host genetics, maternal health status, mode of delivery, gestational age, feeding regime, and perinatal antibiotic usage, are known factors which can influence the development of the infant gut microbiome. Thus, the microbiome of vaginally born, exclusively breastfed infants at term, with no previous exposure to antibiotics, either directly or indirectly from the mother, is to be considered the “gold standard.” Moreover, the use of prebiotics as an aid for the development of a healthy gut microbiome is equally as important in maintaining gut homeostasis. Breastmilk, a natural prebiotic source, provides optimal active ingredients for the growth of beneficial microbial species. However, early life disorders such as necrotising enterocolitis, childhood obesity, and even autism have been associated with an altered/disturbed gut microbiome. Subsequently, microbial therapies have been introduced, in addition to suitable prebiotic ingredients, which when administered, may aid in the prevention of a microbial disturbance in the gastrointestinal tract. The aim of this mini-review is to highlight the beneficial effects of different probiotic and prebiotic treatments in early life, with particular emphasis on the different conditions which negatively impact microbial colonisation at birth.

  18. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom.

    Science.gov (United States)

    Andreote, Ana P D; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C E; Barbiero, Laurent; Rezende-Filho, Ary T; Fiore, Marli F

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii . This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  19. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Science.gov (United States)

    Andreote, Ana P. D.; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C. E.; Barbiero, Laurent; Rezende-Filho, Ary T.; Fiore, Marli F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes. PMID:29520256

  20. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  1. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    Science.gov (United States)

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  2. Influence of seawater intrusion on microbial communities in groundwater.

    Science.gov (United States)

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Irradiation influence on the detection of genetic-modified soybeans

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Araujo, M.M.; Baldasso, J.G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-01-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60 Co facility at dose levels of 0, 500, 800, and 1000 Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found

  4. Genetic 'fingerprints' to characterise microbial communities during organic overloading and in large-scale biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Kleyboecker, A.; Lerm, S.; Vieth, A.; Wuerdemann, H. [GeoForschungsZentrum Potsdam, Bio-Geo-Engineering, Potsdam (Germany); Miethling-Graff, R. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Agraroekologie; Wittmaier, M. [Institut fuer Kreislaufwirtschaft, Bremen (Germany)

    2007-07-01

    Since fermentation is a complex process, biogas reactors are still known as 'black boxes'. Mostly they are not run at their maximum loading rate due to the possible failure in the process by organic overloading. This means that there are still unused capacities to produce more biogas in less time. Investigations of different large-scale biogas plants showed that fermenters are operated containing different amounts of volatile fatty acids. These amounts can vary so much that one of two digestors, both possessing the same VFA concentration, does not produce gas anymore while the other is still at work. A reason for this phenomenon might be found in the composition of the microbial communities or in differences in the operation of the plants. To gain a better understanding of the 'black box', structural changes in microbial communities during controlled organic overloading in a laboratory and biocenosis of large-scale reactors were investigated. A genetic fingerprint based on 16S rDNA (PCR-SSCP) was used to characterise the microbial community. (orig.)

  5. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    Science.gov (United States)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;pdetergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a function of groundwater temperature for all treatments

  6. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    DEFF Research Database (Denmark)

    Cao, Haichuan; Chen, Ruirui; Wang, Libing

    2016-01-01

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples...... scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced...... scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity....

  7. Genetic architecture of the Delis-Kaplan Executive Function System Trail Making Test: evidence for distinct genetic influences on executive function.

    Science.gov (United States)

    Vasilopoulos, Terrie; Franz, Carol E; Panizzon, Matthew S; Xian, Hong; Grant, Michael D; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C; Kremen, William S

    2012-03-01

    To examine how genes and environments contribute to relationships among Trail Making Test (TMT) conditions and the extent to which these conditions have unique genetic and environmental influences. Participants included 1,237 middle-aged male twins from the Vietnam Era Twin Study of Aging. The Delis-Kaplan Executive Function System TMT included visual searching, number and letter sequencing, and set-shifting components. Phenotypic correlations among TMT conditions ranged from 0.29 to 0.60, and genes accounted for the majority (58-84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. A common genetic factor, most likely representing a combination of speed and sequencing, accounted for most of the correlation among TMT 1-4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in nonpatient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes.

  8. Plant and Bird Presence Strongly Influences the Microbial Communities in Soils of Admiralty Bay, Maritime Antarctica

    Science.gov (United States)

    Teixeira, Lia C. R. S.; Yeargeau, Etienne; Balieiro, Fabiano C.; Piccolo, Marisa C.; Peixoto, Raquel S.; Greer, Charles W.; Rosado, Alexandre S.

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific. PMID:23840411

  9. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Yeargeau, Etienne; Balieiro, Fabiano C; Piccolo, Marisa C; Peixoto, Raquel S; Greer, Charles W; Rosado, Alexandre S

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  10. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Directory of Open Access Journals (Sweden)

    Lia C R S Teixeira

    Full Text Available Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies, Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  11. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  12. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH.

    Science.gov (United States)

    Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O

    2017-01-01

    Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

  13. A generic transport-reactive model for simulating microbially influenced mineral precipitation in porous medium

    NARCIS (Netherlands)

    Zhou, J.; Van Turnhout, A.G.; Heimovaara, T.J.; Afanasyev, M.

    2015-01-01

    The spatial and temporal distribution of precipitated minerals is one of the key factors governing various processes in the sub-surface environment, including microbially influenced corrosion (MIC) (Huang, 2002), bio-cementation (van Paassen et al., 2010) and sediment diagenesis (Paraska et al.,

  14. Genetic and environmental influences on affiliation with deviant peers during adolescence and early adulthood.

    Science.gov (United States)

    Tarantino, Nicholas; Tully, Erin C; Garcia, Sarah E; South, Susan; Iacono, William G; McGue, Matt

    2014-03-01

    Adolescence and early adulthood is a time when peer groups become increasingly influential in the lives of young people. Youths exposed to deviant peers risk susceptibility to externalizing behaviors and related psychopathology. In addition to environmental correlates of deviant peer affiliation, a growing body of evidence has suggested that affiliation with deviant peers is heritable. This study examined the magnitude of genetic and environmental influences on affiliation with deviant peers, changes in the relative importance of these factors, and which of these factors contribute to the stability of affiliation across this critical developmental period using a longitudinal twin study design that assessed same-sex twins (485 monozygotic pairs, 271 dizygotic pairs) at 3 discrete ages: 15, 18, and 21 years of age. Biometric models revealed that genetic influences increased with age. New genetic influences appeared during late adolescence, and no new genetic influences emerged by age 21. Environmental influences shared by sibling pairs decreased with age, while the proportion of nonshared environmental effects unique to each individual remained relatively stable over the course of development. Shared environmental influences were largely age-overlapping, whereas nonshared environmental influences were largely age-specific. In summary, this study found variance in affiliation with deviant peers is explained by shared and nonshared environment effects as well as by genetic influences (46% by age 21), supporting the role of genetically influenced selection factors. The shared environment was almost exclusively responsible for the stability in late adolescence, while genetic influences were primarily responsible for stability in early adulthood. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Genetic influences on incidence and case-fatality of infectious disease.

    Directory of Open Access Journals (Sweden)

    Liselotte Petersen

    Full Text Available BACKGROUND: Family, twin and adoption studies suggest that genetic susceptibility contributes to familial aggregation of infectious diseases or to death from infections. We estimated genetic and shared environmental influences separately on the risk of acquiring an infection (incidence and on dying from it (case fatality. METHODS: Genetic influences were estimated by the association between rates of hospitalization for infections and between case-fatality rates of adoptees and their biological full- and half- siblings. Familial environmental influences were investigated in adoptees and their adoptive siblings. Among 14,425 non-familial adoptions, granted in Denmark during the period 1924-47, we selected 1,603 adoptees, who had been hospitalized for infections and/or died with infection between 1977 and 1993. Their siblings were considered predisposed to infection, and compared with non-predisposed siblings of randomly selected 1,348 adoptees alive in 1993 and not hospitalized for infections in the observation period. The risk ratios presented were based on a Cox regression model. RESULTS: Among 9971 identified siblings, 2829 had been hospitalised for infections. The risk of infectious disease was increased among predisposed compared with non-predisposed in both biological (1.18; 95% confidence limits 1.03-1.36 and adoptive siblings (1.23; 0.98-1.53. The risk of a fatal outcome of the infections was strongly increased (9.36; 2.94-29.8 in biological full siblings, but such associations were not observed for the biological half siblings or for the adoptive siblings. CONCLUSION: Risk of getting infections appears to be weakly influenced by both genetically determined susceptibility to infection and by family environment, whereas there appears to be a strong non-additive genetic influence on risk of fatal outcome.

  16. Genetic engineering of microbial pesticides

    Science.gov (United States)

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  17. Research of radiation-resistant microbial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-15

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA{sub 0}279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project.

  18. Research of radiation-resistant microbial organisms

    International Nuclear Information System (INIS)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-01

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA 0 279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project

  19. Genetic dissimilarity between mates, but not male heterozygosity, influences divorce in schistosomes.

    Directory of Open Access Journals (Sweden)

    Sophie Beltran

    Full Text Available BACKGROUND: Correlational studies strongly suggest that both genetic similarity and heterozygosity can influence female mate choice. However, the influence of each variable has usually been tested independently, although similarity and heterozygosity might be correlated. We experimentally determined the relative influence of genetic similarity and heterozygosity in divorce and re-mating in the monogamous endoparasite Schistosoma mansoni. METHODOLOGY/PRINCIPAL FINDINGS: We performed sequential infections of vertebrate hosts with controlled larval populations of parasites, where sex and individual genetic diversity and similarity were predetermined before infection. Divorce rate increased significantly when females were given the opportunity to increase genetic dissimilarity through re-mating with a new partner, independently of the intensity of male-male competition. We found however no evidence for females attempting to maximize the level of heterozygosity of their reproductive partner through divorce. CONCLUSIONS/SIGNIFICANCE: Female preference for genetically dissimilar males should result in more heterozygous offspring. Because genetic heterozygosity might partly determine the ability of parasites to counter host resistance, adaptive divorce could be an important factor in the evolutionary arms race between schistosomes and their hosts.

  20. Genetic influences on incidence and case-fatality of infectious disease

    DEFF Research Database (Denmark)

    Petersen, Liselotte; Andersen, Per Kragh; Sørensen, Thorkild I A

    2010-01-01

    Family, twin and adoption studies suggest that genetic susceptibility contributes to familial aggregation of infectious diseases or to death from infections. We estimated genetic and shared environmental influences separately on the risk of acquiring an infection (incidence) and on dying from...

  1. Genetic and Environmental Influences on Global Family Conflict

    Science.gov (United States)

    Horwitz, Briana N.; Neiderhiser, Jenae M.; Ganiban, Jody M.; Spotts, Erica L.; Lichtenstein, Paul; Reiss, David

    2010-01-01

    This study examined genetic and environmental influences on global family conflict. The sample comprised 872 same-sex pairs of twin parents, their spouses/partners and one adolescent child per twin from the Twin and Offspring Study in Sweden (TOSS). The twins, spouses and child each reported on the degree of family conflict, and there was significant agreement among the family members’ ratings. These shared perspectives were explained by one common factor, indexing global family conflict. Genetic influences explained 36% of the variance in this common factor, suggesting that twins’ heritable characteristics contribute to family conflict, via genotype-environment correlation. Nonshared environmental effects explained the remaining 64% of this variance, indicating that twins’ unique childhood and/or current family experiences also play an important role. PMID:20438198

  2. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences.

    Directory of Open Access Journals (Sweden)

    Alex J Bartholomew

    Full Text Available Despite the large amount of variation found in the night (scotopic vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA and contrast sensitivity (CS to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision.

  3. The influence of processing on the microbial risk associated with Rooibos (Aspalathus linearis) tea.

    Science.gov (United States)

    Gouws, Pieter; Hartel, Toni; van Wyk, Rudean

    2014-12-01

    This review discusses the influence of processing on the microbial risk associated with Salmonella in Rooibos tea, the identification of Salmonella and preventative and control measures to control microbial contamination. Rooibos tea, like other plant products, naturally contains a high microbial load. Downstream processing steps of these products usually help in reducing any contaminants present. Due to the delicate flavour properties and nature of Rooibos, gentle processing techniques are necessary for the production of good quality tea. However, this has a major influence on the microbiological status of the product. The presence of Salmonella in Rooibos is poorly understood. The ubiquitous distribution of Salmonella in the natural environment and its prevalence in the global food chain, the physiological adaptability, virulence of the bacterial pathogen and its serious economic impact on the food industry, emphasises the need for continued awareness and stringent controls at all levels of food production. With the advances of technology and information at hand, the processing of Rooibos needs to be re-evaluated. Since the delicate nature of Rooibos prohibits the use of harsh methods to control Salmonella, alternative methods for the steam pasteurisation of Rooibos show great potential to control Salmonella in a fast, efficient and cost-effective manner. These alternative methods will significantly improve the microbiological quality of Rooibos and provide a product that is safe to consumers. © 2014 Society of Chemical Industry.

  4. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    Science.gov (United States)

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  5. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    Directory of Open Access Journals (Sweden)

    Xianjin Tang

    2014-03-01

    Full Text Available Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m. The concentration of Cd (2.16 mg·kg−1 and Cu (69.2 mg·kg−1 were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  6. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    Science.gov (United States)

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  7. Reaction time inhibition, working memory and 'delay aversion' performance : genetic influences and their interpretation

    NARCIS (Netherlands)

    Kuntsi, Jonna; Rogers, Hannah; Swinard, Greer; Börger, Norbert; van der Meere, Jaap; Rijsdijk, Fruhling; Asherson, Philip

    2006-01-01

    Background. For candidate endophenotypes to be useful for psychiatric genetic research, they first of all need to show significant genetic influences. To address the relative lack of previous data, we set to investigate the extent of genetic and environmental influences on performance in a set of

  8. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  9. Estimating and mapping ecological processes influencing microbial community assembly.

    Science.gov (United States)

    Stegen, James C; Lin, Xueju; Fredrickson, Jim K; Konopka, Allan E

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  10. Estimating and Mapping Ecological Processes Influencing Microbial Community Assembly

    Directory of Open Access Journals (Sweden)

    James C Stegen

    2015-05-01

    Full Text Available Ecological community assembly is governed by a combination of (i selection resulting from among-taxa differences in performance; (ii dispersal resulting from organismal movement; and (iii ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  11. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  12. External apical root resorption concurrent with orthodontic forces: the genetic influence.

    Science.gov (United States)

    Nieto-Nieto, Nuria; Solano, Jose Enrique; Yañez-Vico, Rosa

    2017-05-01

    Root resorption is a pathological process of multifactorial origin related to the permanent loss of dental root structure in response to a mechanical, inflammatory, autoimmune or infectious stimulus. External apical root resorption (EARR) is a frequent clinical complication secondary to orthodontic tooth movement; apart from variables related to treatment, environmental factors and/or interindividual genetic variations can confer susceptibility or resistance to its occurrence. In this context, genetic predisposition has been described as an etiological factor, together with mechanical factors derived from orthodontic treatment. In recent years, international research groups have determined the degree of influence of some genetic biomarkers in defining increased/reduced susceptibility to postorthodontic EARR. The influences of the IL1 gene cluster (IL1B, IL1A, IL1RN, IL6), P2RX7, CASP1, OPG (TNFRSF11B), RANK (TNFRSF11A), Osteopontin (OPN), TNFα, the vitamin D receptor (TaqI), TNSALP and IRAK1 have been analyzed. The objective of the present review study was to compile and analyze the latest information about the genetic background predisposing to EARR during orthodontic treatment. Genetics-based studies along with other basic science research in the field might help to clarify the exact nature of EARR, the influence of genetic inheritance and possibly lead to the prevention or even eradication of this phenomenon during orthodontic treatment.

  13. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  14. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems.

    Science.gov (United States)

    Schmidt, Victor; Amaral-Zettler, Linda; Davidson, John; Summerfelt, Steven; Good, Christopher

    2016-08-01

    Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e

  15. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  16. Evaluation of some genetic factors influencing the phenotypic ...

    African Journals Online (AJOL)

    Evaluation of some genetic factors influencing the phenotypic severity of β thalassemia Egyptian patients. Ibtessam R Hussein, Amina M Medhat, Samir F Zohny, Alice K Abd El-Aleem, Ghada Y El-Kammah, Bardees M Foda ...

  17. Reactor staging influences microbial community composition and diversity of denitrifying MBBRs- Implications on pharmaceutical removal

    DEFF Research Database (Denmark)

    Torresi, Elena; Gülay, Arda; Polesel, Fabio

    2018-01-01

    The subdivision of biofilm reactor in two or more stages (i.e., reactor staging) represents an option for process optimisation of biological treatment. In our previous work, we showed that the gradient of influent organic substrate availability (induced by the staging) can influence the microbial...

  18. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  19. HIVThe influence of HIV status on prenatal genetic diagnosis choices

    African Journals Online (AJOL)

    HIVThe influence of HIV status on prenatal genetic diagnosis choices. JS Bee, M Glass, JGR Kromberg. Abstract. Background. At-risk women of advanced maternal age (AMA) can choose to have second-trimester invasive testing for a prenatal genetic diagnosis on the fetus. Being HIV-positive can complicate the ...

  20. Cognitive vulnerability to depression : genetic and environmental influences

    NARCIS (Netherlands)

    Antypa, Niki

    2011-01-01

    This thesis explores cognitive vulnerability to depression and the interplay between genetic and environmental influences. Cognitive vulnerability to depression is characterized by negative patterns of information processing. One aspect is cognitive reactivity - the tendency to respond with

  1. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...

  2. Genetic influences on thinning of the cerebral cortex during development

    NARCIS (Netherlands)

    van Soelen, I.L.C.; Brouwer, R.M.; van Baal, G.C.M.; Schnack, H.G.; Peper, J.S.; Collins, D.L.; Evans, A.C.; Kahn, R.S.; Boomsma, D.I.; Hulshoff Pol, H.E.

    2012-01-01

    During development from childhood to adulthood the human brain undergoes considerable thinning of the cerebral cortex. Whether developmental cortical thinning is influenced by genes and if independent genetic factors influence different parts of the cortex is not known. Magnetic resonance brain

  3. Added value measures in education show genetic as well as environmental influence.

    Science.gov (United States)

    Haworth, Claire M A; Asbury, Kathryn; Dale, Philip S; Plomin, Robert

    2011-02-02

    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.

  4. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)].

    Science.gov (United States)

    Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A

    2010-06-01

    The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  6. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  7. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  8. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  9. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  10. Genetic influences on level and stability of self-esteem

    OpenAIRE

    Neiss, Michelle; Sedikides, Constantine; Stevenson, Jim

    2006-01-01

    We attempted to clarify the relation between self-esteem level (high vs. low) and perceived self-esteem stability (within-person variability) by using a behavioral genetics approach. We tested whether the same or independent genetic and environmental influences impact on level and stability. Adolescent twin siblings (n = 183 pairs) completed level and stability scales at two time points. Heritability for both was substantial. The remaining variance in each was attributable to non-shared envir...

  11. 40 CFR 158.2100 - Microbial pesticides definition and applicability.

    Science.gov (United States)

    2010-07-01

    ... to which the organism has been genetically modified. (4) Pest control organisms such as insect... and supported by data required in this subpart. (3) Genetically modified microbial pesticides may be...

  12. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  13. Genetic and environmental influences on motor function: a magnetoencephalographic study of twins

    Directory of Open Access Journals (Sweden)

    Toshihiko eAraki

    2014-06-01

    Full Text Available To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities of movement-related cortical fields (MRCFs in middle-aged and elderly monozygotic (MZ twins. MRCFs were measured using a 160-channel MEG system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1 between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function.

  14. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    Directory of Open Access Journals (Sweden)

    Andrea Burri

    Full Text Available BACKGROUND: Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT and adult gender identity (AGI. However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. METHODOLOGY/PRINCIPAL FINDINGS: Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426 who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%, AGI (11% and CGT (31%. For the multivariate analyses, a common pathway model best fitted the data. CONCLUSIONS/SIGNIFICANCE: This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  15. Are genetic and environmental influences on job satisfaction stable over time? A three-wave longitudinal twin study.

    Science.gov (United States)

    Li, Wen-Dong; Stanek, Kevin C; Zhang, Zhen; Ones, Deniz S; McGue, Matt

    2016-11-01

    Job satisfaction research has unfolded as an exemplary manifestation of the "person versus environment" debate in applied psychology. With the increasing recognition of the importance of time, it is informative to examine a question critical to the dispositional view of job satisfaction: Are genetic influences on job satisfaction stable across different time points? Drawing upon dispositional and situational perspectives on job satisfaction and recent research in developmental behavioral genetics, we examined whether the relative potency of genetic (i.e., the person) and environmental influences on job satisfaction changed over time in a 3-wave longitudinal twin study. Biometric behavioral genetics analyses showed that genetic influences accounted for 31.2% of the variance in job satisfaction measured at approximately Age 21, which was markedly greater than the 18.7% and 19.8% of variance explained by genetic factors at Age 25 and Age 30. Such genetic influences were mediated via positive affectivity and negative affectivity, but not via general mental ability. After partialing out genetic influences, environmental influences on job satisfaction were related to interpersonal conflict at work and occupational status, and these influences were relatively stable across the 3 time points. These results offer important implications for organizations and employees to better understand and implement practices to enhance job satisfaction. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Genetic and environmental influences on the allocation of adolescent leisure time activities.

    Science.gov (United States)

    Haberstick, Brett C; Zeiger, Joanna S; Corley, Robin P

    2014-01-01

    There is a growing recognition of the importance of the out-of-school activities in which adolescents choose to participate. Youth activities vary widely in terms of specific activities and in time devoted to them but can generally be grouped by the type and total duration spent per type. We collected leisure time information using a 17-item leisure time questionnaire in a large sample of same- and opposite-sex adolescent twin pairs (N = 2847). Using both univariate and multivariate genetic models, we sought to determine the type and magnitude of genetic and environmental influences on the allocation of time toward different leisure times. Results indicated that both genetic and shared and nonshared environmental influences were important contributors to individual differences in physical, social, intellectual, family, and passive activities such as watching television. The magnitude of these influences differed between males and females. Environmental influences were the primary factors contributing to the covariation of different leisure time activities. Our results suggest the importance of heritable influences on the allocation of leisure time activity by adolescents and highlight the importance of environmental experiences in these choices.

  17. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Tyson, Gene [University of Queensland, Brisbane Australia; Meile, Christof [University of Georgia, Athens, Georgia; McGlynn, Shawn [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yu, Hang [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chadwick, Grayson [California Inst. of Technology (CalTech), Pasadena, CA (United States); Marlow, Jeffrey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trembath-Reichert, Elizabeth [California Inst. of Technology (CalTech), Pasadena, CA (United States); Dekas, Anne [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellisman, Mark [University of California San Diego; Hatzenpichler, Roland [California Inst. of Technology (CalTech), Pasadena, CA (United States); Skennerton, Connor [California Inst. of Technology (CalTech), Pasadena, CA (United States); Scheller, Silvan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-12-25

    The global biological CH4 cycle is largely controlled through coordinated and often intimate microbial interactions between archaea and bacteria, the majority of which are still unknown or have been only cursorily identified. Members of the methanotrophic archaea, aka ‘ANME’, are believed to play a major role in the cycling of methane in anoxic environments coupled to sulfate, nitrate, and possibly iron and manganese oxides, frequently forming diverse physical and metabolic partnerships with a range of bacteria. The thermodynamic challenges overcome by the ANME and their bacterial partners and corresponding slow rates of growth are common characteristics in anaerobic ecosystems, and, in stark contrast to most cultured microorganisms, this type of energy and resource limited microbial lifestyle is likely the norm in the environment. While we have gained an in-depth systems level understanding of fast-growing, energy-replete microorganisms, comparatively little is known about the dynamics of cell respiration, growth, protein turnover, gene expression, and energy storage in the slow-growing microbial majority. These fundamental properties, combined with the observed metabolic and symbiotic versatility of methanotrophic ANME, make these cooperative microbial systems a relevant (albeit challenging) system to study and for which to develop and optimize culture-independent methodologies, which enable a systems-level understanding of microbial interactions and metabolic networks. We used an integrative systems biology approach to study anaerobic sediment microcosms and methane-oxidizing bioreactors and expanded our understanding of the methanotrophic ANME archaea, their interactions with physically-associated bacteria, ecophysiological characteristics, and underlying genetic basis for cooperative microbial methane-oxidation linked with different terminal electron acceptors. Our approach is inherently multi-disciplinary and multi-scaled, combining transcriptional and

  18. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  19. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

    International Nuclear Information System (INIS)

    Moskowitz, Samuel M.; Gibson, Ronald L.; Effmann, Eric L.

    2005-01-01

    Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies. (orig.)

  20. Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior.

    Science.gov (United States)

    Meier, Madeline H; Slutske, Wendy S; Heath, Andrew C; Martin, Nicholas G

    2011-05-01

    Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior were examined in a large community sample of 6,383 adult male, female, and opposite-sex twins. Retrospective reports of childhood conduct disorder (prior to 18 years of age) were obtained when participants were approximately 30 years old, and lifetime reports of adult antisocial behavior (antisocial behavior after 17 years of age) were obtained 8 years later. Results revealed that either the genetic or the shared environmental factors influencing childhood conduct disorder differed for males and females (i.e., a qualitative sex difference), but by adulthood, these sex-specific influences on antisocial behavior were no longer apparent. Further, genetic and environmental influences accounted for proportionally the same amount of variance in antisocial behavior for males and females in childhood and adulthood (i.e., there were no quantitative sex differences). Additionally, the stability of antisocial behavior from childhood to adulthood was slightly greater for males than females. Though familial factors accounted for more of the stability of antisocial behavior for males than females, genetic factors accounted for the majority of the covariation between childhood conduct disorder and adult antisocial behavior for both sexes. The genetic influences on adult antisocial behavior overlapped completely with the genetic influences on childhood conduct disorder for both males and females. Implications for future twin and molecular genetic studies are discussed.

  1. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  2. Genetic influences on variation in female orgasmic function: a twin study

    Science.gov (United States)

    Dunn, Kate M; Cherkas, Lynn F; Spector, Tim D

    2005-01-01

    Orgasmic dysfunction in females is commonly reported in the general population with little consensus on its aetiology. We performed a classical twin study to explore whether there were observable genetic influences on female orgasmic dysfunction. Adult females from the TwinsUK register were sent a confidential survey including questions on sexual problems. Complete responses to the questions on orgasmic dysfunction were obtained from 4037 women consisting of 683 monozygotic and 714 dizygotic pairs of female twins aged between 19 and 83 years. One in three women (32%) reported never or infrequently achieving orgasm during intercourse, with a corresponding figure of 21% during masturbation. A significant genetic influence was seen with an estimated heritability for difficulty reaching orgasm during intercourse of 34% (95% confidence interval 27–40%) and 45% (95% confidence interval 38–52%) for orgasm during masturbation. These results show that the wide variation in orgasmic dysfunction in females has a genetic basis and cannot be attributed solely to cultural influences. These results should stimulate further research into the biological and perhaps evolutionary processes governing female sexual function. PMID:17148182

  3. Using an adoption design to separate genetic, prenatal, and temperament influences on toddler executive function.

    Science.gov (United States)

    Leve, Leslie D; DeGarmo, David S; Bridgett, David J; Neiderhiser, Jenae M; Shaw, Daniel S; Harold, Gordon T; Natsuaki, Misaki N; Reiss, David

    2013-06-01

    Poor executive functioning has been implicated in children's concurrent and future behavioral difficulties, making work aimed at understanding processes related to the development of early executive function (EF) critical for models of developmental psychopathology. Deficits in EF have been associated with adverse prenatal experiences, genetic influences, and temperament characteristics. However, our ability to disentangle the predictive and independent effects of these influences has been limited by a dearth of genetically informed research designs that also consider prenatal influences. The present study examined EF and language development in a sample of 361 toddlers who were adopted at birth and reared in nonrelative adoptive families. Predictors included genetic influences (as inherited from birth mothers), prenatal risk, and growth in child negative emotionality. Structural equation modeling indicated that the effect of prenatal risk on toddler effortful attention at age 27 months became nonsignificant once genetic influences were considered in the model. In addition, genetic influences had unique effects on toddler effortful attention. Latent growth modeling indicated that increases in toddler negative emotionality from 9 to 27 months were associated with poorer delay of gratification and poorer language development. Similar results were obtained in models incorporating birth father data. Mechanisms of intergenerational transmission of EF deficits are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  4. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    Science.gov (United States)

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. The Influence of Genetics on Cystic Fibrosis Phenotypes

    Science.gov (United States)

    Knowles, Michael R.; Drumm, Mitchell

    2012-01-01

    Technological advances in genetics have made feasible and affordable large studies to identify genetic variants that cause or modify a trait. Genetic studies have been carried out to assess variants in candidate genes, as well as polymorphisms throughout the genome, for their associations with heritable clinical outcomes of cystic fibrosis (CF), such as lung disease, meconium ileus, and CF-related diabetes. The candidate gene approach has identified some predicted relationships, while genome-wide surveys have identified several genes that would not have been obvious disease-modifying candidates, such as a methionine sulfoxide transferase gene that influences intestinal obstruction, or a region on chromosome 11 proximate to genes encoding a transcription factor and an apoptosis controller that associates with lung function. These unforeseen associations thus provide novel insight into disease pathophysiology, as well as suggesting new therapeutic strategies for CF. PMID:23209180

  6. Overlapping genetic and child-specific nonshared environmental influences on listening comprehension, reading motivation, and reading comprehension.

    Science.gov (United States)

    Schenker, Victoria J; Petrill, Stephen A

    2015-01-01

    This study investigated the genetic and environmental influences on observed associations between listening comprehension, reading motivation, and reading comprehension. Univariate and multivariate quantitative genetic models were conducted in a sample of 284 pairs of twins at a mean age of 9.81 years. Genetic and nonshared environmental factors accounted for statistically significant variance in listening and reading comprehension, and nonshared environmental factors accounted for variance in reading motivation. Furthermore, listening comprehension demonstrated unique genetic and nonshared environmental influences but also had overlapping genetic influences with reading comprehension. Reading motivation and reading comprehension each had unique and overlapping nonshared environmental contributions. Therefore, listening comprehension appears to be related to reading primarily due to genetic factors whereas motivation appears to affect reading via child-specific, nonshared environmental effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Overlapping Genetic and Child-Specific Nonshared Environmental Influences on Listening Comprehension, Reading Motivation, and Reading Comprehension

    Science.gov (United States)

    Schenker, Victoria J.; Petrill, Stephen A.

    2015-01-01

    This study investigated the genetic and environmental influences on observed associations between listening comprehension, reading motivation, and reading comprehension. Univariate and multivariate quantitative genetic models were conducted in a sample of 284 pairs of twins at a mean age of 9.81 years. Genetic and nonshared environmental factors accounted for statistically significant variance in listening and reading comprehension, and nonshared environmental factors accounted for variance in reading motivation. Furthermore, listening comprehension demonstrated unique genetic and nonshared environmental influences but also had overlapping genetic influences with reading comprehension. Reading motivation and reading comprehension each had unique and overlapping nonshared environmental contributions. Therefore, listening comprehension appears to be related to reading primarily due to genetic factors whereas motivation appears to affect reading via child-specific, nonshared environmental effects. PMID:26321677

  8. Moderation of genetic and environmental influences on diurnal preference by age in adult twins.

    Science.gov (United States)

    Barclay, Nicola L; Watson, Nathaniel F; Buchwald, Dedra; Goldberg, Jack

    2014-03-01

    Diurnal preference changes across the lifespan. However, the mechanisms underlying this age-related shift are poorly understood. The aim of this twin study was to determine the extent to which genetic and environmental influences on diurnal preference are moderated by age. Seven hundred and sixty-eight monozygotic and 674 dizygotic adult twin pairs participating in the University of Washington Twin Registry completed the reduced Morningness-Eveningness Questionnaire as a measure of diurnal preference. Participants ranged in age from 19 to 93 years (mean = 36.23, SD = 15.54) and were categorized on the basis of age into three groups: younger adulthood (19-35 years, n = 1715 individuals), middle adulthood (36-64 years, n = 1003 individuals) and older adulthood (65+ years, n = 168 individuals). Increasing age was associated with an increasing tendency towards morningness (r = 0.42, p influences for the total sample as well as for each age group separately. Additive genetic influences accounted for 52%[46-57%], and non-shared environmental influences 48%[43-54%], of the total variance in diurnal preference. In comparing univariate genetic models between age groups, the best-fitting model was one in which the parameter estimates for younger adults and older adults were equated, in comparison with middle adulthood. For younger and older adulthood, additive genetic influences accounted for 44%[31-49%] and non-shared environmental influences 56%[49-64%] of variance in diurnal preference, whereas for middle adulthood these estimates were 34%[21-45%] and 66%[55-79%], respectively. Therefore, genetic influences on diurnal preference are attenuated in middle adulthood. Attenuation is likely driven by the increased importance of work and family responsibilities during this life stage, in comparison with younger and older adulthood when these factors may be less influential in determining sleep-wake timing. These findings have implications for studies

  9. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    Science.gov (United States)

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  10. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    Science.gov (United States)

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  11. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    Science.gov (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Sex differences in genetic and environmental influences on educational attainment and income.

    Science.gov (United States)

    Orstavik, Ragnhild E; Czajkowski, Nikolai; Røysamb, Espen; Knudsen, Gun Peggy; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2014-12-01

    In many Western countries, women now reach educational levels comparable to men, although their income remains considerably lower. For the past decades, it has become increasingly clear that these measures of socio-economic status are influenced by genetic as well as environmental factors. Less is known about the relationship between education and income, and sex differences. The aim of this study was to explore genetic and environmental factors influencing education and income in a large cohort of young Norwegian twins, with special emphasis on gender differences. National register data on educational level and income were obtained for 7,710 twins (aged 29-41 years). Bivariate Cholesky models were applied to estimate qualitative and quantitative gender differences in genetic and environmental influences, the relative contribution of genetic and environmental factors to the correlation between education and income, and genetic correlations within and between sexes and phenotypes. The phenotypic correlation between educational level and income was 0.34 (0.32-0.39) for men and 0.45 (0.43-0.48) for women. An ACE model with both qualitative and quantitative sex differences fitted the data best. The genetic correlation between men and women (rg) was 0.66 (0.22-1.00) for educational attainment and 0.38 (0.01-0.75) for income, and between the two phenotypes 0.31 (0.08-0.52) for men and 0.72 (0.64-0.85) for women. Our results imply that, in relatively egalitarian societies with state-supported access to higher education and political awareness of gender equality, genetic factors may play an important role in explaining sex differences in the relationship between education and income.

  13. Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.; Othman, Y.

    2010-01-01

    Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1-4 deg. C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0-5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences (p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.

  14. Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M., E-mail: scientific5@aec.org.sy; Farah, S.; Othman, Y.

    2010-08-15

    Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1-4 deg. C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0-5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences (p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.

  15. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  16. Microbially influenced corrosion of zinc and aluminium - Two-year subjection to influence of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Juzeliunas, Eimutis [Institute of Chemistry, A.Gostauto 9, 01108 Vilnius (Lithuania)], E-mail: ejuzel@ktl.mii.lt; Ramanauskas, Rimantas; Lugauskas, Albinas; Leinartas, Konstantinas; Samuleviciene, Meilute; Sudavicius, Aloyzas; Juskenas, Remigijus [Institute of Chemistry, A.Gostauto 9, 01108 Vilnius (Lithuania)

    2007-11-15

    Aspergillus niger. Tiegh., a filamentous ascomycete fungus, was isolated from the metal samples exposed to marine, rural and urban sites in Lithuania. Al and Zn samples were subjected to two-year influence of A. niger under laboratory conditions in humid atmosphere. Electrochemical impedance spectroscopy (EIS) ascertained microbially influenced corrosion acceleration (MICA) of Zn and inhibition (MICI) of Al. EIS data indicated a two-layer structure of corrosion products on Zn. The microorganisms reduced the thickness of the inner layer, whose passivating capacity was much higher when compared to that of the outer layer. An increase in aluminium oxide layer resistance but decrease in the layer thickness implied that MICI affected primarily the sites of localized corrosion of Al (pores, micro-cracks, etc.). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies indicated that bioproducts (i.e. organic acids) did not form crystalline phases with corrosion products of zinc. The study suggested a hypothesis that microorganisms could be used as corrosion protectors instead of toxic chemicals, application of which tends to be increasingly restricted.

  17. Microbially influenced corrosion of zinc and aluminium - Two-year subjection to influence of Aspergillus niger

    International Nuclear Information System (INIS)

    Juzeliunas, Eimutis; Ramanauskas, Rimantas; Lugauskas, Albinas; Leinartas, Konstantinas; Samuleviciene, Meilute; Sudavicius, Aloyzas; Juskenas, Remigijus

    2007-01-01

    Aspergillus niger. Tiegh., a filamentous ascomycete fungus, was isolated from the metal samples exposed to marine, rural and urban sites in Lithuania. Al and Zn samples were subjected to two-year influence of A. niger under laboratory conditions in humid atmosphere. Electrochemical impedance spectroscopy (EIS) ascertained microbially influenced corrosion acceleration (MICA) of Zn and inhibition (MICI) of Al. EIS data indicated a two-layer structure of corrosion products on Zn. The microorganisms reduced the thickness of the inner layer, whose passivating capacity was much higher when compared to that of the outer layer. An increase in aluminium oxide layer resistance but decrease in the layer thickness implied that MICI affected primarily the sites of localized corrosion of Al (pores, micro-cracks, etc.). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies indicated that bioproducts (i.e. organic acids) did not form crystalline phases with corrosion products of zinc. The study suggested a hypothesis that microorganisms could be used as corrosion protectors instead of toxic chemicals, application of which tends to be increasingly restricted

  18. Genetic Influences on the Development of Fibrosis in Crohn's Disease

    OpenAIRE

    Verstockt, Bram; Cleynen, Isabelle

    2016-01-01

    Fibrostenotic strictures are an important complication in patients with Crohn’s disease (CD), very often necessitating surgery. This fibrotic process develops in a genetically susceptible individual and is influenced by an interplay with environmental, immunological, and disease-related factors. A deeper understanding of the genetic factors driving this fibrostenotic process might help to unravel the pathogenesis, and ultimately lead to development of new, anti-fibrotic therapy. Here, we revi...

  19. 2007 Microbial Population Biology (July 22-26, 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Anthony M. Dean

    2008-04-01

    Microbial Population Biology covers a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past meetings have covered topics ranging from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. We anticipate the 2007 meeting being no exception. The final form of the 2007 meeting is yet to be decided, but the following topics are likely to be included: evolutionary emergence of infectious disease and antibiotic resistance, genetic architecture and implications for the evolution of microbial populations, ageing in bacteria, biogeography, evolution of symbioses, the role of microbes in ecosystem function, and ecological genomics.

  20. Influence of hexavalent chromium on lactate-enriched Hanford groundwater microbial communities.

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Podar, Mircea [ORNL; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction and immobilization of chromate (Cr(VI)) is a plausible bioremediation strategy. However, higher Cr(VI) concentrations may impose stress on native Cr-reducing communities. We sought to determine if Cr(VI) would influence the lactate enriched native microbial community structure and function in groundwater from the Cr contaminated site at Hanford, WA. Steady state continuous flow bioreactors were amended with lactate and Cr(VI) (0.0, 0.1 and 3.0 mg/L). Microbial growth, metabolites, Cr(VI) concentrations, 16S rRNA gene sequences and GeoChip based functional gene composition in bioreactors were monitored for 15 weeks. Temporal trends and some differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) was reduced in the bioreactors. With lactate enrichment, the native communities did not significantly differ between Cr concentrations. Native bacterial communities were diverse, whereas after lactate enrichment, Pelosinus spp., and Sporotalea spp., were the most predominant groups in all bioreactors. Similarly, the Archaea diversity significantly decreased from Methanosaeta (35%), Methanosarcina (17%), Halobacteriales (12%), Methanoregula (8%) and others, to mostly Methanosarcina spp. (95%) after lactate enrichment. Composition of several key functional genes was distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant probes (chrA), Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result the 3.0 mg/L Cr(VI) did not appear to give chromate reducing strains a competitive advantage for proliferation or for increasing Cr-reduction.

  1. Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality

    Science.gov (United States)

    Mocali, Stefano; Fabiani, Arturo; Kuramae, Eiko; de Hollander, Mattias; Kowalchuk, George A.; Vignozzi, Nadia; Valboa, Giuseppe; Costantini, Edoardo

    2013-04-01

    soils. The structure of soil microbial communities was assessed using 16S and 18S rRNA genes pyrosequencing and the determination of some soil microbial properties such as microbial respiration, microbial C-biomass were also determined. The role of both genetic and functional diversity of soil bacterial community on grape physiology and wine quality will be discussed.

  2. Shedding subspecies: The influence of genetics on reptile subspecies taxonomy.

    Science.gov (United States)

    Torstrom, Shannon M; Pangle, Kevin L; Swanson, Bradley J

    2014-07-01

    The subspecies concept influences multiple aspects of biology and management. The 'molecular revolution' altered traditional methods (morphological traits) of subspecies classification by applying genetic analyses resulting in alternative or contradictory classifications. We evaluated recent reptile literature for bias in the recommendations regarding subspecies status when genetic data were included. Reviewing characteristics of the study, genetic variables, genetic distance values and noting the species concepts, we found that subspecies were more likely elevated to species when using genetic analysis. However, there was no predictive relationship between variables used and taxonomic recommendation. There was a significant difference between the median genetic distance values when researchers elevated or collapsed a subspecies. Our review found nine different concepts of species used when recommending taxonomic change, and studies incorporating multiple species concepts were more likely to recommend a taxonomic change. Since using genetic techniques significantly alter reptile taxonomy there is a need to establish a standard method to determine the species-subspecies boundary in order to effectively use the subspecies classification for research and conservation purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Microbially influenced corrosion of stainless steels in nuclear power plants

    International Nuclear Information System (INIS)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs

  4. Sex Differences in Genetic and Environmental Influences on Adolescent Depressive Symptoms: A Meta-Analytic Review

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-01-01

    Full Text Available Although sex difference in the mean level of depressive symptoms has been well established, the sex difference in genetic and environmental influences on adolescent depressive symptoms is unclear. The current study conducted a meta-analysis of twin studies on sex differences in self- and parent-reported adolescent depressive symptoms. For self-reports, genetic factors influenced adolescent depressive symptoms equally for boys and girls, accounting for 46% of variation, but shared environmental factors had stronger impacts on adolescent girls’ versus boys’ depressive symptoms (13% versus 1% of the variance. For parent-reports, genetic, shared, and nonshared environmental factors influenced adolescent depressive symptoms equally, with separate estimates of 34%, 35%, and 31%. The implications of sex difference in genetic and environmental etiologies of depressive symptoms are discussed.

  5. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise.

    Science.gov (United States)

    Soliman, Taha; Yang, Sung-Yin; Yamazaki, Tomoko; Jenke-Kodama, Holger

    2017-01-01

    Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil ® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin ® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P  technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.

  6. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  7. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    Science.gov (United States)

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  8. Shared Genetic Influences on Negative Emotionality and Major Depression/Conduct Disorder Comorbidity

    Science.gov (United States)

    Tackett, Jennifer L.; Waldman, Irwin D.; Van Hulle, Carol A.; Lahey, Benjamin B.

    2011-01-01

    Objective: To investigate whether genetic contributions to major depressive disorder and conduct disorder comorbidity are shared with genetic influences on negative emotionality. Method: Primary caregivers of 2,022 same- and opposite-sex twin pairs 6 to 18 years of age comprised a population-based sample. Participants were randomly selected across…

  9. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  10. Interconnection of Key Microbial Functional Genes for Enhanced Benzo[a]pyrene Biodegradation in Sediments by Microbial Electrochemistry.

    Science.gov (United States)

    Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long

    2017-08-01

    Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.

  11. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach.

    Directory of Open Access Journals (Sweden)

    Erin A Gontang

    Full Text Available Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.

  12. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach.

    Science.gov (United States)

    Gontang, Erin A; Aylward, Frank O; Carlos, Camila; Glavina Del Rio, Tijana; Chovatia, Mansi; Fern, Alison; Lo, Chien-Chi; Malfatti, Stephanie A; Tringe, Susannah G; Currie, Cameron R; Kolter, Roberto

    2017-01-01

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.

  13. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency.

    Science.gov (United States)

    Guan, Le Luo; Nkrumah, Joshua D; Basarab, John A; Moore, Stephen S

    2008-11-01

    Linkage of rumen microbial structure to host phenotypical traits may enhance the understanding of host-microbial interactions in livestock species. This study used culture-independent PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the microbial profiles in the rumen of cattle differing in feed efficiency. The analysis of detectable bacterial PCR-DGGE profiles showed that the profiles generated from efficient steers clustered together and were clearly separated from those obtained from inefficient steers, indicating that specific bacterial groups may only inhabit in efficient steers. In addition, the bacterial profiles were more likely clustered within a certain breed, suggesting that host genetics may play an important role in rumen microbial structure. The correlations between the concentrations of volatile fatty acids and feed efficiency traits were also observed. Significantly higher concentrations of butyrate (P < 0.001) and valerate (P = 0.006) were detected in the efficient steers. Our results revealed potential associations between the detectable rumen microbiota and its fermentation parameters with the feed efficiency of cattle.

  15. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China.

    Science.gov (United States)

    Jiang, Longfei; Cheng, Zhineng; Zhang, Dayi; Song, Mengke; Wang, Yujie; Luo, Chunling; Yin, Hua; Li, Jun; Zhang, Gan

    2017-12-01

    Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Twin Studies in Autism: What Might They Say about Genetic and Environmental Influences

    Science.gov (United States)

    Anderson, George M.

    2012-01-01

    Genetic and epigenetic differences exist within monozygote twin-pairs and might be especially important in the expression of autism. Assuming phenotypic differences between monozygotic twins are due to environmental influences may lead to mistaken conclusions regarding the relative genetic and environmental contribution to autism risk.

  17. Geochemical Influence on Microbial Diversity in the Warm, Salty, Stinking Spring, Utah, USA

    Science.gov (United States)

    Spear, J. R.

    2012-12-01

    Little is known of the geochemistry and microbiology in the Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake, Utah. The International Geobiology Course of 2012 investigated the geochemistry, lipid abundances, dissolved inorganic carbon (DIC) uptake rates and microbial diversity on different kinds of samples from a number of locations in the spring. The measured pH, temperature, salinity, and sulfide concentration along the 100 m flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM - negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were sub-sampled according to their morphological characteristics; a range from floating to streamer-style in zones of higher flow rates to highly-layered mats in low- or sheet-flow zones. Geochemical characterization of the above plus metals, anions and cations were conducted at each site. Genomic DNA was extracted from each microbial sample / layer, and 16S rRNA genes were amplified and subjected to pyrosequencing. Fatty acids and pigments were extracted from the mat samples / layers and analyzed by liquid chromatography and mass spectrometry for lipid / pigment composition. Bicarbonate uptake rates for mat samples / layers were determined with 24 hour light and dark incubations of 13HCO3-spiked spring water. Microbial diversity varied by site and was generally high in all three domains of life with phototrophs, sulfur oxidizers, sulfate reducers, methanogens, and other bacteria / archaea identified by 16S rRNA gene sequence. Diatoms, identified by both microscopy and lipid analyses were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae and underlying sediments. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were also identified and

  18. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    Science.gov (United States)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  19. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    Science.gov (United States)

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  20. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  1. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  2. Genetic influences on free and cued recall in long-term memory tasks.

    Science.gov (United States)

    Volk, Heather E; McDermott, Kathleen B; Roediger, Henry L; Todd, Richard D

    2006-10-01

    Long-term memory (LTM) problems are associated with many psychiatric and neurological illnesses and are commonly measured using free and cued recall tasks. Although LTM has been linked with biologic mechanisms, the etiology of distinct LTM tasks is unknown. We studied LTM in 95 healthy female twin pairs identified through birth records in the state of Missouri. Performance on tasks of free recall of unrelated words, free and cued recall of categorized words, and the vocabulary section of the Wechsler Adult Intelligence Scale (WAIS-R) were examined using structural equation modeling. Additive genetic and unique environmental factors influenced LTM and intelligence. Free recall of unrelated and categorized words, and cued recall of categorized words, were moderately heritable (55%, 38%, and 37%). WAIS-R vocabulary score was highly heritable (77%). Controlling for verbal intelligence in multivariate analyses of recall, two components of genetic influence on LTM were found; one for all three recall scores and one for free and cued categorized word recall. Recall of unrelated and categorized words is influenced by different genetic and environmental factors indicating heterogeneity in LTM. Verbal intelligence is etiologically different from LTM indicating that these two abilities utilize different brain functions.

  3. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure as influenced by three swine management systems

    Science.gov (United States)

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vastly different microbial constituents in both the pig and the manure lagoons used to treat the fecal waste of the operation. While some of these changes may not be negative, it is possible th...

  4. Genetic influences on alcohol use behaviors have diverging developmental trajectories: a prospective study among male and female twins.

    Science.gov (United States)

    Meyers, Jacquelyn L; Salvatore, Jessica E; Vuoksimaa, Eero; Korhonen, Tellervo; Pulkkinen, Lea; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M

    2014-11-01

    Both alcohol-specific genetic factors and genetic factors related to externalizing behavior influence problematic alcohol use. Little is known, however, about the etiologic role of these 2 components of genetic risk on alcohol-related behaviors across development. Prior studies conducted in a male cohort of twins suggest that externalizing genetic factors are important for predicting heavy alcohol use in adolescence, whereas alcohol-specific genetic factors increase in importance during the transition to adulthood. In this report, we studied twin brothers and sisters and brother-sister twin pairs to examine such developmental trajectories and investigate whether sex and cotwin sex effects modify these genetic influences. We used prospective, longitudinal twin data collected between ages 12 and 22 within the population-based FinnTwin12 cohort study (analytic n = 1,864). Our dependent measures of alcohol use behaviors included alcohol initiation (age 12), intoxication frequency (ages 14 and 17), and alcohol dependence criteria (age 22). Each individual's genetic risk of alcohol use disorders (AUD-GR) was indexed by his/her parents' and cotwin's DSM-IV Alcohol Dependence (AD) criterion counts. Likewise, each individual's genetic risk of externalizing disorders (EXT-GR) was indexed with a composite measure of parents' and cotwin's DSM-IV Conduct Disorder and Antisocial Personality Disorder criterion counts. EXT-GR was most strongly related to alcohol use behaviors during adolescence, while AUD-GR was most strongly related to alcohol problems in young adulthood. Further, sex of the twin and sex of the cotwin significantly moderated the associations between genetic risk and alcohol use behaviors across development: AUD-GR influenced early adolescent alcohol use behaviors in females more than in males, and EXT-GR influenced age 22 AD more in males than in females. In addition, the associations of AUD-GR and EXT-GR with intoxication frequency were greater among 14- and

  5. Genetic Influences on the Development of Alcoholism

    Science.gov (United States)

    Enoch, Mary-Anne

    2014-01-01

    Alcoholism has a substantial heritability yet the detection of specific genetic influences has largely proved elusive. The strongest findings are with genes encoding alcohol metabolizing enzymes. A few candidate genes such as GABRA2 have shown robust associations with alcoholism. Moreover, it has become apparent that variants in stress-related genes such as CRHR1, may only confer risk in individuals exposed to trauma, particularly in early life. Over the past decade there have been tremendous advances in large scale SNP genotyping technologies allowing for genome-wide associations studies (GWAS). As a result, it is now recognized that genetic risk for alcoholism is likely to be due to common variants in very many genes, each of small effect, although rare variants with large effects might also play a role. This has resulted in a paradigm shift away from gene centric studies towards analyses of gene interactions and gene networks within biologically relevant pathways. PMID:24091936

  6. Seventy-five genetic loci influencing the human red blood cell

    NARCIS (Netherlands)

    van der Harst, P.; Zhang, W.; Mateo Leach, I.; Rendon, A.; Verweij, N.; Sehmi, J.; Paul, D.S.; Elling, U.; Allayee, H.; Li, X.; Radhakrishnan, A.; Tan, S.T.; Voss, K.; Weichenberger, C.X.; Albers, C.A.; Al-Hussani, A.; Asselbergs, F.W.; Ciullo, M.; Danjou, F.; Dina, C.; Esko, T.; Evans, D.M.; Franke, L.; Gogele, M.; Hartiala, J.; Hersch, M.; Holm, H.; Hottenga, J.J.; Kanoni, S.; Kleber, M.E.; Lagou, V.; Langenberg, C.; Lopez, L.M.; Lyytikainen, L.P.; Melander, O.; Murgia, F.; Nolte, I.M.; O'Reilly, P.F.; Padmanabhan, S.; Parsa, A.; Pirastu, N.; Porcu, E.; Portas, L.; Prokopenko, I.; Ried, J.S.; Shin, S.Y.; Tang, C.S.; Teumer, A.; Traglia, M.; Ulivi, S.; Westra, H.J.; Yang, J.; Zhao, J.H.; Anni, F.; Abdellaoui, A.; Attwood, A.; Balkau, B.; Bandinelli, S.; Bastardot, F.; Benyamin, B.; Boehm, B.O.; Cookson, W.O.; Das, D; de Bakker, P.I.; de Boer, R.A.; de Geus, E.J.; de Moor, M.H.; Dimitriou, M.; Domingues, F.S.; Doring, A.; Engstrom, G.; Eyjolfsson, G.I.; Ferrucci, L.; Fischer, K.; Galanello, R.; Garner, S.F.; Genser, B.; Gibson, Q.D.; Girotto, G.; Gudbjartsson, D.F.; Harris, S.E.; Hartikainen, A.L.; Hastie, C.E.; Hedblad, B.; Illig, T.; Jolley, J.; Kahonen, M.; Kema, I.P.; Kemp, J.P.; Liang, L.; Lloyd-Jones, H.; Loos, R.J.; Meacham, S.; Medland, S.E.; Meisinger, C.; Memari, Y.; Mihailov, E.; Miller, K.; Moffatt, M.F.; Nauck, M., et al.

    2012-01-01

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related

  7. Genetic influences on the development of fibrosis in Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Bram eVerstockt

    2016-05-01

    Full Text Available Fibrostenotic strictures are an important complication in patients with Crohn’s Disease, very often necessitating surgery. This fibrotic process develops in a genetically susceptible individual, and is influenced by an interplay with environmental, immunological and disease-related factors. A deeper understanding of the genetic factors driving this fibrostenotic process might help to unravel the pathogenesis, and ultimately lead to development of new, anti-fibrotic therapy. Here we review the genetic factors that have been associated with the development of fibrosis in patients with Crohn’s disease, as well as their potential pathophysiological mechanism(s. We also hypothesize on clinical implications if any, and future research directions.

  8. Heritable influences on behavioural problems from early childhood to mid-adolescence: evidence for genetic stability and innovation.

    Science.gov (United States)

    Lewis, G J; Plomin, R

    2015-07-01

    Although behavioural problems (e.g., anxiety, conduct, hyperactivity, peer problems) are known to be heritable both in early childhood and in adolescence, limited work has examined prediction across these ages, and none using a genetically informative sample. We examined, first, whether parental ratings of behavioural problems (indexed by the Strengths and Difficulties questionnaire) at ages 4, 7, 9, 12, and 16 years were stable across these ages. Second, we examined the extent to which stability reflected genetic or environmental effects through multivariate quantitative genetic analysis on data from a large (n > 3000) population (UK) sample of monozygotic and dizygotic twins. Behavioural problems in early childhood (age 4 years) showed significant associations with the corresponding behavioural problem at all subsequent ages. Moreover, stable genetic influences were observed across ages, indicating that biological bases underlying behavioural problems in adolescence are underpinned by genetic influences expressed as early as age 4 years. However, genetic and environmental innovations were also observed at each age. These observations indicate that genetic factors are important for understanding stable individual differences in behavioural problems across childhood and adolescence, although novel genetic influences also facilitate change in such behaviours.

  9. Temporal variability of the microbial food web (viruses to ciliates under the influence of the Black Sea Water inflow (N. Aegean, E. Mediterranean

    Directory of Open Access Journals (Sweden)

    A. GIANNAKOUROU

    2014-12-01

    Full Text Available Τhe entire pelagic microbial food web was studied during the winter-spring period in the frontal area of the North Aegean Sea. Abundance of viruses, heterotrophic bacteria, cyanobacteria, auto- and hetero-trophic flagellates, and ciliates, as well as bacterial production, were measured at three stations (MD1, MD2, MD3 situated along a N-S transect between the area directly influenced by the inflowing Black Sea water and the area covered by the Levantine water. Samples were collected in December 2009, and January, March, April, and May 2011. Station MD1 exhibited the highest values of abundance and integrated biomass of all microbial groups and bacterial production during all months, and MD3 the lowest. Bacteria dominated the total integrated biomass at all stations and months, followed by cyanobacteria, auto-, hetero-trophic flagellates and ciliates. On a temporal scale, the microbial food web was less important in March as all microbial parameters at all stations showed the lowest values. After the phytoplankton bloom in March, the heterotrophic part of the microbial food web (mainly strongly increased, though the intensity of the phenomenon was diminished from North to South. Pico-sized plankton was found to be heterotrophic whereas nanoplankton was autotrophic. It seems that the influence of the Black Sea water on station MD1, permanent throughout the study period of early winter to late spring, was reflected in all microbial populations studied, and produced a more productive pelagic food web system, with potential consequences for the upper trophic levels.

  10. Microbial interactions: ecology in a molecular perspective.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Seventy-five genetic loci influencing the human red blood cell.

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-12-20

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

  12. Influence of diet and microbial activity in the digestive tract on digestibility, and nitrogen and energy metabolism in rats and pigs

    DEFF Research Database (Denmark)

    Eggum, B O; Thorbek, G; Beames, R M

    1982-01-01

    -55 kg. Measurements were made on the influence of microbial activity in the digestive tract on digestibility and nitrogen and energy metabolism. Dietary inclusion of the antibiotic Nebacitin was the method used to reduce the microbial population. 2. The microbial activity in the hind-gut (mumol ATP....../g air-dry contents) of antibiotic-treated rats was reduced to approximately one-tenth of that of untreated rats. 3. Live-weight gain was not significantly affected in either species by a reduction in the microbial activity, in spite of a reduction in dry matter digestibility in animals with reduced...... microflora. 4. For rats on low-crude-fibre diets, a reduction in microflora reduced digestibility of all nutrients and energy and metabolizability of digestible energy by approximately 5.4%. All differences were highly significant. On high-crude-fibre diets the decrease was approximately 5.9%. In pigs...

  13. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor\\'s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its

  14. Allee effect: the story behind the stabilization or extinction of microbial ecosystem.

    Science.gov (United States)

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-03-01

    A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.

  15. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    Science.gov (United States)

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  16. Beliefs about genetic influences on eating behaviors: Characteristics and associations with weight management confidence.

    Science.gov (United States)

    Persky, Susan; Bouhlal, Sofia; Goldring, Megan R; McBride, Colleen M

    2017-08-01

    The development of precision approaches for customized health interventions is a promising application of genomic discovery. To optimize such weight management interventions, target audiences will need to be engaged in research and implementation efforts. Investigation into approaches that engage these audiences will be required to ensure that genomic information, particularly with respect to genomic influences on endophenotypes like eating behavior, is understood and accepted, and not associated with unintended adverse outcomes. We took steps to characterize healthy individuals' beliefs about genetic influences on eating behavior. Data were collected via online survey from 261 participants selected at random from a database. Respondents infrequently spontaneously identified eating behavior-related factors as running in families. However, those who perceived themselves as overweight and perceived a family history of overweight were more likely to attribute eating behavior to genetics on closed-ended assessments, β=0.252, p=0.039. Genetic attributions for eating behaviors were associated with lower confidence in ability to control eating and weight, β=-0.119, p=0.035. These exploratory findings shed light on beliefs about genetic influences on eating, a behavioral trait (rather than a disease). This investigation can inform future health intervention efforts. Published by Elsevier Ltd.

  17. Microbial Induction of Immunity, Inflammation And Cancer

    Directory of Open Access Journals (Sweden)

    Stephen John O'Keefe

    2011-01-01

    Full Text Available The human microbiota presents a highly active metabolic that influences the state of health of our gastrointestinal tracts as well as our susceptibility to disease. Although much of our initial microbiota is adopted from our mothers, its final composition and diversity is determined by environmental factors. Westernization has significantly altered our microbial function. Extensive experimental and clinical evidence indicates that the westernized diet, rich in animal products and low in complex carbohydrates, plus the overuse of antibiotics and underuse of breastfeeding, leads to a heightened inflammatory potential of the microbiota. Chronic inflammation leads to the expression of certain diseases in genetically predisposed individuals. Antibiotics and a ‘clean’ environment, termed the ‘hygiene hypothesis’, has been linked to the rise in allergy and inflammatory bowel disease, due to impaired beneficial bacterial exposure and education of the gut immune system, which comprises the largest immune organ within the body. The elevated risk of colon cancer is associated with the suppression of microbial fermentation and butyrate production, as butyrate provides fuel for the mucosa and is anti-inflammatory and anti-proliferative. This article will summarize the work to date highlighting the complicated and dynamic relationship between the gut microbiota and immunity, inflammation and carcinogenesis.

  18. Genetic and environmental influences on analogical and categorical verbal and spatial reasoning in 12-year old twins.

    Science.gov (United States)

    Mosing, Miriam A; Mellanby, Jane; Martin, Nicholas G; Wright, Margaret J

    2012-09-01

    Research on the genetic influences on different abstract reasoning skills (fluid intelligence) and their interrelation (especially in childhood/adolescence) has been sparse. A novel cognitive test battery, the Verbal and Spatial Reasoning test for Children (VESPARCH 1), consisting of four matched (in terms of test-procedure and design) subtests assessing verbal [analogical (VA) and categorical (VC)] and spatial [analogical (SA) and categorical (SC)] reasoning, was administered to a population based sample of 12-year old twins (169 pairs). Multivariate analysis was conducted to explore the genetic relationship between the four cognitive sub-domains. Heritabilities were 0.62 (VA), 0.49 (VC), 0.52 (SA), and 0.20 (SC). Genetic influences were due to one common factor with no specific genetic influences. This shared genetic factor also explained almost the entire covariance between the domains, as environmental variance was largely specific to each subtest. The finding of no genetic influences specific to each subtest may be due to the uniquely matched design of the VESPARCH 1, reducing confoundment of different test modalities used in conventional tests. For future research or when interpreting previous studies, our findings highlight the importance of taking such potential artefacts (i.e. different test modalities for different sub-domains) into account when exploring the relationship between cognitive sub-domains.

  19. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  20. Genetic and environmental influences on height from infancy to early adulthood

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Sund, Reijo; Hur, Yoon-Mi

    2016-01-01

    Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180......,520 paired measurements at ages 1-19 years. The proportion of height variation explained by shared environmental factors was greatest in early childhood, but these effects remained present until early adulthood. Accordingly, the relative genetic contribution increased with age and was greatest in adolescence...... (up to 0.83 in boys and 0.76 in girls). Comparing geographic-cultural regions (Europe, North-America and Australia, and East-Asia), genetic variance was greatest in North-America and Australia and lowest in East-Asia, but the relative proportion of genetic variation was roughly similar across...

  1. Socially related fears following exposure to trauma: environmental and genetic influences.

    Science.gov (United States)

    Collimore, Kelsey C; Asmundson, Gordon J G; Taylor, Steven; Jang, Kerry L

    2009-03-01

    Few studies have examined why socially related fears and posttraumatic stress commonly, but not invariably, co-occur. It may be that only traumata of human agency (e.g., sexual assault), for which there is an interpersonal component, give rise to co-occurring socially related fears. These symptoms might also co-occur because of shared genetic factors. We investigated these issues using a sample of 882 monozygotic and dizygotic twins. No significant differences in socially related fear (i.e., fear of negative evaluation, fear of socially observable arousal symptoms) were found between participants reporting assaultive or nonassaultive trauma. However, significant differences in socially related fear were found when participants were grouped into probable PTSD and no PTSD groups. Participants with probable PTSD exhibited greater socially related fear (i.e., fear of negative evaluation) than those without PTSD. Using biometric structural equation modeling, trauma exposure was best explained by shared and nonshared environmental influences. The fear of socially observable arousal symptoms was influenced by genetic and nonshared environmental influences. Implications and directions for future research are discussed.

  2. Influence of composting techniques on microbial succession ...

    African Journals Online (AJOL)

    pH also stabilized as the composting process progressed in the pit. Good quality compost was obtained in 5 weeks when PACT was used. Conventional pit method lasted over several weeks. Key Words: Municipal wastes; passive aeration; pit composting; temperature; microbial succession. African Journal of Biotechnology ...

  3. Microbial degradation of furanic compounds : Biochemistry, genetics, and impact

    NARCIS (Netherlands)

    Wierckx, N.; Koopman, F.; Ruijssenaars, H.J.; De Winde, J.H.

    2011-01-01

    Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds

  4. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    Science.gov (United States)

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  5. Non-genetic determinants of mosquito competence for malaria parasites.

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    Full Text Available Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.

  6. Disentangling the effects of genetic, prenatal and parenting influences on children's cortisol variability.

    Science.gov (United States)

    Marceau, Kristine; Ram, Nilam; Neiderhiser, Jenae M; Laurent, Heidemarie K; Shaw, Daniel S; Fisher, Phil; Natsuaki, Misaki N; Leve, Leslie D

    2013-11-01

    Developmental plasticity models hypothesize the role of genetic and prenatal environmental influences on the development of the hypothalamic-pituitary-adrenal (HPA) axis and highlight that genes and the prenatal environment may moderate early postnatal environmental influences on HPA functioning. This article examines the interplay of genetic, prenatal and parenting influences across the first 4.5 years of life on a novel index of children's cortisol variability. Repeated measures data were obtained from 134 adoption-linked families, adopted children and both their adoptive parents and birth mothers, who participated in a longitudinal, prospective US domestic adoption study. Genetic and prenatal influences moderated associations between inconsistency in overreactive parenting from child age 9 months to 4.5 years and children's cortisol variability at 4.5 years differently for mothers and fathers. Among children whose birth mothers had high morning cortisol, adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children with low birth mother morning cortisol adoptive fathers' inconsistent overreactive parenting predicted lower cortisol variability. Among children who experienced high levels of prenatal risk, adoptive mothers' inconsistent overreactive parenting predicted lower cortisol variability and adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children who experienced low levels of prenatal risk there were no associations between inconsistent overreactive parenting and children's cortisol variability. Findings supported developmental plasticity models and uncovered novel developmental, gene × environment and prenatal × environment influences on children's cortisol functioning.

  7. Fourteenth-Sixteenth Microbial Genomics Conference-2006-2008

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jeffrey H

    2011-04-18

    The concept of an annual meeting on the E. coli genome was formulated at the Banbury Center Conference on the Genome of E. coli in October, 1991. The first meeting was held on September 10-14, 1992 at the University of Wisconsin, and this was followed by a yearly series of meetings, and by an expansion to include The fourteenth meeting took place September 24-28, 2006 at Lake Arrowhead, CA, the fifteenth September 16-20, 2007 at the University of Maryland, College Park, MD, and the sixteenth September 14-18, 2008 at Lake Arrowhead. The full program for the 16th meeting is attached. There have been rapid and exciting advances in microbial genomics that now make possible comparing large data sets of sequences from a wide variety of microbial genomes, and from whole microbial communities. Examining the “microbiomes”, the living microbial communities in different host organisms opens up many possibilities for understanding the landscape presented to pathogenic microorganisms. For quite some time there has been a shifting emphasis from pure sequence data to trying to understand how to use that information to solve biological problems. Towards this end new technologies are being developed and improved. Using genetics, functional genomics, and proteomics has been the recent focus of many different laboratories. A key element is the integration of different aspects of microbiology, sequencing technology, analysis techniques, and bioinformatics. The goal of these conference is to provide a regular forum for these interactions to occur. While there have been a number of genome conferences, what distinguishes the Microbial Genomics Conference is its emphasis on bringing together biology and genetics with sequencing and bioinformatics. Also, this conference is the longest continuing meeting, now established as a major regular annual meeting. In addition to its coverage of microbial genomes and biodiversity, the meetings also highlight microbial communities and the use of

  8. Comparative study of genetic influence on the susceptibility of exotic ...

    African Journals Online (AJOL)

    This study investigated comparatively the genetic influence on the susceptibility of exotic cockerels, pullets and broilers to natural infection with infectious bursal disease (IBD) virus in a flock of 150 seven-week-old exotic breed of chickens comprising of 50 Black Harco cockerels, 50 Black Harco pullets and 50 White ...

  9. Children's History of Speech-Language Difficulties: Genetic Influences and Associations with Reading-Related Measures

    Science.gov (United States)

    DeThorne, Laura Segebart; Hart, Sara A.; Petrill, Stephen A.; Deater-Deckard, Kirby; Thompson, Lee Anne; Schatschneider, Chris; Davison, Megan Dunn

    2006-01-01

    Purpose: This study examined (a) the extent of genetic and environmental influences on children's articulation and language difficulties and (b) the phenotypic associations between such difficulties and direct assessments of reading-related skills during early school-age years. Method: Behavioral genetic analyses focused on parent-report data…

  10. Circulating anti-Mullerian hormone levels in adult men are under a strong genetic influence.

    Science.gov (United States)

    Pietiläinen, Kirsi H; Kaprio, Jaakko; Vaaralahti, Kirsi; Rissanen, Aila; Raivio, Taneli

    2012-01-01

    The determinants of serum anti-Müllerian hormone (AMH) levels in adult men remain unclear. The objective of the study was to investigate the genetic and environmental components in determining postpubertal AMH levels in healthy men. Serum AMH levels, body mass index (BMI), and fat mass (dual energy x-ray absorptiometry) were measured in 64 healthy male (23 monozygotic and 41 dizygotic) twin pairs. Postpubertal AMH levels were highly genetically determined (broad sense heritability 0.92, 95% confidence interval 0.83-0.96). AMH correlated negatively with BMI (r = -0.26, P = 0.030) and fat mass (r = -0.23, P = 0.048). As AMH, BMI had a high heritability (0.68, 95% confidence interval 0.39-0.83), but no genetic correlation was observed between them. AMH levels in men after puberty are under a strong genetic influence. Twin modeling suggests that AMH and BMI are influenced by different sets of genes.

  11. Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development.

    Science.gov (United States)

    Stergiakouli, Evie; Davey Smith, George; Martin, Joanna; Skuse, David H; Viechtbauer, Wolfgang; Ring, Susan M; Ronald, Angelica; Evans, David E; Fisher, Simon E; Thapar, Anita; St Pourcain, Beate

    2017-01-01

    Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however, subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk. Social-communication difficulties ( N  ≤ 5551, Social and Communication Disorders Checklist, SCDC) and combined hyperactive-impulsive/inattentive ADHD symptoms ( N  ≤ 5678, Strengths and Difficulties Questionnaire, SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls) were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between phenotypes were estimated using genome-wide data. In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait r g  ≤ 1, p min   =  3 × 10 -4 ) as those between repeated measures of the same trait (within-trait r g  ≤ 0.94, p min   =  7 × 10 -4 ). Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling upregulated genes ( p -meta = 6.4 × 10 -4 ). Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression R 2  = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties

  12. Influence of attapulgite addition on the biological performance and microbial communities of submerged dynamic membrane bioreactor

    Directory of Open Access Journals (Sweden)

    Wensong Duan

    2017-12-01

    Full Text Available A submerged dynamic membrane bioreactor (sDMBR was developed to test the influence of attapulgite (AT addition on the treatment performances and the microbial community structure and function. The batch experimental results displayed the highest UV254 and dissolved organic carbon (DOC removal efficiencies with 5% AT/mixed liquid suspended solids addition dosage. The continuous sDMBR results showed that the removal efficiencies of chemical oxygen demand, NH4+-N, total nitrogen and total phosphorus significantly increased in the AT added sDMBR. Excitation emission matrix analysis demonstrated that the protein-like peaks and fulvic acid-like peaks were significantly decreased in both in the mixed liquid and the effluent of the AT added reactor. The obligate anaerobes were observed in the sDMBR with AT addition, such as Bacteroidetes and Gamma proteobacterium in the dynamic membrane, which played an important role in the process of sludge granulation. Bacterial community richness significantly increased after AT addition with predominated phyla of Proteobacteria and Bacteroidetes. Similarly, species abundance significantly increased in the AT added sDMBR. Further investigations with cluster proved that AT was a favorite biological carrier for the microbial ecology, which enriched microbial abundance and community diversity of the sDMBR.

  13. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    Science.gov (United States)

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  14. Microbial corrosion of steel in Toarcian argillite: potential influence of bio-films

    International Nuclear Information System (INIS)

    Urios, L.; Desneux, J.; Magot, M.; Perez, A.; Mercier, F.; Dillmann, P.; Wittebroodt, C.; Dauzeres, A.; Marsal, F.

    2012-01-01

    sulfate reduction. Then, the characterization of biodiversity of Tournemire argillite has shown the presence of bacteria within undisturbed argillite, as well as the potential development of exogenous microorganisms within disturbed areas. Indeed, the observed bacterial diversity tends to depend on the different oxygen and humidity conditions, and also probably on space availability. Furthermore, the interaction of argillite with steel coupons placed into boreholes filled with re-compacted argillite during 6 years has been described by Gaudin et al. (2009). This study highlighted that oxygen introduced in the boreholes during drilling was consumed slower than expected, but the presence of hematite tends to show that reducing conditions prevailing in the host rock may have been recovered within 6 years. Recently, the characterization of the microbial diversity at interfaces between steel coupons and argillite in similar boreholes after 10 years of interaction has been investigated. The bio-diversities differ depending on the steel type and the borehole considered, indicating the influence of both iron-clay interactions and in situ environmental conditions. Sulphate-reducing bacteria, iron-reducing bacteria and bacteria capable to develop at high temperatures were detected. These microorganisms can grow at the interfaces between materials in a very short period of time compared with planned durations of disposal. Experimental In this framework, in order to better understand the conditions favoring the formation of biofilm, as well as the impact of microorganisms on the durability of metallic components, an experimental methodology was designed to assess microbial corrosion of steel in contact with argillite. A synthetic solution representative of the Tournemire pore water percolates through cells containing steel coupons placed in contact with argillite. Various environmental conditions likely to prevail in a repository are tested. Different artificial communities of

  15. Microbial ecology and biogeochemistry of continental Antarctic soils.

    Science.gov (United States)

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  16. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  17. Environmental and genetic factors influence the vitamin D content of cows' milk.

    Science.gov (United States)

    Weir, R R; Strain, J J; Johnston, M; Lowis, C; Fearon, A M; Stewart, S; Pourshahidi, L K

    2017-02-01

    Vitamin D is obtained by cattle from the diet and from skin production via UVB exposure from sunlight. The vitamin D status of the cow impacts the vitamin D content of the milk produced, much like human breast milk, with seasonal variation in the vitamin D content of milk well documented. Factors such as changes in husbandry practices therefore have the potential to impact the vitamin D content of milk. For example, a shift to year-round housing from traditional practices of cattle being out to graze during the summer months and housed during the winter only, minimises exposure to the sun and has been shown to negatively influence the vitamin D content of the milk produced. Other practices such as changing dietary sources of vitamin D may also influence the vitamin D content of milk, and evidence exists to suggest genetic factors such as breed can cause variation in the concentrations of vitamin D in the milk produced. The present review aims to provide an overview of the current understanding of how genetic and environmental factors influence the vitamin D content of the milk produced by dairy cattle. A number of environmental and genetic factors have previously been identified as having influence on the nutritional content of the milk produced. The present review highlights a need for further research to fully elucidate how farmers could manipulate the factors identified to their advantage with respect to increasing the vitamin D content of milk and standardising it across the year.

  18. Microbial diversity: a bonanza of phyla.

    Science.gov (United States)

    Eme, Laura; Doolittle, W Ford

    2015-03-16

    Metagenomics and single-cell genomics are now the gold standard for exploring microbial diversity. A new study focusing on enigmatic ultra-small archaea greatly expands known genetic diversity within Archaea, and reports the first complete archaeal genomes reconstructed from metagenomic data only. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Multivariate analyses in soil microbial ecology : a new paradigm

    OpenAIRE

    Thioulouse, J.; Prin, Y.; Duponnois, Robin

    2012-01-01

    Mycorrhizal symbiosis is a key component of a sustainable soil-plant system, governing the cycles of major plant nutrients and vegetation cover. The mycorrhizosphere includes plants roots, the mycorrhizal fungi, and a complex microbial compartment. A large number of methods have been used to characterize the genetic and functional diversity of these soil microbial communities. We present here a review of the multivariate data analysis methods that have been used in 16 research articles publis...

  20. Genetic and environmental influences on Chinese language and reading abilities.

    Directory of Open Access Journals (Sweden)

    Bonnie Wing-Yin Chow

    2011-02-01

    Full Text Available This study investigated the etiology of individual differences in Chinese language and reading skills in 312 typically developing Chinese twin pairs aged from 3 to 11 years (228 pairs of monozygotic twins and 84 pairs of dizygotic twins; 166 male pairs and 146 female pairs. Children were individually given tasks of Chinese word reading, receptive vocabulary, phonological memory, tone awareness, syllable and rhyme awareness, rapid automatized naming, morphological awareness and orthographic skills, and Raven's Coloured Progressive Matrices. All analyses controlled for the effects of age. There were moderate to substantial genetic influences on word reading, tone awareness, phonological memory, morphological awareness and rapid automatized naming (estimates ranged from .42 to .73, while shared environment exerted moderate to strong effects on receptive vocabulary, syllable and rhyme awareness and orthographic skills (estimates ranged from .35 to .63. Results were largely unchanged when scores were adjusted for nonverbal reasoning as well as age. Findings of this study are mostly similar to those found for English, a language with very different characteristics, and suggest the universality of genetic and environmental influences across languages.

  1. Local environment but not genetic differentiation influences biparental care in ten plover populations.

    Directory of Open Access Journals (Sweden)

    Orsolya Vincze

    Full Text Available Social behaviours are highly variable between species, populations and individuals. However, it is contentious whether behavioural variations are primarily moulded by the environment, caused by genetic differences, or a combination of both. Here we establish that biparental care, a complex social behaviour that involves rearing of young by both parents, differs between closely related populations, and then test two potential sources of variation in parental behaviour between populations: ambient environment and genetic differentiation. We use 2904 hours behavioural data from 10 geographically distinct Kentish (Charadrius alexandrinus and snowy plover (C. nivosus populations in America, Europe, the Middle East and North Africa to test these two sources of behavioural variation. We show that local ambient temperature has a significant influence on parental care: with extreme heat (above 40 °C total incubation (i.e. % of time the male or female incubated the nest increased, and female share (% female share of incubation decreased. By contrast, neither genetic differences between populations, nor geographic distances predicted total incubation or female's share of incubation. These results suggest that the local environment has a stronger influence on a social behaviour than genetic differentiation, at least between populations of closely related species.

  2. Factors influencing parents' decision to donate their healthy infant's DNA for minimal-risk genetic research.

    Science.gov (United States)

    Hatfield, Linda A; Pearce, Margaret M

    2014-11-01

    To examine factors that influence a parent's decision to donate their healthy infant's DNA for minimal-risk genetic research. Grounded theory, using semi-structured interviews conducted with 35 postpartum mother or mother-father dyads in an urban teaching hospital. Data were collected from July 2011 to January 2012. Audiorecorded semistructured interviews were conducted in private rooms with mothers or mother-father dyads 24 to 48 hr after the birth of their healthy, full-term infant. Data-driven content analysis using selected principles of grounded theory was performed. Parents' willingness to donate their healthy infant's DNA for minimal-risk pediatric genetic research emerged as a process involving three interacting components: the parents, the scientist, and the comfort of the child embedded within the context of benefit to the child. The purpose of the study and parents' perception of their commitment of time and resources determined their willingness to participate. The scientist's ability to communicate trust in the research process influenced parents' decisions. Physical discomfort of the child shaped parents' decision to donate DNA. Parental perception of a direct benefit to their child affected their willingness to discuss genetic research and its outcomes. Significant gaps and misunderstandings in parental knowledge of pediatric genetic research may affect parental willingness to donate their healthy child's DNA. Nurses knowledgeable about the decision-making process parents utilize to donate their healthy infant's DNA for minimal-risk genetic research and the factors influencing that decision are well positioned to educate parents about the role of genetics in health and illness and reassure potential research participants of the value and safeguards in pediatric genetic research. © 2014 Sigma Theta Tau International.

  3. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    Science.gov (United States)

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  5. Influence of cotton crop development and level of irrigation of microbial community structure

    Science.gov (United States)

    Soil microbial population densities can easily reach one billion cells per gram of soil;and soil microbial diversity has been shown to exceed fifty thousand individual species per gram of soil. Soil type and underlying soil structure are considered primary determinants of microbial community structu...

  6. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  7. Influence of indoor microbial aerosol on the welfare of meat ducks.

    Science.gov (United States)

    Yu, G L; Wei, L M; Liu, Y Y; Liu, J Y; Wang, Y; Gao, J; Chai, T J; Cai, Y M

    2016-01-01

    The aim of the study was to evaluate the effects of microbial aerosols on ducks' welfare and provide information on which to establish microbial aerosol concentration standards for poultry. A total of 1800 1-d-old Cherry Valley ducks were randomly divided into 5 groups (A, B, C, D and E) with 360 ducks in each. To obtain objective data, each group had three replications. Different microbial aerosol concentrations in different groups were created by controlling ventilation and bedding cleaning frequency. Group A was the control group and hygienic conditions deteriorated progressively from group B to E. A 6-stage Andersen impactor was used to detect the aerosol concentration of aerobes, fungi, gram-negative bacteria and an AGI-30 microbial air sampler detected endotoxins. Physiological stress was evaluated in the ducks by adrenocorticotropic hormone (ACTH) values in serum. To assess the effects of bioaerosol factors, welfare indicators including fluctuating asymmetry (FA), appearance and gait as well as the Lactobacillus caecal concentration were evaluated. The data showed group D had already reached the highest limit of concentration of airborne aerobic bacteria, airborne fungi, airborne gram-negative bacteria and airborne endotoxin. The ducks in this group had significantly increased serum ACTH values and significantly decreased caecal lactobacilli concentration. Furthermore, appearance and gait scores, wing length and overall FA and caecal Lactobacillus concentration in this group were significantly increased at 6 and 8 weeks of age. In conclusion, high concentrations of microbial aerosol adversely affected the welfare of meat ducks. The microbial aerosol values in group D suggest a preliminary upper limit concentration of bioaerosols in ambient air for healthy meat ducks.

  8. Assessment of the effects of microbially influenced degradation on a massive concrete structure. Final report, Report 5

    International Nuclear Information System (INIS)

    Rogers, R.D.

    1995-01-01

    There is a need to estimate the effect of environmental conditions on construction materials to be used in the repository at Yucca Mountain. Previous reports from this project have demonstrated that it is important to develop an understanding of microbially influenced degradation (MID) development and its influence on massive concrete structures. Further, it has been shown that the most effective way to obtain quantitative data on the effects of MID on the structural integrity of repository concrete is to study manmade, analog structures known to be susceptible to MID. The cooling tower shell located at the Ohaaki Power Station near Wairakei, New Zealand is such a structure

  9. Genetic and environmental influences on blood pressure and physical activity: a study of nuclear families from Muzambinho, Brazil

    International Nuclear Information System (INIS)

    Forjaz, C.L.M.; Bartholomeu, T.; Rezende, J.A.S.; Oliveira, J.A.; Basso, L.; Tani, G.; Prista, A.; Maia, J.A.R.

    2012-01-01

    Blood pressure (BP) and physical activity (PA) levels are inversely associated. Since genetic factors account for the observed variation in each of these traits, it is possible that part of their association may be related to common genetic and/or environmental influences. Thus, this study was designed to estimate the genetic and environmental correlations of BP and PA phenotypes in nuclear families from Muzambinho, Brazil. Families including 236 offspring (6 to 24 years) and their 82 fathers and 122 mothers (24 to 65 years) were evaluated. BP was measured, and total PA (TPA) was assessed by an interview (commuting, occupational, leisure time, and school time PA). Quantitative genetic modeling was used to estimate maximal heritability (h 2 ), and genetic and environmental correlations. Heritability was significant for all phenotypes (systolic BP: h 2 = 0.37 ± 0.10, P < 0.05; diastolic BP: h 2 = 0.39 ± 0.09, P < 0.05; TPA: h 2 = 0.24 ± 0.09, P < 0.05). Significant genetic (r g ) and environmental (r e ) correlations were detected between systolic and diastolic BP (r g = 0.67 ± 0.12 and r e = 0.48 ± 0.08, P < 0.05). Genetic correlations between BP and TPA were not significant, while a tendency to an environmental cross-trait correlation was found between diastolic BP and TPA (r e = -0.18 ± 0.09, P = 0.057). In conclusion, BP and PA are under genetic influences. Systolic and diastolic BP share common genes and environmental influences. Diastolic BP and TPA are probably under similar environmental influences

  10. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study.

    Directory of Open Access Journals (Sweden)

    Greta Snellman

    Full Text Available BACKGROUND: Although environmental factors, mainly nutrition and UV-B radiation, have been considered major determinants of vitamin D status, they have only explained a modest proportion of the variation in serum 25-hydroxyvitamin D. We aimed to study the seasonal impact of genetic factors on serum 25-hydroxyvitamin D concentrations. METHODOLOGY/PRINCIPAL FINDINGS: 204 same-sex twins, aged 39-85 years and living at northern latitude 60 degrees, were recruited from the Swedish Twin Registry. Serum 25-hydroxyvitamin D was analysed by high-pressure liquid chromatography and mass spectrometry. Genetic modelling techniques estimated the relative contributions of genetic, shared and individual-specific environmental factors to the variation in serum vitamin D. The average serum 25-hydroxyvitamin D concentration was 84.8 nmol/l (95% CI 81.0-88.6 but the seasonal variation was substantial, with 24.2 nmol/l (95% CI 16.3-32.2 lower values during the winter as compared to the summer season. Half of the variability in 25-hydroxyvitamin D during the summer season was attributed to genetic factors. In contrast, the winter season variation was largely attributable to shared environmental influences (72%; 95% CI 48-86%, i.e., solar altitude. Individual-specific environmental influences were found to explain one fourth of the variation in serum 25-hydroxyvitamin D independent of season. CONCLUSIONS/SIGNIFICANCE: There exists a moderate genetic impact on serum vitamin D status during the summer season, probably through the skin synthesis of vitamin D. Further studies are warranted to identify the genes impacting on vitamin D status.

  11. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    Science.gov (United States)

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  12. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2015-05-29

    Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.

  13. Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood.

    Science.gov (United States)

    Kendler, Kenneth S; Schmitt, Eric; Aggen, Steven H; Prescott, Carol A

    2008-06-01

    While both environmental and genetic factors are important in the etiology of psychoactive substance use (PSU), we know little of how these influences differ through development. To clarify the changing role of genes and environment in PSU from early adolescence through middle adulthood. Retrospective assessment by life history calendar, with univariate and bivariate structural modeling. General community. A total of 1796 members of male-male pairs from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders. Levels of use of alcohol, caffeine, cannabis, and nicotine recorded for every year of the respondent's life. For nicotine, alcohol, and cannabis, familial environmental factors were critical in influencing use in early adolescence and gradually declined in importance through young adulthood. Genetic factors, by contrast, had little or no influence on PSU in early adolescence and gradually increased in their effect with increasing age. The sources of individual differences in caffeine use changed much more modestly over time. Substantial correlations were seen among levels of cannabis, nicotine, and alcohol use and specifically between caffeine and nicotine. In adolescence, those correlations were strongly influenced by shared effects from the familial environment. However, as individuals aged, more and more of the correlation in PSU resulted from genetic factors that influenced use of both substances. These results support an etiologic model for individual differences in PSU in which initiation and early patterns of use are strongly influenced by social and familial environmental factors while later levels of use are strongly influenced by genetic factors. The substantial correlations seen in levels of PSU across substances are largely the result of social environmental factors in adolescence, with genetic factors becoming progressively more important through early and middle adulthood.

  14. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  15. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  16. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  17. The quick and the dead: microbial demography at the yeast thermal limit.

    Science.gov (United States)

    Maxwell, Colin S; Magwene, Paul M

    2017-03-01

    The niche of microorganisms is determined by where their populations can expand. Populations can fail to grow because of high death or low birth rates, but these are challenging to measure in microorganisms. We developed a novel technique that enables single-cell measurement of age-structured birth and death rates in the budding yeast, Saccharomyces cerevisiae, and used this method to study responses to heat stress in a genetically diverse panel of strains. We find that individual cells show significant heterogeneity in their rates of birth and death during heat stress. Genotype-by-environment effects on processes that regulate asymmetric cell division contribute to this heterogeneity. These lead to either premature senescence or early life mortality during heat stress, and we find that a mitochondrial inheritance defect explains the early life mortality phenotype of one of the strains we studied. This study demonstrates how the interplay of physiology, genetic variation and environmental variables influence where microbial populations survive and flourish. © 2016 John Wiley & Sons Ltd.

  18. Genetic influences on exercise participation in 37,051 twin pairs from seven countries.

    Directory of Open Access Journals (Sweden)

    Janine H Stubbe

    2006-12-01

    Full Text Available A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used.Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, The Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents.Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19-40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males.Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments.

  19. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  20. Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo

    2016-01-01

    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic...

  1. The effects of boron management on soil microbial population and ...

    African Journals Online (AJOL)

    Soil microorganisms directly influence boron content of soil as maximum boron release corresponds with the highest microbial activity. The objective of this study is to determine the effects of different levels of boron fertilizer on microbial population, microbial respiration and soil enzyme activities in different soil depths in ...

  2. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  3. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M.; Szakova, J.; Tlustos, P.

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  4. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    OpenAIRE

    Xu, Jia; Verbrugghe, Adronie; Louren?o, Marta; Janssens, Geert P. J.; Liu, Daisy J. X.; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host me...

  5. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences

  6. Genetic and environmental influences on infant growth: prospective analysis of the Gemini twin birth cohort.

    Directory of Open Access Journals (Sweden)

    Laura Johnson

    Full Text Available Infancy is a critical period during which rapid growth potentially programs future disease risk. Identifying the modifiable determinants of growth is therefore important. To capture the complexity of infant growth, we modeled growth trajectories from birth to six months in order to compare the genetic and environmental influences on growth trajectory parameters with single time-point measures at birth, three and six months of age.Data were from Gemini, a population sample of 2402 UK families with twins. An average 10 weight measurements per child made by health professionals were available over the first six months. Weights at birth, three and six months were identified. Longitudinal growth trajectories were modeled using SITAR utilizing all available weight measures for each child. SITAR generates three parameters: size (characterizing mean weight throughout infancy, tempo (indicating age at peak weight velocity (PWV, and velocity (reflecting the size of PWV. Genetic and environmental influences were estimated using quantitative genetic analysis.In line with previous studies, heritability of weight at birth and three months was low (38%, but it was higher at six months (62%. Heritability of the growth trajectory parameters was high for size (69% and velocity (57%, but low (35% for tempo. Common environmental influences predominated for tempo (42%.Modeled growth parameters using SITAR indicated that size and velocity were primarily under genetic influence but tempo was predominantly environmentally determined. These results emphasize the importance of identifying specific modifiable environmental determinants of the timing of peak infant growth.

  7. Methane- and Hydrogen-Influenced Microbial Communities in Hydrothermal Plumes above the Atlantis Massif, Mid Atlantic Ridge

    Science.gov (United States)

    Stewart, C. L.; Schrenk, M.

    2017-12-01

    Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.

  8. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J.; Johnson, S.G.

    2009-01-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  9. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  10. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities.

    Science.gov (United States)

    Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y-H; Thompson, Janelle R

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.

  11. Next-generation sequencing (NGS for assessment of microbial water quality: current progress, challenges, and future opportunities

    Directory of Open Access Journals (Sweden)

    BoonFei eTan

    2015-09-01

    Full Text Available Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.

  12. Genetic and environmental influences on blood pressure and physical activity: a study of nuclear families from Muzambinho, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Forjaz, C.L.M.; Bartholomeu, T. [Laboratório de Hemodinâmica da Atividade Motora (LAHAM), Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP (Brazil); Rezende, J.A.S. [Escola Superior de Educação Física de Muzambinho, Muzambinho, MG (Brazil); Oliveira, J.A.; Basso, L.; Tani, G. [Laboratório de Comportamento Motor (LACOM), Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP (Brazil); Prista, A. [Faculdade de Educação Física e Desporto, Universidade Pedagógica, Maputo (Mozambique); Maia, J.A.R. [CIFI2D, Laboratório de Cineantropometria e Gabinete de Estatística Aplicada, Faculdade de Desporto, Universidade do Porto, Porto (Portugal)

    2012-09-07

    Blood pressure (BP) and physical activity (PA) levels are inversely associated. Since genetic factors account for the observed variation in each of these traits, it is possible that part of their association may be related to common genetic and/or environmental influences. Thus, this study was designed to estimate the genetic and environmental correlations of BP and PA phenotypes in nuclear families from Muzambinho, Brazil. Families including 236 offspring (6 to 24 years) and their 82 fathers and 122 mothers (24 to 65 years) were evaluated. BP was measured, and total PA (TPA) was assessed by an interview (commuting, occupational, leisure time, and school time PA). Quantitative genetic modeling was used to estimate maximal heritability (h{sup 2}), and genetic and environmental correlations. Heritability was significant for all phenotypes (systolic BP: h{sup 2} = 0.37 ± 0.10, P < 0.05; diastolic BP: h{sup 2} = 0.39 ± 0.09, P < 0.05; TPA: h{sup 2} = 0.24 ± 0.09, P < 0.05). Significant genetic (r{sub g}) and environmental (r{sub e}) correlations were detected between systolic and diastolic BP (r{sub g} = 0.67 ± 0.12 and r{sub e} = 0.48 ± 0.08, P < 0.05). Genetic correlations between BP and TPA were not significant, while a tendency to an environmental cross-trait correlation was found between diastolic BP and TPA (r{sub e} = -0.18 ± 0.09, P = 0.057). In conclusion, BP and PA are under genetic influences. Systolic and diastolic BP share common genes and environmental influences. Diastolic BP and TPA are probably under similar environmental influences.

  13. Genetic and environmental influences on blood pressure and physical activity: a study of nuclear families from Muzambinho, Brazil

    Directory of Open Access Journals (Sweden)

    C.L.M. Forjaz

    2012-12-01

    Full Text Available Blood pressure (BP and physical activity (PA levels are inversely associated. Since genetic factors account for the observed variation in each of these traits, it is possible that part of their association may be related to common genetic and/or environmental influences. Thus, this study was designed to estimate the genetic and environmental correlations of BP and PA phenotypes in nuclear families from Muzambinho, Brazil. Families including 236 offspring (6 to 24 years and their 82 fathers and 122 mothers (24 to 65 years were evaluated. BP was measured, and total PA (TPA was assessed by an interview (commuting, occupational, leisure time, and school time PA. Quantitative genetic modeling was used to estimate maximal heritability (h², and genetic and environmental correlations. Heritability was significant for all phenotypes (systolic BP: h² = 0.37 ± 0.10, P < 0.05; diastolic BP: h² = 0.39 ± 0.09, P < 0.05; TPA: h² = 0.24 ± 0.09, P < 0.05. Significant genetic (r g and environmental (r e correlations were detected between systolic and diastolic BP (r g = 0.67 ± 0.12 and r e = 0.48 ± 0.08, P < 0.05. Genetic correlations between BP and TPA were not significant, while a tendency to an environmental cross-trait correlation was found between diastolic BP and TPA (r e = -0.18 ± 0.09, P = 0.057. In conclusion, BP and PA are under genetic influences. Systolic and diastolic BP share common genes and environmental influences. Diastolic BP and TPA are probably under similar environmental influences.

  14. The effect of resource history on the functioning of soil microbial communities is maintained across time

    Science.gov (United States)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-06-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global

  15. Microbial ecology and biogeochemistry of continental Antarctic soils

    Directory of Open Access Journals (Sweden)

    Don A Cowan

    2014-04-01

    Full Text Available The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbour microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths possess a genetic capacity for nitrogen and carbon cycling, polymer degradation and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  16. The influence of dietary microbial phytase and calcium on the accumulation of cadmium in different organs of pigs

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, B.; Lantzsch, H.J.; Drochner, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Tierernaehrung

    2001-07-01

    A total of 72 barrows (initial body weight 16.7 kg) was used, to evaluate the influence of microbial phytase supplementation alone or in combination with calcium to barley soybean meal diets on the accumulation of cadmium (Cd) in kidney, liver, muscle, brain and bone. The control group received the basal diet with 6 g Ca and a low native Cd concentration of 0.03 mg/kg dry matter (DM). In the experimental groups 2, 3, 4 and 5 dietary cadmium concentration was elevated to 0.78 mg/kg DM. The diet of group 3 was supplemented with 800 U microbial phytase/kg, the diet of group 4 with 6 g Ca/kg. The diet of group 5 contained both supplements. The addition of microbial phytase caused an increase of Cd retention in kidney and liver at 30 and 50 kg body weight. This effect was counteracted by the contemporary addition of calcium. A supplementation of Ca alone showed no effect on the Cd accumulation in kidney and liver. In muscle, brain and bone no effects of phytase and calcium on the accumulation of Cd could be found. (orig.)

  17. Tillage and manure effect on soil microbial biomass and respiration ...

    African Journals Online (AJOL)

    The objective of this study was to determine the influence of both tillage and liquid pig manure application on soil microbial biomass, enzyme activities and microbial respiration in a meadow soil. The results obtained did not show any significant effect of tillage and manure on microbial biomass carbon (C) and nitrogen (N) ...

  18. A Statistical Framework for Microbial Source Attribution: Measuring Uncertainty in Host Transmission Events Inferred from Genetic Data (Part 2 of a 2 Part Report)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Velsko, S

    2009-11-16

    This report explores the question of whether meaningful conclusions can be drawn regarding the transmission relationship between two microbial samples on the basis of differences observed between the two sample's respective genomes. Unlike similar forensic applications using human DNA, the rapid rate of microbial genome evolution combined with the dynamics of infectious disease require a shift in thinking on what it means for two samples to 'match' in support of a forensic hypothesis. Previous outbreaks for SARS-CoV, FMDV and HIV were examined to investigate the question of how microbial sequence data can be used to draw inferences that link two infected individuals by direct transmission. The results are counter intuitive with respect to human DNA forensic applications in that some genetic change rather than exact matching improve confidence in inferring direct transmission links, however, too much genetic change poses challenges, which can weaken confidence in inferred links. High rates of infection coupled with relatively weak selective pressure observed in the SARS-CoV and FMDV data lead to fairly low confidence for direct transmission links. Confidence values for forensic hypotheses increased when testing for the possibility that samples are separated by at most a few intermediate hosts. Moreover, the observed outbreak conditions support the potential to provide high confidence values for hypothesis that exclude direct transmission links. Transmission inferences are based on the total number of observed or inferred genetic changes separating two sequences rather than uniquely weighing the importance of any one genetic mismatch. Thus, inferences are surprisingly robust in the presence of sequencing errors provided the error rates are randomly distributed across all samples in the reference outbreak database and the novel sequence samples in question. When the number of observed nucleotide mutations are limited due to characteristics of the

  19. Influence of biocrusts coverage on microbial communities from underlying arid lands soils

    Science.gov (United States)

    Anguita-Maeso, Manuel; Miralles*, Isabel; van Wesemael, Bas; Lázaro, Roberto; Ortega, Raúl; García-Salcedo, José Antonio; Soriano**, Miguel

    2017-04-01

    In regions where the water availability limits the plant cover, biological soil crusts are especially essential in the development of an almost continuous living skin mediating the inputs and outputs across the soil surface boundary. However, the entire area is not covered equally and microbial communities from underlying soils might be influenced by biocrust type and the percentage of biocrust coverage. To clarify this question, we have collected underlying soils from biocrusts samples dominated by i) incipient colonization by cyanobacteria, ii) cyanobacteria, biocrusts formed by the lichens: iii) Diploschistes diacapsis and Squamarina lentigera and iv) Lepraria issidiata from Tabernas desert (southeast of Spain) so as to determine the differences in the microbial communities from these underlying soils at two extremes of its spatial distribution range: one with a high percentage of biocrust coverage and fewer degradation and other with a huge degradation and less percentage of biocrust coverage. DNA from these samples was isolated by using a commercial kit and it was taken as template for metagenomic analysis. We conducted a sequencing of the amplicons V4-V5 of the 16S rRNA gene with Next-Generation Sequencing (NGS) Illumina MiSeq platform and a relative quantity of bacteria and fungi were accomplished by quantitative qPCR of rRNA 16S and ITS1-5.8S, respectively. The high biocrust coverage position revealed the highest number of bacteria per gram of soil (1.64E+09 in L. issidiata, in 1.89E+09 D. diacapsis and S. lentigera, 1.63E+09 in cyanobacteria and 2.08E+09 in incipient colonization by cyanobacteria) whereas the less favourable position according to the percentage of biocrust coverage showed fewer amount (1.16E+09 in L. issidiata, 6.98E+08 in D. diacapsis and S. lentigera, 1.46E+09 in cyanobacteria and 7.92E+08 in incipient cyanobacteria biocrust). Similarly, the amount of fungi per gram of soil presented identical correlation ranging from the favourable

  20. Citalopram for the Treatment of Agitation in Alzheimer Dementia: Genetic Influences.

    Science.gov (United States)

    Peters, Matthew E; Vaidya, Vijay; Drye, Lea T; Devanand, Davangere P; Mintzer, Jacobo E; Pollock, Bruce G; Porsteinsson, Anton P; Rosenberg, Paul B; Schneider, Lon S; Shade, David M; Weintraub, Daniel; Yesavage, Jerome; Lyketsos, Constantine G; Avramopoulos, Dimitri

    2016-03-01

    To assess potential genetic influences on citalopram treatment efficacy for agitation in individuals with Alzheimer dementia (AD). Six functional genetic variants were studied in the following genes: serotonin receptor 2A (HTR2A-T102C), serotonin receptor 2C (HTR2C-Cys23Ser), serotonin transporter (5HTT-LPR), brain-derived neurotropic factor (BDNF-Val66Met), apolipoprotein E (ε2, ε3, ε4 variants), and cytochrome P450 (CYP2C19). Treatment response by genotype was measured by (1) the agitation domain of the Neurobehavioral Rating Scale, (2) the modified Alzheimer Disease Cooperative Study-Clinical Global Impression of Change scale (mADCS-CGIC), (3) the agitation domain of the Neuropsychiatric Inventory (NPI), and (4) the Cohen-Mansfield Agitation Inventory. We utilized data from the Citalopram for Agitation in Alzheimer's Disease (CitAD) database. CitAD was a 9-week randomized, double-blind, placebo-controlled multicenter clinical trial showing significant improvement in agitation and caregiver distress in patients treated with citalopram. Proportional odds logistic regression and mixed effects models were used to examine the above-mentioned outcome measures. Significant interactions were noted on the NPI agitation domain for HTR2A (likelihood ratio [LR] = 6.19, df = 2, P = .04) and the mADCS-CGIC for HTR2C (LR = 4.33, df = 2, P = .02) over 9 weeks. Treatment outcomes in CitAD showed modest, although statistically significant, influence of genetic variation at HTR2A and HTR2C loci. Future studies should continue to examine the interaction of known genetic variants with antidepressant treatment in patients with AD having agitation. © The Author(s) 2015.

  1. Behavioral and environmental modification of the genetic influence on body mass index: A twin study

    Science.gov (United States)

    Horn, Erin E.; Turkheimer, Eric; Strachan, Eric; Duncan, Glen E.

    2015-01-01

    Body mass index (BMI) has a strong genetic basis, with a heritability around 0.75, but is also influenced by numerous behavioral and environmental factors. Aspects of the built environment (e.g., environmental walkability) are hypothesized to influence obesity by directly affecting BMI, by facilitating or inhibiting behaviors such as physical activity that are related to BMI, or by suppressing genetic tendencies toward higher BMI. The present study investigated relative influences of physical activity and walkability on variance in BMI using 5,079 same-sex adult twin pairs (70% monozygotic, 65% female). High activity and walkability levels independently suppressed genetic variance in BMI. Estimating their effects simultaneously, however, suggested that the walkability effect was mediated by activity. The suppressive effect of activity on variance in BMI was present even with a tendency for low-BMI individuals to select into environments that require higher activity levels. Overall, our results point to community- or macro-level interventions that facilitate individual-level behaviors as a plausible approach to addressing the obesity epidemic among U.S. adults. PMID:25894925

  2. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  3. Microbial Activity Influences Electrical Conductivity of Biofilm Anode

    Science.gov (United States)

    This study assessed the conductivity of a Geobacter-enriched biofilm anode along with biofilm activity in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH ...

  4. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  5. Genetic and environmental influences on the relation between parental social class and mortality

    DEFF Research Database (Denmark)

    Osler, Merete; Petersen, L.; Prescott, Eva Irene Bossano

    2006-01-01

    Genetic and maternal prenatal environmental factors as well as the post-natal rearing environment may contribute to the association between childhood socioeconomic circumstances and later mortality. In order to disentangle these influences, we studied all-cause and cause-specific mortality in a c...... in a cohort of adoptees, in whom we estimated the effects of their biological and adoptive fathers' social classes as indicators of the genetic and/or prenatal environmental factors and the post-natal environment, respectively....

  6. Microbial products II

    Energy Technology Data Exchange (ETDEWEB)

    Pape, H; Rehm, H J [eds.

    1986-01-01

    The present volume deals mainly with compounds which have been detected as natural microbial products. Part 1 of this volume introduces the general aspects of the overproduction of metabolites and the concepts and genetics of secondary metabolism. Compounds such as nucleosides, nucleotides, coenzymes, vitamins and lipids are dealt with in part 2. Part 3 then is devoted to products and antibiotics with uses im medicine, veterinary medicine, plant protection and metabolites with antitumor activity. Several secondary metabolites have found uses in human and animal health care. With 244 figs., 109 tabs.

  7. Factors influencing and modifying the decision to pursue genetic testing for skin cancer risk.

    Science.gov (United States)

    Fogel, Alexander L; Jaju, Prajakta D; Li, Shufeng; Halpern-Felsher, Bonnie; Tang, Jean Y; Sarin, Kavita Y

    2017-05-01

    Across cancers, the decision to pursue genetic testing is influenced more by subjective than objective factors. However, skin cancer, which is more prevalent, visual, and multifactorial than many other malignancies, may offer different motivations for pursuing such testing. The primary objective was to determine factors influencing the decision to receive genetic testing for skin cancer risk. A secondary objective was to assess the impact of priming with health questions on the decision to receive testing. We distributed anonymous online surveys through ResearchMatch.org to assess participant health, demographics, motivations, and interest in pursuing genetic testing for skin cancer risk. Two surveys with identical questions but different question ordering were used to assess the secondary objective. We received 3783 responses (64% response rate), and 85.8% desired testing. Subjective factors, including curiosity, perceptions of skin cancer, and anxiety, were the most statistically significant determinants of the decision to pursue testing (P < .001), followed by history of sun exposure (odds ratio 1.85, P < .01) and history of skin cancer (odds ratio 0.5, P = .01). Age and family history of skin cancer did not influence this decision. Participants increasingly chose testing if first queried about health behaviors (P < .0001). The decision to pursue hypothetical testing may differ from in-clinic decision-making. Self-selected, online participants may differ from the general population. Surveys may be subject to response bias. The decision to pursue genetic testing for skin cancer is primarily determined by subjective factors, such as anxiety and curiosity. Health factors, including skin cancer history, also influenced decision-making. Priming with consideration of objective health factors can increase the desire to pursue testing. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  8. GENETIC DIVERSITY AND ECO-GEOGRAPHICAL DISTRIBUTION ...

    African Journals Online (AJOL)

    ACSS

    Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Ethiopia ... floccifolia were analysed for genetic variation and inter-relationships using 20 microsatellite ... categorised as one of the most problematic weeds.

  9. Microbial endocrinology and the microbiota-gut-brain axis.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.

  10. Central role of the cell in microbial ecology.

    Science.gov (United States)

    Zengler, Karsten

    2009-12-01

    Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.

  11. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    NARCIS (Netherlands)

    Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P.J.; Liu, Daisy J.X.; Wiele, Van de Tom; Eeckhaut, Venessa; Immerseel, Van Filip; Maele, Van de Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background: Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear

  12. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment.

    Science.gov (United States)

    Valentín-Vargas, Alexis; Root, Robert A; Neilson, Julia W; Chorover, Jon; Maier, Raina M

    2014-12-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  13. The genetic influences on oxycodone response characteristics in human experimental pain

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Sato, Hiroe; Nielsen, Lecia M

    2015-01-01

    Human experimental pain studies are of value to study basic pain mechanisms under controlled conditions. The aim of this study was to investigate whether genetic variation across selected mu-, kappa- and delta-opioid receptor genes (OPRM1, OPRK1and OPRD1, respectively) influenced analgesic respon......; therefore, variation in opioid receptor genes may partly explain responder characteristics to oxycodone....

  14. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    Directory of Open Access Journals (Sweden)

    Miriam A Mosing

    Full Text Available Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious and feel that they are in control of their own destiny (internal locus of control. We discuss that some of the genes underlying this relationship may include those influencing the function of

  15. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    Science.gov (United States)

    Mosing, Miriam A; Pedersen, Nancy L; Cesarini, David; Johannesson, Magnus; Magnusson, Patrik K E; Nakamura, Jeanne; Madison, Guy; Ullén, Fredrik

    2012-01-01

    Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic neural

  16. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins.

    Science.gov (United States)

    Mustelin, L; Silventoinen, K; Pietiläinen, K; Rissanen, A; Kaprio, J

    2009-01-01

    Both obesity and exercise behavior are influenced by genetic and environmental factors. However, whether obesity and physical inactivity share the same genetic vs environmental etiology has rarely been studied. We therefore analyzed these complex relationships, and also examined whether physical activity modifies the degree of genetic influence on body mass index (BMI) and waist circumference (WC). The FinnTwin16 Study is a population-based, longitudinal study of five consecutive birth cohorts (1975-1979) of Finnish twins. Data on height, weight, WC and physical activity of 4343 subjects at the average age of 25 (range, 22-27 years) years were obtained by a questionnaire and self-measurement of WC. Quantitative genetic analyses based on linear structural equations were carried out by the Mx statistical package. The modifying effect of physical activity on genetic and environmental influences was analyzed using gene-environment interaction models. The overall heritability estimates were 79% in males and 78% in females for BMI, 56 and 71% for WC and 55 and 54% for physical activity, respectively. There was an inverse relationship between physical activity and WC in males (r = -0.12) and females (r=-0.18), and between physical activity and BMI in females (r = -0.12). Physical activity significantly modified the heritability of BMI and WC, with a high level of physical activity decreasing the additive genetic component in BMI and WC. Physically active subjects were leaner than sedentary ones, and physical activity reduced the influence of genetic factors to develop high BMI and WC. This suggests that the individuals at greatest genetic risk for obesity would benefit the most from physical activity.

  17. Peer Influence, Genetic Propensity, and Binge Drinking: A Natural Experiment and a Replication.

    Science.gov (United States)

    Guo, Guang; Li, Yi; Wang, Hongyu; Cai, Tianji; Duncan, Greg J

    2015-11-01

    The authors draw data from the College Roommate Study (ROOM) and the National Longitudinal Study of Adolescent Health to investigate gene-environment interaction effects on youth binge drinking. In ROOM, the environmental influence was measured by the precollege drinking behavior of randomly assigned roommates. Random assignment safeguards against friend selection and removes the threat of gene-environment correlation that makes gene-environment interaction effects difficult to interpret. On average, being randomly assigned a drinking peer as opposed to a nondrinking peer increased college binge drinking by 0.5-1.0 episodes per month, or 20%-40% the average amount of binge drinking. However, this peer influence was found only among youths with a medium level of genetic propensity for alcohol use; those with either a low or high genetic propensity were not influenced by peer drinking. A replication of the findings is provided in data drawn from Add Health. The study shows that gene-environment interaction analysis can uncover social-contextual effects likely to be missed by traditional sociological approaches.

  18. A study of changes in genetic and environmental influences on weight and shape concern across adolescence.

    Science.gov (United States)

    Wade, Tracey D; Hansell, Narelle K; Crosby, Ross D; Bryant-Waugh, Rachel; Treasure, Janet; Nixon, Reginald; Byrne, Susan; Martin, Nicholas G

    2013-02-01

    The goal of the current study was to examine whether genetic and environmental influences on an important risk factor for disordered eating, weight and shape concern, remained stable over adolescence. This stability was assessed in 2 ways: whether new sources of latent variance were introduced over development and whether the magnitude of variance contributing to the risk factor changed. We examined an 8-item WSC subscale derived from the Eating Disorder Examination (EDE) using telephone interviews with female adolescents. From 3 waves of data collected from female-female same-sex twin pairs from the Australian Twin Registry, a subset of the data (which included 351 pairs at Wave 1) was used to examine 3 age cohorts: 12 to 13, 13 to 15, and 14 to 16 years. The best-fitting model contained genetic and environmental influences, both shared and nonshared. Biometric model fitting indicated that nonshared environmental influences were largely specific to each age cohort, and results suggested that latent shared environmental and genetic influences that were influential at 12 to 13 years continued to contribute to subsequent age cohorts, with independent sources of both emerging at ages 13 to 15. The magnitude of all 3 latent influences could be constrained to be the same across adolescence. Ages 13 to 15 were indicated as a time of risk for the development of high levels of WSC, given that most specific environmental risk factors were significant at this time (e.g., peer teasing about weight, adverse life events), and indications of the emergence of new sources of latent genetic and environmental variance over this period. 2013 APA, all rights reserved

  19. Changes in genetic and environmental influences on disordered eating between early and late adolescence: a longitudinal twin study.

    Science.gov (United States)

    Fairweather-Schmidt, A K; Wade, T D

    2015-11-01

    We investigated the genetic and environmental contributions to disordered eating (DE) between early and late adolescence in order to determine whether different sources of heritability and environmental risk contributed to these peak times of emergence of eating disorders. Adolescent female twins from the Australian Twin Registry were interviewed over the telephone with the Eating Disorder Examination (EDE). Data were collected at 12-15 and 16-19 years (wave 1: N = 699, 351 pairs; wave 3: N = 499, 247 pairs). Assessments also involved self-report measures related to negative life events and weight-related peer teasing. Unstandardized estimates from the bivariate Cholesky decomposition model showed both genetic influences and non-shared environmental influences increased over adolescence, but shared environmental influences decreased. While non-shared environmental sources active at ages 12-15 years continued to contribute at 16-19 years, new sources of both additive genetic and non-shared environmental risk were introduced at ages 16-19 years. Weight-related peer teasing in early-mid adolescence predicted increases of DE in later adolescence, while negative life events did not. Two-thirds of the heritable influence contributing to DE in late adolescence was unique to this age group. During late adolescence independent sources of genetic risk, as well as environmental influences are likely to be related in part to peer teasing, appear key antecedents in growth of DE.

  20. Multi-taxa integrated landscape genetics for zoonotic infectious diseases: deciphering variables influencing disease emergence.

    Science.gov (United States)

    Leo, Sarah S T; Gonzalez, Andrew; Millien, Virginie

    2016-05-01

    Zoonotic disease transmission systems involve sets of species interacting with each other and their environment. This complexity impedes development of disease monitoring and control programs that require reliable identification of spatial and biotic variables and mechanisms facilitating disease emergence. To overcome this difficulty, we propose a framework that simultaneously examines all species involved in disease emergence by integrating concepts and methods from population genetics, landscape ecology, and spatial statistics. Multi-taxa integrated landscape genetics (MTILG) can reveal how interspecific interactions and landscape variables influence disease emergence patterns. We test the potential of our MTILG-based framework by modelling the emergence of a disease system across multiple species dispersal, interspecific interaction, and landscape scenarios. Our simulations showed that both interspecific-dependent dispersal patterns and landscape characteristics significantly influenced disease spread. Using our framework, we were able to detect statistically similar inter-population genetic differences and highly correlated spatial genetic patterns that imply species-dependent dispersal. Additionally, species that were assigned coupled-dispersal patterns were affected to the same degree by similar landscape variables. This study underlines the importance of an integrated approach to investigating emergence of disease systems. MTILG is a robust approach for such studies and can identify potential avenues for targeted disease management strategies.

  1. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  2. The need for high-quality whole-genome sequence databases in microbial forensics.

    Science.gov (United States)

    Sjödin, Andreas; Broman, Tina; Melefors, Öjar; Andersson, Gunnar; Rasmusson, Birgitta; Knutsson, Rickard; Forsman, Mats

    2013-09-01

    Microbial forensics is an important part of a strengthened capability to respond to biocrime and bioterrorism incidents to aid in the complex task of distinguishing between natural outbreaks and deliberate acts. The goal of a microbial forensic investigation is to identify and criminally prosecute those responsible for a biological attack, and it involves a detailed analysis of the weapon--that is, the pathogen. The recent development of next-generation sequencing (NGS) technologies has greatly increased the resolution that can be achieved in microbial forensic analyses. It is now possible to identify, quickly and in an unbiased manner, previously undetectable genome differences between closely related isolates. This development is particularly relevant for the most deadly bacterial diseases that are caused by bacterial lineages with extremely low levels of genetic diversity. Whole-genome analysis of pathogens is envisaged to be increasingly essential for this purpose. In a microbial forensic context, whole-genome sequence analysis is the ultimate method for strain comparisons as it is informative during identification, characterization, and attribution--all 3 major stages of the investigation--and at all levels of microbial strain identity resolution (ie, it resolves the full spectrum from family to isolate). Given these capabilities, one bottleneck in microbial forensics investigations is the availability of high-quality reference databases of bacterial whole-genome sequences. To be of high quality, databases need to be curated and accurate in terms of sequences, metadata, and genetic diversity coverage. The development of whole-genome sequence databases will be instrumental in successfully tracing pathogens in the future.

  3. Early Determinants of Obesity: Genetic, Epigenetic, and In Utero Influences

    Directory of Open Access Journals (Sweden)

    Kyung E. Rhee

    2012-01-01

    Full Text Available There is an emerging body of work indicating that genes, epigenetics, and the in utero environment can impact whether or not a child is obese. While certain genes have been identified that increase one’s risk for becoming obese, other factors such as excess gestational weight gain, gestational diabetes mellitus, and smoking can also influence this risk. Understanding these influences can help to inform which behaviors and exposures should be targeted if we are to decrease the prevalence of obesity. By helping parents and young children change certain behaviors and exposures during critical time periods, we may be able to alter or modify one’s genetic predisposition. However, further research is needed to determine which efforts are effective at decreasing the incidence of obesity and to develop new methods of prevention. In this paper, we will discuss how genes, epigenetics, and in utero influences affect the development of obesity. We will then discuss current efforts to alter these influences and suggest future directions for this work.

  4. Does reactor staging influence microbial structure and functions in biofilm systems? The case of pre-denitrifying MBBRs

    DEFF Research Database (Denmark)

    Polesel, Fabio; Torresi, Elena; Jensen, Marlene Mark

    -stage MBBR system (S1+S2+S3), fed with pre-clarified wastewater, was operated at laboratory-scale with (i) controlled biomass exposure to organic substrate (COD); and (ii) enhanced the physical retention of biomass, thus inducing adaptation to different substrate exposure conditions. During long...... (exposed to lowest availability). These findings indicate that the exposure to tiered substrate availability influenced the capacity of utilizing a different range of carbon sources in each MBBR, thus impacting denitrification and pharmaceutical biotransformation. Preliminary analysis on the microbial...

  5. Bentonite. Geotechnical barrier and source for microbial life

    International Nuclear Information System (INIS)

    Matschiavelli, Nicole; Kluge, Sindy; Cherkouk, Andrea; Steglich, Jennifer

    2017-01-01

    Due to their properties, namely a high swelling capacity and a low hydraulic conductivity, Bentonites fulfil as geotechnical barrier a sealing and buffering function in the nuclear waste repository. Depending on the mineral composition Bentonites contain many suitable electron-donors and -acceptors, enabling potential microbial life. For the potential repository of highly radioactive waste the microbial mediated transformation of Bentonite could influence its properties as a barrier material. Microcosms were set up containing Bentonite and anaerobic synthetic Opalinus-clay-pore water solution under an N_2/CO_2-atmosphere to elucidate the microbial potential within selected Bentonites. Substrates like acetate and lactate were supplemented to stimulate potential microbial activity. First results show that bentonites represent a source for microbial life, demonstrated by the consumption of lactate and the formation of pyruvate. Furthermore, microbial iron-reduction was determined, which plays a crucial role in Betonite-transformation.

  6. Bentonite. Geotechnical barrier and source for microbial life

    Energy Technology Data Exchange (ETDEWEB)

    Matschiavelli, Nicole; Kluge, Sindy; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group; Steglich, Jennifer

    2017-06-01

    Due to their properties, namely a high swelling capacity and a low hydraulic conductivity, Bentonites fulfil as geotechnical barrier a sealing and buffering function in the nuclear waste repository. Depending on the mineral composition Bentonites contain many suitable electron-donors and -acceptors, enabling potential microbial life. For the potential repository of highly radioactive waste the microbial mediated transformation of Bentonite could influence its properties as a barrier material. Microcosms were set up containing Bentonite and anaerobic synthetic Opalinus-clay-pore water solution under an N{sub 2}/CO{sub 2}-atmosphere to elucidate the microbial potential within selected Bentonites. Substrates like acetate and lactate were supplemented to stimulate potential microbial activity. First results show that bentonites represent a source for microbial life, demonstrated by the consumption of lactate and the formation of pyruvate. Furthermore, microbial iron-reduction was determined, which plays a crucial role in Betonite-transformation.

  7. Genetic influence on the relation between exhaled nitric oxide and pulse wave reflection.

    Science.gov (United States)

    Tarnoki, David Laszlo; Tarnoki, Adam Domonkos; Medda, Emanuela; Littvay, Levente; Lazar, Zsofia; Toccaceli, Virgilia; Fagnani, Corrado; Stazi, Maria Antonietta; Nisticó, Lorenza; Brescianini, Sonia; Penna, Luana; Lucatelli, Pierleone; Boatta, Emanuele; Zini, Chiara; Fanelli, Fabrizio; Baracchini, Claudio; Meneghetti, Giorgio; Koller, Akos; Osztovits, Janos; Jermendy, Gyorgy; Preda, Istvan; Kiss, Robert Gabor; Karlinger, Kinga; Lannert, Agnes; Horvath, Tamas; Schillaci, Giuseppe; Molnar, Andrea Agnes; Garami, Zsolt; Berczi, Viktor; Horvath, Ildiko

    2013-06-01

    Nitric oxide has an important role in the development of the structure and function of the airways and vessel walls. Fractional exhaled nitric oxide (FE(NO)) is inversely related to the markers and risk factors of atherosclerosis. We aimed to estimate the relative contribution of genes and shared and non-shared environmental influences to variations and covariation of FE(NO) levels and the marker of elasticity function of arteries. Adult Caucasian twin pairs (n = 117) were recruited in Hungary, Italy and in the United States (83 monozygotic and 34 dizygotic pairs; age: 48 ± 16 SD years). FE(NO) was measured by an electrochemical sensor-based device. Pulse wave reflection (aortic augmentation index, Aix(ao)) was determined by an oscillometric method (Arteriograph). A bivariate Cholesky decomposition model was applied to investigate whether the heritabilities of FE(NO) and Aix(ao) were linked. Genetic effects accounted for 58% (95% confidence interval (CI): 42%, 71%) of the variation in FE(NO) with the remaining 42% (95%CI: 29%, 58%) due to non-shared environmental influences. A modest negative correlation was observed between FE(NO) and Aix(ao) (r = -0.17; 95%CI:-0.32,-0.02). FE(NO) showed a significant negative genetic correlation with Aix(ao) (r(g) = -0.25; 95%CI:-0.46,-0.02). Thus in humans, variations in FE(NO) are explained both by genetic and non-shared environmental effects. Covariance between FE(NO) and Aix(ao) is explained entirely by shared genetic factors. This is consistent with an overlap among the sets of genes involved in the expression of these phenotypes and provides a basis for further genetic studies on cardiovascular and respiratory diseases.

  8. Genetic influences on exercise participation in 37.051 twin pairs from seven countries.

    NARCIS (Netherlands)

    Stubbe, J.H.; Boomsma, D.I.; Vink, J.M.; Cornes, B.; Martin, N.G.; Skytthe, A.; Kyvik, K.; Rose, R.J.; Kujala, U.; Kaprio, J.; Harris, J.R.; Pedersen, N.L.; Hunkin, J.; Spector, T.D.; de Geus, E.J.C.

    2006-01-01

    Background. A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the

  9. Mapping and determinism of soil microbial community distribution across an agricultural landscape.

    Science.gov (United States)

    Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas

    2015-06-01

    Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Krych, Lukasz; Buschard, Karsten

    2014-01-01

    Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting β-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than...... purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D...... development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals....

  11. Genetic and environmental factors influencing the Placental Growth Factor (PGF variation in two populations.

    Directory of Open Access Journals (Sweden)

    Rossella Sorice

    Full Text Available Placental Growth Factor (PGF is a key molecule in angiogenesis. Several studies have revealed an important role of PGF primarily in pathological conditions (e.g.: ischaemia, tumour formation, cardiovascular diseases and inflammatory processes suggesting its use as a potential therapeutic agent. However, to date, no information is available regarding the genetics of PGF variability. Furthermore, even though the effect of environmental factors (e.g.: cigarette smoking on angiogenesis has been explored, no data on the influence of these factors on PGF levels have been reported so far. Here we have first investigated PGF variability in two cohorts focusing on non-genetic risk factors: a study sample from two isolated villages in the Cilento region, South Italy (N=871 and a replication sample from the general Danish population (N=1,812. A significant difference in PGF mean levels was found between the two cohorts. However, in both samples, we observed a strong correlation of PGF levels with ageing and sex, men displaying PGF levels significantly higher than women. Interestingly, smoking was also found to influence the trait in the two populations, although differently. We have then focused on genetic risk factors. The association between five single nucleotide polymorphisms (SNPs located in the PGF gene and the plasma levels of the protein was investigated. Two polymorphisms (rs11850328 and rs2268614 were associated with the PGF plasma levels in the Cilento sample and these associations were strongly replicated in the Danish sample. These results, for the first time, support the hypothesis of the presence of genetic and environmental factors influencing PGF plasma variability.

  12. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    OpenAIRE

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign...

  13. Genetic and environmental influences on thin-ideal internalization across puberty and preadolescent, adolescent, and young adult development.

    Science.gov (United States)

    Suisman, Jessica L; Thompson, J Kevin; Keel, Pamela K; Burt, S Alexandra; Neale, Michael; Boker, Steven; Sisk, Cheryl; Klump, Kelly L

    2014-11-01

    Mean-levels of thin-ideal internalization increase during adolescence and pubertal development, but it is unknown whether these phenotypic changes correspond to developmental changes in etiological (i.e., genetic and environmental) risk. Given the limited knowledge on risk for thin-ideal internalization, research is needed to guide the identification of specific types of risk factors during critical developmental periods. The present twin study examined genetic and environmental influences on thin-ideal internalization across adolescent and pubertal development. Participants were 1,064 female twins (ages 8-25 years) from the Michigan State University Twin Registry. Thin-ideal internalization and pubertal development were assessed using self-report questionnaires. Twin moderation models were used to examine if age and/or pubertal development moderate genetic and environmental influences on thin-ideal internalization. Phenotypic analyses indicated significant increases in thin-ideal internalization across age and pubertal development. Twin models suggested no significant differences in etiologic effects across development. Nonshared environmental influences were most important in the etiology of thin-ideal internalization, with genetic, shared environmental, and nonshared environmental accounting for approximately 8%, 15%, and 72%, respectively, of the total variance. Despite mean-level increases in thin-ideal internalization across development, the relative influence of genetic versus environmental risk did not differ significantly across age or pubertal groups. The majority of variance in thin-ideal internalization was accounted for by environmental factors, suggesting that mean-level increases in thin-ideal internalization may reflect increases in the magnitude/strength of environmental risk across this period. Replication is needed, particularly with longitudinal designs that assess thin-ideal internalization across key developmental phases. © 2014 Wiley

  14. Microbial Profiling Of Cyanobacteria From VIT Lake

    Directory of Open Access Journals (Sweden)

    Swati Singh

    2015-08-01

    Full Text Available The application of molecular biological methods to study the diversity and ecology of micro-organisms in natural environments has been practice in mid-1980. The aim of our research is to access the diversity composition and functioning of complex microbial community found in VIT Lake. Molecular ecology is a new field in which microbes can be recognized and their function can be understood at the DNA or RNA level which is useful for constructing genetically modified microbes by recombinant DNA technology for reputed use in the environment. In this research first we will isolate cyanobacteria in lab using conventional methods like broth culture and spread plate method then we will analyze their morphology using various staining methods and DNA and protein composition using electrophoresis method. The applications of community profiling approaches will advance our understanding of the functional role of microbial diversity in VIT Lake controls on microbial community composition.

  15. Genetic and environmental influences on cardiovascular risk factors and cognitive function

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Tian, Xiaocao; Sun, Jianping

    2018-01-01

    AIM: To explore the genetic and environmental influences on cardiovascular risk factors (CVRF) and cognitive function in the world's largest and rapidly aging Chinese population. METHODS: Cognitive function and CVRF, including body mass index, systolic blood pressure, diastolic blood pressure......, pulse pressure, glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDLC) and low-density lipoprotein cholesterol were measured in 379 complete twin pairs. Univariate and bivariate twin models were fitted to estimate the genetic and environmental components in the variance...... and covariance of CVRF and cognition. RESULTS: Mild-to-high heritability was estimated for CVRF and cognition (0.27-0.74). Unique environmental factors showed low-to-moderate contributions (0.23-0.56). Only HDLC presented significant common environmental contribution (0.50). Bivariate analysis showed...

  16. Genetic Influences on Adolescent Eating Habits

    Science.gov (United States)

    Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.

    2012-01-01

    Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)…

  17. Metabolic syndrome-related composite factors over 5 years in the STANISLAS family study: genetic heritability and common environmental influences.

    Science.gov (United States)

    Herbeth, Bernard; Samara, Anastasia; Ndiaye, Coumba; Marteau, Jean-Brice; Berrahmoune, Hind; Siest, Gérard; Visvikis-Siest, Sophie

    2010-06-03

    We estimated genetic heritability and common environmental influences for various traits related to metabolic syndrome in young families from France. At entrance and after 5 years, nineteen traits related to metabolic syndrome were measured in a sample of families drawn from the STANISLAS study. In addition, 5 aggregates of these traits were identified using factor analysis. At entrance, genetic heritability was high (20 to 44%) for plasma lipids and lipoproteins, uric acid, fasting glucose, and the related clusters "risk lipids" and "protective lipids". Intermediate or low genetic heritability (less than 20%) was shown for triglycerides, adiposity indices, blood pressure, hepatic enzyme activity, inflammatory makers and the related clusters: "liver enzymes", "adiposity/blood pressure" and "inflammation". Moreover, common environmental influences were significant for all the parameters. With regard to 5-year changes, polygenic variance was low and not statistically significant for any of the individual variables or clusters whereas shared environment influence was significant. In these young families, genetic heritability of metabolic syndrome-related traits was generally lower than previously reported while the common environmental influences were greater. In addition, only shared environment contributed to short-term changes of these traits. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Microbial Surface Colonization and Biofilm Development in Marine Environments

    Science.gov (United States)

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  19. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise

    Directory of Open Access Journals (Sweden)

    Taha Soliman

    2017-12-01

    Full Text Available Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T using two different DNA extraction kits: (1 MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T and (2 NucleoSpin® Soil kit (MN_R and MN_T. Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes, obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P < 0.006. In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.

  20. Overlapping genetic and environmental influences among men's alcohol consumption and problems, romantic quality and social support.

    Science.gov (United States)

    Salvatore, J E; Prom-Wormley, E; Prescott, C A; Kendler, K S

    2015-08-01

    Alcohol consumption and problems are associated with interpersonal difficulties. We used a twin design to assess in men the degree to which genetic or environmental influences contributed to the covariance between alcohol consumption and problems, romantic quality and social support. The sample included adult male-male twin pairs (697 monozygotic and 487 dizygotic) for whom there were interview-based data on: alcohol consumption (average monthly alcohol consumption in the past year); alcohol problems (lifetime alcohol dependence symptoms); romantic conflict and warmth; friend problems and support; and relative problems and support. Key findings were that genetic and unique environmental factors contributed to the covariance between alcohol consumption and romantic conflict; genetic factors contributed to the covariance between alcohol problems and romantic conflict; and common and unique environmental factors contributed to the covariance between alcohol problems and friend problems. Recognizing and addressing the overlapping genetic and environmental influences that alcohol consumption and problems share with romantic quality and other indicators of social support may have implications for substance use prevention and intervention efforts.

  1. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Rumen microbial communities influence metabolic phenotypes in lambs

    Directory of Open Access Journals (Sweden)

    Diego P. Morgavi

    2015-10-01

    Full Text Available The rumen microbiota is an essential part of ruminants forging their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions.

  3. Microbial and genetic ecology of tropical Vertisols under intensive chemical farming.

    Science.gov (United States)

    Malhotra, Jaya; Aparna, K; Dua, Ankita; Sangwan, Naseer; Trimurtulu, N; Rao, D L N; Lal, Rup

    2015-01-01

    There are continued concerns on unscientific usage of chemical fertilizers and pesticides, particularly in many developing countries leading to adverse consequences for soil biological quality and agricultural sustainability. In farmers' fields in tropical Vertisols of peninsular India, "high" fertilizer and pesticide usage at about 2.3 times the recommended rates in black gram (Vigna mungo) did not have a deleterious effect on the abundance of culturable microorganisms, associative nitrogen fixers, nitrifiers, and 16S rRNA gene diversity compared to normal rates. However, "very high" application at about five times the fertilizers and 1.5 times pesticides in chilies (Capsicum annuum) adversely affected the populations of fungi, actinomycetes, and ammonifiers, along with a drastic change in the eubacterial community profile and diversity over normal rates. Actinobacteria were dominant in black gram normal (BG1) (47%), black gram high (BG2) (36%), and chili normal (CH1) (30%) and were least in chili very high (CH2) (14%). Geodermatophilus formed 20% of Actinobacteria in BG1 but disappeared in BG2, CH1, and CH2. Asticcacaulis dominated at "very high" input site (CH2). Diversity of nitrogen fixers was completely altered; Dechloromonas and Anaeromyxobacter were absent in BG1 but proliferated well in BG2. There was reduction in rhizobial nifH sequences in BG2 by 46%. Phylogenetic differences characterized by UniFrac and principal coordinate analysis showed that BG2 and CH2 clustered together depicting a common pattern of genetic shift, while BG1 and CH1 fell at different axis. Overall, there were adverse consequences of "very high" fertilizer and pesticide usage on soil microbial diversity and function in tropical Vertisols.

  4. Developmental Etiologies of Alcohol Use and Their Relations to Parent and Peer Influences Over Adolescence and Young Adulthood: A Genetically Informed Approach.

    Science.gov (United States)

    Deutsch, Arielle R; Wood, Phillip K; Slutske, Wendy S

    2017-12-01

    Distinct changes in alcohol use etiologies occur during adolescence and young adulthood. Additionally, measured environments known to influence alcohol use such as peers and parenting practice can interact or be associated with this genetic influence. However, change in genetic and environmental influences over age, as well as how associations with measured environments change over age, is understudied. The National Longitudinal Study of Adolescent Health (Add Health) sibling subsample was used to examine data-driven biometric models of alcohol use over ages 13 to 27. Associations between friends' drinking, parental autonomy granting, and maternal closeness were also examined. The best-fitting model included a 5-factor model consisting of early (ages 13 to 20) and overall (ages 13 to 27) additive genetic and unique environmental factors, as well as 1 overall common environment factor. The overall additive genetic factor and the early unique environment factor explained the preponderance of mean differences in the alcohol use over this portion of the life span. The most important factors explaining variance attributed to alcohol use changed over age. Additionally, friend use had the strongest associations with genetic and environmental factors at all ages, while parenting practices had almost no associations at any age. These results supplement previous studies indicating changes in genetic and environmental influences in alcohol use over adolescence and adulthood. However, prior research suggesting that constraining exogenous predictors of genetic and environmental factors to have effects of the same magnitude across age overlooks the differential role of factors associated with alcohol use during adolescence. Consonant with previous research, friend use appears to have a more pervasive influence on alcohol use than parental influence during this age. Interventions and prevention programs geared toward reducing alcohol use in younger populations may benefit from

  5. A Statistical Framework for Microbial Source Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P; Allen, J E; Cunningham, C T

    2009-04-28

    This report presents a general approach to inferring transmission and source relationships among microbial isolates from their genetic sequences. The outbreak transmission graph (also called the transmission tree or transmission network) is the fundamental structure which determines the statistical distributions relevant to source attribution. The nodes of this graph are infected individuals or aggregated sub-populations of individuals in which transmitted bacteria or viruses undergo clonal expansion, leading to a genetically heterogeneous population. Each edge of the graph represents a transmission event in which one or a small number of bacteria or virions infects another node thus increasing the size of the transmission network. Recombination and re-assortment events originate in nodes which are common to two distinct networks. In order to calculate the probability that one node was infected by another, given the observed genetic sequences of microbial isolates sampled from them, we require two fundamental probability distributions. The first is the probability of obtaining the observed mutational differences between two isolates given that they are separated by M steps in a transmission network. The second is the probability that two nodes sampled randomly from an outbreak transmission network are separated by M transmission events. We show how these distributions can be obtained from the genetic sequences of isolates obtained by sampling from past outbreaks combined with data from contact tracing studies. Realistic examples are drawn from the SARS outbreak of 2003, the FMDV outbreak in Great Britain in 2001, and HIV transmission cases. The likelihood estimators derived in this report, and the underlying probability distribution functions required to calculate them possess certain compelling general properties in the context of microbial forensics. These include the ability to quantify the significance of a sequence 'match' or &apos

  6. Microbial ecology and adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Molin, Søren

    2011-01-01

    Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities...... constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent...... colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies....

  7. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Science.gov (United States)

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  8. Genetic influences on musical specialization: a twin study on choice of instrument and music genre.

    Science.gov (United States)

    Mosing, Miriam A; Ullén, Fredrik

    2018-05-09

    Though several studies show that genetic factors influence individual differences in musical engagement, aptitude, and achievement, no study to date has investigated whether specialization among musically active individuals in terms of choice of instrument and genre is heritable. Using a large twin cohort, we explored whether individual differences in instrument choice, instrument category, and the type of music individuals engage in can entirely be explained by the environment or are partly due to genetic influences. About 10,000 Swedish twins answered an extensive questionnaire about music-related traits, including information on the instrument and genre they played. Of those, 1259 same-sex twin pairs reported to either play an instrument or sing. We calculated the odds ratios (ORs) for concordance in music choices (if both twins played) comparing identical and nonidentical twin pairs, with significant ORs indicating that identical twins are more likely to engage in the same type of music-related behavior than are nonidentical twins. The results showed that for almost all music-related variables, the odds were significantly higher for identical twins to play the same musical instrument or music genre, suggesting significant genetic influences on such music specialization. Possible interpretations and implications of the findings are discussed. © 2018 New York Academy of Sciences.

  9. Influence of phenolic compounds on rumen microbial activity

    International Nuclear Information System (INIS)

    Vitti, D.M.S.S.; Abdalla, A.L.; Silva Filho, J.C.

    1985-01-01

    An 'in vitro' experiment is carried out to examine the effect of tannic acid on rumen microbial activity, due to the toxicity of phenolic acids on many microrganisms. Rumen content is incubated with sodium bicarbonate, glucose and different quantities of tannic acid. 1 μCi of 32 p-labelled phosphate is added and after 6 hours the incorporated activity is measured. (M.A.C.) [pt

  10. Genetic and environmental factors interact to influence anxiety.

    Science.gov (United States)

    Gross, Cornelius; Hen, René

    2004-01-01

    Both genetic and environmental factors influence normal anxiety traits as well as anxiety disorders. In addition it is becoming increasingly clear that these factors interact to produce specific anxiety-related behaviors. For example, in humans and in monkeys mutations in the gene encoding for the serotonin transporter result in increased anxiety in adult life when combined with a stressful environment during development. Another recent example comes from twin studies suggesting that a small hippocampus can be a predisposing condition that renders individuals susceptible to post traumatic stress disorder. Such examples illustrate how specific mutations leading to abnormal brain development may increase vulnerability to environmental insults which may in turn lead to specific anxiety disorders.

  11. [Influence of different slope position and profile in Disporopsis pernyi forest land on soil microbial biomass and enzyme activity in southwest Karst mountain of China ].

    Science.gov (United States)

    Qin, Hua-Jun; He, Bing-Hui; Zhao, Xuan-chi; Li, Yuan; Mao, Wen-tao; Zeng, Qing-ping

    2014-09-01

    Soil microbial biomass and enzyme activity are important parameters to evaluate the quality of the soil environment. The goal of this study was to determine the influence of different slope position and section in Disporopsis pernyi forest land on the soil microbial biomass and enzyme activity in southwest Karst Mountain. In this study, we chose the Dip forest land at Yunfo village Chengdong town Liangping country Chongqing Province as the study object, to analyze the influence of three different slope positions [Up Slope(US), Middle Slope(MS), Below Slope(BS)] and two different sections-upper layer(0-15 cm) and bottom layer(15-30 cm) on the soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), microbial carbon entropy (qMBC), microbial nitrogen entropy (qMBN) , catalase(CAT), alkaline phosphatase (ALK), urease(URE), and invertase(INV). The results showed that the same trend (BS > MS > US) was found for SMBC, SMBN, qMBC, qMBN, CAT and INV of upper soil layer, while a different trend (BS > US > MS) was observed for ALK. In addition, another trend (MS > US > BS) was observed for URE. The same trend (BS > MS >US) was observed for SMBN, qMBN, CAT, ALK, URE and INV in bottom layer, but a different trend (MS > BS > US) was observed for SMBC and qMBC. The SMBC, SMBN, CAT, ALK, URE and INV manifested as upper > bottom with reduction of the section, while qMBC and qMBN showed the opposite trend. Correlation analysis indicated that there were significant (P <0.05) or highly significant (P < 0.01) positive correlations among SMBC in different slope position and section, soil enzyme activity and moisture. According to the two equations of regression analysis, SMBC tended to increase with the increasing CAT and ALK, while decreased with the increasing pH. Then SMBN tended to increase with the increasing URE and INV.

  12. Microbial degradation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1994-04-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion

  13. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  14. Genetic and social influences on starting to smoke: a study of Dutch adolescent twins and their parents

    NARCIS (Netherlands)

    Boomsma, D.I.; Koopmans, J.R.; van Doornen, L.J.P.; Orlebeke, J.F.

    1994-01-01

    In a study of 1600 Dutch adolescent twin pairs we found that 59% of the inter‐individual variation in smoking behaviour could be attributed to shared environmental influences and 31% to genetic factors. The magnitude of the genetic and environmental effects did not differ between boys and girls.

  15. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  16. Genetic and environmental influences on non-specific neck pain in early adolescence: A classical twin study

    Science.gov (United States)

    Ståhl, Minna K; El-Metwally, Ashraf A; Mikkelsson, Marja K; Salminen, Jouko J; Pulkkinen, Lea R; Rose, Richard J; Kaprio, Jaakko A

    2012-01-01

    Background Prevalence of neck pain has increased among adolescents. The origins of adult chronic neck pain may lie in late childhood, but for early prevention, more information is needed about its aetiology. We investigated the relative roles of genetic and environmental factors in early adolescent neck pain with a classic twin study. Methods Frequency of neck pain was assessed with a validated pain questionnaire in a population-based sample of nearly 1800 pairs of 11–12-year-old Finnish twins. Twin pair similarity for neck pain was quantified by polychoric correlations, and variance components were estimated with biometric structural equation modelling. Results Prevalence of neck pain reported at least once monthly was 38% and at least once weekly 16%, with no significant differences between gender or zygosity. A greater polychoric correlation in liability to neck pain was found in monozygotic (0.67) than for dizygotic pairs (0.38), suggesting strong genetic influences. Model-fitting indicated that 68% (95% CI 62 to 74) of the variation in liability to neck pain could be attributed to genetic effects, with the remainder attributed to unshared environmental effects. No evidence for sex-specific genetic effects or for sex differences in the magnitude of genetic effects was found. Conclusions Genetic and unique environmental factors seem to play the most important roles in liability to neck pain in early adolescence. Future research should be directed to identifying pathways for genetic influences on neck pain and in exploring effectiveness of interventions that target already identified environmental risk factors. PMID:23139100

  17. Genetic and environmental influences on adolescents' smoking involvement: a multi-informant twin study.

    Science.gov (United States)

    Seglem, Karoline Brobakke; Waaktaar, Trine; Ask, Helga; Torgersen, Svenn

    2015-03-01

    Studying monozygotic and dizygotic adolescent twin pairs of both sexes reared together, the present study examined the extent to which the variance in smoking involvement is attributable to genetic and environmental effects, and to what extent there are sex differences in the etiology. Questionnaire data on how often the adolescent had ever smoked tobacco was collected from a population-based twin sample consisting of seven national birth cohorts (ages 12-18), their mothers, and their fathers (N = 1,394 families). The data was analyzed with multivariate genetic modeling, using a multi-informant design. The etiological structure of smoking involvement was best represented in an ACE common pathway model, with smoking defined as a latent factor loading onto all three informants' reports. Estimates could be set equal across sexes. Results showed that adolescent lifetime smoking involvement was moderately heritable (37 %). The largest influence was from the shared environment (56 %), while environmental effects unique to each twin had minimal influence (7 %).

  18. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  19. Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: a large Swedish population-based study of twins.

    Science.gov (United States)

    Larsson, H; Asherson, P; Chang, Z; Ljung, T; Friedrichs, B; Larsson, J-O; Lichtenstein, P

    2013-01-01

    Attention deficit hyperactivity disorder (ADHD) frequently persists into adulthood. Family and twin studies delineate a disorder with strong genetic influences among children and adolescents based on parent- and teacher-reported data but little is known about the genetic and environmental contribution to DSM-IV ADHD symptoms in adulthood. We therefore aimed to investigate the impact of genetic and environmental influences on the inattentive and hyperactive-impulsive symptoms of ADHD in adults. Twin methods were applied to self-reported assessments of ADHD symptoms from a large population-based Swedish twin study that included data from 15 198 Swedish male and female twins aged 20 to 46 years. The broad heritability [i.e., A + D, where A is an additive genetic factor and D (dominance) a non-additive genetic factor] was 37% (A = 11%, D = 26%) for inattention and 38% (A = 18%, D = 20%) for hyperactivity-impulsivity. The results also indicate that 52% of the phenotypic correlation between inattention and hyperactivity-impulsivity (r = 0.43) was explained by genetic influences whereas the remaining part of the covariance was explained by non-shared environmental influences. These results were replicated across age strata. Our findings of moderate broad heritability estimates are consistent with previous literature on self-rated ADHD symptoms in older children, adolescents and adults and retrospective reports of self-rated childhood ADHD by adults but differ from studies of younger children with informant ratings. Future research needs to clarify whether our data indicate a true decrease in the heritability of ADHD in adults compared to children, or whether this relates to the use of self-ratings in contrast to informant data.

  20. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  1. Microbial processes in radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, L.; Farkas-Galgoczi, G.; Diosi, G.

    2002-01-01

    Microbial processes could potentially affect the performance of a radioactive waste disposal system and related factors that could have an influence on the mobility of radionuclides are outlined. Analytical methods, including sampling of water, rock and surface swabs from a potential disposal site, are described and the quantitative as well as qualitative experimental results obtained are given. Although the results contribute to an understanding of the impact of microbial processes on deep geological disposal of nuclear waste, there is not yet sufficient information for a model which will predict the consequences of these processes. (author)

  2. THE INFLUENCE OF GENETIC VARIANTS OF κ-CASEIN ON MILK COMPONENTS

    Directory of Open Access Journals (Sweden)

    Juraj Čuboň

    2013-10-01

    Full Text Available Milk production of 22 cows of Slovak Pied breed with Holstein-Friesian was analyzed according to the genetic variants of the polymorphic proteins determined by starch gel electrophoresis. The effect of genetic variants of the proteins was analyzed by selected properties of milk (milk yield, proteins, fats and lactose. Differences between the productive characters in testing groups were evaluated according to statistic method of t-test. Evaluation was carried out during throughout lactation. Based on the analyses we have obtained results frequency of genotypes: κ-CN AA in 9 cows (41%, AB in 12 cows (54.5% and BB in one cow, which is 4.5%. The average daily milk production of κ-CN AA was 13.5 l/day and in κ-CN AB 14.2 l/day. Contents of protein of genetic variation κ-CN AA was 3.1% in milk genotype κ-CN AB was found not significant lower protein proportion 3.0%. Based on the analyses, we can assume that cow’s nutrition higher influence the increase in the proportion of protein than polymorphism of κ-CN. In our research was found out the average fat content 4.0% in genetic variation of κ-CN AA and not significant lower in genetic variation κ-CN AB 3.8%. The average lactose content in the cow’s milk with κ-CN AA genotype was 4.9% and κ-CN AB was 5.0%. The difference between fat content wasn’t statistically significant.

  3. Genetic and environmental influences on risk of death due to infections assessed in Danish twins, 1943-2001

    DEFF Research Database (Denmark)

    Obel, Niels; Christensen, Kaare; Petersen, Inge

    2010-01-01

    Genetic differences have been proposed to play a strong role in risk of death from infectious diseases. The study base of 44,005 included all same-sex twin pairs born in 1870-2001, with both twins alive on January 1, 1943, or those born thereafter. Cause of death was obtained from the Danish Cause...... from infectious diseases could be demonstrated, the absolute effect of the genetic component on mortality was small....... genetic influence on the risk of death...

  4. Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Rochellys Diaz Heijtz

    2018-02-01

    Interpretation: Naturally occurring genetic variation in the dopamine system can influence treatment outcomes in children with cerebral palsy. A polygenic dopamine score might be valid for treatment outcome prediction and for designing individually tailored interventions for children with cerebral palsy.

  5. Genetic and environmental influences on relationship between anxiety sensitivity and anxiety subscales in children

    OpenAIRE

    Waszczuk, M.A.; Zavos, H.M.S.; Eley, T.C.

    2013-01-01

    Anxiety sensitivity, a belief that symptoms of anxiety are harmful, has been proposed to influence development of panic disorder. Recent research suggests it may be a vulnerability factor for many anxiety subtypes. Moderate genetic influences have been implicated for both anxiety sensitivity and anxiety, however, little is known about the aetiology of the relationship between these traits in children. Self-reports of anxiety sensitivity and anxiety symptoms were collected from approximately 3...

  6. Neighborhood alcohol outlet density and genetic influences on alcohol use: evidence for gene-environment interaction.

    Science.gov (United States)

    Slutske, Wendy S; Deutsch, Arielle R; Piasecki, Thomas M

    2018-05-07

    Genetic influences on alcohol involvement are likely to vary as a function of the 'alcohol environment,' given that exposure to alcohol is a necessary precondition for genetic risk to be expressed. However, few gene-environment interaction studies of alcohol involvement have focused on characteristics of the community-level alcohol environment. The goal of this study was to examine whether living in a community with more alcohol outlets would facilitate the expression of the genetic propensity to drink in a genetically-informed national survey of United States young adults. The participants were 2434 18-26-year-old twin, full-, and half-sibling pairs from Wave III of the National Longitudinal Study of Adolescent to Adult Health. Participants completed in-home interviews in which alcohol use was assessed. Alcohol outlet densities were extracted from state-level liquor license databases aggregated at the census tract level to derive the density of outlets. There was evidence that the estimates of genetic and environmental influences on alcohol use varied as a function of the density of alcohol outlets in the community. For example, the heritability of the frequency of alcohol use for those residing in a neighborhood with ten or more outlets was 74% (95% confidence limits = 55-94%), compared with 16% (95% confidence limits = 0-34%) for those in a neighborhood with zero outlets. This moderating effect of alcohol outlet density was not explained by the state of residence, population density, or neighborhood sociodemographic characteristics. The results suggest that living in a neighborhood with many alcohol outlets may be especially high-risk for those individuals who are genetically predisposed to frequently drink.

  7. Microscale Insight into Microbial Seed Banks.

    Science.gov (United States)

    Locey, Kenneth J; Fisk, Melany C; Lennon, J T

    2016-01-01

    Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.

  8. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  9. [Genetics factors in pathogenesis and clinical genetics of binge eating disorder].

    Science.gov (United States)

    Kibitov, А О; Мazo, G E

    2016-01-01

    Genetic studies have shown that binge eating disorder (ВЕD) aggregates in families, heritability was estimated as about 60% and additive genetic influences on BED up to 50%. Using a genetic approach has proved useful for verifying the diagnostic categories of BED using DSM-IV criteria and supporting the validity of considering this pathology as a separate nosological category. The results confirmed the genetic and pathogenic originality of BED as a separate psychopathological phenomenon, but not a subtype of obesity. It seems fruitful to considerate BED as a disease with hereditary predisposition with significant genetic influence and a complex psychopathological syndrome, including not only eating disorders, but also depressive and addictive component. A possible mechanism of pathogenesis of BED may be the interaction of the neuroendocrine and neurotransmitters systems including the active involvement of the reward system in response to a variety of chronic stress influences with the important modulatory role of specific personality traits. The high level of genetic influence on the certain clinical manifestations of BED confirms the ability to identify the subphenotypes of BED on genetic basis involving clinical criteria. It can not only contribute to further genetic studies, taking into account more homogeneous samples, but also help in finding differentiated therapeutic approaches.

  10. SERS-based detection methods for screening of genetically modified bacterial strains

    DEFF Research Database (Denmark)

    Morelli, Lidia

    factories vary largely, including industrial production of valuable compounds for biofuels, polymer synthesis and food, cosmetic and pharmaceutical industry. The improvement of computational and biochemical tools has revolutionized the synthesis of novel modified microbial strains, opening up new......The importance of metabolic engineering has been growing over the last decades, establishing the use of genetically modified microbial strains for overproduction of metabolites at industrial scale as an innovative, convenient and biosustainable method. Nowadays, application areas of microbial...

  11. Invasion in microbial communities: Role of community composition and assembly processes

    DEFF Research Database (Denmark)

    Kinnunen, Marta

    of microbial community assembly. Biotic factors include interactions between different microbial groups as well as the community response to alien species – invaders. Microbial invasions can have significant effects on the composition and functioning of resident communities. There is, however, lack......Microbes contribute to all biogeochemical cycles on earth and are responsible for key biological processes that support the survival of plants and animals. There is increased interest in controlling and managing microbial communities in different ecosystems in order to make targeted microbiological...... processes more effective. In order to manage microbial communities, it is essential to understand the factors that shape and influence microbial community composition. In addition to abiotic factors, such as environmental conditions and resource availability, biotic factors also shape the dynamics...

  12. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  13. Genetic and environmental influences on self-reported reduced hearing in the old and oldest old

    DEFF Research Database (Denmark)

    Christensen, Kaare; Frederiksen, H; Hoffman, H J

    2001-01-01

    effects. Structural-equation analyses revealed a substantial heritability for self-reported reduced hearing of 40% (95% CI = 19-53%). The remaining variation could be attributed to individuals' nonfamilial environments. CONCLUSION: We found that genetic factors play an important role in self......-reported reduced hearing in both men and women age 70 and older. Because self-reports of reduced hearing involve misclassification, this estimate of the genetic influence on hearing disabilities is probably conservative. Hence, genetic and environmental factors play a substantial role in reduced hearing among......OBJECTIVES: The aim of the present twin study was to estimate the relative importance of genetic and environmental factors in variation in self-reported reduced hearing among the old and the oldest old. DESIGN: Self-reported hearing abilities of older twins assessed at intake interview...

  14. Understanding the cognitive and genetic underpinnings of procrastination: Evidence for shared genetic influences with goal management and executive function abilities.

    Science.gov (United States)

    Gustavson, Daniel E; Miyake, Akira; Hewitt, John K; Friedman, Naomi P

    2015-12-01

    Previous research has suggested that individual differences in procrastination are tied to everyday goal-management abilities, but little research has been conducted on specific cognitive abilities that may underlie tendencies for procrastination, such as executive functions (EFs). In this study, we used behavioral genetics methodology to investigate 2 hypotheses about the relationships between procrastination and EF ability: (a) that procrastination is negatively correlated with general EF ability, and (b) that this relationship is due to the genetic components of procrastination that are most related to other everyday goal-management abilities. The results confirmed both of these hypotheses. Procrastination was related to worse general EF ability at both the phenotypic and genetic levels, and this relationship was due to the component of procrastination shared with self-report measures of everyday goal-management failures. These results were observed even after controlling for potential self-report biases stemming from the urge to respond in a socially desirable manner. Together, these findings provide strong evidence for growing theories of procrastination emphasizing the importance of goal-related cognitive abilities and further highlight important genetic influences that underlie procrastination. (c) 2015 APA, all rights reserved).

  15. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.

    Science.gov (United States)

    Garza, Daniel R; Dutilh, Bas E

    2015-11-01

    Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.

  16. Mobile genetic elements, a key to microbial adaptation in extreme environments

    Science.gov (United States)

    van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie

    To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and

  17. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  18. Genetic and environmental influences on the familial transmission of externalizing disorders in adoptive and twin offspring.

    Science.gov (United States)

    Hicks, Brian M; Foster, Katherine T; Iacono, William G; McGue, Matt

    2013-10-01

    Twin-family studies have shown that parent-child resemblance on substance use disorders and antisocial behavior can be accounted for by the transmission of a general liability to a spectrum of externalizing disorders. Most studies, however, include only biological parents and offspring, which confound genetic and environmental transmission effects. To examine the familial transmission of externalizing disorders among both adoptive (genetically unrelated) and biological relatives to better distinguish genetic and environmental mechanisms of transmission. Family study design wherein each family included the mother, father, and 2 offspring, including monozygotic twin, dizygotic twin, nontwin biological, and adoptive offspring. Structural equation modeling was used to estimate familial transmission effects and their genetic and environmental influences. Participants were recruited from the community and assessed at a university laboratory. A total of 1590 families with biological offspring and 409 families with adoptive offspring. Offspring participants were young adults (mean age, 26.2 years). Symptom counts of conduct disorder, adult antisocial behavior, and alcohol, nicotine, and drug dependence. RESULTS There was a medium effect for the transmission of the general externalizing liability for biological parents (r = 0.27-0.30) but not for adoptive parents (r = 0.03-0.07). In contrast, adoptive siblings exhibited significant similarity on the general externalizing liability (r = 0.21). Biometric analyses revealed that the general externalizing liability was highly heritable (a2 = 0.61) but also exhibited significant shared environmental influences (c2 = 0.20). Parent-child resemblance for substance use disorders and antisocial behavior is primarily due to the genetic transmission of a general liability to a spectrum of externalizing disorders. Including adoptive siblings revealed a greater role of shared environmental influences on the general externalizing liability

  19. Genetic variation in GABRA2 moderates peer influence on externalizing behavior in adolescents.

    Science.gov (United States)

    Villafuerte, Sandra; Trucco, Elisa M; Heitzeg, Mary M; Burmeister, Margit; Zucker, Robert A

    2014-01-01

    Genetic predisposition and environmental influences are both important factors in the development of problematic behavior leading to substance use in adolescence. Involvement with delinquent peers also strongly predicts adolescent externalizing behavior. Several lines of evidence support a role of GABRA2 on externalizing behavior related to disinhibition. However, whether this genetic association is influenced by the environment such as peer behavior remains unknown. We examined the moderating role of GABRA2 genetic variation on the socialization model of delinquent peer affiliation (at ages 12-14 years) on externalizing behavior (at ages 15-17 years) in the Michigan Longitudinal Study (MLS) adolescent sample. The sample consisted of 244 adolescents (75 females and 152 with at least one parent with a DSM-IV lifetime alcohol dependence/abuse diagnosis). Peer delinquent activity reported by the participant and teacher-reported adolescent externalizing behavior (Teacher Report Form (TRF) were assessed. No main effect of the GABRA2 SNP rs279826, which tags a large haplotype, on externalizing behavior was observed. However, there was a statistically reliable GABRA2 × peer delinquency interaction. The effect of peer delinquent involvement on externalizing scores and the rule breaking subscale is significantly stronger for those with the GG genotype compared to A-carriers, whereas there was no effect of genotype on externalizing in the absence of peer delinquent involvement. No interaction was observed for the aggression subscale. Our results suggest that the genetic effect of GABRA2 on externalizing behavior, more specifically on rule breaking is, at least in part, due to its effect on susceptibility to environmental exposure (i.e., peer delinquency).

  20. Atopy and new-onset asthma in young Danish farmers and CD14, TLR2, and TLR4 genetic polymorphisms: a nested case-control study

    DEFF Research Database (Denmark)

    Smit, L A M; Bongers, S I M; Ruven, H J T

    2007-01-01

    BACKGROUND: Evidence exists that exposure to high levels of microbial agents such as endotoxin in the farm environment decreases the risk of atopic sensitization. Genetic variation in innate immunity genes may modulate the response to microbial agents and thus influence susceptibility to asthma...... and atopy. OBJECTIVE: To study potential associations between single nucleotide polymorphisms (SNPs) in CD14, Toll-like receptor 2 (TLR2), and TLR4 genes, and atopy and new-onset asthma in young farmers. METHODS: A nested case-control study was conducted within a cohort of 1901 young Danish farmers. We....../-651 promoter polymorphisms are associated with atopy prevalence among young adults exposed to farm environments. Udgivelsesdato: 2007-Nov...

  1. Naturally occurring and radiation-induced tumors in SPF mice, and genetic influence in radiation leukemogenesis

    International Nuclear Information System (INIS)

    Kasuga, T.

    1979-01-01

    The data obtained so far in this study point to a strong genetic influence not only on the types and incidence of naturally occurring and radiation-induced tumors but also on radiation leukemogenesis. (Auth.)

  2. The death(s) of close friends and family moderate genetic influences on symptoms of major depressive disorder in adolescents.

    Science.gov (United States)

    Gheyara, S; Klump, K L; McGue, M; Iacono, W G; Burt, S A

    2011-04-01

    Prior work has suggested that genetic influences on major depressive disorder (MDD) may be activated by the experience of negative life events. However, it is unclear whether these results persist when controlling for the possibility of confounding active gene-environment correlations (rGE). We examined a sample of 1230 adopted and biological siblings between the ages of 10 and 20 years from the Sibling Interaction and Behavior Study. MDD was measured via a lifetime DSM-IV symptom count. Number of deaths experienced served as our environmental risk experience. Because this variable is largely independent of the individual's choices/behaviors, we were able to examine gene-environment interactions while circumventing possible rGE confounds. Biometric analyses revealed pronounced linear increases in the magnitude of genetic influences on symptoms of MDD with the number of deaths experienced, such that genetic influences were estimated to be near-zero for those who had experienced no deaths but were quite large in those who had experienced two or more deaths (i.e. accounting for roughly two-thirds of the phenotypic variance). By contrast, shared and non-shared environmental influences on symptoms of MDD were not meaningfully moderated by the number of deaths experienced. Such results constructively replicate prior findings of genetic moderation of depressive symptoms by negative life events, thereby suggesting that this effect is not a function of active rGE confounds. Our findings are thus consistent with the notion that exposure to specific negative life events may serve to activate genetic risk for depression during adolescence.

  3. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12.

    Directory of Open Access Journals (Sweden)

    Jill A McKay

    Full Text Available Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA and gene specific (IGF2, ZNT5, IGFBP3 DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B(12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B(12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032 and inversely with ZNT5 methylation (rho = -0.13, p = 0.017. Methylation of the IGFBP3 locus correlated inversely with infant vitamin B(12 concentration (rho = -0.16, p = 0.007, whilst global DNA methylation correlated inversely with maternal vitamin B(12 concentrations (rho = 0.18, p = 0.044. Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ(2 = 8.82, p = 0.003 and maternal MTHFR 677C>T genotype with IGF2 methylation (χ(2 = 2.77, p = 0.006. These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B(12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for

  4. Making (up) the grade? estimating the genetic and environmental influences of discrepancies between self-reported grades and official GPA scores.

    Science.gov (United States)

    Schwartz, Joseph A; Beaver, Kevin M

    2015-05-01

    Academic achievement has been found to have a pervasive and substantial impact on a wide range of developmental outcomes and has also been implicated in the critical transition from adolescence into early adulthood. Previous research has revealed that self-reported grades tend to diverge from official transcript grade point average (GPA) scores, with students being more likely to report inflated scores. Making use of a sample of monozygotic twin (N = 282 pairs), dizygotic twin (N = 441 pairs), and full sibling (N = 1,757 pairs) pairs from the National Longitudinal Study of Adolescent Health (Add Health; 65 % White; 50 % male; mean age = 16.14), the current study is the first to investigate the role that genetic and environmental factors play in misreporting grade information. A comparison between self-reported GPA (mean score of 2.86) and official transcript GPA scores (mean score of 2.44) revealed that self-reported scores were approximately one-half letter grade greater than official scores. Liability threshold models revealed that additive genetic influences explained between 40 and 63 % of the variance in reporting inflated grades and correctly reporting GPA, with the remaining variance explained by the nonshared environment. Conversely, 100 % of the variance in reporting deflated grade information was explained by nonshared environmental influences. In an effort to identify specific nonshared environmental influences on reporting accuracy, multivariate models that adequately control for genetic influences were estimated and revealed that siblings with lower transcript GPA scores were significantly less likely to correctly report their GPA and significantly more likely to report inflated GPA scores. Additional analyses revealed that verbal IQ and self-control were not significantly associated with self-reported GPA accuracy after controlling for genetic influences. These findings indicate that previous studies that implicate verbal IQ and self

  5. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    Science.gov (United States)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment.

    Science.gov (United States)

    Besmer, Michael D; Epting, Jannis; Page, Rebecca M; Sigrist, Jürg A; Huggenberger, Peter; Hammes, Frederik

    2016-12-07

    Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL -1 . The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems.

  7. Versatile microbial surface-display for environmental remediation and biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  8. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  9. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  10. Sensation seeking, peer deviance, and genetic influences on adolescent delinquency: Evidence for person-environment correlation and interaction.

    Science.gov (United States)

    Mann, Frank D; Patterson, Megan W; Grotzinger, Andrew D; Kretsch, Natalie; Tackett, Jennifer L; Tucker-Drob, Elliot M; Harden, K Paige

    2016-07-01

    Both sensation seeking and affiliation with deviant peer groups are risk factors for delinquency in adolescence. In this study, we use a sample of adolescent twins (n = 549), 13 to 20 years old (M age = 15.8 years), in order to test the interactive effects of peer deviance and sensation seeking on delinquency in a genetically informative design. Consistent with a socialization effect, affiliation with deviant peers was associated with higher delinquency even after controlling for selection effects using a co-twin-control comparison. At the same time, there was evidence for person-environment correlation; adolescents with genetic dispositions toward higher sensation seeking were more likely to report having deviant peer groups. Genetic influences on sensation seeking substantially overlapped with genetic influences on adolescent delinquency. Finally, the environmentally mediated effect of peer deviance on adolescent delinquency was moderated by individual differences in sensation seeking. Adolescents reporting high levels of sensation seeking were more susceptible to deviant peers, a Person × Environment interaction. These results are consistent with both selection and socialization processes in adolescent peer relationships, and they highlight the role of sensation seeking as an intermediary phenotype for genetic risk for delinquency. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    Science.gov (United States)

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  12. Genetic and environmental influences underlying the relationship between autistic traits and temperament and character dimensions in adulthood.

    Science.gov (United States)

    Picardi, Angelo; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brambilla, Paolo; Stazi, Maria Antonietta

    2015-04-01

    In recent years, several twin studies adopted a dimensional approach to Autism Spectrum Disorders (ASD) and estimated the contribution of genetic and environmental influences to variation in autistic traits. However, no study was performed on adults over 18 years of age and all but two studies were based on parent or teacher ratings. Also, the genetic and environmental contributions to the interplay between autistic traits and adult personality dimensions have not been investigated. A sample of 266 complete twin pairs (30% males, mean age 40 ± 12 years) drawn from the population-based Italian Twin Register was administered the Autism-Spectrum Quotient, Temperament and Character Inventory (TCI-125), and General Health Questionnaire (GHQ-12). Genetic structural equation modelling was performed with the Mx program. Estimates were adjusted for gender, age, and GHQ-12 score. Genetic factors accounted for 44% and 20%-49% of individual differences in autistic traits and TCI dimensions, respectively. Unshared environmental factors explained the remaining proportion of variance. Consistently with the notion of a personality profile in ASD characterised by obsessive temperament, autistic traits showed significant phenotypic correlations with several TCI dimensions (positive: HA; negative: NS, RD, SD, C). Genetic and unshared environmental correlations between AQ and these TCI dimensions were significant. The degree of genetic overlap was generally greater than the degree of environmental overlap. Despite some limitations, this study suggests that genetic factors contribute substantially to individual differences in autistic traits in adults, with unshared environmental influences also playing an important role. It also suggests that autistic traits and the majority of temperament and character dimensions share common genetic and environmental aetiological factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The influence of dispositional optimism on post-visit anxiety and risk perception accuracy among breast cancer genetic counselees

    NARCIS (Netherlands)

    Wiering, B. M.; Albada, A.; Bensing, J. M.; Ausems, M. G. E. M.; van Dulmen, A. M.

    2013-01-01

    Objective uch is unknown about the influence of dispositional optimism and affective communication on genetic counselling outcomes. This study investigated the influence of counselees' optimism on the counselees' risk perception accuracy and anxiety, while taking into account the affective

  14. Microbial production of nattokinase: current progress, challenge and prospect.

    Science.gov (United States)

    Cai, Dongbo; Zhu, Chengjun; Chen, Shouwen

    2017-05-01

    Nattokinase (EC 3.4.21.62) is a profibrinolytic serine protease with a potent fibrin-degrading activity, and it has been produced by many host strains. Compared to other fibrinolytic enzymes (urokinase, t-PA and streprokinase), nattokinase shows the advantages of having no side effects, low cost and long life-time, and it has the potential to be used as a drug for treating cardiovascular disease and served as a functional food additive. In this review, we focused on screening of producing strains, genetic engineering, fermentation process optimization for microbial nattokinase production, and the extraction and purification of nattokinase were also discussed in this particular chapter. The selection of optimal nattokinase producing strain was the crucial starting element for improvement of nattokinase production. Genetic engineering, protein engineering, fermentation optimization and process control have been proved to be the effective strategies for enhancement of nattokinase production. Also, extraction and purification of nattokinase are critical for the quality evaluation of nattokinase. Finally, the prospect of microbial nattokinase production was also discussed regarding the recent progress, challenge, and trends in this field.

  15. Genetic and Environmental Influences on the Mental Health of Children: A Twin Study.

    Science.gov (United States)

    Yin, Ping; Hou, Xiao; Qin, Qing; Deng, Wei; Hu, Hua; Luo, Qinghua; Du, Lian; Qiu, Haitang; Qiu, Tian; Fu, Yixiao; Meng, Huaqing; Li, Tao

    2016-08-01

    The current study explored the influences of genetic and environmental factors on the mental health of twins between ages 6 and 16. A total of 41 monozygotic (MZ) twins and 35 dizygotic twins were recruited. The psychological attributes and environmental information of children were evaluated. A significant correlation was found between twins in the diagnostic categories of any psychiatric disorder and attention deficit/hyperactivity disorder (ADHD)/hyperkinesis based on the Strengths and Difficulties Questionnaire scale in MZ twins. Furthermore, fathers' authoritarian parenting style was positively correlated with the probability of any psychiatric disorders and oppositional/conduct disorders, whereas mothers' authoritative parenting style was negatively correlated with the probability of any psychiatric disorders and ADHD/hyperkinesis. The probability of emotional disorders was negatively correlated with scores on the Stressful Life Events Scale. These results collectively suggest that genetic and environmental elements, such as parental rearing style and stressful life events, may influence children's mental health. [Journal of Psychosocial Nursing and Mental Health Services, 54(8), 29-34.]. Copyright 2016, SLACK Incorporated.

  16. The Modern Synthesis in the Light of Microbial Genomics.

    Science.gov (United States)

    Booth, Austin; Mariscal, Carlos; Doolittle, W Ford

    2016-09-08

    We review the theoretical implications of findings in genomics for evolutionary biology since the Modern Synthesis. We examine the ways in which microbial genomics has influenced our understanding of the last universal common ancestor, the tree of life, species, lineages, and evolutionary transitions. We conclude by advocating a piecemeal toolkit approach to evolutionary biology, in lieu of any grand unified theory updated to include microbial genomics.

  17. Microbial Metabolic Roles in Bedrock Degradation and the Genesis of Biomineral and Biopattern Biosignatures in Caves and Mines

    Science.gov (United States)

    Boston, P. J.

    2016-12-01

    In subsurface environments like natural or anthropogenic caves (aka mines), microorganisms facilitate considerable bedrock degradation under a variety of circumstances. Mobilization of materials from these processes frequently produces distinctive biominerals, identifiable biotextures, and unique biopatterns. Microbial activities can even determine the form of speleothems (secondary mineral cave decorations), thus providing highly conspicuous macroscopic biosignatures. It is critical to understand microbial-mineral interactions, recognizing that while the lithology controls important aspects of the environment, in turn, the geochemistry is greatly affected by the biology. Microbial communities can contribute to the actual formation of cavities (speleogenesis), and subsequent enlargement of caves and vugs and the mineral deposits that enrich many subterranean spaces. A major challenge is to quantify such influences. Genetic analysis is revealing a vast but highly partitioned biodiversity in the overall rock fracture habitat of Earth's crust especially in caves and mines where the three phases of matter (solid rock, fluids, and gases) typically interact producing high niche richness. Lessons learned from the microbial/geochemical systems that we have studied include: 1) significant similarities in metabolic functions between different geochemical systems, 2) ubiquity of metal oxidation for energy, 3) ubiquity of biofilms, some highly mineralized, 4) highly interdependent, multi-species communities that can only transform materials in consortia, 5) complex ecological succession including characteristic pioneer species, 6) often very slow growth rates in culture, 7) prevalence of very small cell sizes, ( 100 - 500 nm diam.), 8) mineral reprecipitation of mobilized materials, often dependent on the presence of live microbial communities to produce initial amorphous compounds followed by gradual crystallization, and 9) resultant in situ self-fossilization. Microbial

  18. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  19. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  20. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community.

    Directory of Open Access Journals (Sweden)

    Hongwei Xie

    Full Text Available Methyl bromide (MB and other alternatives were evaluated for suppression of Fusarium spp., Phytophthora spp., and Meloidogyne spp. and their influence on soil microbial communities. Both Fusarium spp. and Phytophthora spp. were significantly reduced by the MB (30.74 mg kg-1, methyl iodide (MI: 45.58 mg kg-1, metham sodium (MS: 53.92 mg kg-1 treatments. MS exhibited comparable effectiveness to MB in controlling Meloidogyne spp. and total nematodes, followed by MI at the tested rate. By contrast, sulfuryl fluoride (SF: 33.04 mg kg-1 and chloroform (CF: 23.68 mg kg-1 showed low efficacy in controlling Fusarium spp., Phytophthora spp., and Meloidogyne spp. MB, MI and MS significantly lowered the abundance of different microbial populations and microbial biomass in soil, whereas SF and CF had limited influence on them compared with the control. Diversity indices in Biolog studies decreased in response to fumigation, but no significant difference was found among treatments in PLFA studies. Principal component and cluster analyses of Biolog and PLFA data sets revealed that MB and MI treatments greatly influenced the soil microbial community functional and structural diversity compared with SF treatment. These results suggest that fumigants with high effectiveness in suppressing soil-borne disease could significantly influence soil microbial community.

  1. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  2. Results after laparoscopic partial splenectomy for children with hereditary spherocytosis: Are outcomes influenced by genetic mutation?

    Science.gov (United States)

    Pugi, Jakob; Carcao, Manuel; Drury, Luke J; Langer, Jacob C

    2018-05-01

    Laparoscopic partial splenectomy (LPS) theoretically maintains long-term splenic immune function for children with hereditary spherocytosis (HS). Our goal was to review our results after LPS and to determine if specific genetic mutations influence outcome. All children with HS undergoing LPS between 2005 and 2016 were reviewed. Thirty-one children underwent LPS (16 male) at a median age of 9 (range 2-18) years. All experienced an increase in hemoglobin and decrease in reticulocyte count early after LPS and at last follow-up. Twenty-two were sent for genetic analysis. Mutations in α-spectrin, β-spectrin, and Ankyrin were identified in 6, 5, and 11 patients, respectively. Gene mutation was not correlated with complications, perioperative transfusion, length of hospital stay, or median hemoglobin, platelet, or reticulocyte counts. Three children required completion splenectomy at 10.9, 6.9, and 3.2years post-LPS, each with a different gene mutation. LPS is effective in reversing anemia and reducing reticulocytosis. So far less than 10% have required completion splenectomy, and those children did benefit from delaying the risks of asplenia. In this preliminary analysis, genetic mutation did not influence outcome after LPS. A larger multicenter study is necessary to further investigate potential correlations with specific genetic mutations. Prognosis Study. IV. Copyright © 2018. Published by Elsevier Inc.

  3. Looking for Darwin's footprints in the microbial world

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, B. Jesse; David, Lawrence A.; Friedman, Jonathan; Alm, Eric J.

    2009-03-30

    As we observe the 200th anniversary of Charles Darwin's birthday, microbiologists interested in the application of Darwin's ideas to the microscopic world have a lot to celebrate: an emerging picture of the (mostly microbial) Tree of Life at ever-increasing resolution, an understanding of horizontal gene transfer as a driving force in the evolution of microbes, and thousands of complete genome sequences to help formulate and refine our theories. At the same time, quantitative models of the microevolutionary processes shaping microbial populations remain just out of reach, a point that is perhaps most dramatically illustrated by the lack of consensus on how (or even whether) to define bacterial species. We summarize progress and prospects in bacterial population genetics, with an emphasis on detecting the footprint of positive Darwinian selection in microbial genomes.

  4. Bone response to fluoride exposure is influenced by genetics.

    Directory of Open Access Journals (Sweden)

    Cláudia A N Kobayashi

    Full Text Available Genetic factors influence the effects of fluoride (F on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS, followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05. Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue.

  5. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.

    Science.gov (United States)

    Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R

    2014-06-15

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective. Published by Elsevier Ltd.

  6. Incorporating the soil environment and microbial community into plant competition theory.

    Science.gov (United States)

    Ke, Po-Ju; Miki, Takeshi

    2015-01-01

    Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach.

  7. Incorporating the soil environment and microbial community into plant competition theory

    Science.gov (United States)

    Ke, Po-Ju; Miki, Takeshi

    2015-01-01

    Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach. PMID:26500621

  8. Incorporating the soil environment and microbial community into plant competition theory

    Directory of Open Access Journals (Sweden)

    Po-Ju eKe

    2015-10-01

    Full Text Available Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF. PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach.

  9. Periodic sediment shift in migrating ripples influences benthic microbial activity

    Science.gov (United States)

    Zlatanović, Sanja; Fabian, Jenny; Mendoza-Lera, Clara; Woodward, K. Benjamin; Premke, Katrin; Mutz, Michael

    2017-06-01

    Migrating bedforms have high levels of particulate organic matter and high rates of pore water exchange, causing them to be proposed as hot spots of carbon turnover in rivers. Yet, the shifting of sediments and associated mechanical disturbance within migrating bedforms, such as ripples, may stress and abrade microbial communities, reducing their activity. In a microcosm experiment, we replicated the mechanical disturbances caused by the periodic sediment shift within ripples under oligotrophic conditions. We assessed the effects on fungal and bacterial biomass ratio (F:B), microbial community respiration (CR), and bacterial production (BCP) and compared with stable undisturbed sediments. Interactions between periodic mechanical disturbance and sediment-associated particulate organic matter (POM) were tested by enriching sediments collected from migrating ripples with different qualities of POM (fish feces, leaf litter fragments and no addition treatments). F:B and BCP were affected by an interaction between mechanical disturbance and POM quality. Fish feces enriched sediments showed increased F:B and BCP compared to sediments with lower POM quality and responded with a decrease of F:B and BCP to sediment disturbance. In the other POM treatments F:B and BCP were not affected by disturbance. Microbial respiration was however reduced by mechanical disturbance to similar low activity levels regardless of POM qualities added, whereas fish feces enriched sediment showed short temporary boost of CR. With the worldwide proliferation of migrating sand ripples due to massive catchment erosion, suppressed mineralization of POM will increasingly affect stream metabolism, downstream transport of POM and carbon cycling from reach to catchment scale.

  10. Biopsychosocial influence on exercise-induced injury: genetic and psychological combinations are predictive of shoulder pain phenotypes

    OpenAIRE

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2013-01-01

    Chronic pain is influenced by biological, psychological, social, and cultural factors. The current study investigated potential roles for combinations of genetic and psychological factors in the development and/or maintenance of chronic musculoskeletal pain. An exercise-induced shoulder injury model was used and a priori selected genetic (ADRB2, COMT, OPRM1, AVPR1A, GCH1, and KCNS1) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors...

  11. Evaluation of microbial diversity of different soil layers at a contaminated diesel site

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available with high TPH removal. Analysis of the microbial diversity in the different soil layers using functional diversity (community-level physiological profile, via Biolog) and genetic diversity using polymerase chain reaction-denaturing gradient gel...

  12. Engineering microbial electrocatalysis for chemical and fuel production.

    Science.gov (United States)

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Genetic and Environmental Influences on Individual Differences in Frequency of Play with Pets among Middle-Aged Men: A Behavioral Genetic Analysis.

    Science.gov (United States)

    Jacobson, Kristen C; Hoffman, Christy L; Vasilopoulos, Terrie; Kremen, William S; Panizzon, Matthew S; Grant, Michael D; Lyons, Michael J; Xian, Hong; Franz, Carol E

    2012-12-01

    There is growing evidence that pet ownership and human-animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51-60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63-71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for influenced characteristics.

  14. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    Science.gov (United States)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  15. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  16. Genetic Influences on Conduct Disorder

    Science.gov (United States)

    Salvatore, Jessica E.; Dick, Danielle M.

    2016-01-01

    Conduct disorder (CD) is a moderately heritable psychiatric disorder of childhood and adolescence characterized by aggression toward people and animals, destruction of property, deceitfulness or theft, and serious violation of rules. Genome-wide scans using linkage and association methods have identified a number of suggestive genomic regions that are pending replication. A small number of candidate genes (e.g., GABRA2, MAOA, SLC6A4, AVPR1A) are associated with CD related phenotypes across independent studies; however, failures to replicate also exist. Studies of gene-environment interplay show that CD genetic predispositions also contribute to selection into higher-risk environments, and that environmental factors can alter the importance of CD genetic factors and differentially methylate CD candidate genes. The field’s understanding of CD etiology will benefit from larger, adequately powered studies in gene identification efforts; the incorporation of polygenic approaches in gene-environment interplay studies; attention to the mechanisms of risk from genes to brain to behavior; and the use of genetically informative data to test quasi-causal hypotheses about purported risk factors. PMID:27350097

  17. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    Science.gov (United States)

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  18. Microbial terroir for wine grapes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, J. A.; van der Lelie, D.; Zarraonaindia, I.

    2013-12-05

    The viticulture industry has been selectively growing vine cultivars with different traits (grape size, shape, color, flavor, yield of fruit, and so forth) for millennia, and small variations in soil composition, water management, climate, and the aspect of vineyards have long been associated with shifts in these traits. As such, many different clonal varieties of vines exist, even within given grape varieties, such as merlot, pinot noir, and chardonnay. The commensal microbial flora that coexists with the plant may be one of the key factors that influence these traits. To date, the role of microbes has been largely ignored, outside of microbial pathogens, mainly because the technologies did not exist to allow us to look in any real depth or breadth at the community structure of the multitudes of bacterial and fungal species associated with each plant. In PNAS, Bokulich et al. (1) used next-generation sequencing of 16S rRNA and internal transcribed spacer ribosomal sequence to determine the relative abundances of bacteria and fungi, respectively, from grape must (freshly pressed grape juice, containing the skins and seeds) from plants in eight vineyards representing four of the major wine growing regions in California. The authors show that the microbiomes (bacterial and fungal taxonomic structure) associated with this early fermentation stage show defined biogeography, illustrating that different wine-growing regions maintain different microbial communities, with some influences from the grape variety and the year of production.

  19. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    Science.gov (United States)

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-03-10

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.

  20. The CogBIAS longitudinal study protocol: cognitive and genetic factors influencing psychological functioning in adolescence.

    Science.gov (United States)

    Booth, Charlotte; Songco, Annabel; Parsons, Sam; Heathcote, Lauren; Vincent, John; Keers, Robert; Fox, Elaine

    2017-12-29

    Optimal psychological development is dependent upon a complex interplay between individual and situational factors. Investigating the development of these factors in adolescence will help to improve understanding of emotional vulnerability and resilience. The CogBIAS longitudinal study (CogBIAS-L-S) aims to combine cognitive and genetic approaches to investigate risk and protective factors associated with the development of mood and impulsivity-related outcomes in an adolescent sample. CogBIAS-L-S is a three-wave longitudinal study of typically developing adolescents conducted over 4 years, with data collection at age 12, 14 and 16. At each wave participants will undergo multiple assessments including a range of selective cognitive processing tasks (e.g. attention bias, interpretation bias, memory bias) and psychological self-report measures (e.g. anxiety, depression, resilience). Saliva samples will also be collected at the baseline assessment for genetic analyses. Multilevel statistical analyses will be performed to investigate the developmental trajectory of cognitive biases on psychological functioning, as well as the influence of genetic moderation on these relationships. CogBIAS-L-S represents the first longitudinal study to assess multiple cognitive biases across adolescent development and the largest study of its kind to collect genetic data. It therefore provides a unique opportunity to understand how genes and the environment influence the development and maintenance of cognitive biases and provide insight into risk and protective factors that may be key targets for intervention.

  1. Twins as a tool for evaluating the influence of genetic susceptibility in thyroid autoimmunity

    DEFF Research Database (Denmark)

    Brix, T H; Hegedüs, L

    2011-01-01

    irrefutable evidence of a genetic component in the aetiology of both Graves' disease and Hashimoto's thyroiditis, as well as for harbouring thyroid autoantibodies. Biometric modelling shows that approximately 75% of the total phenotypic variance in autoimmune thyroid disease is due to genetic effects. Despite......By means of large twin cohorts, it has been possible to provide relatively valid and unbiased data regarding the influence of genetic and to some extent epigenetic factors in the aetiology of thyroid autoimmunity. The comparison of concordance rates between monozygotic and dizygotic twins provides...... the well known gender difference in the prevalence of autoimmune thyroid disease, the analyzes suggest that it is the same set of genes that operate in males and females. The lack of complete phenotypic concordance in monozygotic twin pairs indicates that also environmental and/or epigenetic factors...

  2. Reduced genetic influence on childhood obesity in small for gestational age children

    Directory of Open Access Journals (Sweden)

    Han Dug Yeo

    2013-01-01

    Full Text Available Abstract Background Children born small-for-gestational-age (SGA are at increased risk of developing obesity and metabolic diseases later in life, a risk which is magnified if followed by accelerated postnatal growth. We investigated whether common gene variants associated with adult obesity were associated with increased postnatal growth, as measured by BMI z-score, in children born SGA and appropriate for gestational age (AGA in the Auckland Birthweight Collaborative. Methods A total of 37 candidate SNPs were genotyped on 547 European children (228 SGA and 319 AGA. Repeated measures of BMI (z-score were used for assessing obesity status, and results were corrected for multiple testing using the false discovery rate. Results SGA children had a lower BMI z-score than non-SGA children at assessment age 3.5, 7 and 11 years. We confirmed 27 variants within 14 obesity risk genes to be individually associated with increasing early childhood BMI, predominantly in those born AGA. Conclusions Genetic risk variants are less important in influencing early childhood BMI in those born SGA than in those born AGA, suggesting that non-genetic or environmental factors may be more important in influencing childhood BMI in those born SGA.

  3. Microbial influences on the mobility and transformation of radioactive iodine in the environment

    International Nuclear Information System (INIS)

    Amachi, Seigo; Fujii, Takaaki; Shinoyama, Hirofumi; Muramatsu, Yasuyuki

    2005-01-01

    Long-lived radioactive iodine ( 129 I, half-life: 1.57x10 7 y) has been released into the environment from nuclear fuel reprocessing plants. 129 I may also be released from ground storage of nuclear waste. Given its long half-life, a better understanding of the behavior of iodine in the environment is necessary to ensure the safety of humans and the health of the environment. In this report, we summarize our recent results and new experimental data about microbial influences on the mobility and transformation of iodine. Microbial volatilization of organic iodine was observed in soil slurries and seawater samples, and various species of aerobic bacteria were considered to play a significant role through methylation of iodide (I - ) to form methyl iodide (CH 3 I). The volatilization of iodine was also found in iodide-rich natural gas brine water, where iodide concentration is approximately 2,000 times higher than that in seawater. In this case, however, a significant amount of molecular iodine (I 2 ) was produced together with organic iodine compounds. Iodide-oxidizing bacteria, which oxidize iodide to I 2 , were isolated from seawater and natural gas brine water. Phylogenetically, they were divided into two groups within the alpha-subclass of the Proteobacteria (Roseovarius sp. and unidentified bacteria), and they produced not only I 2 but also diiodomethane (CH 2 I 2 ) and chloroiodomethane (CH 2 CII). Iodide-accumulating bacteria, which accumulate iodide to concentrations 5,500-fold over that of the medium, were also isolated from marine sediment. They were closely related to Arenibacter troitsensis, and iodide uptake was medicated by an active transport system. Our results suggest that the fate of iodine can be affected by microorganisms, particularly by bacteria, through processes such as volatilization, oxidation, and accumulation. (author)

  4. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Gosadi

    2016-01-01

    Full Text Available Metabolic syndrome (MS is a combination of factors that increases the risk of cardiovascular atherosclerotic diseases including diabetes, obesity, dyslipidemia, and high blood pressure. Cardiovascular diseases are one of the leading causes of death in the adult Saudi population where the increase in cardiovascular-related mortality is augmented by the rise in the prevalence of MS. Metabolic syndrome is a multi-factorial disorder influenced by interactions between genetic and environmental components. This review aims to provide a comprehensive assessment of studied environmental and genetic factors explaining the prevalence of MS in the Kingdom of Saudi Arabia. Additionally, this review aims to illustrate factors related to the population genetics of Saudi Arabia, which might explain a proportion of the prevalence of MS.

  5. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia

    Science.gov (United States)

    Gosadi, Ibrahim M.

    2016-01-01

    Metabolic syndrome (MS) is a combination of factors that increases the risk of cardiovascular atherosclerotic diseases including diabetes, obesity, dyslipidemia, and high blood pressure. Cardiovascular diseases are one of the leading causes of death in the adult Saudi population where the increase in cardiovascular-related mortality is augmented by the rise in the prevalence of MS. Metabolic syndrome is a multi-factorial disorder influenced by interactions between genetic and environmental components. This review aims to provide a comprehensive assessment of studied environmental and genetic factors explaining the prevalence of MS in the Kingdom of Saudi Arabia. Additionally, this review aims to illustrate factors related to the population genetics of Saudi Arabia, which might explain a proportion of the prevalence of MS. PMID:26739969

  6. Rapid prototyping of microbial cell factories via genome-scale engineering.

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.

    Science.gov (United States)

    Broman, Elias; Sjöstedt, Johanna; Pinhassi, Jarone; Dopson, Mark

    2017-08-09

    A key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as 'dead zones'. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface. Compared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation. These novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses

  8. Use of N stable isotope and microbial analyses to define wastewater influence in Mobile Bay, AL.

    Science.gov (United States)

    Daskin, Joshua H; Calci, Kevin R; Burkhardt, William; Carmichael, Ruth H

    2008-05-01

    We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring delta 15N per thousand and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific delta 15N per thousand. delta 15N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with delta 15N per thousand in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific delta 15N per thousand and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.

  9. Use of N stable isotope and microbial analyses to define wastewater influence in Mobile Bay, AL

    Energy Technology Data Exchange (ETDEWEB)

    Daskin, Joshua H. [MB 0193 Brandeis University, Waltham, MA 02454 (United States); Calci, Kevin R.; Burkhardt, William [1 Iberville Road, US Food and Drug Administration Gulf Coast Seafood Laboratory, Dauphin Island, AL 36528 (United States); Carmichael, Ruth H. [101 Bienville Boulevard, Dauphin Island Sea Lab, Dauphin Island, AL 36528 (United States); University of South Alabama, Mobile, AL, 36688 (United States)], E-mail: rcarmichael@disl.org

    2008-05-15

    We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring {delta}{sup 15}N per mille and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific {delta}{sup 15}N per mille . {delta}{sup 15}N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with {delta}{sup 15}N per mille in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific {delta}{sup 15}N per mille and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.

  10. Use of N stable isotope and microbial analyses to define wastewater influence in Mobile Bay, AL

    International Nuclear Information System (INIS)

    Daskin, Joshua H.; Calci, Kevin R.; Burkhardt, William; Carmichael, Ruth H.

    2008-01-01

    We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring δ 15 N per mille and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific δ 15 N per mille . δ 15 N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with δ 15 N per mille in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific δ 15 N per mille and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms

  11. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua Larvae

    Directory of Open Access Journals (Sweden)

    Ragnhild I. Vestrum

    2018-05-01

    Full Text Available We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua larvae, and that recirculating aquaculture systems (RAS are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS. The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria in FTS larvae (34 ± 9% of total reads. Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the

  12. Does iron inhibit cryptoendolithic microbial communities?

    Science.gov (United States)

    Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community.

  13. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology.

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Struelens; A. de Visser (Arjan); H.A. Verbrugh (Henri); M. Tibayrench

    2001-01-01

    textabstractCurrently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and

  14. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

    Science.gov (United States)

    Mateos, I; Ranilla, M J; Saro, C; Carro, M D

    2017-11-01

    Rusitec fermenters are in vitro systems widely used to study ruminal fermentation, but little is known about the microbial populations establishing in them. This study was designed to assess the time evolution of microbial populations in fermenters fed medium- (MC; 50% alfalfa hay : concentrate) and high-concentrate diets (HC; 15 : 85 barley straw : concentrate). Samples from solid (SOL) and liquid (LIQ) content of fermenters were taken immediately before feeding on days 3, 8 and 14 of incubation for quantitative polymerase chain reaction and automated ribosomal intergenic spacer analysis analyses. In SOL, total bacterial DNA concentration and relative abundance of Ruminococcus flavefaciens remained unchanged over the incubation period, but protozoal DNA concentration and abundance of Fibrobacter succinogenes, Ruminococcus albus and fungi decreased and abundance of methanogenic archaea increased. In LIQ, total bacterial DNA concentration increased with time, whereas concentration of protozoal DNA and abundance of methanogens and fungi decreased. Diet×time interactions were observed for bacterial and protozoal DNA and relative abundance of F. succinogenes and R. albus in SOL, as well as for protozoal DNA in LIQ. Bacterial diversity in SOL increased with time, but no changes were observed in LIQ. The incubated diet influenced all microbial populations, with the exception of total bacteria and fungi abundance in LIQ. Bacterial diversity was higher in MC-fed than in HC-fed fermenters in SOL, but no differences were detected in LIQ. Values of pH, daily production of volatile fatty acids and CH4 and isobutyrate proportions remained stable over the incubation period, but other fermentation parameters varied with time. The relationships among microbial populations and fermentation parameters were in well agreement with those previously reported in in vivo studies. Using 15N as a microbial marker or quantifying total microbial DNA for estimating microbial protein synthesis

  15. Theory of microbial genome evolution

    Science.gov (United States)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  16. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?

    Science.gov (United States)

    Alexander, Alana; Steel, Debbie; Hoekzema, Kendra; Mesnick, Sarah L; Engelhaupt, Daniel; Kerr, Iain; Payne, Roger; Baker, C Scott

    2016-06-01

    The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long-lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394-bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event worldwide population expansion followed by rapid assortment due to female social organization. © 2016 John Wiley & Sons Ltd.

  17. The age-dependency of genetic and environmental influences on serum cytokine levels : A twin study

    NARCIS (Netherlands)

    Sas, Arthur A.; Jamshidi, Yalda; Zheng, Dongling; Wu, Ting; Korf, Jakob; Alizadeh, Behrooz Z.; Snieder, Harold; Spector, Timothy D.

    2012-01-01

    Previous epidemiologic studies have evaluated the use of immunological markers as possible tools for measuring ageing and predicting age-related pathology. The importance of both genetic and environmental influences in regulation of these markers has been emphasized. In order to further evaluate

  18. Evaluation of soil microbial communities as influenced by crude oil ...

    African Journals Online (AJOL)

    Impact of petroleum pollution in a vulnerable Niger Delta ecosystem was investigated to assess interactions in a first-generation phytoremediation site of a crude oil freshly-spilled agricultural soil. Community-level approach for assessing patterns of sole carbon-source utilization by mixed microbial samples was employed to ...

  19. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    Science.gov (United States)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  20. Genetic and Environmental Influences on Motor Function: A Magnetoencephalographic Study of Twins

    OpenAIRE

    Araki, Toshihiko; Hirata, Masayuki; Sugata, Hisato; Yanagisawa, Takufumi; Onishi, Mai; Watanabe, Yoshiyuki; Omura, Kayoko; Honda, Chika; Hayakawa, Kazuo; Yorifuji, Shiro

    2014-01-01

    To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities and differences of movement-related cortical fields (MRCFs) in middle-aged and elderly monozygotic (MZ) twins. MRCFs were measured using a 160-channel magnetoencephalogram system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1) between 16 MZ twin...

  1. The effect of raw milk microbial flora on the sensory characteristics of salers-type cheeses

    OpenAIRE

    Callon, Cecile; Berdagué, Jean-Louis; Montel, Marie-Christine

    2005-01-01

    The sensory characteristics of Salers Protected Denomination of Origin raw-milk cheeses are linked to the biochemical composition of the raw material (milk) and to the resultant microbial community. To evaluate the influence of the microbial community on sensory characteristics, Salers-type cheeses were manufactured with the same pasteurized milk, reinoculated with 3 different microbial communities from 3 different filtrates from microfiltered milks. Each cheese was subjected to microbial cou...

  2. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  3. Microbial degradation of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented

  4. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  5. Influence of genetic discrimination perceptions and knowledge on cancer genetics referral practice among clinicians.

    Science.gov (United States)

    Lowstuter, Katrina J; Sand, Sharon; Blazer, Kathleen R; MacDonald, Deborah J; Banks, Kimberly C; Lee, Carol A; Schwerin, Barbara U; Juarez, Margaret; Uman, Gwen C; Weitzel, Jeffrey N

    2008-09-01

    To describe nongenetics clinicians' perceptions and knowledge of cancer genetics and laws prohibiting genetic discrimination, attitudes toward the use of cancer genetic testing, and referral practices. Invitations to participate were sent to a random stratified sample of California Medical Association members and to all members of California Association of Nurse Practitioners and California Latino Medical Association. Responders in active practice were eligible and completed a 47-item survey. There were 1181 qualified participants (62% physicians). Although 96% viewed genetic testing as beneficial for their patients, 75% believed fear of genetic discrimination would cause patients to decline testing. More than 60% were not aware of federal or California laws prohibiting health insurance discrimination--concern about genetic discrimination was selected as a reason for nonreferral by 11%. A positive attitude toward genetic testing was the strongest predictor of referral (odds ratio: 3.55 [95% confidence interval: 2.24-5.63], P genetic discrimination, the less likely a participant was to refer (odds ratio: 0.72 [95% confidence interval: 0.518-0.991], P genetic discrimination law was associated with comfort recommending (odds ratio: 1.18 [95% confidence interval: 1.11-1.25], P genetic discrimination and knowledge deficits may be barriers to cancer genetics referrals. Clinician education may help promote access to cancer screening and prevention.

  6. Complex Host Genetics Influence the Microbiome in Inflammatory Bowel Disease

    Science.gov (United States)

    2016-09-09

    specific bacterial taxa. Methods Ethics and consent This study was approved by the Partners Human Re- search Committee, 116 Huntington Avenue, Boston, MA...microbial ecology . Proc Natl Acad Sci U S A 2005, 102:11070–11075. 17. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V...JM: ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012, 487:477–481. 18. Cortes A, Brown MA: Promise and

  7. Genetic and environmental influences on externalizing behavior and alcohol problems in adolescence: A female twin study

    Science.gov (United States)

    Knopik, Valerie S.; Heath, Andrew C.; Bucholz, Kathleen K.; Madden, Pamela A.F.; Waldron, Mary

    2009-01-01

    Genetic and environmental contributions to the observed correlations among DSM-IV ADHD problems [inattentive (INATT) and hyperactive/impulsive (HYP/IMP) behaviors], conduct problems (CDP) and alcohol problems (AlcProb) were examined by fitting multivariate structural equation models to data from the Missouri Adolescent Female Twin Study [N=2892 twins (831 monozygotic pairs, 615 dizygotic pairs)]. Based on results of preliminary regression models, we modified the structural model to jointly estimate (i) the regression of each phenotype on significant familial/prenatal predictors, and (ii) genetic and environmental contributions to the residual variance and covariance. Results suggested that (i) parental risk factors, such as parental alcohol dependence and regular smoking, increase risk for externalizing behavior; (ii) prenatal exposures predicted increased symptomatology for HYP/IMP (smoking during pregnancy), INATT and CDP (prenatal alcohol exposure); (iii) after adjusting for measured familial/prenatal risk factors, genetic influences were significant for HYP/IMP, INATT, and CDP; however, similar to earlier reports, genetic effects on alcohol dependence symptoms were negligible; and (iv) in adolescence, correlated liabilities for conduct and alcohol problems are found in environmental factors common to both phenotypes, while covariation among impulsivity, inattention, and conduct problems is primarily due to genetic influences common to these three behaviors. Thus, while a variety of adolescent problem behaviors are significantly correlated, the structure of that association may differ as a function of phenotype (e.g., comorbid HYP/IMP and CDP vs. comorbid CDP and AlcProb), a finding that could inform different approaches to treatment and prevention. PMID:19341765

  8. Anaplasma phagocytophilum Dihydrolipoamide Dehydrogenase 1 Affects Host-Derived Immunopathology during Microbial Colonization

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Severo, M. S.; Sakhon, O. S.; Choy, A.; Herron, M. J.; Felsheim, R. F.; Wiryawan, H.; Liao, J.; Johns, J. L.; Munderloh, U. G.; Sutterwala, F. S.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2012-01-01

    Roč. 80, č. 9 (2012), s. 3194-3205 ISSN 0019-9567 Institutional support: RVO:60077344 Keywords : ricketsia * microbial colonization * immunopathology * inflammation * signaling pathways Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.074, year: 2012 http://iai. asm .org/content/80/9/3194

  9. Beyond the genetic basis of sensation seeking: The influence of birth order, family size and parenting styles

    OpenAIRE

    Feij, Jan A,; Taris, Toon W.

    2010-01-01

    Genetic analyses of sensation seeking have shown fairly high heritabilities for measures of this trait. However, 40 to 60% of the variance remains unexplained by genetic factors. This longitudinal study examines the influence of characteristics of the family environment -- birth order, family size, socio-economic status and parenting styles -- on two dimensions of sensation seeking: disinhibition and boredom susceptibility. Previous research has shown that these dimensions load on the same fa...

  10. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    Science.gov (United States)

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  11. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    Science.gov (United States)

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  12. Changes in microbial and nutrient composition associated with rumen content compost incubation.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Adetutu, Eric M; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J

    2011-02-01

    Physico-chemical and microbiological investigations were carried out on rumen content material composted for nine months, fresh vermicasts (obtained after passing the same compost through the guts of a mixture of three species of earthworms: Eisenia fetida, Lumbricus rubellus and Perionyx excavates) and microbially enhanced extracts derived from rumen compost, vermicast and vermicast leachate incubated for up to 48 h. Compared to composted rumen contents, vermicast was only improved in terms of microbial biomass C, while vermicast leached extract was significantly higher in NH(4)(+)-N,PO(4)(-)-P, humic acid, bacterial counts and total microbial activity compared to rumen compost extract. Although no difference between treatments was observed in genetic diversity as indicated by DGGE analysis, community level functional diversity of vermicast leached extract (Biolog™) was higher than that of composted rumen contents, vermicast and rumen compost extract indicating an enhancement of microbial activity rather than diversity due to liquid incubation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The bipolar puzzle, adding new pieces. Factors associated with bipolar disorder, Genetic and environmental influences

    NARCIS (Netherlands)

    van der Schot, A.C.

    2009-01-01

    The focus of this thesis is twofold. The first part will discuss the structural brain abnormalities and schoolperformance associated with bipolar disorder and the influence of genetic and/or environmental factors to this association. It is part of a large twin study investigating several potential

  15. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    Science.gov (United States)

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  16. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Refining and defining riverscape genetics: How rivers influence population genetic structure

    Science.gov (United States)

    Chanté D. Davis; Clinton W. Epps; Rebecca L. Flitcroft; Michael A. Banks

    2018-01-01

    Traditional analysis in population genetics evaluates differences among groups of individuals and, in some cases, considers the effects of distance or potential barriers to gene flow. Genetic variation of organisms in complex landscapes, seascapes, or riverine systems, however, may be shaped by many forces. Recent research has linked habitat heterogeneity and landscape...

  18. Genetic influence of radiation measured by the effect on the mutation rate of human minisatellite genes

    International Nuclear Information System (INIS)

    Kodaira, Mieko

    2002-01-01

    Human minisatellite genes are composed from 0.1-30 kb with a high frequency of polymorphism. The genes exist in mammalian genomes and mice's ones are well studied after irradiation of their gonad cells by X-ray and γ-ray. Following five reports concerning the significant and/or insignificant increases of the mutation rate of the genes post A-bomb exposure, Chernobyl accident and nuclear weapons test in Semipalatinsk are reviewed and discussed on the subject number, exposed dose, problems of the control group, regions examined of loci and exposure conditions. Genetic influences of radiation examined by the author's facility are not recognized in the mutation rate (3.21% vs 4.94% in the control) of minisatellite genes in children of A-bomb survivors and their parents. The mutation rates are 4.27 vs 2.52% (positive influence) and 4.2-6.01% vs 3.5-6.34% in Chernobyl, and 4.3 (parents) and 3.8% (F 1 ) vs 2.5% (positive). Mutation of human minisatellite genes can be an important measure of genetic influences at the medical level. (K.H.)

  19. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories. An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions

    International Nuclear Information System (INIS)

    Swanson, J.S.; Reed, D.T.; Cherkouk, A.; Arnold, T.; Meleshyn, A.; Patterson, Russ

    2018-01-01

    For the past several decades, the Nuclear Energy Agency Salt Club has been supporting and overseeing the characterisation of rock salt as a potential host rock for deep geological repositories. This extensive evaluation of deep geological settings is aimed at determining - through a multidisciplinary approach - whether specific sites are suitable for radioactive waste disposal. Studying the microbiology of granite, basalt, tuff, and clay formations in both Europe and the United States has been an important part of this investigation, and much has been learnt about the potential influence of microorganisms on repository performance, as well as about deep subsurface microbiology in general. Some uncertainty remains, however, around the effects of microorganisms on salt-based repository performance. Using available information on the microbial ecology of hyper-saline environments, the bioenergetics of survival under high ionic strength conditions and studies related to repository microbiology, this report summarises the potential role of microorganisms in salt-based radioactive waste repositories

  20. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  1. The mother-offspring dyad: microbial transmission, immune interactions and allergy development.

    Science.gov (United States)

    Jenmalm, M C

    2017-12-01

    The increasing prevalence of allergy in affluent countries may be caused by reduced intensity and diversity of microbial stimulation, resulting in abnormal postnatal immune maturation. Most studies investigating the underlying immunomodulatory mechanisms have focused on postnatal microbial exposure, for example demonstrating that the gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. However, it is also becoming increasingly evident that the maternal microbial environment during pregnancy is important in childhood immune programming, and the first microbial encounters may occur already in utero. During pregnancy, there is a close immunological interaction between the mother and her offspring, which provides important opportunities for the maternal microbial environment to influence the immune development of the child. In support of this theory, combined pre- and postnatal supplementations seem to be crucial for the preventive effect of probiotics on infant eczema. Here, the influence of microbial and immune interactions within the mother-offspring dyad on childhood allergy development will be discussed. In addition, how perinatal transmission of microbes and immunomodulatory factors from mother to offspring may shape appropriate immune maturation during infancy and beyond, potentially via epigenetic mechanisms, will be examined. Deeper understanding of these interactions between the maternal and offspring microbiome and immunity is needed to identify efficacious preventive measures to combat the allergy epidemic. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  2. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  3. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  4. Shared genetic and environmental influences on early temperament and preschool psychiatric disorders in Hispanic twins.

    Science.gov (United States)

    Silberg, Judy L; Gillespie, Nathan; Moore, Ashlee A; Eaves, Lindon J; Bates, John; Aggen, Steven; Pfister, Elizabeth; Canino, Glorisa

    2015-04-01

    Despite an increasing recognition that psychiatric disorders can be diagnosed as early as preschool, little is known how early genetic and environmental risk factors contribute to the development of psychiatric disorders during this very early period of development. We assessed infant temperament at age 1, and attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and separation anxiety disorder (SAD) at ages 3 through 5 years in a sample of Hispanic twins. Genetic, shared, and non-shared environmental effects were estimated for each temperamental construct and psychiatric disorder using the statistical program MX. Multivariate genetic models were fitted to determine whether the same or different sets of genes and environments account for the co-occurrence between early temperament and preschool psychiatric disorders. Additive genetic factors accounted for 61% of the variance in ADHD, 21% in ODD, and 28% in SAD. Shared environmental factors accounted for 34% of the variance in ODD and 15% of SAD. The genetic influence on difficult temperament was significantly associated with preschool ADHD, SAD, and ODD. The association between ODD and SAD was due to both genetic and family environmental factors. The temperamental trait of resistance to control was entirely accounted for by the shared family environment. There are different genetic and family environmental pathways between infant temperament and psychiatric diagnoses in this sample of Puerto Rican preschool age children.

  5. Genetic influences on schizophrenia and subcortical brain volumes

    DEFF Research Database (Denmark)

    Franke, Barbara; Stein, Jason L; Ripke, Stephan

    2016-01-01

    and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between...... genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk...

  6. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes

    Directory of Open Access Journals (Sweden)

    Yengkopiong JP

    2013-02-01

    Full Text Available Jada Pasquale Yengkopiong, Joseph Daniel Wani LakoJohn Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South SudanBackground: Nephronophthisis (NPHP, which affects multiple organs, is a hereditary cystic kidney disease (CKD, characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac-/- rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats.Methods: Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed.Results: It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, Χ2 = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, Χ2 = 0.18, P > 0.05 and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to

  7. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  8. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  9. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Influence of PCR cycle number on microbial diversity analysis through next generation sequencing].

    Science.gov (United States)

    An, Yunhe; Gao, Lijuan; Li, Junbo; Tian, Yanjie; Wang, Jinlong; Zheng, Xuejuan; Wu, Huijuan

    2016-08-25

    Using of high throughput sequencing technology to study the microbial diversity in complex samples has become one of the hottest issues in the field of microbial diversity research. In this study, the soil and sheep rumen chyme samples were used to extract DNA, respectively. Then the 25 ng total DNA was used to amplify the 16S rRNA V3 region with 20, 25, 30 PCR cycles, and the final sequencing library was constructed by mixing equal amounts of purified PCR products. Finally, the operational taxonomic unit (OUT) amount, rarefaction curve, microbial number and species were compared through data analysis. It was found that at the same amount of DNA template, the proportion of the community composition was not the best with more numbers of PCR cycle, although the species number was much more. In all, when the PCR cycle number is 25, the number of species and proportion of the community composition were the most optimal both in soil or chyme samples.

  11. Decline in Performance of Biochemical Reactors for Sulphate Removal from Mine-Influenced Water is Accompanied by Changes in Organic Matter Characteristics and Microbial Population Composition

    Directory of Open Access Journals (Sweden)

    Parissa Mirjafari

    2016-03-01

    Full Text Available Successful long-term bioremediation of mining-influenced water using complex organic matter and naturally-occurring microorganisms in sub-surface flow constructed wetlands requires a balance between easily and more slowly degrading material. This can be achieved by combining different types of organic materials. To provide guidance on what mixture combinations to use, information is needed on how the ratio of labile to recalcitrant components affects the degradation rate and the types of microbial populations supported. To investigate this, different ratios of wood and hay were used in up-flow column bioreactors treating selenium- and sulphate-containing synthetic mine-influenced water. The degradation rates of crude fibre components appeared to be similar regardless of the relative amounts of wood and hay. However, the nature of the degradation products might have differed in that those produced in the hay-rich bioreactors were more biodegradable and supported high sulphate-reduction rates. Microorganisms in the sulphate-reducing and cellulose-degrading inocula persisted in the bioreactors indicating that bio-augmentation was effective. There was a shift in microbial community composition over time suggesting that different microbial groups were involved in decomposition of more recalcitrant material. When dissolved organic carbon (DOC was over-supplied, the relative abundance of sulphate-reducers was low even through high sulphate-reduction rates were achieved. As DOC diminished, sulphate-reducers become more prevalent and their relative abundance correlated with sulphate concentrations rather than sulphate-reduction rate.

  12. From observational to dynamic genetics

    Directory of Open Access Journals (Sweden)

    Claire M. A. Haworth

    2014-01-01

    Full Text Available Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context and in response to behavioural and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment.

  13. Microbial co-habitation and lateral gene transfer: what transposases can tell us

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D.; Mavromatis, Konstantinos; Kyrpides, Nikos C.

    2009-03-01

    Determining the habitat range for various microbes is not a simple, straightforward matter, as habitats interlace, microbes move between habitats, and microbial communities change over time. In this study, we explore an approach using the history of lateral gene transfer recorded in microbial genomes to begin to answer two key questions: where have you been and who have you been with? All currently sequenced microbial genomes were surveyed to identify pairs of taxa that share a transposase that is likely to have been acquired through lateral gene transfer. A microbial interaction network including almost 800 organisms was then derived from these connections. Although the majority of the connections are between closely related organisms with the same or overlapping habitat assignments, numerous examples were found of cross-habitat and cross-phylum connections. We present a large-scale study of the distributions of transposases across phylogeny and habitat, and find a significant correlation between habitat and transposase connections. We observed cases where phylogenetic boundaries are traversed, especially when organisms share habitats; this suggests that the potential exists for genetic material to move laterally between diverse groups via bridging connections. The results presented here also suggest that the complex dynamics of microbial ecology may be traceable in the microbial genomes.

  14. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W -D [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Y -G [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Fu, B -J [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Marschner, P [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, 5005 (Australia); He, J -Z [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2006-09-15

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 {mu}M), or Cu (0, 10, 20, 100 and 300 {mu}M), or combination of the two pollutants (OTC 0, 5, 11 {mu}M and Cu 0, 20 {mu}M). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 {mu}M for OTC and 20 {mu}M for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction.

  15. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    International Nuclear Information System (INIS)

    Kong, W.-D.; Zhu, Y.-G.; Fu, B.-J.; Marschner, P.; He, J.-Z.

    2006-01-01

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 μM), or Cu (0, 10, 20, 100 and 300 μM), or combination of the two pollutants (OTC 0, 5, 11 μM and Cu 0, 20 μM). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 μM for OTC and 20 μM for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction

  16. Renewable biofuels bioconversion of lignocellulosic biomass by microbial community

    CERN Document Server

    Rana, Vandana

    2017-01-01

    This book offers a complete introduction for novices to understand key concepts of biocatalysis and how to produce in-house enzymes that can be used for low-cost biofuels production. The authors discuss the challenges involved in the commercialization of the biofuel industry, given the expense of commercial enzymes used for lignocellulose conversion. They describe the limitations in the process, such as complexity of lignocellulose structure, different microbial communities’ actions and interactions for degrading the recalcitrant structure of lignocellulosic materials, hydrolysis mechanism and potential for bio refinery. Readers will gain understanding of the key concepts of microbial catalysis of lignocellulosic biomass, process complexities and selection of microbes for catalysis or genetic engineering to improve the production of bioethanol or biofuel.

  17. Microbial diversity in restored wetlands of San Francisco Bay

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2013-12-09

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils, we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.

  18. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  19. Human X-chromosome inactivation pattern distributions fit a model of genetically influenced choice better than models of completely random choice

    Science.gov (United States)

    Renault, Nisa K E; Pritchett, Sonja M; Howell, Robin E; Greer, Wenda L; Sapienza, Carmen; Ørstavik, Karen Helene; Hamilton, David C

    2013-01-01

    In eutherian mammals, one X-chromosome in every XX somatic cell is transcriptionally silenced through the process of X-chromosome inactivation (XCI). Females are thus functional mosaics, where some cells express genes from the paternal X, and the others from the maternal X. The relative abundance of the two cell populations (X-inactivation pattern, XIP) can have significant medical implications for some females. In mice, the ‘choice' of which X to inactivate, maternal or paternal, in each cell of the early embryo is genetically influenced. In humans, the timing of XCI choice and whether choice occurs completely randomly or under a genetic influence is debated. Here, we explore these questions by analysing the distribution of XIPs in large populations of normal females. Models were generated to predict XIP distributions resulting from completely random or genetically influenced choice. Each model describes the discrete primary distribution at the onset of XCI, and the continuous secondary distribution accounting for changes to the XIP as a result of development and ageing. Statistical methods are used to compare models with empirical data from Danish and Utah populations. A rigorous data treatment strategy maximises information content and allows for unbiased use of unphased XIP data. The Anderson–Darling goodness-of-fit statistics and likelihood ratio tests indicate that a model of genetically influenced XCI choice better fits the empirical data than models of completely random choice. PMID:23652377

  20. Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms

    Science.gov (United States)

    Awate, Bhushan; Steidl, Rebecca J.; Hamlischer, Thilo; Reguera, Gemma

    2017-07-01

    Unwanted metabolites produced during fermentations reduce titers and productivity and increase the cost of downstream purification of the targeted product. As a result, the economic feasibility of otherwise attractive fermentations is low. Using ethanol fermentation by the consolidated bioprocessing cellulolytic bacterium Cellulomonas uda, we demonstrate the effectiveness of anodic electro-fermentations at maximizing titers and productivity in a single-chamber microbial electrolysis cell (SCMEC) without the need for metabolic engineering of the fermentative microbe. The performance of the SCMEC platform relied on the genetic improvements of anode biofilms of the exoelectrogen Geobacter sulfurreducens that prevented the oxidation of cathodic hydrogen and improved lactate oxidation. Furthermore, a hybrid bioanode was designed that maximized the removal of organic acids in the fermentation broth. The targeted approach increased cellobiose consumption rates and ethanol titers, yields, and productivity three-fold or more, prevented pH imbalances and reduced batch-to-batch variability. In addition, the sugar substrate was fully consumed and ethanol was enriched in the broth during the electro-fermentation, simplifying its downstream purification. Such improvements and the possibility of scaling up SCMEC configurations highlight the potential of anodic electro-fermentations to stimulate fermentative bacteria beyond their natural capacity and to levels required for industrial implementation.

  1. Influence of parental depressive symptoms on adopted toddler behaviors: an emerging developmental cascade of genetic and environmental effects.

    Science.gov (United States)

    Pemberton, Caroline K; Neiderhiser, Jenae M; Leve, Leslie D; Natsuaki, Misaki N; Shaw, Daniel S; Reiss, David; Ge, Xiaojia

    2010-11-01

    This study examined the developmental cascade of both genetic and environmental influences on toddlers' behavior problems through the longitudinal and multigenerational assessment of psychosocial risk. We used data from the Early Growth and Development Study, a prospective adoption study, to test the intergenerational transmission of risk through the assessment of adoptive mother, adoptive father, and biological parent depressive symptoms on toddler behavior problems. Given that depression is often chronic, we control for across-time continuity and find that in addition to associations between adoptive mother depressive symptoms and toddler externalizing problems, adoptive father depressive symptoms when the child is 9 months of age were associated with toddler problems and associated with maternal depressive symptoms. Findings also indicated that a genetic effect may indirectly influence toddler problems through prenatal pregnancy risk. These findings help to describe how multiple generations are linked through genetic (biological parent), timing (developmental age of the child), and contextual (marital partner) pathways.

  2. Genetic Influences on Adolescent Sexual Behavior: Why Genes Matter for Environmentally-Oriented Researchers

    Science.gov (United States)

    Harden, K. Paige

    2013-01-01

    There are dramatic individual differences among adolescents in how and when they become sexually active adults, and “early” sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically-informed research on adolescent sexual behavior compares twins and family members as a form of “quasi-experiment”: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically-informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of gene × environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally-oriented theory and research. PMID:23855958

  3. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    Science.gov (United States)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction

  4. The influence of health care policies and health care system distrust on willingness to undergo genetic testing.

    Science.gov (United States)

    Armstrong, Katrina; Putt, Mary; Halbert, Chanita Hughes; Grande, David; Schwartz, Jerome Sanford; Liao, Kaijun; Marcus, Noora; Demeter, Mirar Bristol; Shea, Judy

    2012-05-01

    As the potential role of genetic testing in disease prevention and management grows, so does concern about differences in uptake of genetic testing across social and racial groups. Characteristics of how genetic tests are delivered may influence willingness to undergo testing and, if they affect population subgroups differently, alter disparities in testing. Conjoint analysis study of the effect of 3 characteristics of genetic test delivery (ie, attributes) on willingness to undergo genetic testing for cancer risk. Data were collected using a random digit dialing survey of 128 African American and 209 white individuals living in the United States. Measures included conjoint scenarios, the Revised Health Care System Distrust Scale (including the values and competence subscales), health insurance coverage, and sociodemographic characteristics. The 3 attributes studied were disclosure of test results to the health insurer, provision of the test by a specialist or primary care doctor, and race-specific or race-neutral marketing. In adjusted analyses, disclosure of test results to insurers, having to get the test from a specialist, and race-specific marketing were all inversely associated with willingness to undergo the genetic test, with the greatest effect for the disclosure attribute. Racial differences in willingness to undergo testing were not statistically significant (P=0.07) and the effect of the attributes on willingness to undergo testing did not vary by patient race. However, the decrease in willingness to undergo testing with insurance disclosure was greater among individuals with high values distrust (P=0.03), and the decrease in willingness to undergo testing from specialist access was smaller among individuals with high competence distrust (P=0.03). Several potentially modifiable characteristics of how genetic tests are delivered are associated with willingness to undergo testing. The effect of 2 of these characteristics vary according to the level of

  5. Genetic and Environmental Influences on Parent-Child Conflict and Child Depression Through Late Adolescence

    Science.gov (United States)

    Samek, Diana R.; Wilson, Sylia; McGue, Matt; Iacono, William G.

    2016-01-01

    Objective Few studies have investigated potential gender differences in the genetic and environmental influences on the prospective associations between parent-child conflict and later depression, a notable gap given substantial gender differences in rates of depression and suggestive evidence of differences in the etiology of depression among females and males. To fill this gap, we evaluated whether the prospective relationship between parent-child conflict and major depressive disorder (MDD) symptoms varied as a function of parent-child gender composition. Method A combined twin and adoption sample was used (53% female; 85% European ancestry), containing 1,627 adolescent sibling pairs (789 monozygotic twin pairs, 594 dizygotic/full-biological pairs, 244 genetically unrelated pairs) with assessments at two time points in adolescence (ages ~15 to ~18). Results Prospective associations between parent-child conflict and subsequent adolescent depression were explained predominately through common genetic influences for mother-daughter and mother-son pairs, but less so for father-daughter and father-son pairs. Conclusion Processes of gene-environment correlation involved in the prospective associations between parent-child conflict and later adolescent depression appear to be less relevant to father-child relationships in comparison to mother-child relationships. Notably, results did not show parent-child conflict was more relevant to the etiology of MDD for girls than boys; gender differences in depression do not appear to be due to differences in the associations between parent-child conflict and child depression. PMID:27043719

  6. Genetic and Environmental Influences on Parent-Child Conflict and Child Depression Through Late Adolescence.

    Science.gov (United States)

    Samek, Diana R; Wilson, Sylia; McGue, Matt; Iacono, William G

    2016-04-04

    Few studies have investigated potential gender differences in the genetic and environmental influences on the prospective associations between parent-child conflict and later depression, a notable gap given substantial gender differences in rates of depression and suggestive evidence of differences in the etiology of depression among females and males. To fill this gap, we evaluated whether the prospective relationship between parent-child conflict and major depressive disorder symptoms varied as a function of parent-child gender composition. A combined twin and adoption sample was used (53% female; 85% European ancestry), containing 1,627 adolescent sibling pairs (789 monozygotic twin pairs, 594 dizygotic/full-biological pairs, 244 genetically unrelated pairs) with assessments at two time points in adolescence (approximate ages 15 and 18). Prospective associations between parent-child conflict and subsequent adolescent depression were explained predominately through common genetic influences for mother-daughter and mother-son pairs but less so for father-daughter and father-son pairs. Results support the notion that processes of gene-environment correlation involved in the prospective associations between parent-child conflict, and later adolescent depression appear to be less relevant to father-child relationships in comparison to mother-child relationships. Notably, results did not show that parent-child conflict was more relevant to the etiology of major depressive disorder (MDD) for girls than boys; gender differences in depression do not appear to be due to differences in the associations between parent-child conflict and child depression.

  7. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  8. Sequencing Intractable DNA to Close Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Jr., Richard Ashley [ORNL; Brown, Steven D [ORNL; Podar, Mircea [ORNL; Palumbo, Anthony Vito [ORNL; Elias, Dwayne A [ORNL

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  9. Microbial Forensics: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Keim, Paul

    2003-02-17

    Microorganisms have been used as weapons in criminal acts, most recently highlighted by the terrorist attack using anthrax in the fall of 2001. Although such ''biocrimes'' are few compared with other crimes, these acts raise questions about the ability to provide forensic evidence for criminal prosecution that can be used to identify the source of the microorganisms used as a weapon and, more importantly, the perpetrator of the crime. Microbiologists traditionally investigate the sources of microorganisms in epidemiological investigations, but rarely have been asked to assist in criminal investigations. A colloquium was convened by the American Academy of Microbiology in Burlington, Vermont, on June 7-9, 2002, in which 25 interdisciplinary, expert scientists representing evolutionary microbiology, ecology, genomics, genetics, bioinformatics, forensics, chemistry, and clinical microbiology, deliberated on issues in microbial forensics. The colloquium's purpose was to consider issues relating to microbial forensics, which included a detailed identification of a microorganism used in a bioattack and analysis of such a microorganism and related materials to identify its forensically meaningful source--the perpetrators of the bioattack. The colloquium examined the application of microbial forensics to assist in resolving biocrimes with a focus on what research and education are needed to facilitate the use of microbial forensics in criminal investigations and the subsequent prosecution of biocrimes, including acts of bioterrorism. First responders must consider forensic issues, such as proper collection of samples to allow for optimal laboratory testing, along with maintaining a chain of custody that will support eventual prosecution. Because a biocrime may not be immediately apparent, a linkage must be made between routine diagnosis, epidemiological investigation, and criminal investigation. There is a need for establishing standard operating

  10. Microbial contributions to the persistence of coral reefs.

    Science.gov (United States)

    Webster, Nicole S; Reusch, Thorsten B H

    2017-10-01

    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.

  11. A Twin Study of Normative Personality and DSM-IV Personality Disorder Criterion Counts: Evidence for Separate Genetic Influences.

    Science.gov (United States)

    Czajkowski, Nikolai; Aggen, Steven H; Krueger, Robert F; Kendler, Kenneth S; Neale, Michael C; Knudsen, Gun Peggy; Gillespie, Nathan A; Røysamb, Espen; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2018-03-21

    Both normative personality and DSM-IV personality disorders have been found to be heritable. However, there is limited knowledge about the extent to which the genetic and environmental influences underlying DSM personality disorders are shared with those of normative personality. The aims of this study were to assess the phenotypic similarity between normative and pathological personality and to investigate the extent to which genetic and environmental influences underlying individual differences in normative personality account for symptom variance across DSM-IV personality disorders. A large population-based sample of adult twins was assessed for DSM-IV personality disorder criteria with structured interviews at two waves spanning a 10-year interval. At the second assessment, participants also completed the Big Five Inventory, a self-report instrument assessing the five-factor normative personality model. The proportion of genetic and environmental liabilities unique to the individual personality disorder measures, and hence not shared with the five Big Five Inventory domains, were estimated by means of multivariate Cholesky twin decompositions. The median percentage of genetic liability to the 10 DSM-IV personality disorders assessed at wave 1 that was not shared with the Big Five domains was 64%, whereas for the six personality disorders that were assessed concurrently at wave 2, the median was 39%. Conversely, the median proportions of unique environmental liability in the personality disorders for wave 1 and wave 2 were 97% and 96%, respectively. The results indicate that a moderate-to-sizable proportion of the genetic influence underlying DSM-IV personality disorders is not shared with the domain constructs of the Big Five model of normative personality. Caution should be exercised in assuming that normative personality measures can serve as proxies for DSM personality disorders when investigating the etiology of these disorders.

  12. Functional implications of the microbial community structure of undefined mesophilic starter cultures

    NARCIS (Netherlands)

    Smid, E.J.; Erkus, O.; Spus, M.; Wolkers-Rooijackers, J.C.M.; Alexeeva, S.V.; Kleerebezem, M.

    2014-01-01

    This review describes the recent advances made in the studies of the microbial community of complex and undefined cheese starter cultures. We report on work related to the composition of the cultures at the level of genetic lineages, on the presence and activity of bacteriophages and on the

  13. Micro-Food Web Structure Shapes Rhizosphere Microbial Communities and Growth in Oak

    Directory of Open Access Journals (Sweden)

    Hazel R. Maboreke

    2018-03-01

    Full Text Available The multitrophic interactions in the rhizosphere impose significant impacts on microbial community structure and function, affecting nutrient mineralisation and consequently plant performance. However, particularly for long-lived plants such as forest trees, the mechanisms by which trophic structure of the micro-food web governs rhizosphere microorganisms are still poorly understood. This study addresses the role of nematodes, as a major component of the soil micro-food web, in influencing the microbial abundance and community structure as well as tree growth. In a greenhouse experiment with Pedunculate Oak seedlings were grown in soil, where the nematode trophic structure was manipulated by altering the proportion of functional groups (i.e., bacterial, fungal, and plant feeders in a full factorial design. The influence on the rhizosphere microbial community, the ectomycorrhizal symbiont Piloderma croceum, and oak growth, was assessed. Soil phospholipid fatty acids were employed to determine changes in the microbial communities. Increased density of singular nematode functional groups showed minor impact by increasing the biomass of single microbial groups (e.g., plant feeders that of Gram-negative bacteria, except fungal feeders, which resulted in a decline of all microorganisms in the soil. In contrast, inoculation of two or three nematode groups promoted microbial biomass and altered the community structure in favour of bacteria, thereby counteracting negative impact of single groups. These findings highlight that the collective action of trophic groups in the soil micro-food web can result in microbial community changes promoting the fitness of the tree, thereby alleviating the negative effects of individual functional groups.

  14. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.

    Science.gov (United States)

    Xu, Jianping

    2006-06-01

    Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic

  15. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  16. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus

    Science.gov (United States)

    Iniesto, Miguel; Zeyen, Nina; López-Archilla, Ana; Bernard, Sylvain; Buscalioni, Ángela; Guerrero, M. Carmen; Benzerara, Karim

    2015-09-01

    Microbial mats have been repeatedly suggested to promote early fossilization of macroorganisms. Yet, experimental simulations of this process remain scarce. Here, we report results of 5 year-long experiments performed onfish carcasses to document the influence of microbial mats on mineral precipitation during early fossilization. Carcasses were initially placed on top of microbial mats. After two weeks, fishes became coated by the mats forming a compact sarcophagus, which modified the microenvironment close to the corpses. Our results showed that these conditions favoured the precipitation of a poorly crystalline silicate phase rich in magnesium. This talc-like mineral phase has been detected in three different locations within the carcasses placed in microbial mats for more than 4 years: 1) within inner tissues, colonized by several bacillary cells; 2) at the surface of bones of the upper face of the corpse buried in the mat; and 3) at the surface of several bones such as the dorsal fin which appeared to be gradually replaced by the Mg-silicate phase. This mineral phase has been previously shown to promote bacteria fossilization. Here we provide first experimental evidence that such Mg-rich phase can also be involved in exceptional preservation of animals.

  17. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W.

    1994-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli

  18. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males....... A bivariate analysis indicated significant shared genetic variance between NumCh and FirstTry....

  19. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. The Relationship Between the Genetic and Environmental Influences on Common Externalizing Psychopathology and Mental Wellbeing

    Science.gov (United States)

    Kendler, Kenneth S.; Myers, John M.; Keyes, Corey L. M.

    2012-01-01

    To determine the relationship between the genetic and environmental risk factors for externalizing psychopathology and mental wellbeing, we examined detailed measures of emotional, social and psychological wellbeing, and a history of alcohol-related problems and smoking behavior in the last year in 1,386 individual twins from same-sex pairs from the MIDUS national US sample assessed in 1995. Cholesky decomposition analyses were performed with the Mx program. The best fit model contained one highly heritable common externalizing psychopathology factor for both substance use/abuse measures, and one strongly heritable common factor for the three wellbeing measures. Genetic and environmental risk factors for externalizing psychopathology were both negatively associated with levels of mental wellbeing and accounted for, respectively, 7% and 21% of its genetic and environmental influences. Adding internalizing psychopathology assessed in the last year to the model, genetic risk factors unique for externalizing psychopathology were now positively related to levels of mental wellbeing, although accounting for only 5% of the genetic variance. Environmental risk factors unique to externalizing psychopathology continued to be negatively associated with mental wellbeing, accounting for 26% of the environmental variance. When both internalizing psychopathology and externalizing psychopathology are associated with mental wellbeing, the strongest risk factors for low mental wellbeing are genetic factors that impact on both internalizing psychopathology and externalizing psychopathology, and environmental factors unique to externalizing psychopathology. In this model, genetic risk factors for externalizing psychopathology predict, albeit weakly, higher levels of mental wellbeing. PMID:22506307

  1. Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Arctic

    International Nuclear Information System (INIS)

    Grossman, M.J.; Prince, R.C.; Garrett, R.M.; Garrett, K.K.; Bare, R.E.; O'Neil, K.R.; Sowlay, M.R.; Hinton, S.M.; Lee, K.; Sergy, G.A.; Guenette, C.C.

    2000-01-01

    Field trials were conducted at an oiled shoreline on the island of Spitsbergen to examine the effect of nutrient addition on the metabolic status, potential for aromatic hydrocarbon degradation, and the phylogenetic diversity of the microbial community in oiled Arctic shoreline sediments. IF-30 intermediate fuel grade oil was applied to the shoreline which was then divided into four plots. One was left untreated and two were tilled. Four applications of fertilizer were applied over a two-month period. Phospholipid fatty acid (PLFA), gene probe and 16S microbial community analysis suggested that bioremediation stimulated the metabolic activity, increased microbial biomass and genetic potential for aromatic hydrocarbon degradation, and increased the population of hydrocarbon degradation of an oiled Arctic shoreline microbial community. The results of this study are in agreement with the results from stimulation of oil biodegradation in temperate marine environments. It was concluded that biodegradation and fertilizer addition are feasible treatment methods for oil spills in Arctic regions. 31 refs., 3 tabs., 3 figs

  2. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    Science.gov (United States)

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-06-17

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. Copyright © 2014 John Wiley & Sons, Inc.

  3. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  4. Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling

    Science.gov (United States)

    Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz

    2017-12-01

    The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.

  5. Stability of genetic and environmental influences on P300 amplitude: A longitudinal study in adolescent twins.

    NARCIS (Netherlands)

    van Beijsterveldt, C.E.; van Baal, G.C.; Molenaar, P.C.M.; Boomsma, D.I.; Geus, E.J.

    2001-01-01

    Examined the stability of genetic and environmental influences on individual differences in P300 amplitude during adolescence. The P300 component is an event-related brain potential (ERP) that has attracted much attention as a biological marker for disturbed cognitive processing in psychopathology.

  6. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.

    Science.gov (United States)

    Nielsen, H Bjørn; Almeida, Mathieu; Juncker, Agnieszka Sierakowska; Rasmussen, Simon; Li, Junhua; Sunagawa, Shinichi; Plichta, Damian R; Gautier, Laurent; Pedersen, Anders G; Le Chatelier, Emmanuelle; Pelletier, Eric; Bonde, Ida; Nielsen, Trine; Manichanh, Chaysavanh; Arumugam, Manimozhiyan; Batto, Jean-Michel; Quintanilha Dos Santos, Marcelo B; Blom, Nikolaj; Borruel, Natalia; Burgdorf, Kristoffer S; Boumezbeur, Fouad; Casellas, Francesc; Doré, Joël; Dworzynski, Piotr; Guarner, Francisco; Hansen, Torben; Hildebrand, Falk; Kaas, Rolf S; Kennedy, Sean; Kristiansen, Karsten; Kultima, Jens Roat; Léonard, Pierre; Levenez, Florence; Lund, Ole; Moumen, Bouziane; Le Paslier, Denis; Pons, Nicolas; Pedersen, Oluf; Prifti, Edi; Qin, Junjie; Raes, Jeroen; Sørensen, Søren; Tap, Julien; Tims, Sebastian; Ussery, David W; Yamada, Takuji; Renault, Pierre; Sicheritz-Ponten, Thomas; Bork, Peer; Wang, Jun; Brunak, Søren; Ehrlich, S Dusko

    2014-08-01

    Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.

  7. GENETIC FACTORS INFLUENCING HEMOGLOBIN F LEVEL IN β-THALASSEMIA/HB E DISEASE.

    Science.gov (United States)

    Ruangrai, Waraporn; Jindadamrongwech, Sumalee

    2016-01-01

    Genetic factors influencing Hb F content in adult red blood cells include β-thalassemia genotypes, co-inheritance of α-thalassemia traits and single nucleotide polymorphisms (SNPs). Genotyping of α- and β-thalassemia and five SNPs in β-globin gene cluster previously identified in genome-wide association studies as being markers of elevated Hb F in β-thalassemia were performed in 81 subjects diagnosed with β-thalassemia/Hb E. Hb F levels are higher (0.9-7.1 g/dl) in subjects (n = 57) with the severe compared to mild β-thalassemia (0.8-2.5 g/ dl) (n = 4) genotypes, and are similarly low (0.7-3.5 g/dl) in those (n = 15) with α-thalassemia co-inheritance. Hb F levels in non-thalassemia controls (n = 150) range from 0 to 0.15 g/dl. The presence of homozygous minor alleles of the 5 SNPs are significant indicators of β-thalassemia/Hb E individuals with high Hb F (> 4 g/dl), independent of their thalassemia genotypes. Given that re-activation of γ-globin genes leads to amelioration of β-thalassemia severity, understanding how genetic factors up-regulate Hb F production may lead to possible therapeutic interventions, genetically or pharmacologically, of this debilitating disease in the not too distant future.

  8. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing.

    Science.gov (United States)

    Kim, Hyeun Bum; Isaacson, Richard E

    2015-06-12

    The importance of the gut microbiota of animals is widely acknowledged because of its pivotal roles in the health and well being of animals. The genetic diversity of the gut microbiota contributes to the overall development and metabolic needs of the animal, and provides the host with many beneficial functions including production of volatile fatty acids, re-cycling of bile salts, production of vitamin K, cellulose digestion, and development of immune system. Thus the intestinal microbiota of animals has been the subject of study for many decades. Although most of the older studies have used culture dependent methods, the recent advent of high throughput sequencing of 16S rRNA genes has facilitated in depth studies exploring microbial populations and their dynamics in the animal gut. These culture independent DNA based studies generate large amounts of data and as a result contribute to a more detailed understanding of the microbiota dynamics in the gut and the ecology of the microbial populations. Of equal importance, is being able to identify and quantify microbes that are difficult to grow or that have not been grown in the laboratory. Interpreting the data obtained from this type of study requires using basic principles of microbial diversity to understand importance of the composition of microbial populations. In this review, we summarize the literature on culture independent studies of the pig gut microbiota with an emphasis on its succession and alterations caused by diverse factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Complete genome sequence of Klebsiella pneumoniae J1, a protein-based microbial flocculant-producing bacterium.

    Science.gov (United States)

    Pang, Changlong; Li, Ang; Cui, Di; Yang, Jixian; Ma, Fang; Guo, Haijuan

    2016-02-20

    Klebsiella pneumoniae J1 is a Gram-negative strain, which belongs to a protein-based microbial flocculant-producing bacterium. However, little genetic information is known about this species. Here we carried out a whole-genome sequence analysis of this strain and report the complete genome sequence of this organism and its genetic basis for carbohydrate metabolism, capsule biosynthesis and transport system. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Exploring ancient microbial community assemblages by creating complex lipid biomarker profiles for stromatolites and microbial mats in Hamelin Pool, Shark Bay, Australia

    Science.gov (United States)

    Myers, E.; Summons, R. E.; Schubotz, F.; Matys, E. D.

    2015-12-01

    Stromatolites that are biogenic in origin, a characteristic that can be determined by the coexistence of microbial mats (active microbial communities) and stromatolites (lithified structures) like in Hamelin Pool, comprise one of the best modern analogs to ancient microbial community assemblages. Comprehensive lipid biomarker profiles that include lipids of varying persistence in the rock record can help determine how previously living microbial communities are represented in lithified stromatolites. To create these profiles, the samples analyzed included non-lithified smooth, pustular, and colloform microbial mats, as well as smooth and colloform stromatolites. Select samples were separated into upper and lower layers of 5cm depth each. Intact polar lipids, glycerol dialkyl glycerol tetraethers, and bacteriohopanepolyols were analyzed via liquid chromatography-mass spectrometry (LC-MS) coupled to a Quadropole Time-of-Flight (QTOF) mass spectrometer; additionally, fatty acids from each sample were analyzed using gas chromatography-mass spectrometry (GC-MS) to prove consistent signatures with those determined by Allen et al. in 2010 for similar microbial mat samples. In accordance with those findings, 2-methylhopanoids were detected, as well as limited signals from higher (vascular) plants, the latter of which suggests terrestrial inputs, potentially from runoff. The rarely detected presence of 3-methylhopanoids appears in a significant portion of the samples, though further isolations of the molecule are needed to confirm. While all lipid profiles were relatively similar, certain differences in relative composition are likely attributable to morphological differences of the mats, some of which allow deeper oxygen and/or sunlight penetration, which influence the microbial community. However, overall similarities of transient and persistent lipids suggest that the microbial communities of both the non-lithified microbial mats and stromatolites are similar.

  11. Stability of genetic and environmental influences om P300 amplitude: a longitudinal study in adolescent twins

    NARCIS (Netherlands)

    van Beijsterveldt, C.E.M.; van Baal, G.C.M.; Molenaar, P.C.M.; Boomsma, D.I.; de Geus, E.J.C.

    2001-01-01

    This study examined the stability of genetic and environmental influences on individual differences in P300 amplitude during adolescence. The P300 component is an event-related brain potential (ERP) that has attracted much attention as a biological marker for disturbed cognitive processing in

  12. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Influence of genetic immune disorders and anemia in radiation leukemogenesis

    International Nuclear Information System (INIS)

    Wilson, F.D.; Cain, G.; Graham, R.; Fox, L.; Klein, A.K.; Stitzel, K.; Dyck, J.; Shimizu, J.

    1980-01-01

    Genetic and disease related conditions (anemia and immunoblastic lymphadenopathy) were studied in mice to determine if these variables influenced cellular damage from continuous low-level irradiation. Strain differences were observed in pre-irradiation profiles for cardiac blood and lymphohematopoietic progenitor cell parameters. Major differences with respect to genetic and disease variables were seen in response to continuous irradiation. Presence of a stem cell defect in the W/W/sup ν/ strain with resulting pre-irradiation anemia had profound effects on the ability of these mice to maintain erythrogenesis during continuous irradiation. Likewise, granulocyte-monocyte precursors were markedly depressed in the WW/sup ν/ strain during the irradiation period. The immunologically abnormal stran, BXSB, which suffers from a lymphoproliferative processes, showed marked sensitivity in WBC to the effects of continuous irradiation. WBC values precipitously dropped during the first week of exposure then rapidly compensated to values 264% of unirradiated controls. The hyperplastic B cells in this strain also show marked radiation sensitivity and ability to repair to above normal levels. Lymphohematopoietic malignancy has been recognized in two individuals to date - both cases were in diseased irradiated mice: (1) disseminated lymphosarcoma in one W/W/sup ν/ mouse; and (2) acute lymphocytic leukemia in one BXSB mouse

  14. Microbial changes during pregnancy, birth and infancy

    Directory of Open Access Journals (Sweden)

    Meital Nuriel-Ohayon

    2016-07-01

    Full Text Available Several healthy developmental processes such as pregnancy, fetal development and infant development include a multitude of physiological changes: weight gain, hormonal and metabolic changes, as well as immune changes. In this review we present an additional important factor which both influences and is affected by these physiological processes- the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity and placenta, throughout pregnancy, fetal development and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome- modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points.

  15. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  16. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  17. Birth weight and creatinine clearance in young adult twins: influence of genetic, prenatal, and maternal factors

    NARCIS (Netherlands)

    Gielen, Marij; Pinto-Sietsma, Sara-Joan; Zeegers, Maurice P.; Loos, Ruth J.; Fagard, Robert; de Leeuw, Peter W.; Beunen, Gaston; Derom, Catherine; Vlietinck, Robert

    2005-01-01

    Previous studies have shown that low birth weight (LBW) is a risk factor for renal impairment in adult life. The effects of LBW and renal function were studied by using twins, which allows distinguishing among fetoplacental, maternal, and genetic influences. Perinatal data were obtained at birth,

  18. Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat

    NARCIS (Netherlands)

    Simón, M.R.

    2003-01-01

    KeyWord:Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella

  19. Genetic and environmental influences on conduct and antisocial personality problems in childhood, adolescence, and adulthood.

    Science.gov (United States)

    Wesseldijk, Laura W; Bartels, Meike; Vink, Jacqueline M; van Beijsterveldt, Catharina E M; Ligthart, Lannie; Boomsma, Dorret I; Middeldorp, Christel M

    2017-06-21

    Conduct problems in children and adolescents can predict antisocial personality disorder and related problems, such as crime and conviction. We sought an explanation for such predictions by performing a genetic longitudinal analysis. We estimated the effects of genetic, shared environmental, and unique environmental factors on variation in conduct problems measured at childhood and adolescence and antisocial personality problems measured at adulthood and on the covariation across ages. We also tested whether these estimates differed by sex. Longitudinal data were collected in the Netherlands Twin Register over a period of 27 years. Age appropriate and comparable measures of conduct and antisocial personality problems, assessed with the Achenbach System of Empirically Based Assessment, were available for 9783 9-10-year-old, 6839 13-18-year-old, and 7909 19-65-year-old twin pairs, respectively; 5114 twins have two or more assessments. At all ages, men scored higher than women. There were no sex differences in the estimates of the genetic and environmental influences. During childhood, genetic and environmental factors shared by children in families explained 43 and 44% of the variance of conduct problems, with the remaining variance due to unique environment. During adolescence and adulthood, genetic and unique environmental factors equally explained the variation. Longitudinal correlations across age varied between 0.20 and 0.38 and were mainly due to stable genetic factors. We conclude that shared environment is mainly of importance during childhood, while genetic factors contribute to variation in conduct and antisocial personality problems at all ages, and also underlie its stability over age.

  20. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Science.gov (United States)

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microbial species delineation using whole genome sequences.

    Science.gov (United States)

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    Science.gov (United States)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system

  3. Genetic and environmental influences on last-year major depression in adulthood: a highly heritable stable liability but strong environmental effects on 1-year prevalence.

    Science.gov (United States)

    Kendler, K S; Gardner, C O

    2017-07-01

    This study seeks to clarify the contribution of temporally stable and occasion-specific genetic and environmental influences on risk for major depression (MD). Our sample was 2153 members of female-female twin pairs from the Virginia Twin Registry. We examined four personal interview waves conducted over an 8-year period with MD in the last year defined by DSM-IV criteria. We fitted a structural equation model to the data using classic Mx. The model included genetic and environmental risk factors for a latent, stable vulnerability to MD and for episodes in each of the four waves. The best-fit model was simple and included genetic and unique environmental influences on the latent liability to MD and unique wave-specific environmental effects. The path from latent liability to MD in the last year was constant over time, moderate in magnitude (+0.65) and weaker than the impact of occasion-specific environmental effects (+0.76). Heritability of the latent stable liability to MD was much higher (78%) than that estimated for last-year MD (32%). Of the total unique environmental influences on MD, 13% reflected enduring consequences of earlier environmental insults, 17% diagnostic error and 70% wave-specific short-lived environmental stressors. Both genetic influences on MD and MD heritability are stable over middle adulthood. However, the largest influence on last-year MD is short-lived environmental effects. As predicted by genetic theory, the heritability of MD is increased substantially by measurement at multiple time points largely through the reduction of the effects of measurement error and short-term environmental risk factors.

  4. Genetic influences in caries and periodontal diseases.

    Science.gov (United States)

    Hassell, T M; Harris, E L

    1995-01-01

    Deciphering the relative roles of heredity and environmental factors ("nature vs. nurture") in the pathogenesis of dental caries and diseases of the periodontium has occupied clinical and basic researchers for decades. Success in the endeavor has come more easily in the case of caries; the complex interactions that occur between host-response mechanisms and putative microbiologic pathogens in periodontal disease have made elucidation of genetic factors in disease susceptibility more difficult. In addition, during the 30-year period between 1958 and 1987, only meager resources were targeted toward the "nature" side of the nature/nurture dipole in periodontology. In this article, we present a brief history of the development of genetic epistemology, then describe the three main research mechanisms by which questions about the hereditary component of diseases in humans can be addressed. A critical discussion of the evidence for a hereditary component in caries susceptibility is next presented, also from a historical perspective. The evolution of knowledge concerning possible genetic ("endogenous", "idiotypic") factors in the pathogenesis of inflammatory periodontal disease is initiated with an analysis of some foreign-language (primarily German) literature that is likely to be unfamiliar to the reader. We identify a turning point at about 1960, when the periodontal research community turned away from genetics in favor of microbiology research. During the past five years, investigators have re-initiated the search for the hereditary component in susceptibility to common adult periodontal disease; this small but growing body of literature is reviewed. Recent applications of in vitro methods for genetic analyses in periodontal research are presented, with an eye toward a future in which persons who are at risk--genetically predisposed--to periodontal disease may be identified and targeted for interventive strategies. Critical is the realization that genes and environment

  5. A comparative study on genetic and environmental influences on metabolic phenotypes in Eastern (Chinese) and Western (Danish) populations

    DEFF Research Database (Denmark)

    Li, Shuxia

    2015-01-01

    the risk of clinic diseases e.g. diabetes, atherosclerosis, stroke and cardiovascular disease. Metabolic phenotypes, similar to most complex traits, can be influenced by both genetic and environmental factors as well as their interplay. Many family and twin studies have demonstrated both genetic...... and environmental factors play important role in the variation of metabolic phenotypes and intra-individual change over time. Although both genetic and environmental factors are involved the development of metabolic disorders, the role of environment should be emphasized as the expression or function of gene can...... be regulated to adapt to existing environmental circumstance. In other words, adaptive evolution in populations under distinct environmental and cultural circumstances could have resulted in varying genetic basis of metabolic factors and development of metabolic disorders or diseases. Thus, it can...

  6. Microbial ecology of the Agaricus bisporus mushroom cropping process.

    Science.gov (United States)

    McGee, Conor F

    2018-02-01

    Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

  7. Characterizing the genetic influences on risk aversion.

    Science.gov (United States)

    Harrati, Amal

    2014-01-01

    Risk aversion has long been cited as an important factor in retirement decisions, investment behavior, and health. Some of the heterogeneity in individual risk tolerance is well understood, reflecting age gradients, wealth gradients, and similar effects, but much remains unexplained. This study explores genetic contributions to heterogeneity in risk aversion among older Americans. Using over 2 million genetic markers per individual from the U.S. Health and Retirement Study, I report results from a genome-wide association study (GWAS) on risk preferences using a sample of 10,455 adults. None of the single-nucleotide polymorphisms (SNPs) are found to be statistically significant determinants of risk preferences at levels stricter than 5 × 10(-8). These results suggest that risk aversion is a complex trait that is highly polygenic. The analysis leads to upper bounds on the number of genetic effects that could exceed certain thresholds of significance and still remain undetected at the current sample size. The findings suggest that the known heritability in risk aversion is likely to be driven by large numbers of genetic variants, each with a small effect size.

  8. Genetic influence on blood pressure measured in the office, under laboratory stress and during real life

    NARCIS (Netherlands)

    Wang, Xiaoling; Ding, Xiuhua; Su, Shaoyong; Harshfield, Gregory; Treiber, Frank; Snieder, Harold

    To determine to what extent the genetic influences on blood pressure (BP) measured in the office, under psychologically stressful conditions in the laboratory and during real life are different from each other. Office BP, BP during a video game challenge and a social stressor interview, and 24-h

  9. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Seasonal Development of Microbial Activity in Soils of Northern Norway

    Institute of Scientific and Technical Information of China (English)

    M. B(O)LTER; N. SOETHE; R. HORN; C. UHLIG

    2005-01-01

    Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs.non-active bacteria were noticeable after freeze-thaw cycles.

  11. Marine microbial ecology in a molecular world: what does the future hold?

    Directory of Open Access Journals (Sweden)

    David A. Caron

    2005-06-01

    Full Text Available Advances in genetic and immunological approaches during the last few decades have transformed medicine and biomedical research. The human genome and the genomes of numerous model organisms are now fully sequenced. Initial exploitation of this wealth of genetic information has begun to revolutionize research on these species, and the applications derived from it. Progress in understanding the ecology of microorganisms (including marine taxa has followed closely on the heels of these advances, owing to the tremendous benefit afforded by major technological advances in biomedicine. Through the application of these novel approaches and new technologies, marine microbial ecology has moved from a minor footnote within marine biology and biological oceanography during the 1950s and ‘60s to the focus of much of our present interest in the ocean. During the intervening half-century we have learned a great deal regarding the overall abundances, distributions and activities of microorganisms in the sea. Recognition of the extraordinary diversity of marine microbes, the predominant role that they play in global biogeochemical processes, and the potential for natural or engineered microbial products to benefit humankind, has placed marine microbes in the spotlight of both scientific and popular attention. Our fascination with these minute denizens of the ocean is not likely to wane anytime soon. Recent studies have indicated that we still know relatively little about the breadth of microbial diversity in marine ecosystems. In addition, many (most? of the predominant marine microbial forms in nature have not yet been brought into laboratory culture. Thus, our knowledge is still rudimentary with respect to the spectra of biochemical, physiological and behavioral abilities of these species, and the study of marine microbes will remain a major focus of investigations in marine science well into the foreseeable future. As a large cadre of researchers moves

  12. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    Science.gov (United States)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  13. Microbial growth on C1 compounds: proceedings

    International Nuclear Information System (INIS)

    Crawford, R.L.; Hanson, R.S.

    1984-01-01

    This book contains individual papers prepared for the 4th International Symposium on Microbial Growth on One Carbon Compounds. Individual reports were abstracted and indexed for EDB. Topics presented were in the areas of the physiology and biochemistry of autotraps, physiology and biochemistry of methylotrophs and methanotrops, physiology and biochemistry of methanogens, genetics of microbes that use C 1 compounds, taxonomy and ecology of microbes tht grow on C 1 compounds, applied aspects of microbes that grow on C 1 compounds, and new directions in C 1 metabolism. (DT)

  14. Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization

    DEFF Research Database (Denmark)

    Wolters, Birgit; Jacquiod, Samuel Jehan Auguste; Sørensen, Søren Johannes

    2018-01-01

    Organic soil fertilizers, such as livestock manure and biogas digestate, frequently contain bacteria carrying resistance genes (RGs) to antimicrobial substances and mobile genetic elements (MGEs). The effects of different fertilizers (inorganic, manure, digestate) on RG and MGE abundance...... and microbial community composition were investigated in a field plot experiment. The relative abundances of RGs [sul1, sul2, tet(A), tet(M), tet(Q), tet(W), qacEΔ1/qacE] and MGEs [intI1, intI2, IncP-1, IncP-1ε and LowGC plasmids] in total community (TC)-DNA from organic fertilizers, bulk soil and maize......, integrons and few genera affiliated to Bacteroidetes and Firmicutes in bulk soil, while digestate increased sul2, tet(W) and intI2. At harvest, treatment effects vanished in bulk soil. However, organic fertilizer effects were still detectable in the rhizosphere for RGs [manure: intI1, sul1; digestate: tet...

  15. Genetic and Environmental Influences on the Developmental Course of Attention-Deficit/Hyperactivity Disorder Symptoms From Childhood to Adolescence.

    Science.gov (United States)

    Pingault, Jean-Baptiste; Viding, Essi; Galéra, Cédric; Greven, Corina U; Zheng, Yao; Plomin, Robert; Rijsdijk, Frühling

    2015-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is conceptualized as a neurodevelopmental disorder that is strongly heritable. However, to our knowledge, no study to date has examined the genetic and environmental influences explaining interindividual differences in the developmental course of ADHD symptoms from childhood to adolescence (ie, systematic decreases or increases with age). The reason ADHD symptoms persist in some children but decline in others is an important concern, with implications for prognosis and interventions. To assess the proportional impact of genes and the environment on interindividual differences in the developmental course of ADHD symptom domains of hyperactivity/impulsivity and inattention between ages 8 and 16 years. A prospective sample of 8395 twin pairs from the Twins Early Development Study, recruited from population records of births in England and Wales between January 1, 1994, and December 31, 1996. Data collection at age 8 years took place between November 2002 and November 2004; data collection at age 16 years took place between February 2011 and January 2013. Both DSM-IV ADHD symptom subscales were rated 4 times by participants' mothers. Estimates from latent growth curve models indicated that the developmental course of hyperactivity/impulsivity symptoms followed a sharp linear decrease (mean score of 6.0 at age 8 years to 2.9 at age 16 years). Interindividual differences in the linear change in hyperactivity/impulsivity were under strong additive genetic influences (81%; 95% CI, 73%-88%). More than half of the genetic variation was specific to the developmental course and not shared with the baseline level of hyperactivity/impulsivity. The linear decrease in inattention symptoms was less pronounced (mean score of 5.8 at age 8 years to 4.9 at age 16 years). Nonadditive genetic influences accounted for a substantial amount of variation in the developmental course of inattention symptoms (54%; 95% CI, 8%-76%), with more than

  16. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    OpenAIRE

    BoonFei eTan; Charmaine Marie Ng; Jean Pierre Nshimyimana; Jean Pierre Nshimyimana; Lay-Leng eLoh; Lay-Leng eLoh; Karina Yew-Hoong Gin; Janelle Renee Thompson; Janelle Renee Thompson

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable reg...

  17. Do intrauterine or genetic influences explain the foetal origins of chronic disease? A novel experimental method for disentangling effects

    Directory of Open Access Journals (Sweden)

    Hay Dale

    2007-06-01

    Full Text Available Abstract Background There is much evidence to suggest that risk for common clinical disorders begins in foetal life. Exposure to environmental risk factors however is often not random. Many commonly used indices of prenatal adversity (e.g. maternal gestational stress, gestational diabetes, smoking in pregnancy are influenced by maternal genes and genetically influenced maternal behaviour. As mother provides the baby with both genes and prenatal environment, associations between prenatal risk factors and offspring disease maybe attributable to true prenatal risk effects or to the "confounding" effects of genetic liability that are shared by mother and offspring. Cross-fostering designs, including those that involve embryo transfer have proved useful in animal studies. However disentangling these effects in humans poses significant problems for traditional genetic epidemiological research designs. Methods We present a novel research strategy aimed at disentangling maternally provided pre-natal environmental and inherited genetic effects. Families of children aged 5 to 9 years born by assisted reproductive technologies, specifically homologous IVF, sperm donation, egg donation, embryo donation and gestational surrogacy were contacted through fertility clinics and mailed a package of questionnaires on health and mental health related risk factors and outcomes. Further data were obtained from antenatal records. Results To date 741 families from 18 fertility clinics have participated. The degree of association between maternally provided prenatal risk factor and child outcome in the group of families where the woman undergoing pregnancy and offspring are genetically related (homologous IVF, sperm donation is compared to association in the group where offspring are genetically unrelated to the woman who undergoes the pregnancy (egg donation, embryo donation, surrogacy. These comparisons can be then examined to infer the extent to which prenatal effects

  18. Assembling networks of microbial genomes using linear programming.

    Science.gov (United States)

    Holloway, Catherine; Beiko, Robert G

    2010-11-20

    Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.

  19. Genetic and Environmental Influences on Affiliation with Deviant Peers during Adolescence and Early Adulthood

    OpenAIRE

    Tarantino, Nicholas; Tully, Erin C.; Garcia, Sarah E.; South, Susan; Iacono, William G.; McGue, Matt

    2013-01-01

    Adolescence and early adulthood is a time when peer groups become increasingly influential in the lives of young people. Youth exposed to deviant peers risk susceptibility to externalizing behaviors and related psychopathology. In addition to environmental correlates of deviant peer affiliation, a growing body of evidence suggests that affiliation with deviant peers is heritable. This study examined the magnitude of genetic and environmental influences on affiliation with deviant peers, chang...

  20. How does farmer connectivity influence livestock genetic structure?

    DEFF Research Database (Denmark)

    Berthouly, C; Do, Duy Ngoc; Thévenon, S

    2009-01-01

    Assessing how genes flow across populations is a key component of conservation genetics. Gene flow in a natural population depends on ecological traits and the local environment, whereas for a livestock population, gene flow is driven by human activities. Spatial organization, relationships between...... farmers and their husbandry practices will define the farmer's network and so determine farmer connectivity. It is thus assumed that farmer connectivity will affect the genetic structure of their livestock. To test this hypothesis, goats reared by four different ethnic groups in a Vietnamese province were......, ethnicity and husbandry practices. In this study, we clearly linked the livestock genetic pattern to farmer connectivity and showed the importance of taking into account spatial information in genetic studies....