WorldWideScience

Sample records for genetic influences microbial

  1. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  2. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Science.gov (United States)

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  3. Applying landscape genetics to the microbial world.

    Science.gov (United States)

    Dudaniec, Rachael Y; Tesson, Sylvie V M

    2016-07-01

    Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as 'the invisible regulators' of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro- and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in 'macro'-landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro- and macroecological processes and expand our knowledge of species' distributions, adaptive mechanisms and species' interactions in changing environments.

  4. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, Samuel M.; Gibson, Ronald L. [University of Washington, Department of Pediatrics, Seattle, WA (United States); Effmann, Eric L. [University of Washington School of Medicine, Children' s Hospital and Regional Medical Center, Department of Radiology, Seattle, WA (United States)

    2005-08-01

    Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies. (orig.)

  5. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  6. Microbial diversity--insights from population genetics.

    Science.gov (United States)

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  7. GENMAP--A Microbial Genetics Computer Simulation.

    Science.gov (United States)

    Day, M. J.; And Others

    1985-01-01

    An interactive computer program in microbial genetics is described. The simulation allows students to work at their own pace and develop understanding of microbial techniques as they choose donor bacterial strains, specify selective media, and interact with demonstration experiments. Sample questions and outputs are included. (DH)

  8. Microbial diversity - insights from population genetics

    NARCIS (Netherlands)

    Mes, T.H.M.

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, Ne, is one of the parameters that determines population genetic

  9. Genetic engineering of microbial pesticides

    Science.gov (United States)

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  10. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Luigi Nibali

    2014-02-01

    Full Text Available Thousands of bacterial phylotypes colonise the human body and the host response to this bacterial challenge greatly influences our state of health or disease. The concept of infectogenomics highlights the importance of host genetic factors in determining the composition of human microbial biofilms and the response to this microbial challenge. We hereby introduce the term ‘genetic dysbiosis’ to highlight the role of human genetic variants affecting microbial recognition and host response in creating an environment conducive to changes in the normal microbiota. Such changes can, in turn, predispose to, and influence, diseases such as: cancer, inflammatory bowel disease, rheumatoid arthritis, psoriasis, bacterial vaginosis and periodontitis. This review presents the state of the evidence on host genetic factors affecting dysbiosis and microbial misrecognition (i.e. an aberrant response to the normal microbiota and highlights the need for further research in this area.

  11. Research advances on microbial genetics in China in 2015.

    Science.gov (United States)

    Jianping, Xie; Yubo, Han; Gang, Liu; Linquan, Bai

    2016-09-01

    In 2015, there are significant progresses in many aspects of the microbial genetics in China. To showcase the contribution of Chinese scientists in microbial genetics, this review surveys several notable progresses in microbial genetics made largely by Chinese scientists, and some key findings are highlighted. For the basic microbial genetics, the components, structures and functions of many macromolecule complexes involved in gene expression regulation have been elucidated. Moreover, the molecular basis underlying the recognition of foreign nucleic acids by microbial immune systems was unveiled. We also illustrated the biosynthetic pathways and regulators of multiple microbial compounds, novel enzyme reactions, and new mechanisms regulating microbial gene expression. And new findings were obtained in the microbial development, evolution and population genetics. For the industrial microbiology, more understanding on the molecular basis of the microbial factory has been gained. For the pathogenic microbiology, the genetic circuits of several pathogens were depicted, and significant progresses were achieved for understanding the pathogen-host interaction and revealing the genetic mechanisms underlying antimicrobial resistance, emerging pathogens and environmental microorganisms at the genomic level. In future, the genetic diversity of microbes can be used to obtain specific products, while gut microbiome is gathering momentum.

  12. Microbial biofilms: from ecology to molecular genetics.

    Science.gov (United States)

    Davey, M E; O'toole, G A

    2000-12-01

    Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.

  13. Microbial Biofilms: from Ecology to Molecular Genetics

    Science.gov (United States)

    Davey, Mary Ellen; O'toole, George A.

    2000-01-01

    Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development. PMID:11104821

  14. Genetic influences on pulmonary function

    DEFF Research Database (Denmark)

    Ingebrigtsen, Truls S; Thomsen, Simon; van der Sluis, Sophie

    2011-01-01

    component sex-limitation models were applied to evaluate possible genetic differences between the sexes for FEV(1), FVC, and PEF. Estimates were adjusted for age, height, and smoking. For FEV(1), additive genetic effects of 61% (95% CI 56-65) were observed. For FVC, the additive genetic contribution was 26......Heritability of forced expiratory volume in one second (FEV(1)), forced vital capacity (FVC), and peak expiratory flow (PEF) has not been previously addressed in large twin studies. We evaluated the genetic contribution to individual differences observed in FEV(1), FVC, and PEF using data from......% (3-49%) and the dominant genetic contribution was 29% (4-54%). For PEF, our models showed an additive genetic contribution of 43% (31-52%) for men, but genetic influences were not significant in women. We found no significant differences between dizygotic same-sex twins and dizygotic opposite...

  15. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    Science.gov (United States)

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  16. Genetic influences on political ideologies

    DEFF Research Database (Denmark)

    Hatemi, Peter K; Medland, Sarah E; Klemmensen, Robert

    2014-01-01

    Almost 40 years ago, evidence from large studies of adult twins and their relatives suggested that between 30 and 60 % of the variance in social and political attitudes could be explained by genetic influences. However, these findings have not been widely accepted or incorporated into the dominant...... paradigms that explain the etiology of political ideology. This has been attributed in part to measurement and sample limitations, as well the relative absence of molecular genetic studies. Here we present results from original analyses of a combined sample of over 12,000 twins pairs, ascertained from nine...... different studies conducted in five democracies, sampled over the course of four decades. We provide evidence that genetic factors play a role in the formation of political ideology, regardless of how ideology is measured, the era, or the population sampled. The only exception is a question that explicitly...

  17. Microbially influenced degradation of concrete structures

    Science.gov (United States)

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.

    1998-03-01

    Steel reinforced concrete is the most widely used construction material in the world. The economic costs of repair or replacement of environmentally damaged concrete structures is astronomical. For example, half of the concrete bridges in the Federal Department of Transportation highway system are in need of major repairs. Microbially influenced degradation of concrete (MID) is one of the recognized degradative processes known to adversely affect concrete integrity. It is not possible to assign a specific percent of effect to any of these processes. However, MID has been shown to be as aggressive as any of the physical/chemical phenomena. In addition, the possibility exists that there is a synergism which results in cumulative effects from all the processes. Three groups of bacteria are known to promote MID. Of these, sulfur-oxidizing bacteria (SOB) are the most aggressive. Much is known about the nutritional needs of these bacteria. However, there has not been a biological linkage established between the presence of environmental, polluting sulfur sources and the degradation of concrete structures. It has been shown that the environmental pollutants sulfur dioxide and sulfite can be utilized by active SOB for the biological production of sulfuric acid. Therefore, it is not a reach of reality to assume that SOB exposed to these pollutants could have a major impact on the degradation of concrete structures. But, until the environment sulfur loop is closed it will not be possible to calculate how important SOB activity is in initiating and promoting damage.

  18. Genetic influences on social cognition.

    Science.gov (United States)

    Skuse, David H; Gallagher, Louise

    2011-05-01

    Human social behavior develops under the influence of genetic, environmental, and cultural factors. Social cognition comprises our ability to understand and respond appropriately to other people's social approaches or responses. The concept embraces self-knowledge and theory of mind, or the ability to think about emotions and behavior from the perspective of another person. The neuropeptides oxytocin (OT) and vasopressin (AVP) are now known to play an important role, affecting individual differences in parenting behavior, social recognition, and affiliative behaviors. The processes of social cognition are also supported by reward circuitry, underpinned by the dopaminergic neurotransmitter system. Reward processes build social relationships, in parenting and pair-bonding, and influence social interactions that require trust, or display altruism. The impact of emotional regulation upon social behavior, including mood and anxiety, is also mediated through the serotonergic system. Variation in activity of serotonergic networks in the brain influences emotional responsivity, including subjective feelings, physiological responses, emotional expressions, and the tendency to become engaged in action as a consequence of a feeling state. Genetic variation in the receptors associated with OT, AVP, dopamine, and serotonin has been intensively studied in humans and animal models. Recent findings are building an increasingly coherent picture of regulatory mechanisms.

  19. Evaluation of soil microbial communities as influenced by crude oil ...

    African Journals Online (AJOL)

    Evaluation of soil microbial communities as influenced by crude oil pollution. ... Community-level approach for assessing patterns of sole carbon-source utilization ... impact of crude oil pollution, soil – biota interactions, ecosystem monitoring, ...

  20. Host genetics is associated with the gut microbial community membership rather than the structure.

    Science.gov (United States)

    Zhao, Peihua; Irwin, David M; Dong, Dong

    2016-04-26

    The issue of what factors shape the gut microbiota has been studied for years. However, questions on the contribution of host genetics to the colonizing process of the gut microbiota and to the extent that host genetics affect the gut microbiota have not yet been clearly answered. Most recently published reports have concluded that host genetics make a smaller contribution than other factors, such as diet, in determining the gut microbiota. Here we have exploited the increasing amount of fecal 16S rRNA gene sequencing data that are becoming available to conduct an analysis to assess the influence of host genetics on the diversity of the gut microbiota. By re-analyzing data obtained from over 5000 stool samples, representing individuals living on five continents and ranging in age from 3 days to 87 years, we found that the strength of the various factors affecting the membership or structure of the gut microbiota are quite different, which leads us to a hypothesis that the presence or absence of taxa is largely controlled by host genetics, whereas non-genetic factors regulate the abundance of each taxon. This hypothesis is supported by the finding that the genome similarity positively correlates with the similarity of community membership. Finally, we showed that only severe perturbations are able to alter the gut microbial community membership. In summary, our work provides new insights into understanding the complexities of the gut microbial community and how it responds to changes imposed on it.

  1. Investigation of Web Mining Optimization Using Microbial Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dipali Tungar

    2014-02-01

    Full Text Available In today's modern internet era peopleneed searching on the web and finding relevant information on the web to be efficient and fast. But traditional search engines like Google suppose to be more intelligent, still use the traditional crawling algorithms to find data relevant to the search query. But most of the times it returns irrelevant data as well which becomes confusing for the user. In a normal XML data the user inputs the search query in terms of a keyword or a question and the answer to the search query should be more precise and more relevant. So, using the traditional crawling algorithms over XML data would lead to irrelevant results. Genetic algorithms are the modern algorithms which replicates the Darwinian theory of the natural evolution. The genetic algorithms are best suited for the traditional search problem as the genetic algorithms always tend to return quality as solution for any domain data. It would be a good approach to investigate how the genetic algorithms would be suitable for the search over the XML data of different domains. So, this system implements a steady state tournament selection Microbial Genetic Algorithm over the XML data of the different domains. This would be an investigation of how the genetic algorithm would return accurate results over XML data of different domains.

  2. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    Science.gov (United States)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  3. Genetic and Environmental Influences on Adolescent Attachment

    Science.gov (United States)

    Fearon, Pasco; Shmueli-Goetz, Yael; Viding, Essi; Fonagy, Peter; Plomin, Robert

    2014-01-01

    Background: Twin studies consistently point to limited genetic influence on attachment security in the infancy period, but no study has examined whether this remains the case in later development. This study presents the findings from a twin study examining the relative importance of genetic and environmental influences on attachment in…

  4. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  5. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants.

    Science.gov (United States)

    Bárány, Agnes; Szili-Kovács, Tibor; Krett, Gergely; Füzy, Anna; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    A preliminary study was conducted to compare the community level physiological profile (CLPP) and genetic diversity of rhizosphere microbial communities of four plant species growing nearby Kiskunság soda ponds, namely Böddi-szék, Kelemen-szék and Zab-szék. CLPP was assessed by MicroResp method using 15 different substrates while Denaturing Gradient Gel Electrophoresis (DGGE) was used to analyse genetic diversity of bacterial communities. The soil physical and chemical properties were quite different at the three sampling sites. Multivariate statistics (PCA and UPGMA) revealed that Zab-szék samples could be separated according to their genetic profile from the two others which might be attributed to the geographical location and perhaps the differences in soil physical properties. Böddi-szék samples could be separated from the two others considering the metabolic activity which could be explained by their high salt and low humus contents. The number of bands in DGGE gels was related to the metabolic activity, and positively correlated with soil humus content, but negatively with soil salt content. The main finding was that geographical location, soil physical and chemical properties and the type of vegetation were all important factors influencing the metabolic activity and genetic diversity of rhizosphere microbial communities.

  6. How to Teach Procedures, Problem Solving, and Concepts in Microbial Genetics

    Science.gov (United States)

    Bainbridge, Brian W.

    1977-01-01

    Flow-diagrams, algorithms, decision logic tables, and concept maps are presented in detail as methods for teaching practical procedures, problem solving, and basic concepts in microbial genetics. It is suggested that the flexible use of these methods should lead to an improved understanding of microbial genetics. (Author/MA)

  7. Influence of substrate and microbial interaction on efficiency of rumen microbial growth.

    Science.gov (United States)

    Demeyer, D; Van Nevel, C

    1986-01-01

    Microbial N produced in the rumen and flowing to the duodenum (Ni) is related to the total amount of OM fermented or apparently digested in the rumen (OMf). This relationship, best expressed as microbial N yield (gNi/kgOMf), is affected mainly by the physical and chemical properties of feed carbohydrates and the amounts ingested. These factors influence yields at three levels of increasing complexity: Bacterial fermentation within one compartment following the continuous culture model. Fermentation pattern as such does not seem to affect yields. High fermentation rates are associated with lactate production, low methane production and transient polysaccharide synthesis. These effects induce acidification and lower yields, partly compensated by faster growth. Protozoal action, determined by the presence of sequestration spaces provided mainly by roughage diets. The presence of protozoa depresses microbial N yield but allows more complete fibre digestion. Compartmentation and differential passage. With roughage diets, optimal microbial N yield seems to require well developed microbial compartmentation, involving a large proportion of microbes in a large-particle pool with a slow turnover, balanced by a small proportion in liquid, small-particle pools with a fast turnover. Such a situation is associated with long roughage feeding. It is hypothesized that microbial N yields in the rumen may vary between two extremes which are associated with the feeding of long roughage on the one hand or with concentrate (starch) feeding on the other.

  8. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics

    OpenAIRE

    O’Connor, Annalouise; Quizon, Pamela M.; Albright, Jody E.; Lin, Fred T.; Brian J Bennett

    2014-01-01

    Intestinal microbial community structure is driven by host genetics in addition to environmental factors such as diet. In comparison with environmental influences, the effect of host genetics on intestinal microbiota, and how host-driven differences alter host metabolism is unclear. Additionally, the interaction between host genetics and diet, and the impact on the intestinal microbiome and possible down-stream effect on host metabolism is not fully understood, but represents another aspects ...

  9. The impact of genetically modified crops on soil microbial communities.

    Science.gov (United States)

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  10. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...... techniques even though localised corrosion rate cannot be measured. FSM measures general corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable...

  11. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... techniques even though localised corrosion rate cannot be measured. FSM measures general corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable...

  12. Genetic and environmental influence on asthma

    DEFF Research Database (Denmark)

    Skadhauge, L.R.; Christensen, Kaare; Kyvik, Kirsten Ohm

    1999-01-01

    The aim of this study was to estimate the relative influence of genetic and environmental factors on the aetiology of asthma. The classic twin study design was used to analyse data on self-reported asthma obtained by a questionnaire mailed to 34,076 individuals, aged 12-41 yrs and originating fro...

  13. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops

    NARCIS (Netherlands)

    Kleter, G.A.; Peijnenburg, A.A.C.M.; Aarts, H.J.M.

    2005-01-01

    The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically modified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics o

  14. Genetic Influences on Growth Traits of BMI

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob V B; Fagnani, Corrado; Silventoinen, Karri

    2008-01-01

    Objective:To investigate the interplay between genetic factors influencing baseline level and changes in BMI in adulthood.Methods and Procedures:A longitudinal twin study of the cohort of Finnish twins (N = 10,556 twin individuals) aged 20-46 years at baseline was conducted and followed up 15 years....... Data on weight and height were obtained from mailed surveys in 1975, 1981, and 1990.Results:Latent growth models revealed a substantial genetic influence on BMI level at baseline in males and females (heritability (h(2)) 80% (95% confidence interval 0.79-0.80) for males and h(2) = 82% (0.81, 0.......84) for females) and a moderate-to-high influence on rate of change in BMI (h(2) = 58% (0.50, 0.69) for males and h(2) = 64% (0.58, 0.69) for females). Only very weak evidence for genetic pleiotropy was observed; the genetic correlation between baseline and rate of change in BMI was very modest (-0.070 (-0.13, -0...

  15. Governing the management and use of pooled microbial genetic resources: Lessons from the global crop commons

    Directory of Open Access Journals (Sweden)

    Michael Halewood

    2010-01-01

    Full Text Available The paper highlights lessons learned over the last thirty years establishing a governance structure for the global crop commons that are of relevance to current champions of the microbial commons. It argues that the political, legal and biophysical situation in which microbial genetic resources (and their users are located today are similar to the situation of plant genetic resources in the mid-1990s, before the International Treaty on Plant Genetic Resources was negotiated. Consequently, the paper suggests that it may be useful to look to the model of global network of ex situ plant genetic resources collections as a precedent to follow – even if only loosely – in developing an intergovernmentally endorsed legal substructure and governance framework for the microbial commons.

  16. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Katarína Mlynáriková

    2015-11-01

    Full Text Available Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans. Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  17. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    Science.gov (United States)

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  18. Environmental and genetic influences on early attachment

    Directory of Open Access Journals (Sweden)

    Gervai Judit

    2009-09-01

    Full Text Available Abstract Attachment theory predicts and subsequent empirical research has amply demonstrated that individual variations in patterns of early attachment behaviour are primarily influenced by differences in sensitive responsiveness of caregivers. However, meta-analyses have shown that parenting behaviour accounts for about one third of the variance in attachment security or disorganisation. The exclusively environmental explanation has been challenged by results demonstrating some, albeit inconclusive, evidence of the effect of infant temperament. In this paper, after reviewing briefly the well-demonstrated familial and wider environmental influences, the evidence is reviewed for genetic and gene-environment interaction effects on developing early attachment relationships. Studies investigating the interaction of genes of monoamine neurotransmission with parenting environment in the course of early relationship development suggest that children's differential susceptibility to the rearing environment depends partly on genetic differences. In addition to the overview of environmental and genetic contributions to infant attachment, and especially to disorganised attachment relevant to mental health issues, the few existing studies of gene-attachment interaction effects on development of childhood behavioural problems are also reviewed. A short account of the most important methodological problems to be overcome in molecular genetic studies of psychological and psychiatric phenotypes is also given. Finally, animal research focusing on brain-structural aspects related to early care and the new, conceptually important direction of studying environmental programming of early development through epigenetic modification of gene functioning is examined in brief.

  19. Genetic influences are virtually absent for trust.

    Directory of Open Access Journals (Sweden)

    Paul A M Van Lange

    Full Text Available Over the past decades, numerous twin studies have revealed moderate to high heritability estimates for individual differences in a wide range of human traits, including cognitive ability, psychiatric disorders, and personality traits. Even factors that are generally believed to be environmental in nature have been shown to be under genetic control, albeit modest. Is such heritability also present in social traits that are conceptualized as causes and consequences of social interactions or in other ways strongly shaped by behavior of other people? Here we examine a population-based sample of 1,012 twins and relatives. We show that the genetic influence on generalized trust in other people (trust-in-others: h2 = 5%, ns, and beliefs regarding other people's trust in the self (trust-in-self: h2 = 13%, ns, is virtually absent. As test-retest reliability for both scales were found to be moderate or high (r = .76 and r = .53, respectively in an independent sample, we conclude that all variance in trust is likely to be accounted for by non-shared environmental influences. We show that, relative to cognitive abilities, psychiatric disorders, and classic personality variables, genetic influences are smaller for trust, and propose that experiences with or observations of the behavior of other people shape trust more strongly than other traits.

  20. Effect of wildfires on the genetic microbial diversity in forest soils from Canary Islands (Spain

    Directory of Open Access Journals (Sweden)

    J. Rodríguez

    2013-05-01

    Full Text Available Wildfires produce several ecological and environmental impacts on the physical and chemical soil characteristics, as well as on the properties and dynamics of soil microbial populations. Microorganisms are good indicators of ecosystem function and sustainability and therefore the studies about the impact of fire on microbial communities is relevant to understand the role of fire in ecosystem functioning. Although several authors have provided data about total microbial biomass and activity in soils affected by fires, there is little information about the composition and evolution of soil microbial populations after the passage of fire. In this work the effect of wildfires on the genetic diversity of microbial populations in soils from the island of Tenerife (Canary Islands, Spain is studied. The final objective was to get information about the recovery of soil functionality after wildfires.

  1. Genetic influence on the age at onset of asthma

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; Duffy, David Lorenzo; Kyvik, Kirsten Ohm;

    2010-01-01

    Although the genetics of asthma susceptibility have been frequently explored, little is known about genetic factors that influence the age at onset of asthma.......Although the genetics of asthma susceptibility have been frequently explored, little is known about genetic factors that influence the age at onset of asthma....

  2. Mineral Influence on Microbial Survival During Carbon Sequestration

    Science.gov (United States)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation

  3. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mgO2L(-1), which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

    Science.gov (United States)

    van Belkum, Alex; Struelens, Marc; de Visser, Arjan; Verbrugh, Henri; Tibayrenc, Michel

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made. PMID:11432813

  5. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...... and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general...

  6. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general......Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...

  7. Genetic influences on the development of alcoholism.

    Science.gov (United States)

    Enoch, Mary-Anne

    2013-11-01

    Alcoholism has a substantial heritability yet the detection of specific genetic influences has largely proved elusive. The strongest findings are with genes encoding alcohol metabolizing enzymes. A few candidate genes such as GABRA2 have shown robust associations with alcoholism. Moreover, it has become apparent that variants in stress-related genes such as CRHR1, may only confer risk in individuals exposed to trauma, particularly in early life. Over the past decade there have been tremendous advances in large scale SNP genotyping technologies allowing for genome-wide associations studies (GWAS). As a result, it is now recognized that genetic risk for alcoholism is likely to be due to common variants in very many genes, each of small effect, although rare variants with large effects might also play a role. This has resulted in a paradigm shift away from gene centric studies toward analyses of gene interactions and gene networks within biologically relevant pathways.

  8. Genetic and metabolic influences on LDL subclasses

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M. [Lawrence Berkeley Lab., CA (United States); Rotter, J.I.; Lusis, A.J. [Univ. of California, Los Angeles, CA (United States)

    1994-09-01

    Genetic and environmental factors influence LDL particle size and density, and expression of an atherogenic lipoprotein phenotype (ALP) characterized by predominance of small, dense LDL particles. Linkage of ALP the LDL receptor locus has been reported previously. Quantitative sib-pair relative-pair linkage methodologies were used to test for linkage of LDL particle size to candidate loci in 25 large pedigrees with familial coronary artery disease. Linkage to the LDL receptor gene locus was confirmed (p=0.008). Evidence was also obtained for linkage to the genes for apoCIII, cholesteryl ester transfer protein, and manganese superoxide dismutase. The results suggest multiple genetic determinants of LDL particle size that may involve different metabolic mechanisms giving rise to small, dense LDL and increased atherosclerosis risk.

  9. Use of Computer Simulations in Microbial and Molecular Genetics.

    Science.gov (United States)

    Wood, Peter

    1984-01-01

    Describes five computer programs: four simulations of genetic and physical mapping experiments and one interactive learning program on the genetic coding mechanism. The programs were originally written in BASIC for the VAX-11/750 V.3. mainframe computer and have been translated into Applesoft BASIC for Apple IIe microcomputers. (JN)

  10. Genetic influences in sport and physical performance.

    Science.gov (United States)

    Puthucheary, Zudin; Skipworth, James R A; Rawal, Jai; Loosemore, Mike; Van Someren, Ken; Montgomery, Hugh E

    2011-10-01

    The common inheritance of approximately 20 000 genes defines each of us as human. However, substantial variation exists between individual human genomes, including 'replication' of gene sequences (copy number variation, tandem repeats), or changes in individual base pairs (mutations if 1% frequency). A vast array of human phenotypes (e.g. muscle strength, skeletal structure, tendon elasticity, and heart and lung size) influences sports performance, each itself the result of a complex interaction between a myriad of anatomical, biochemical and physiological systems. This article discusses the role for genetic influences in influencing sporting performance and injury, offering specific exemplars where these are known. Many of these preferable genotypes are uncommon, and their combination even rarer. In theory, the chances of an individual having a perfect sporting genotype are much lower than 1 in 20 million - as the number of associated polymorphisms increase, the odds decrease correspondingly. Many recently discovered polymorphisms that may affect sports performance have been described in animal or other human based models, and have been included in this review if they may apply to athletic populations. Muscle performance is heavily influenced by basal muscle mass and its dynamic response to training. Genetic factors account for approximately 50-80% of inter-individual variation in lean body mass, with impacts detected on both 'training-naive' muscle mass and its growth response. Several cytokines such as interleukin-6 and -15, cilliary neurotrophic factor and insulin-like growth factor (IGF) have myoanabolic effects. Genotype-associated differences in endocrine function, necessary for normal skeletal muscle growth and function, may also be of significance, with complex interactions existing between thyroxine, growth hormone and the downstream regulators of the anabolic pathways (such as IGF-1 and IGF-2). Almost 200 polymorphisms are known to exist in the

  11. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  12. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    Science.gov (United States)

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.

  13. Computer Simulation of a Microbial Genetics Experiment as a Learning Aid for Undergraduate Teaching.

    Science.gov (United States)

    Day, M. J.; And Others

    1983-01-01

    Reports design of an interactive computer program (FORTRAN) in microbial genetics. The program is divided into three stages: background information, simulation, and data treatment. Results obtained from the simulation allow four genes to be sequenced along the bacterial chromosome. The simulation mimics experimental errors and production of…

  14. Parental Education Moderates Genetic Influences on Reading Disability

    OpenAIRE

    Friend, Angela; DeFries, John C.; Olson, Richard K.

    2008-01-01

    Environmental moderation of the level of genetic influence on children's reading disabilities (RD) was explored in a sample of 545 identical and fraternal twins (mean age = 11.5 years). Parents' years of education, which are correlated with a broad range of environmental factors related to reading development, were significantly related to the level of genetic influence on reading disability (t = 3.23, Prep = .99). Genetic influence was higher and environmental influence was lower among child...

  15. The role of acetogens in microbial influenced corrosion of steel

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2014-06-01

    Full Text Available Microbially-influenced corrosion (MIC of iron (Fe0 by sulfate reducing bacteria (SRB has been studied extensively. Through a mechanism, that is still poorly understood, electrons or hydrogen (H2 molecules are removed from the metal surface and used as electron donor for sulfate reduction. The resulting ferrous ions precipitate in part with the sulfide produced, forming characteristic black iron sulfide. Hydrogenotrophic methanogens can also contribute to MIC. Incubation of pipeline water samples, containing bicarbonate and some sulfate, in serum bottles with steel coupons and a headspace of 10% (vol/vol CO2 and 90% N2, indicated formation of acetate and methane. Incubation of these samples in serum bottles, containing medium with coupons and bicarbonate but no sulfate, also indicated that formation of acetate preceded the formation of methane. Microbial community analyses of these enrichments indicated the presence of Acetobacterium, as well we of hydrogenotrophic and acetotrophic methanogens. The formation of acetate by homoacetogens, such as Acetobacterium woodii from H2 (or Fe0 and CO2, is potentially important, because acetate is a required carbon source for many SRB growing with H2 and sulfate. A consortium of the SRB Desulfovibrio vulgaris Hildenborough and A. woodii was able to grow in defined medium with H2, CO2 and sulfate, because A. woodii provides the acetate, needed by D. vulgaris under these conditions. Likewise, general corrosion rates of metal coupons incubated with D. vulgaris in the presence of acetate or in the presence of A. woodii were higher than in the absence of acetate or A. woodii, respectively. An extended MIC model capturing these results is presented.

  16. The influence of microbial metabolites on human intestinal epithelial cells and macrophages in vitro

    NARCIS (Netherlands)

    Nuenen, M.H.M.C. van; Ligt, R.A.F. de; Doornbos, R.P.; Woude, J.C.J. van der; Kuipers, E.J.; Venema, K.

    2005-01-01

    Microbial metabolites may influence the metabolic integrity of intestinal epithelial cells and induce mucosal immune responses. Therefore, we investigated the effects of the microbial metabolites butyrate, iso-valerate, and ammonium on Caco-2 cells and macrophages. Barrier functioning was determined

  17. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    Directory of Open Access Journals (Sweden)

    Do Hyun Kim

    2015-01-01

    Full Text Available Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes.

  18. Influence of microbially enriched vermicompost on yield, microbial dynamics and soil nutrients

    Directory of Open Access Journals (Sweden)

    Neeldurai Tensingh Baliah

    2016-12-01

    Full Text Available The present study has been conducted to explore the microbial enrichment of vermicompost with microbial inoculants such as Azospirillum brasilense, Bacillus megaterium and Pseudomonas fluorescens. The enrichment had a positive effect on the crop response, soil biological activity and soil nutrient status. The results indicated that the enriched vermicompost significantly increased crop response of Okra with reference to yield attributes. Further, the microbial enriched vermicompost significantly improved the soil microbial dynamics such as bacteria and fungi and nutrient status such as total N and available P in the amended soil. The enrichment with agronomically important microbes such as nitrogen fixer, phosphate solubilizer and plant growth promoting rhizobacteria had positive response but the response varied among the beneficial microorganisms.

  19. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.

    Science.gov (United States)

    He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao

    2016-02-01

    The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.

  20. Importance of Mobile Genetic Elements and Conjugal Gene Transfer for Subsurface Microbial Community Adaptation to Biotransformation of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Soren J.

    2005-06-01

    The overall goal of this project is to investigate the effect of mobile genetic elements and conjugal gene transfer on subsurface microbial community adaptation to mercury and chromium stress and biotransformation. Our studies focus on the interaction between the fate of these metals in the subsurface and the microbial community structure and activity.

  1. The influence of genetics on contemporary art.

    Science.gov (United States)

    Nelkin, Dorothy; Anker, Suzanne

    2002-12-01

    Contemporary visual artists are incorporating genetic concepts into their work, and this work has become prominently featured in numerous museum and gallery exhibitions. Such art uses visual images that represent the language of genomics, the values affected by genetic understanding of the body and the implications of bioengineering. Here, we present various examples of how artists depict aspects of genetics as cultural icons and symbols; in particular, their focus on DNA as information and on the commercialization of genetics research material.

  2. Genetic Influences on Adolescent Eating Habits

    Science.gov (United States)

    Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.

    2012-01-01

    Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)…

  3. Parental education moderates genetic influences on reading disability.

    Science.gov (United States)

    Friend, Angela; DeFries, John C; Olson, Richard K

    2008-11-01

    Environmental moderation of the level of genetic influence on children's reading disabilities was explored in a sample of 545 identical and fraternal twins (mean age = 11.5 years). Parents' number of years of education, which is correlated with a broad range of environmental factors related to reading development, was significantly related to the level of genetic influence on reading disability. Genetic influence was higher and environmental influence was lower among children whose parents had a high level of education, compared with children whose parents had a lower level of education. We discuss the implications of these results for behavior genetic and molecular genetic research, for the diagnosis and remediation of reading disabilities, and for policy in public education.

  4. Genetic influences on thinning of the cerebral cortex during development.

    Science.gov (United States)

    van Soelen, I L C; Brouwer, R M; van Baal, G C M; Schnack, H G; Peper, J S; Collins, D L; Evans, A C; Kahn, R S; Boomsma, D I; Hulshoff Pol, H E

    2012-02-15

    During development from childhood to adulthood the human brain undergoes considerable thinning of the cerebral cortex. Whether developmental cortical thinning is influenced by genes and if independent genetic factors influence different parts of the cortex is not known. Magnetic resonance brain imaging was done in twins at age 9 (N = 190) and again at age 12 (N = 125; 113 repeated measures) to assess genetic influences on changes in cortical thinning. We find considerable thinning of the cortex between over this three year interval (on average 0.05 mm; 1.5%), particularly in the frontal poles, and orbitofrontal, paracentral, and occipital cortices. Cortical thinning was highly heritable at age 9 and age 12, and the degree of genetic influence differed for the various areas of the brain. One genetic factor affected left inferior frontal (Broca's area), and left parietal (Wernicke's area) thinning; a second factor influenced left anterior paracentral (sensory-motor) thinning. Two factors influenced cortical thinning in the frontal poles: one of decreasing influence over time, and another independent genetic factor emerging at age 12 in left and right frontal poles. Thus, thinning of the cerebral cortex is heritable in children between the ages 9 and 12. Furthermore, different genetic factors are responsible for variation in cortical thickness at ages 9 and 12, with independent genetic factors acting on cortical thickness across time and between various brain areas during childhood brain development.

  5. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor\\'s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its

  6. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  7. Ecological parameters influencing microbial diversity and stability of traditional sourdough.

    Science.gov (United States)

    Minervini, Fabio; De Angelis, Maria; Di Cagno, Raffaella; Gobbetti, Marco

    2014-02-01

    The quality of some leavened, sourdough baked goods is not always consistent, unless a well propagated sourdough starter culture is used for the dough fermentation. Among the different types of sourdough used, the traditional sourdough has attracted the interest of researchers, mainly because of its large microbial diversity, especially with respect to lactic acid bacteria. Variation in this diversity and the factors that cause it will impact on quality and is the subject of this review. Sourdough microbial diversity is mainly caused by the following factors: (i) sourdough is obtained through spontaneous, multi-step fermentation; (ii) it is propagated using flour, whose nutrient content may vary according to the batch and to the crop, and which is naturally contaminated by microorganisms; and (iii) it is propagated under peculiar technological parameters, which vary depending on the historical and cultural background and type of baked good. In the population dynamics leading from flour to mature sourdough, lactic acid bacteria (several species of Lactobacillus sp., Leuconostoc sp., and Weissella sp.) and yeasts (mainly Saccharomyces cerevisiae and Candida sp.) outcompete other microbial groups contaminating flour, and interact with each other at different levels. Ecological parameters qualitatively and quantitatively affecting the dominant sourdough microbiota may be classified into specific technological parameters (e.g., percentage of sourdough used as inoculum, time and temperature of fermentation) and parameters that are not fully controlled by those who manage the propagation of sourdough (e.g., chemical, enzyme and microbial composition of flour). Although some sourdoughs have been reported to harbour a persistent dominant microbiota, the stability of sourdough ecosystem during time is debated. Indeed, several factors may interfere with the persistence of species and strains associations that are typical of a given sourdough: metabolic adaptability to the

  8. INFLUENCE OF GENETIC AND GENOTYPE x ENVIRONMENT ...

    African Journals Online (AJOL)

    Administrator

    content, and aroma are critical in varietal development and subsquent adoption at the farm level. ... variety x environment interactions, heritability and genetic advance aspects on physical and biochemical rice grain ..... Principles of cultivar.

  9. Influence of Panax ginseng Continuous Cropping on Metabolic Function of Soil Microbial Communities

    Institute of Scientific and Technical Information of China (English)

    YING Yi-xin; DING Wan-long; ZHOU Ying-qun; LI Yong

    2012-01-01

    Objective To investigate the influence of Panax ginseng continuous cropping on the carbon substrate metabolic activity of microbes in soils sampled from Dafang,Huangni,and Wulidi in Jilin Province,China.Methods Soil metabolisms of soil communities were characterized by community level physiological profiles using BIOLOGTM EcoPlate.Results Soils sampled from the three sites were analyzed and their metabolic activities were compared.Principal component analysis explored the significant variance in metabolic function of microbial communities in soils,though the Shannon index and the evenness index of them were similar.Futhermore,two principal components(PC1 and PC2),which contributed 67.83% and 10.78% of total variance,were extracted respectively.And also,substrates significantly correlated with PC1 and PC2 at the three sampling sites were identified.Conclusion Characteristic of soil is the primary factor influencing microbial communities,and P.ginseng continuous cropping has significant influence on microbial community.Though soil samples show similar microbial metabolic profiles,microbial communities in rhizosphere soil are changed obviously during the cultivation of P.ginseng,which would finally result in the unbalance of microbial community.Phytopathogens would gradually be the predominants in rhizosphere soil and make P.ginseng sick.

  10. Cognitive vulnerability to depression : genetic and environmental influences

    NARCIS (Netherlands)

    Antypa, Niki

    2011-01-01

    This thesis explores cognitive vulnerability to depression and the interplay between genetic and environmental influences. Cognitive vulnerability to depression is characterized by negative patterns of information processing. One aspect is cognitive reactivity - the tendency to respond with maladapt

  11. Genetic and Environmental Influences on Vocabulary and Reading Development

    Science.gov (United States)

    Olson, Richard K.; Keenan, Janice M.; Byrne, Brian; Samuelsson, Stefan; Coventry, William L.; Corley, Robin; Wadsworth, Sally J.; Willcutt, Erik G.; DeFries, John C.; Pennington, Bruce F.; Hulslander, Jacqueline

    2011-01-01

    Genetic and environmental relations between vocabulary and reading skills were explored longitudinally from preschool through Grades 2 and 4. At preschool there were strong shared-environment and weak genetic influences on both vocabulary and print knowledge but substantial differences in their source. Separation of etiology for vocabulary and…

  12. Genetic influences in caries and periodontal diseases.

    Science.gov (United States)

    Hassell, T M; Harris, E L

    1995-01-01

    Deciphering the relative roles of heredity and environmental factors ("nature vs. nurture") in the pathogenesis of dental caries and diseases of the periodontium has occupied clinical and basic researchers for decades. Success in the endeavor has come more easily in the case of caries; the complex interactions that occur between host-response mechanisms and putative microbiologic pathogens in periodontal disease have made elucidation of genetic factors in disease susceptibility more difficult. In addition, during the 30-year period between 1958 and 1987, only meager resources were targeted toward the "nature" side of the nature/nurture dipole in periodontology. In this article, we present a brief history of the development of genetic epistemology, then describe the three main research mechanisms by which questions about the hereditary component of diseases in humans can be addressed. A critical discussion of the evidence for a hereditary component in caries susceptibility is next presented, also from a historical perspective. The evolution of knowledge concerning possible genetic ("endogenous", "idiotypic") factors in the pathogenesis of inflammatory periodontal disease is initiated with an analysis of some foreign-language (primarily German) literature that is likely to be unfamiliar to the reader. We identify a turning point at about 1960, when the periodontal research community turned away from genetics in favor of microbiology research. During the past five years, investigators have re-initiated the search for the hereditary component in susceptibility to common adult periodontal disease; this small but growing body of literature is reviewed. Recent applications of in vitro methods for genetic analyses in periodontal research are presented, with an eye toward a future in which persons who are at risk--genetically predisposed--to periodontal disease may be identified and targeted for interventive strategies. Critical is the realization that genes and environment

  13. Competitive ability in male house mice (Mus musculus): genetic influences.

    Science.gov (United States)

    Cunningham, Christopher B; Ruff, James S; Chase, Kevin; Potts, Wayne K; Carrier, David R

    2013-03-01

    Conspecifics of many animal species physically compete to gain reproductive resources and thus fitness. Despite the importance of competitive ability across the animal kingdom, specific traits that influence or underpin competitive ability are poorly characterized. Here, we investigate whether there are genetic influences on competitive ability within male house mice. Additionally, we examined if litter demographics (litter size and litter sex ratio) influence competitive ability. We phenotyped two generations for a male's ability to possess a reproductive resource--a prime nesting site--using semi-natural enclosures with mixed sex groupings. We used the "Animal Model" coupled with an extensive pedigree to estimate several genetic parameters. Competitive ability was found to be highly heritable, but only displayed a moderate genetic correlation to body mass. Interestingly, litter sex ratio had a weak negative influence on competitive ability. Litter size had no significant influence on competitive ability. Our study also highlights how much remains unknown about the proximal causes of competitive ability.

  14. Influence of earthworm activity on microbial communities related with the degradation of persistent pollutants.

    Science.gov (United States)

    Natal-da-Luz, Tiago; Lee, Iwa; Verweij, Rudo A; Morais, Paula V; Van Velzen, Martin J M; Sousa, José Paulo; Van Gestel, Cornelis A M

    2012-04-01

    Earthworms may promote the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil, but the mechanism through which they exert such influence is still unknown. To determine if the stimulation of PAH degradation by earthworms is related to changes in microbial communities, a microcosm experiment was conducted consisting of columns with natural uncontaminated soil covered with PAH-contaminated dredge sediment. Columns without and with low and high Eisenia andrei densities were prepared. Organic matter and PAH content, microbial biomass, and dehydrogenase activity (DHA) were measured in soil and sediment over time. Biolog Ecoplate™ and polymerase chain reaction using denaturing gradient gel electrophoresis were used to evaluate changes in metabolic and structural diversity of the microbial community, respectively. Earthworm activity promoted PAH degradation in soil, which was significant for biphenyl, benzo[a]pyrene, and benzo[e]pyrene. Microbial biomass and DHA activity generally did not change over the experiment. Earthworm activity did change microbial community structure, but this did not affect its functioning in terms of carbon substrate consumption. Results suggest no relationship between changes in the microbial community by earthworm activity and increased PAH disappearance. The role of shifts in soil microbial community structure induced by earthworms in PAH removal needs further investigation.

  15. Imidacloprid induces changes in the structure, genetic diversity and catabolic activity of soil microbial communities.

    Science.gov (United States)

    Cycoń, Mariusz; Markowicz, Anna; Borymski, Sławomir; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-12-15

    This is the first report describing the effect of imidacloprid applied at field rate (FR, 1 mg/kg of soil) and 10 times the FR (10*FR, 10 mg/kg of soil) on the structural, genetic and physiological diversity of soil bacterial community as determined by the phospholipid fatty acid (PLFA), the denaturing gradient gel electrophoresis (DGGE), and the community level physiological profile (CLPP) approaches. PLFA profiles showed that imidacloprid significantly shifted the microbial community structure and decreased the biomass of the total, bacterial and fungal PLFAs, however, this effect was transient at the FR dosage. The alterations in DGGE patterns caused by imidacloprid application, confirmed considerable changes in the overall richness and diversity of dominant bacteria. Although, as a result of imidacloprid application, the metabolic activity of microbial communities was generally lower, the richness and functional biodiversity of the soil microbial community were not negatively affected. In general, the analysis of the variance indicated that the measured parameters were significantly affected by treatment and the incubation time, however, the incubation time effect explained most of the observed variance. Imidacloprid degradation and the appearance of some new bands in DGGE profiles suggest the evolution of bacteria capable of degrading imidacloprid among indigenous microflora.

  16. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Genetic influences on cardiovascular stress reactivity

    NARCIS (Netherlands)

    Wu, Ting; Snieder, Harold; de Geus, Eco

    2010-01-01

    Individual differences in the cardiovascular response to stress play a central role in the reactivity hypothesis linking frequent exposure to psychosocial stress to adverse outcomes in cardiovascular health. To assess the importance of genetic factors, a meta-analysis was performed on all published

  18. Genetic influences on cardiovascular stress reactivity

    NARCIS (Netherlands)

    Wu, Ting; Snieder, Harold; de Geus, Eco

    2010-01-01

    Individual differences in the cardiovascular response to stress play a central role in the reactivity hypothesis linking frequent exposure to psychosocial stress to adverse outcomes in cardiovascular health. To assess the importance of genetic factors, a meta-analysis was performed on all published

  19. Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane.

    Science.gov (United States)

    Kang, Aram; Chang, Matthew Wook

    2012-04-01

    Microbial tolerance to hydrocarbons has been studied in an effort to improve the productivity of biochemical processes and to enhance the efficiency of hydrocarbon bioremediation. Despite these studies, few attempts have been made to design rational strategies to improve microbial tolerance to hydrocarbons. Herein, we present an engineering framework that enables us to harness our understanding of genetic regulatory networks to improve hydrocarbon tolerance. In this study, isooctane was used as a representative hydrocarbon due to its use in petroleum refining and in biochemical processes. To increase isooctane tolerance, we first identified essential transcriptional determinants and genetic regulatory networks underlying cellular responses to isooctane in Escherichia coli using genome-wide microarray analysis. Based on functional transcriptome and bioinformatics analysis, a range of combinations of transcription factors whose activity was predictably perturbed by isooctane were knocked out and overexpressed to reconstitute the regulatory networks. We demonstrated that the reconstitution of the regulatory networks led to a significant improvement in isooctane tolerance, and especially, engineered E. coli strains lacking and overexpressing some of the perturbed transcription factors showed 3- to 5-fold improvement. This microbe with high tolerance to isooctane can be harnessed for biochemical processes, fuel oil bioremediation and metabolic engineering for biofuel production. Furthermore, we envision that the engineering framework employed to improve the tolerance in this study can be exploited for developing other microbes with desired phenotypes.

  20. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Traumatic brain injury Nature and genetic influences

    Institute of Scientific and Technical Information of China (English)

    Yong Jiang; Xiaochuan Sun

    2008-01-01

    At present,much evidence indicates that TBI is similar in pathology and severity during the acute stage,yet may result in varied outcomes.Known prognostic factors,such as age and severity of injury and treatments,only partially explain this variability.In addition,it has been demonstrated that genetic polymorphisms may play an important role in TBI susceptibility,as well as outcome following TBI.

  2. Genetic Influences on Preterm Birth in Argentina

    Science.gov (United States)

    Mann, Paul C.; Cooper, Margaret E.; Ryckman, Kelli K.; Comas, Belén; Gili, Juan; Crumley, Suzanne; Bream, Elise N.A.; Byers, Heather M.; Piester, Travis; Schaefer, Amanda; Christine, Paul J.; Lawrence, Amy; Schaa, Kendra L.; Kelsey, Keegan J.P.; Berends, Susan K.; Gadow, Enrique; Cosentino, Viviana; Castilla, Eduardo E.; Camelo, Jorge López; Saleme, Cesar; Day, Lori J.; England, Sarah K.; Marazita, Mary L.; Dagle, John M.; Murray, Jeffrey C.

    2013-01-01

    Objective To investigate genetic etiologies of preterm birth (PTB) in Argentina through evaluation of single-nucleotide polymorphisms (SNP) in candidate genes and population genetic admixture. Study Design Genotyping was performed in 389 families. Maternal, paternal, and fetal effects were studied separately. Mitochondrial DNA (mtDNA) was sequenced in 50 males and 50 females. Y-chromosome anthropological markers were evaluated in 50 males. Results Fetal association with PTB was found in the progesterone receptor (PGR, rs1942836; p= 0.004). Maternal association with PTB was found in small conductance calcium activated potassium channel isoform 3 (KCNN3, rs883319; p= 0.01). Gestational age associated with PTB in PGR rs1942836 at 32 –36 weeks (p= 0.0004). MtDNA sequencing determined 88 individuals had Amerindian consistent haplogroups. Two individuals had Amerindian Y-chromosome consistent haplotypes. Conclusions This study replicates single locus fetal associations with PTB in PGR, maternal association in KCNN3, and demonstrates possible effects for divergent racial admixture on PTB. PMID:23018797

  3. A generic transport-reactive model for simulating microbially influenced mineral precipitation in porous medium

    NARCIS (Netherlands)

    Zhou, J.; Van Turnhout, A.G.; Heimovaara, T.J.; Afanasyev, M.

    2015-01-01

    The spatial and temporal distribution of precipitated minerals is one of the key factors governing various processes in the sub-surface environment, including microbially influenced corrosion (MIC) (Huang, 2002), bio-cementation (van Paassen et al., 2010) and sediment diagenesis (Paraska et al., 201

  4. A generic transport-reactive model for simulating microbially influenced mineral precipitation in porous medium

    NARCIS (Netherlands)

    Zhou, J.; Van Turnhout, A.G.; Heimovaara, T.J.; Afanasyev, M.

    2015-01-01

    The spatial and temporal distribution of precipitated minerals is one of the key factors governing various processes in the sub-surface environment, including microbially influenced corrosion (MIC) (Huang, 2002), bio-cementation (van Paassen et al., 2010) and sediment diagenesis (Paraska et al.,

  5. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants

    CSIR Research Space (South Africa)

    Maila, MP

    2006-02-01

    Full Text Available (CLPP) and Polymerase Chain Reaction–Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Hydrocarbon contaminated and uncontaminated soils from different geographical locations were used in the study. In addition, the influence or relevance...

  6. The influence of flint stones on a soil microbial community in the northern Negev Desert

    Directory of Open Access Journals (Sweden)

    Haggai Wasserstrom

    2017-07-01

    Full Text Available In the Negev Desert ecosystems, flint-stone cover on slopes acts as a barrier against water flow. As a result, soil moisture increases and organic matter accumulates under the stone and in the immediate surroundings, both affecting the duration of soil microbial activity. On the other hand, during the dry season (characterized by approximately 210 dew nights, flint-stone cover plays an important role in the formation of dew, which eventually trickles down beneath the stone, correspondingly enhancing biological activity. The present study examined the possible role of flint stones as hotspots for soil microbial-community activity and diversity. The results were compared with those obtained from the adjacent stone-free soils in the open spaces (OS, which served as controls. Microbial activity (respiration and biomass and functional diversity were determined by the MicroRespTM method. In addition, estimates of genetic diversity and viable counts of bacteria and fungi [colony-forming units (CFUs] were obtained. The soil was significantly wetter and contained more organic matter beneath the flint stones (BFS. As hypothesized, biological activity was enhanced under the stones, as described by CO2 evolution, microbial-community biomass functional diversity, and fungal phylogenetic diversity. BFS environments favored a greater range of catabolic functions. Taxa generally known for their stress resilience were found in the OS habitats. The results of this study elucidate the importance of flint-stone cover to soil microbial biomass, community activity, and functional diversity in the northern Negev Desert.

  7. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro,; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume de...

  8. Genetic and environmental influences in Dupuytren's disease

    DEFF Research Database (Denmark)

    Larsen, Søren; Krogsgaard, D G; Larsen, Lisbeth Aagaard;

    2015-01-01

    We aimed to assess the relative contribution of genes and environment in the aetiology of Dupuytren's disease by studying Danish twins born between 1870 and 2000. Twins with a diagnosis (n = 365) and the subgroup who also had an operation (n = 259) after 1977 were identified through linkage...... is involved. The number of concordant male twin pairs with Dupuytren's disease was 17 and 7 (monozygotic and dizygotic pairs, respectively), compared with 60 and 174 discordant monozygotic and dizygotic pairs, yielding probandwise concordance rates of 0.37 (95% confidence interval (CI): 0.26 to 0.50) and 0.......07 (95% CI: 0.04 to 0.14), respectively. The heritability of Dupuytren's disease was approximately 80%. We conclude that genetic factors play a major role in the development of Dupuytren's disease....

  9. Reading development in young children: genetic and environmental influences.

    Science.gov (United States)

    Logan, Jessica A R; Hart, Sara A; Cutting, Laurie; Deater-Deckard, Kirby; Schatschneider, Chris; Petrill, Stephen

    2013-01-01

    The development of reading skills in typical students is commonly described as a rapid growth across early grades of active reading education, with a slowing down of growth as active instruction tapers. This study examined the extent to which genetics and environments influence these growth rates. Participants were 371 twin pairs, aged approximately 6 through 12, from the Western Reserve Reading Project. Development of word-level reading, reading comprehension, and rapid naming was examined using genetically sensitive latent quadratic growth curve modeling. Results confirmed the developmental trajectory described in the phenotypic literature. Furthermore, the same shared environmental influences were related to early reading skills and subsequent growth, but genetic influences on these factors were unique.

  10. Arctic microbial community dynamics influenced by elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    K. Schulz

    2012-09-01

    Full Text Available The Arctic Ocean ecosystem is particular vulnerable for ocean acidification (OA related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the food web. In a mesocosm CO2-enrichment experiment (overall CO2 levels ranged from ∼180 to 1100 μatm in the Kongsfjord off Svalbard, we studied the consequences of OA on a natural pelagic microbial community. The most prominent finding of our study is the profound effect of OA on the composition and growth of the Arctic phytoplankton community, i.e. the picoeukaryotic photoautotrophs and to a lesser extent the nanophytoplankton prospered. A shift towards the smallest phytoplankton as a result of OA will have direct consequences for the structure and functioning of the pelagic food web and thus for the biogeochemical cycles. Furthermore, the dominant pico- and nanophytoplankton groups were found prone to viral lysis, thereby shunting the carbon accumulation in living organisms into the dissolved pools of organic carbon and subsequently affecting the efficiency of the biological pump in these Arctic waters.

  11. Microbial community shifts influence patterns in tropical forest nitrogen fixation.

    Science.gov (United States)

    Reed, Sasha C; Townsend, Alan R; Cleveland, Cory C; Nemergut, Diana R

    2010-10-01

    The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.

  12. Genetic and environmental influences of surfactant protein D serum levels

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Hjelmborg, Jacob v. B.; Kyvik, Kirsten Ohm

    2006-01-01

    defining the constitutional serum level of SP-D and determine the magnitude of the genetic contribution to serum SP-D in the adult population. Recent studies have demonstrated that serum SP-D concentrations in children are genetically determined and that a single nucleotide polymorphism (SNP) located...... correlation was significantly higher for monozygotic (MZ) twin pairs than for dizygotic (DZ) twin pairs. Serum SP-D variance was influenced by nonshared environmental effects and additive genetic effects. Multivariate analysis of MZ and DZ covariance matrixes showed significant genetic correlation among serum...... SP-D and metabolic variables. The Met11Thr variant explained a significant part of the heritability indicating that serum SP-D variance could be decomposed into non-shared environmental effects (e(2) = 0.19), additive genetic effects (h(2) = 0.42), and the effect of the Met11Thr variations (q(2) = 0.39)....

  13. Salinity influence on soil microbial respiration rate of wetland in the Yangtze River estuary through changing microbial community

    Institute of Scientific and Technical Information of China (English)

    Xue Fei Xi; Lei Wang; Jia Jun Hu; Yu Shu Tang; Yu Hu; Xiao Hua Fu; Ying Sun

    2014-01-01

    Estuarine wetland,where freshwater mixes with salt water,comprises different regions (rivers and marine ecosystems) with significantly varying tidal salinities.Two sampling areas,ZXS and JS,were selected to investigate the effect of tidal salinity on soil respiration (SR).ZXS and JS were located in Zhongxia Shoal and Jiangyanan Shoal of Jiuduansha Wetland respectively,with similar elevation and plant species,but significantly different in salinity.The results showed that with almost identical plant biomass,the SR and soil microbial respiration (SMR) of the tidal wetland with lower salinity (JS) were significantly higher than those of the tidal wetland with higher salinity (ZXS) (p < 0.05).However,unlike SMR and SR,the difference in the soil microbial biomass (SMB) was not significant (p > 0.05) with the SMB of ZXS a little higher than that of JS.The higher SMR and SR of JS may be closely connected to the soil microbial community structures and amount of dominant bacteria.Abundant β-and γ-Proteobacteria and Actinobacteria in JS soil,which have strong heterotrophic metabolic capabilities,could be the main reason for higher SMR and SR,whereas a high number of ε-Proteobacteria in ZXS,some of which have carbon fixation ability,could be responsible for relatively lower carbon output.Path analysis indicated that soil salinity had the maximum negative total influencing coefficient with SMR among the various soil physical and chemical factors,suggesting that higher soil salinity,restricting highly heterotrophic bacteria,is the principle reason for lower SMR and SR in the ZXS.

  14. Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity.

    Directory of Open Access Journals (Sweden)

    Juliano C Cury

    Full Text Available BACKGROUND: Upwelling systems are characterised by an intense primary biomass production in the surface (warmest water after the outcrop of the bottom (coldest water, which is rich in nutrients. Although it is known that the microbial assemblage plays an important role in the food chain of marine systems and that the upwelling systems that occur in southwest Brazil drive the complex dynamics of the food chain, little is known about the microbial composition present in this region. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a molecular survey based on SSU rRNA gene from the three domains of the phylogenetic tree of life present in a tropical upwelling region (Arraial do Cabo, Rio de Janeiro, Brazil. The aim was to analyse the horizontal and vertical variations of the microbial composition in two geographically close areas influenced by anthropogenic activity (sewage disposal/port activity and upwelling phenomena, respectively. A lower estimated diversity of microorganisms of the three domains of the phylogenetic tree of life was found in the water of the area influenced by anthropogenic activity compared to the area influenced by upwelling phenomena. We observed a heterogenic distribution of the relative abundance of taxonomic groups, especially in the Archaea and Eukarya domains. The bacterial community was dominated by Proteobacteria, Cyanobacteria and Bacteroidetes phyla, whereas the microeukaryotic community was dominated by Metazoa, Fungi, Alveolata and Stramenopile. The estimated archaeal diversity was the lowest of the three domains and was dominated by uncharacterised marine Crenarchaeota that were most closely related to Marine Group I. CONCLUSIONS/SIGNIFICANCE: The variety of conditions and the presence of different microbial assemblages indicated that the area of Arraial do Cabo can be used as a model for detailed studies that contemplate the correlation between pollution-indicating parameters and the depletion of microbial

  15. Metabolomic applications to decipher gut microbial metabolic influence in health and disease

    Directory of Open Access Journals (Sweden)

    Francois-Pierre eMartin

    2012-04-01

    Full Text Available Dietary preferences and nutrients composition have been shown to influence human and gut microbial metabolism, which ultimately has specific effects on health and diseases’ risk. Increasingly, results from molecular biology and microbiology demonstrate the key role of the gut microbiota metabolic interface to the overall mammalian host’s health status. There is therefore raising interest in nutrition research to characterize the molecular foundations of the gut microbial mammalian cross-talk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology approaches, such as metabolomics, to underpin the highly complex metabolic exchanges between diverse biological compartments, including organs, systemic biofluids and microbial symbionts. By the development of specific biomarkers for prediction of health and disease, metabolomics is increasingly used in clinical applications as regard to disease aetiology, diagnostic stratification and potentially mechanism of action of therapeutical and nutraceutical solutions. Surprisingly, an increasing number of metabolomics investigations in pre-clinical and clinical studies based on proton nuclear magnetic resonance (1H NMR spectroscopy and mass spectrometry (MS provided compelling evidence that system wide and organ-specific biochemical processes are under the influence of gut microbial metabolism. This review aims at describing recent applications of metabolomics in clinical fields where main objective is to discern the biochemical mechanisms under the influence of the gut microbiota, with insight into gastrointestinal health and diseases diagnostics and improvement of homeostasis metabolic regulation.

  16. Modeling the Influence of Transport on Chemical Reactivity in Microbial Membranes: Mineral Precipitation/Dissolution Reactions.

    Science.gov (United States)

    Felmy, A. R.; Liu, C.; Clark, S.; Straatsma, T.; Rustad, J.

    2003-12-01

    It has long been known that microorganisms can alter the chemical composition of their immediate surroundings and influence such processes as ion uptake or adsorption and mineral precipitation dissolution. However, only recently have molecular imaging and molecular modeling capabilities been developed that begin to shed light on the nature of these processes at the nm to um scale at the surface of bacterial membranes. In this presentation we will show the results of recent molecular simulations of microbial surface reactions and describe our efforts to develop accurate non-equilibrium thermodynamic models for the microbial surface that can describe ion uptake and surface induced mineral precipitation. The thermodynamic models include the influence of the bacterial electrical double layer on the uptake of ions from solution and the removal, or exclusion, of ions from the surface of the cell, non-equilibrium diffusion and chemical reaction within the membrane, as well as a new thermodynamic approach to representing ion activities within the microbial membrane. In the latter case, the variability in the water content within the microbial membrane has a significant influence on the calculated mineral saturation indices. In such cases, we will propose the use of recently developed mixed solvent-electrolyte formalisms. Recent experimental data for mixed-solvent electrolyte systems will also be presented to demonstrate the potential impact of the variable water content on calculated ion activities within the membrane.

  17. 52 Genetic Loci Influencing Myocardial Mass

    Science.gov (United States)

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.

    2017-01-01

    BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466

  18. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  19. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  20. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems

    NARCIS (Netherlands)

    Cotta, Simone Raposo; Franco Dias, Armando Cavalcante; Marriel, Ivanildo Evodio; Gomes, Eliane Aparecida; van Elsas, Jan Dirk; Seldin, Lucy

    2013-01-01

    The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the effe

  1. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Directory of Open Access Journals (Sweden)

    Lia C R S Teixeira

    Full Text Available Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies, Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  2. Plant and Bird Presence Strongly Influences the Microbial Communities in Soils of Admiralty Bay, Maritime Antarctica

    Science.gov (United States)

    Teixeira, Lia C. R. S.; Yeargeau, Etienne; Balieiro, Fabiano C.; Piccolo, Marisa C.; Peixoto, Raquel S.; Greer, Charles W.; Rosado, Alexandre S.

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific. PMID:23840411

  3. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.

    2012-07-13

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  4. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    Science.gov (United States)

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time.

  5. INFLUENCE OF MICROBIAL SURFACTANTS ON THE GROWTH OF LEGUMES

    Directory of Open Access Journals (Sweden)

    Shcheglova N. S.

    2015-02-01

    Full Text Available The influence of biogenic surfactants — rhamnolipids, trehalose lipids — on the growth of legumes was investigated. Rhamnolipid surfactants — product of biosynthesis of Pseudomonas sp. PS-17 strain were extracted by Folch mixture from the culture liquid supernatant and trehalose lipid surfactants — from biomass of R. erythropolis Aс-50 strain. Вiocomplex PS, which is a mixture of rhamnolipids and polysaccharides was precipitated from culture liquid supernatantof Pseudomonas sp. PS-17 strain with acidification to pH 3. Seeds of alfalfa and winter vetch were treated before sowing with solutions of biosurfactants or with appropriate culture of nitrogen-fixing bacteria and were grown in vessels in the sand culture conditions. The influence of rhamnolipids and indoleacetic acid on rhizogenesis was set in the biotest with beans cuttings. The optimal concentration of biosurfactants (0.01 g/l was determined for pre-sowing treatment of alfalfa and winter vetch seeds, which promoted the growth of their aboveground mass by 16–20%. It was shown that treatment of seeds by biosurfactants improved the efficiency of winter vetch seeds inoculation by biopreparation of nitrogen-fixing microorganisms: an aboveground plant mass increased by 34%. It was shown that soaking of beans cuttings in a mixture of biocomplex PS and indoleacetic acid increased the number of formed roots on 26.7% and their weight — on 19.2% compared with the control which was indoleacetic acid. It was shown that biogenic surfactants (rhamnolipids, trehalose lipids stimulated the growth of legumes (alfalfa, vetch, contributed to the increase of vegetative mass and stimulated the formation of symbiosis of winter vetch with bacteria Rhizobium leguminosarum bv. viciae. It was determined that one of the mechanisms of biosurfactant influence on the plant growth was improving the efficiency of phytohormones, including indole-3-acetic acid.

  6. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  7. The genetic factors influencing the development of trichotillomania

    Indian Academy of Sciences (India)

    Koushik Chatterjee

    2012-08-01

    Trichotillomania (TTM), an obsessive–compulsive spectrum disorder (OCSD), is a psychiatric condition characterized by repetitive hair pulling. Evidence from family and twin studies suggest a heritable link of TTM. Functional polymorphisms in genes involved in neuronal pathways might influence the susceptibility to TTM. This review is an attempt to compile the genetic factors reported to modify the development of TTM.

  8. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  9. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias Vasquez, A.; Desrivieres, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Boks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.; Cuellar-Partida, G.; Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santianez, R.; Rose, E.J.; Salami, A.; Samann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J. van; Eijk, K.R. van; Walters, R.K.; Westlye, L.T.; Whelan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.; McKay, D.R.; Needham, M.; Nugent, A.C.; Putz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; Marel, S.S. van der; Hulzen, K.J.E. van; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; Fisher, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  10. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  11. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  12. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic; M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn; S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole A.); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cock); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate h

  13. Studies of twins indicate that genetics influence dietary intake

    DEFF Research Database (Denmark)

    Hasselbalch, Ann Louise; Heitmann, Berit L; Kyvik, Kirsten O

    2008-01-01

    Habitual dietary intake is a complex behavior that may have both biological and nonbiological bases. We estimated the contribution of genetic and environmental influences on dietary intake in a large population-based sample of healthy twins. Data originated from a cross-sectional study of 600 mal...

  14. Genetic and environmental influences of surfactant protein D serum levels

    DEFF Research Database (Denmark)

    Sorensen, G.L.; Hjelmborg, J.V.; Kyvik, K.O.

    2006-01-01

    defining the constitutional serum level of SP-D and determine the magnitude of the genetic contribution to serum SP-D in the adult population. Recent studies have demonstrated that serum SP-D concentrations in children are genetically determined and that a single nucleotide polymorphism (SNP) located...... in the NH(2)-terminal region (Met11Thr) of the mature protein is significantly associated with the serum SP-D levels. A classic twin study was performed on a twin population including 1,476 self-reported healthy adults. The serum SP-D levels increased with male sex, age, and smoking status. The intraclass...... correlation was significantly higher for monozygotic (MZ) twin pairs than for dizygotic (DZ) twin pairs. Serum SP-D variance was influenced by nonshared environmental effects and additive genetic effects. Multivariate analysis of MZ and DZ covariance matrixes showed significant genetic correlation among serum...

  15. Distinct Genetic Influences on Cortical and Subcortical Brain Structures

    Science.gov (United States)

    Wen, Wei; Thalamuthu, Anbupalam; Mather, Karen A.; Zhu, Wanlin; Jiang, Jiyang; de Micheaux, Pierre Lafaye; Wright, Margaret J.; Ames, David; Sachdev, Perminder S.

    2016-09-01

    This study examined the heritability of brain grey matter structures in a subsample of older adult twins (93 MZ and 68 DZ twin pairs; mean age 70 years) from the Older Australian Twins Study. The heritability estimates of subcortical regions ranged from 0.41 (amygdala) to 0.73 (hippocampus), and of cortical regions, from 0.55 (parietal lobe) to 0.78 (frontal lobe). Corresponding structures in the two hemispheres were influenced by the same genetic factors and high genetic correlations were observed between the two hemispheric regions. There were three genetically correlated clusters, comprising (i) the cortical lobes (frontal, temporal, parietal and occipital lobes); (ii) the basal ganglia (caudate, putamen and pallidum) with weak genetic correlations with cortical lobes, and (iii) the amygdala, hippocampus, thalamus and nucleus accumbens grouped together, which genetically correlated with both basal ganglia and cortical lobes, albeit relatively weakly. Our study demonstrates a complex but patterned and clustered genetic architecture of the human brain, with divergent genetic determinants of cortical and subcortical structures, in particular the basal ganglia.

  16. Influence of low- and high-frequency heating on biodegrading microorganisms in soil: microbial degradation.

    Science.gov (United States)

    Roland, Ulf; Holzer, Frank; Kopinke, Frank-Dieter

    2013-01-01

    The influence of low-frequency (50 Hz) resistive and high-frequency (13.56 MHz, radio-frequency) dielectric heating in comparison to conventional heating on the microbial degradation of pollutants in soil was studied. The investigation of the biodegradation of model substances (benzoic acid, acetic acid, glucose, sodium acetate) added to a standard soil showed no significant influence of the electrical heating methods when compared with samples heated to the same temperature in a water bath. Therefore, a hindrance of the microbial degradation could be excluded as it was done for soil respiration in a previous study. This finding is especially relevant for the application of these electrical heating methods for thermally enhanced soil bioremediation as an option for making in situ or ex situ clean-up processes more efficient.

  17. Genetic diversity of seagrass seeds influences seedling morphology and biomass.

    Science.gov (United States)

    Randall Hughes, A; Hanley, Torrance C; Schenck, Forest R; Hays, Cynthia G

    2016-12-01

    Genetic diversity can influence ecological processes throughout ontogeny, yet whether diversity at early life history stages is important in long-lived taxa with overlapping generations is unclear. Seagrass systems provide some of the best evidence for the ecological effects of genetic diversity among adult shoots, but we do not know if the genetic diversity of seeds and seedlings also influences seagrass ecology. We tested the effects of seagrass (Zostera marina) seed diversity and relatedness on germination success, seedling morphology, and seedling production by comparing experimental assemblages of seeds collected from single reproductive shoots ("monocultures") to assemblages of seeds collected from multiple reproductive shoots ("polycultures"). There was no difference in seedling emergence, yet seedlings from polycultures had larger shoots above and below ground than seedlings from monocultures at the end of the 1-yr experiment. Genetic relatedness of the seedlings predicted some aspects of shoot morphology, with more leaves and longer roots and shoots at intermediate levels of relatedness, regardless of seed diversity. Our results suggest that studies of only adult stages may underestimate the importance of genetic diversity if the benefits at early life history stages continue to accrue throughout the life cycle. © 2016 by the Ecological Society of America.

  18. Education modifies genetic and environmental influences on BMI.

    Science.gov (United States)

    Johnson, Wendy; Kyvik, Kirsten Ohm; Skytthe, Axel; Deary, Ian J; Sørensen, Thorkild I A

    2011-01-19

    Obesity is more common among the less educated, suggesting education-related environmental triggers. Such triggers may act differently dependent on genetic and environmental predisposition to obesity. In a Danish Twin Registry survey, 21,522 twins of same-sex pairs provided zygosity, height, weight, and education data. Body mass index (BMI = kg weight/ m height(2)) was used to measure degree of obesity. We used quantitative genetic modeling to examine how genetic and shared and nonshared environmental variance in BMI differed by level of education and to estimate how genetic and shared and nonshared environmental correlations between education and BMI differed by level of education, analyzing women and men separately. Correlations between education and BMI were -.13 in women, -.15 in men. High BMI's were less frequent among well-educated participants, generating less variance. In women, this was due to restriction of all forms of variance, overall by a factor of about 2. In men, genetic variance did not vary with education, but results for shared and nonshared environmental variance were similar to those for women. The contributions of the shared environment to the correlations between education and BMI were substantial among the well-educated, suggesting importance of familial environmental influences common to high education and lower BMI. Family influence was particularly important in linking high education and lower levels of obesity.

  19. Influence of free air space on microbial kinetics in passively aerated compost.

    Science.gov (United States)

    Yu, Shouhai; Clark, O Grant; Leonard, Jerry J

    2009-01-01

    The influence of free air space (FAS) on passively aerated composting has been reported, but the quantitative relationship between FAS and the microbial kinetics in passively aerated compost has not been investigated. This relationship was studied by composting dairy manure and straw in an enclosed, passively aerated, cylindrical vessel. Based on this experimental system, conceptual and numerical models were developed in which the compost bed was considered to consist of layered elements, each being physically and chemically homogeneous. The microbial activity in each layer was represented in order to predict oxygen and substrate consumption and the release of water and heat. Convective transport of air, moisture, and heat through the layers was represented. Microbial growth and substrate consumption rates were described using modified first-order kinetics for each of the mesophilic and thermophilic temperature regimes. The values of the microbial kinetic parameters were adjusted for each layer based on an innovative, non-linear, statistical analysis of temperature histories recorded at different layers in the compost bed during three treatments (i.e., FAS values of 0.45, 0.52, and 0.65). Microbial kinetic rate constants were found to follow a sigmoid relationship with FAS, with correlation coefficients (R(2)) of 0.97 for the mesophilic stage and 0.96 for the thermophilic stage. Temperature histories and airflow measurements from a fourth treatment (FAS value of 0.57) were used as an independent check of the model's performance. Simulation results indicate that the model could predict the general trend of temperature development. A plot of the residuals shows that the model is biased, however, possibly because many parameters in the model were not measured directly but instead were estimated from literature. The result from this study demonstrates a new method for describing the relationship between microbial kinetics (k(max)) and substrate FAS, which could be used

  20. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains

    OpenAIRE

    Sokol, E. R.; Herbold, C.W.; C.K. LEE; Cary, S. C.; Barrett, J E

    2013-01-01

    The metacommunity concept provides a useful framework to assess the influence of local and regional controls over diversity patterns. Culture-independent studies of soil microbial communities in the McMurdo Dry Valleys of East Antarctica (77 degrees S) have shown that bacterial diversity is related to soil geochemical gradients, while studies targeting edaphic cyanobacteria have linked local diversity patterns to dispersal-based processes. In this study, we increased the spatial extent of obs...

  1. Microbial dynamics in a glycolate fed biogas reactor influenced by abiotic parameters

    OpenAIRE

    Reinert, Susann

    2015-01-01

    Much research was performed in order to find alternative energy sources. In the new concept presented in this thesis, methane was produced by a microbial consortium which is fed only by glycolate excreted by photosynthetic algae. It was unknown how the biogas production and the process stability are influenced by certain parameter shifts in glycolate feed, pH of the feed, oxygen input and temperature. Therefore, different parameter changes were applied to the reactor...

  2. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces.

    Science.gov (United States)

    Mulder, Imke E; Schmidt, Bettina; Stokes, Christopher R; Lewis, Marie; Bailey, Mick; Aminov, Rustam I; Prosser, James I; Gill, Bhupinder P; Pluske, John R; Mayer, Claus-Dieter; Musk, Corran C; Kelly, Denise

    2009-11-20

    Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results. Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a

  3. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces

    Directory of Open Access Journals (Sweden)

    Pluske John R

    2009-11-01

    Full Text Available Abstract Background Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results. Conclusion Early-life environment significantly affects both microbial composition of the adult

  4. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping...

  5. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences.

    Directory of Open Access Journals (Sweden)

    Alex J Bartholomew

    Full Text Available Despite the large amount of variation found in the night (scotopic vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA and contrast sensitivity (CS to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision.

  6. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  7. Factors influencing uptake of familial long QT syndrome genetic testing.

    Science.gov (United States)

    Burns, Charlotte; McGaughran, Julie; Davis, Andrew; Semsarian, Christopher; Ingles, Jodie

    2016-02-01

    Ongoing challenges of clinical assessment of long QT syndrome (LQTS) highlight the importance of genetic testing in the diagnosis of asymptomatic at-risk family members. Effective access, uptake, and communication of genetic testing are critical for comprehensive cascade family screening and prevention of disease complications such as sudden cardiac death. The aim of this study was to describe factors influencing uptake of LQTS genetic testing, including those relating to access and family communication. We show those who access genetic testing are overrepresented by the socioeconomically advantaged, and that although overall family communication is good, there are some important barriers to be addressed. There were 75 participants (aged 18 years or more, with a clinical and/or genetic diagnosis of LQTS; response rate 71%) who completed a survey including a number of validated scales; demographics; and questions about access, uptake, and communication. Mean age of participants was 46 ± 16 years, 20 (27%) were males and 60 (80%) had genetic testing with a causative gene mutation in 42 (70%). Overall uptake of cascade testing within families was 60% after 4 years from proband genetic diagnosis. All participants reported at least one first-degree relative had been informed of their risk, whereas six (10%) reported at least one first-degree relative had not been informed. Those who were anxious or depressed were more likely to perceive barriers to communicating. Genetic testing is a key aspect of care in LQTS families and intervention strategies that aim to improve equity in access and facilitate effective family communication are needed.

  8. Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism

    Science.gov (United States)

    Braunschweig, Juliane; Klier, Christine; Schröder, Christian; Händel, Matthias; Bosch, Julian; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-08-01

    Microbial reduction of ferric iron is partly dependent on Fe hydroxide particle size: nanosized Fe hydroxides greatly exceed the bioavailability of their counterparts larger than 1 μm. Citrate as a low molecular weight organic acid can likewise stabilize colloidal suspensions against aggregation by electrostatic repulsion but also increase Fe bioavailability by enhancing Fe hydroxide solubility. The aim of this study was to see whether adsorption of citrate onto surfaces of large ferrihydrite aggregates results in the formation of a stable colloidal suspension by electrostatic repulsion and how this effect influences microbial Fe reduction. Furthermore, we wanted to discriminate between citrate-mediated colloid stabilization out of larger aggregates and ferrihydrite dissolution and their influence on microbial Fe hydroxide reduction. Dissolution kinetics of ferrihydrite aggregates induced by different concentrations of citrate and humic acids were compared to microbial reduction kinetics with Geobacter sulfurreducens. Dynamic light scattering results showed the formation of a stable colloidal suspension and colloids with hydrodynamic diameters of 69 (±37) to 165 (± 65) nm for molar citrate:Fe ratios of 0.1 to 0.5 and partial dissolution of ferrihydrite at citrate:Fe ratios ⩾ 0.1. No dissolution or colloid stabilization was detected in the presence of humic acids. Adsorption of citrate, necessary for dissolution, reversed the surface charge and led to electrostatic repulsion between sub-aggregates of ferrihydrite and colloid stabilization when the citrate:Fe ratio was above a critical value (⩽ 0.1). Lower ratios resulted in stronger ferrihydrite aggregation instead of formation of a stable colloidal suspension, owing to neutralization of the positive surface charge. At the same time, microbial ferrihydrite reduction increased from 0.029 to 0.184 mM h-1 indicating that colloids stabilized by citrate addition enhanced microbial Fe reduction. Modelling of

  9. ADAPTATION OF AQUIFER MICROBIAL COMMUNITIES TO THE BIODEGRADATION OF XENOBIOTIC COMPOUNDS: INFLUENCE OF SUBSTRATE CONCENTRATION AND PREEXPOSURE

    Science.gov (United States)

    Studies were conducted to examine the adaptation response of aquifer microbial communities to xenobiotic compounds and the influence of chemical preexposure in the laboratory and in situ on adaptation. Adaptation and biodegradation were assessed as mineralization and cellular inc...

  10. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    Science.gov (United States)

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.

  11. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  12. Carcass mass has little influence on the structure of gravesoil microbial communities.

    Science.gov (United States)

    Weiss, Sophie; Carter, David O; Metcalf, Jessica L; Knight, Rob

    2016-01-01

    Little is known about how variables, such as carcass mass, affect the succession pattern of microbes in soils during decomposition. To investigate the effects of carcass mass on the soil microbial community, soils associated with swine (Sus scrofa domesticus) carcasses of four different masses were sampled until the 15th day of decomposition during the month of June in a pasture near Lincoln, Nebraska. Soils underneath swine of 1, 20, 40, and 50 kg masses were investigated in triplicate, as well as control sites not associated with a carcass. Soil microbial communities were characterized by sequencing the archaeal, bacterial (16S), and eukaryotic (18S) rRNA genes in soil samples. We conclude that time of decomposition was a significant influence on the microbial community, but carcass mass was not. The gravesoil associated with 1 kg mass carcasses differs most compared to the gravesoil associated with other carcass masses. We also identify the 15 most abundant bacterial and eukaryotic taxa, and discuss changes in their abundance as carcass decomposition progressed. Finally, we show significant decreases in alpha diversity for carcasses of differing mass in pre-carcass rupture (days 0, 1, 2, 4, 5, and 6 postmortem) versus post-carcass rupture (days 9 and 15 postmortem) microbial communities.

  13. The influence of six pharmaceuticals on freshwater sediment microbial growth incubated at different temperatures and UV exposures.

    Science.gov (United States)

    Veach, Allison; Bernot, Melody J; Mitchell, James K

    2012-07-01

    Pharmaceutical compounds have been detected in freshwater for several decades. Once they enter the aquatic ecosystem, they may be transformed abiotically (i.e., photolysis) or biotically (i.e., microbial activity). To assess the influence of pharmaceuticals on microbial growth, basal salt media amended with seven pharmaceutical treatments (acetaminophen, caffeine, carbamazepine, cotinine, ibuprofen, sulfamethoxazole, and a no pharmaceutical control) were inoculated with stream sediment. The seven pharmaceutical treatments were then placed in five different culture environments that included both temperature treatments of 4, 25, 37°C and light treatments of continuous UV-A or UV-B exposure. Microbial growth in the basal salt media was quantified as absorbance (OD(550)) at 7, 14, 21, 31, and 48d following inoculation. Microbial growth was significantly influenced by pharmaceutical treatments (P microbial communities post-incubation identified selection of microbial and fungal species with exposure to caffeine, cotinine, and ibuprofen at 37°C; acetaminophen, caffeine, and cotinine at 25°C; and carbamazepine exposed to continuous UV-A. Bacillus and coccus cellular arrangements (1000X magnification) were consistently observed across incubation treatments for each pharmaceutical treatment although carbamazepine and ibuprofen exposures incubated at 25°C also selected spiral-shaped bacteria. These data indicate stream sediment microbial communities are influenced by pharmaceuticals though physiochemical characteristics of the environment may dictate microbial response.

  14. Cohort Effects in the Genetic Influence on Smoking.

    Science.gov (United States)

    Domingue, Benjamin W; Conley, Dalton; Fletcher, Jason; Boardman, Jason D

    2016-01-01

    We examine the hypothesis that the heritability of smoking has varied over the course of recent history as a function of associated changes in the composition of the smoking and non-smoking populations. Classical twin-based heritability analysis has suggested that genetic basis of smoking has increased as the information about the harms of tobacco has become more prevalent-particularly after the issuance of the 1964 Surgeon General's Report. In the present paper we deploy alternative methods to test this claim. We use data from the Health and Retirement Study to estimate cohort differences in the genetic influence on smoking using both genomic-relatedness-matrix restricted maximum likelihood and a modified DeFries-Fulker approach. We perform a similar exercise deploying a polygenic score for smoking using results generated by the Tobacco and Genetics consortium. The results support earlier claims that the genetic influence in smoking behavior has increased over time. Emphasizing historical periods and birth cohorts as environmental factors has benefits over existing GxE research. Our results provide additional support for the idea that anti-smoking policies of the 1980s may not be as effective because of the increasingly important role of genotype as a determinant of smoking status.

  15. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings▿†

    Science.gov (United States)

    Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana

    2011-01-01

    The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678

  16. Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes.

    Science.gov (United States)

    Regueiro, Leticia; Veiga, Patricia; Figueroa, Mónica; Lema, Juan M; Carballa, Marta

    2014-03-01

    A better understanding of the microbial ecology of anaerobic processes during transitional states is important to achieve a long-term efficient reactor operation. Five wastes (pig manure, biodiesel residues, ethanol stillage, molasses residues, and fish canning waste) were treated in five anaerobic reactors under the same operational conditions. The influence of the type of substrate and the effect of modifying feeding composition on the microbial community structure was evaluated. The highest biomethanation efficiency was observed in reactors fed with fish canning waste, which also presented the highest active archaeal population and the most diverse microbial communities. Only two Bacteria populations could be directly related to a particular substrate: Ilyobacter with biodiesel residues and Trichococcus with molasses residues. Results showed that the time to achieve steady-state performance after these transitional states was not dependent on the substrate treated. But reactors needed more time to handle the stress conditions derived from the start-up compared to the adaptation to a new feeding. Cluster analyses showed that the type of substrate had a clear influence on the microbiology of the reactors, and that segregation was related to the reactors performance. Finally, we conclude that the previous inoculum history treating solid waste and higher values of active Archaea population are important factors to face a successful change in substrate not entailing stability failure.

  17. Genetic Influences on Individual Differences in Exercise Behavior during Adolescence

    Directory of Open Access Journals (Sweden)

    Niels van der Aa

    2010-01-01

    Full Text Available The aim of this study was to investigate the degree to which genetic and environmental influences affect variation in adolescent exercise behavior. Data on regular leisure time exercise activities were analyzed in 8,355 adolescent twins, from three-age cohorts (13-14, 15-16, and 17–19 years. Exercise behavior was assessed with survey items about type of regular leisure time exercise, frequency, and duration of the activities. Participants were classified as sedentary, regular exercisers, or vigorous exercisers. The prevalence of moderate exercise behavior declined from age 13 to 19 years with a parallel increase in prevalence of sedentary behavior, whereas the prevalence of vigorous exercise behavior remained constant across age cohorts. Variation in exercise behavior was analyzed with genetic structural equation modeling employing a liability threshold model. Variation was largely accounted for by genetic factors (72% to 85% of the variance was explained by genetic factors, whereas shared environmental factors only accounted for a substantial part of the variation in girls aged 13-14 years (46%. We hypothesize that genetic effects on exercise ability may explain the high heritability of exercise behavior in this phase of life.

  18. Genetic influences on the development of childhood psychiatric disorders.

    Science.gov (United States)

    Thapar, Anita; Stergiakouli, Evangelia

    2008-07-01

    This review covers the key types of genetic research design, the methodology involved and emerging, and established findings in relation to child and adolescent psychiatry. Traditional family, twin, and adoption studies show that child and adolescent psychiatric disorders are familial and genetically influenced. Genes and environment contribute to all disorders. Genetic factors seem especially important for autism and attention deficit hyperactivity disorder. Twin and adoption study designs are now being used to examine gene-environment interplay, the effects of environmental risk factors, co-morbidity, phenotype definition, and developmental change. Molecular genetic strategies are increasingly being adopted to identify gene variants that increase risk of specific disorders. The ways in which specific gene variants exert risk effects at cellular and biological system levels are proving to be highly complex. There is also interest in examining the brain mechanisms that may be involved in risk pathways that link gene variant to psychopathology. Finally, molecular genetic studies also highlight the importance of gene-environment interplay, which seems to be especially important in depression and antisocial behaviour.

  19. Influence of xenobiotic contaminants on landfill soil microbial activity and diversity.

    Science.gov (United States)

    Pérez-Leblic, M I; Turmero, A; Hernández, M; Hernández, A J; Pastor, J; Ball, A S; Rodríguez, J; Arias, M E

    2012-03-01

    Landfills are often the final recipient of a range of environmentally important contaminants such as hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). In this study the influence of these contaminants on microbial activity and diversity was assessed in a municipal solid waste (MSW) landfill placed in Torrejón de Ardoz (Madrid, Spain). Soil samples were collected from four selected areas (T2, T2B, T8 and T9) in which the amount of total hydrocarbons, PAHs and PCBs were measured. Soil biomass, substrate induced respiration (SIR) and physiological profiles of soil samples were also determined and used as indicators of total microbial activity. Highest concentration of total hydrocarbons was detected in T2 and T9 samples, with both PCBs and benzopyrene being detected in T9 sample. Results corresponding to microbial estimation (viable bacteria and fungi, and SIR) and microbiological enzyme activities showed that highest values corresponded to areas with the lowest concentration of hydrocarbons (T2B and T8). It is noticeable that in such areas was detected the lowest concentration of the pollutants PAHs and PCBs. A negative significant correlation between soil hydrocarbons concentration and SIR, total bacteria and fungi counts and most of the enzyme activities determined was established. DGGE analysis was also carried out to determine the microbial communities' structure in the soil samples, establishing different profiles of Bacteria and Archaea communities in each analysed area. Through the statistical analysis a significant negative correlation was only found for Bacteria domain when Shannon index and hydrocarbon concentration were correlated. In addition, a bacterial 16S rRNA gene based clone library was prepared from each soil. From the clones analysed in the samples, the majority corresponded to Proteobacteria, followed by Acidobacteria and Actinobacteria. It is important to remark that the most polluted sample (T9) showed

  20. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    Science.gov (United States)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;pbioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a function of groundwater temperature for all treatments. Correlations between nitrate reduction rate and properties of carbon media;

  1. Microbial interactions with naturally occurring hydrophobic sediments: Influence on sediment and associated contaminant mobility.

    Science.gov (United States)

    Droppo, I G; Krishnappan, B G; Lawrence, J R

    2016-04-01

    The erosion, transport and fate of sediments and associated contaminants are known to be influenced by both particle characteristics and the flow dynamics imparted onto the sediment. The influential role of bitumen containing hydrophobic sediments and the microbial community on sediment dynamics are however less understood. This study links an experimental evaluation of sediment erosion with measured sediment-associated contaminant concentrations and microbial community analysis to provide an estimate of the potential for sediment to control the erosion, transport and fate of contaminants. Specifically the paper addresses the unique behaviour of hydrophobic sediments and the role that the microbial community associated with hydrophobic sediment may play in the transport of contaminated sediment. Results demonstrate that the hydrophobic cohesive sediment demonstrates unique transport and particle characteristics (poor settling and small floc size). Biofilms were observed to increase with consolidation/biostabilization times and generated a unique microbial consortium relative to the eroded flocs. Natural oil associated with the flocs appeared to be preferentially associated with microbial derived extracellular polymeric substances. While PAHs and naphthenic acid increased with increasing shear (indicative of increasing loads), they tended to decrease with consolidation/biostabilization (CB) time at similar shears suggesting a chemical and/or biological degradation. PAH and napthenic acid degrading microbes decreased with time as well, which may suggest that there was a reduced pool of PAHs and naphthenic acids available resulting in their die off. This study emphasizes the importance that any management strategies and operational assessments for the protection of human and aquatic health incorporate the sediment (suspended and bed sediment) and biological (biofilm) compartments and the energy dynamics within the system in order to better predict contaminant

  2. Genetic influence on the age at onset of asthma: a twin study

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; Duffy, David Lorenzo; Kyvik, Kirsten Ohm

    2010-01-01

    Although the genetics of asthma susceptibility have been frequently explored, little is known about genetic factors that influence the age at onset of asthma.......Although the genetics of asthma susceptibility have been frequently explored, little is known about genetic factors that influence the age at onset of asthma....

  3. Biochar influences the microbial community structure during tomato stalk composting with chicken manure.

    Science.gov (United States)

    Wei, Liu; Shutao, Wang; Jin, Zhang; Tong, Xu

    2014-02-01

    A batch composting study was performed to evaluate effects of biochar addition on dynamics of microbial community and changes of key physic-chemical properties during composting of tomato stalk and chicken manure. As a comparison, two amendments of peat bog and zeolite were selected. The results indicated that biochar addition for composting showed a shorter time to enter thermophilic phase (3 d) and a higher temperature (56°C) and longer duration of thermophilic phase compared to that of peat bog addition, zeolite addition and raw composts. The highest C/N ratio and volatile fatty acids' concentration with biochar addition were obtained. Biochar addition also showed more influence on bacterial community changes than that of peat bog and zeolite. Thus, biochar addition could significantly affect physic-chemical process and microbial community diversity on tomato stalk and chicken manure composting. This study provides valuable information for improving composting and a better understanding of biodegradation processes.

  4. Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review

    Directory of Open Access Journals (Sweden)

    Felipe H. Coutinho

    2015-06-01

    Full Text Available Associations between microorganisms occur extensively throughout Earth’s oceans. Understanding how microbial communities are assembled and how the presence or absence of species is related to that of others are central goals of microbial ecology. Here, we investigate co-occurrence associations between marine prokaryotes by combining 180 new and publicly available metagenomic datasets from different oceans in a large-scale meta-analysis. A co-occurrence network was created by calculating correlation scores between the abundances of microorganisms in metagenomes. A total of 1,906 correlations amongst 297 organisms were detected, segregating them into 11 major groups that occupy distinct ecological niches. Additionally, by analyzing the oceanographic parameters measured for a selected number of sampling sites, we characterized the influence of environmental variables over each of these 11 groups. Clustering organisms into groups of taxa that have similar ecology, allowed the detection of several significant correlations that could not be observed for the taxa individually.

  5. Organic content influences sediment microbial fuel cell performance and community structure.

    Science.gov (United States)

    Zhao, Qing; Li, Ruying; Ji, Min; Ren, Zhiyong Jason

    2016-11-01

    This study constructed sediment microbial fuel cells (SMFCs) with different organic loadings without the amendment of external substrates, and it investigated how such variation affects electricity generation and microbial community structure. Results found sediment characteristics significantly influenced SMFC performance and appropriate organic content is important to maintain stable power outputs. SMFCs with loss of ignition (LOI) of 5% showed the most reliable performance in this study, while high organic content (LOI 10-16%) led to higher but very unstable voltage output because of biogas accumulation and worm activities. SMFCs with low organic content (1-3%) showed low power output. Different bacterial communities were found in SMFCs shown various power generation performance even those with similar organic contents. Thermodesulfovibrionaceae was found closely related to the system startup and Desulfobulbaceae showed great abundance in SMFCs with high power production.

  6. Genetic and environmental influences on food preferences in adolescence12

    Science.gov (United States)

    Herle, Moritz; Shakeshaft, Nicholas

    2016-01-01

    Background: Food preferences vary substantially among adults and children. Twin studies have established that genes and aspects of the shared family environment both play important roles in shaping children’s food preferences. The transition from childhood to adulthood is characterized by large gains in independence, but the relative influences of genes and the environment on food preferences in late adolescence are unknown. Objective: The aim of this study was to quantify the contribution of genetic and environmental influences on food preferences in older adolescents. Design: Participants were 2865 twins aged 18–19 y from the TEDS (Twins Early Development Study), a large population-based cohort of British twins born during 1994–1996. Food preferences were measured by using a self-report questionnaire of 62 individual foods. Food items were categorized into 6 food groups (fruit, vegetables, meat or fish, dairy, starch foods, and snacks) by using factor analysis. Maximum likelihood structural equation modeling established genetic and environmental contributions to variations in preferences for each food group. Results: Genetic factors influenced a significant and substantial proportion of the variation in preference scores of all 6 food groups: vegetables (0.54; 95% CI: 0.47, 0.59), fruit (0.49; 95% CI: 0.43, 0.55), starchy foods (0.32; 95% CI: 0.24, 0.39), meat or fish (0.44; 95% CI: 0.38, 0.51), dairy (0.44; 95% CI: 0.37, 0.50), and snacks (0.43; 95% CI: 0.36, 0.49). Aspects of the environment that are not shared by 2 twins in a family explained all of the remaining variance in food preferences. Conclusions: Food preferences had a moderate genetic basis in late adolescence, in keeping with findings in children. However, by this older age, the influence of the shared family environment had disappeared, and only aspects of the environment unique to each individual twin influenced food preferences. This finding suggests that shared environmental experiences

  7. Influence of human genetic variation on nutritional requirements.

    Science.gov (United States)

    Stover, Patrick J

    2006-02-01

    Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements, giving rise to the new field of nutritional genomics and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. However, because gene-diet interactions are complex and poorly understood, the use of genomic knowledge to adjust population-based dietary recommendations is not without risk. Whereas current recommendations target most of the population to prevent nutritional deficiencies, inclusion of genomic criteria may indicate subpopulations that may incur differential benefit or risk from generalized recommendations and fortification policies. Current efforts to identify gene alleles that affect nutrient utilization have been enhanced by the identification of genetic variations that have expanded as a consequence of selection under extreme conditions. Identification of genetic variation that arose as a consequence of diet as a selective pressure helps to identify gene alleles that affect nutrient utilization. Understanding the molecular mechanisms underlying gene-nutrient interactions and their modification by genetic variation is expected to result in dietary recommendations and nutritional interventions that optimize individual health.

  8. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  9. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  10. Microbial and genetic ecology of tropical Vertisols under intensive chemical farming.

    Science.gov (United States)

    Malhotra, Jaya; Aparna, K; Dua, Ankita; Sangwan, Naseer; Trimurtulu, N; Rao, D L N; Lal, Rup

    2015-01-01

    There are continued concerns on unscientific usage of chemical fertilizers and pesticides, particularly in many developing countries leading to adverse consequences for soil biological quality and agricultural sustainability. In farmers' fields in tropical Vertisols of peninsular India, "high" fertilizer and pesticide usage at about 2.3 times the recommended rates in black gram (Vigna mungo) did not have a deleterious effect on the abundance of culturable microorganisms, associative nitrogen fixers, nitrifiers, and 16S rRNA gene diversity compared to normal rates. However, "very high" application at about five times the fertilizers and 1.5 times pesticides in chilies (Capsicum annuum) adversely affected the populations of fungi, actinomycetes, and ammonifiers, along with a drastic change in the eubacterial community profile and diversity over normal rates. Actinobacteria were dominant in black gram normal (BG1) (47%), black gram high (BG2) (36%), and chili normal (CH1) (30%) and were least in chili very high (CH2) (14%). Geodermatophilus formed 20% of Actinobacteria in BG1 but disappeared in BG2, CH1, and CH2. Asticcacaulis dominated at "very high" input site (CH2). Diversity of nitrogen fixers was completely altered; Dechloromonas and Anaeromyxobacter were absent in BG1 but proliferated well in BG2. There was reduction in rhizobial nifH sequences in BG2 by 46%. Phylogenetic differences characterized by UniFrac and principal coordinate analysis showed that BG2 and CH2 clustered together depicting a common pattern of genetic shift, while BG1 and CH1 fell at different axis. Overall, there were adverse consequences of "very high" fertilizer and pesticide usage on soil microbial diversity and function in tropical Vertisols.

  11. Microbial synthesis of magnetite and Mn-substituted magnetite nanoparticles: influence of bacteria and incubation temperature.

    Science.gov (United States)

    Roh, Yul; Jang, Hee-Dong; Suh, Yongjae

    2007-11-01

    Microbial synthesis of magnetite and metal (Co, Cr, Ni)-substituted magnetites has only recently been reported. The objective of this study was to examine the influence of Mn ion on the microbial synthesis of magnetite nanoparticles. The reductive biotransformation of an akaganeite (beta-FeOOH) or a Mn-substituted (2-20 mol%) akaganeite (Fe(1-x)Mn(x)OOH) by Shewanella loiha (PV-4, 25 degrees C) and Thermoanaerobacter ethanolicus (TOR-39, 60 degrees C) was investigated under anaerobic conditions at circumneutral pH (pH = 7-8). Both bacteria formed magnetite nanoparticles using akaganeite as a magnetite precursor. By comparison of iron minerals formed by PV-4 and TOR-39 using Mn-mixed akaganeite as the precursor, it was shown that PV-4 formed siderite (FeCO3), green rust [Fe2+Fe3+(OH)16CO3 x 4H2O], and magnetite at 25 degrees C, whereas TOR-39 formed mainly nm-sized magnetite at 60 degrees C. The presence of Mn in the magnetite formed by TOR-39 was revealed by energy dispersive X-ray analysis (EDX) is indicative of Mn substitution into magnetite crystals. EDX analysis of iron minerals formed by PV-4 showed that Mn was preferentially concentrated in the siderite and green rust. These results demonstrate that coprecipitated/sorbed Mn induced microbial formation of siderite and green rust by PV-4 at 25 degrees C, but the synthesis of Mn-substituted magnetite nanoparticles proceeded by TOR-39 at 60 degrees C. These results indicate that the bacteria have the ability to synthesize magnetite and Mn-substituted magnetite nano-crystals. Microbially facilitated synthesis of magnetite and metal-substituted magnetites at near ambient temperatures may expand the possible use of specialized ferromagnetic nano-particles.

  12. Genetic influences on Chronic Obstructive Pulmonary Disease - a twin study.

    Science.gov (United States)

    Ingebrigtsen, Truls; Thomsen, Simon F; Vestbo, Jørgen; van der Sluis, Sophie; Kyvik, Kirsten O; Silverman, Edwin K; Svartengren, Magnus; Backer, Vibeke

    2010-12-01

    Genes that contribute to the risk of developing Chronic Obstructive Pulmonary Disease (COPD) have been identified, but an attempt to accurately quantify the total genetic contribution to COPD has to our knowledge never been conducted. Hospital discharge diagnoses data on COPD were analysed in 22,422 Danish twin pairs, 20-71 years of age. The analyses were replicated in a population of 27,668 Swedish twin pairs, 45-108 years of age. A Cox-regression model was applied to the discordant time from the age at first hospital admission for COPD in the co-twin of an affected twin. Latent factor models were used to estimate genetic and environmental effects. The probandwise concordance rate for COPD was higher in monozygotic (MZ) than in dizygotic (DZ) twins, 0.19 vs. 0.07 (p = 0.08) in the Danish population, and 0.20 vs. 0.08 (p = 0.006) in the Swedish population. After adjusting for sex, smoking and age at first hospital admission the risk of developing COPD in the co-twin of an affected twin was higher in MZ than in DZ twins, with hazards ratio 4.3 (95% confidence interval 1.2-15.8, p = 0.03) in Danish twins and 3.4 (1.5-7.7, p = 0.004) in Swedish twins. According to the most parsimonious model, additive genetic factors explained 63% (46-77%) of the individual COPD-susceptibility in the Danish population and 61% (48-72%) in the Swedish population. The susceptibility to develop severe COPD, as defined by hospitalizations, is strongly influenced by genetic factors. Approximately 60% of the individual susceptibility can be explained by genetic factors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA

    Institute of Scientific and Technical Information of China (English)

    XUE Kai; LUO Hai-feng; QI Hong-yan; ZHANG Hong-xun

    2005-01-01

    With the rapid expansion of GEPs(genetically engineered plants), people are more and more concerned about the ecological risks brought by their release. Assessing the effect of GEPs on soil microbial ecology is indispensable to study their ecological risks. In our study, the phospholipids fatty acid(PLFA) method was used to analyze the microbial community of soil samples collected from fields with two types of GEPs-Bt transgenic corn and PVY(potato virus Y) cell protein gene transgenic potato. The principal components analysis(PCA) showed all controls were on the right of related GEPs samples along the PC1 (the first principal component) axis, which means a decrease of fungi in soils with genetically engineered crop since most of PLFAs that are strongly positively correlated with PC1 represent fungi. For samples collected from Bt transgenic cornfield, the ratios of gram-positive to gram-negative bacteria were less than those of controls. For samples of transgenic potato field, these ratios were lower than those of controls when soils were collected from deep layer(20-40 cm), but were higher when soils collected from surface layer(0-20 cm). For soils collected from 0-20 cm, the ratios of fungi to bacteria for all GEPs samples were at the same level. So were such rations for all controls. Changes of soil microbial community in two types of GEPs fields were detected in our study, but the causes and more information still needs further study.

  14. Genetic influences on the acquisition and inhibition of fear.

    Science.gov (United States)

    Wendt, Julia; Neubert, Jörg; Lindner, Katja; Ernst, Florian D; Homuth, Georg; Weike, Almut I; Hamm, Alfons O

    2015-12-01

    As a variant of the Pavlovian fear conditioning paradigm the conditional discrimination design allows for a detailed investigation of fear acquisition and fear inhibition. Measuring fear-potentiated startle responses, we investigated the influence of two genetic polymorphisms (5-HTTLPR and COMT Val(158)Met) on fear acquisition and fear inhibition which are considered to be critical mechanisms for the etiology and maintenance of anxiety disorders. 5-HTTLPR s-allele carriers showed a more stable potentiation of the startle response during fear acquisition. Homozygous COMT Met-allele carriers, which had demonstrated delayed extinction in previous investigations, show deficient fear inhibition in presence of a learned safety signal. Thus, our results provide further evidence that 5-HTTLPR and COMT Val(158)Met genotypes influence the vulnerability for the development of anxiety disorders via different mechanisms.

  15. [Influence of genetic factors on human sexual orientation. Review].

    Science.gov (United States)

    Rodríguez-Larralde, Alvaro; Paradisi, Irene

    2009-09-01

    Human sexual orientation is a complex trait, influenced by several genes, experiential and sociocultural factors. These elements interact and produce a typical pattern of sexual orientation towards the opposite sex. Some exceptions exist, like bisexuality and homosexuality, which seem to be more frequent in males than females. Traditional methods for the genetic study of behavior multifactorial characteristics consist in detecting the presence of familial aggregation. In order to identify the importance of genetic and environmental factors in this aggregation, the concordance of the trait for monozygotic and dizygotic twins and for adopted sibs, reared together and apart, is compared. These types of studies have shown that familial aggregation is stronger for male than for female homosexuality. Based on the threshold method for multifactorial traits, and varying the frequency of homosexuality in the population between 4 and 10%, heritability estimates between 0.27 and 0.76 have been obtained. In 1993, linkage between homosexuality and chromosomal region Xq28 based on molecular approaches was reported. Nevertheless, this was not confirmed in later studies. Recently, a wide search of the genome has given significant or close to significant linkage values with regions 7q36, 8p12 and 10q26, which need to be studied more closely. Deviation in the proportion of X chromosome inactivation in mothers of homosexuals seems to favor the presence of genes related with sexual orientation in this chromosome. There is still much to be known about the genetics of human homosexuality.

  16. Perceived stress has genetic influences distinct from neuroticism and depression.

    Science.gov (United States)

    Rietschel, Liz; Zhu, Gu; Kirschbaum, Clemens; Strohmaier, Jana; Wüst, Stefan; Rietschel, Marcella; Martin, Nicholas G

    2014-11-01

    The present study investigated whether the genetic determinants of neuroticism and depressive symptoms differ from those underlying perceived psychological stress. Multivariate structural equation models, which included age and sex as modifiers, were fitted to the total sample of 798 adolescents and young adults (female, n = 459; mean age 15.5 years). The sample included 139 monozygotic and 241 dizygotic twin pairs. Stress was measured using item response theory (IRT) scores, as derived from the Perceived Stress Scale and/or the Daily Life and Stressors Scale. Neuroticism was measured using the Neo-Five Factor Inventory or the Junior Eysenck Personality Questionnaire, depending on the age of the participant. Depressive symptoms were assessed using the IRT-scores of the Somatic and Psychological Health Report. The results suggest that the genetic effects underlying perceived psychological stress are largely shared with those that influence neuroticism and liability to depressive symptoms. However, separate genetic effects for perceived psychological stress that are not shared with neuroticism and depressive symptoms were also identified. The source of the identified trait specific effects requires further investigation.

  17. Genetic and environmental influences on Chinese language and reading abilities.

    Directory of Open Access Journals (Sweden)

    Bonnie Wing-Yin Chow

    Full Text Available This study investigated the etiology of individual differences in Chinese language and reading skills in 312 typically developing Chinese twin pairs aged from 3 to 11 years (228 pairs of monozygotic twins and 84 pairs of dizygotic twins; 166 male pairs and 146 female pairs. Children were individually given tasks of Chinese word reading, receptive vocabulary, phonological memory, tone awareness, syllable and rhyme awareness, rapid automatized naming, morphological awareness and orthographic skills, and Raven's Coloured Progressive Matrices. All analyses controlled for the effects of age. There were moderate to substantial genetic influences on word reading, tone awareness, phonological memory, morphological awareness and rapid automatized naming (estimates ranged from .42 to .73, while shared environment exerted moderate to strong effects on receptive vocabulary, syllable and rhyme awareness and orthographic skills (estimates ranged from .35 to .63. Results were largely unchanged when scores were adjusted for nonverbal reasoning as well as age. Findings of this study are mostly similar to those found for English, a language with very different characteristics, and suggest the universality of genetic and environmental influences across languages.

  18. Genetic and environmental influences on Chinese language and reading abilities.

    Science.gov (United States)

    Chow, Bonnie Wing-Yin; Ho, Connie Suk-Han; Wong, Simpson Wai-Lap; Waye, Mary M Y; Bishop, Dorothy V M

    2011-02-10

    This study investigated the etiology of individual differences in Chinese language and reading skills in 312 typically developing Chinese twin pairs aged from 3 to 11 years (228 pairs of monozygotic twins and 84 pairs of dizygotic twins; 166 male pairs and 146 female pairs). Children were individually given tasks of Chinese word reading, receptive vocabulary, phonological memory, tone awareness, syllable and rhyme awareness, rapid automatized naming, morphological awareness and orthographic skills, and Raven's Coloured Progressive Matrices. All analyses controlled for the effects of age. There were moderate to substantial genetic influences on word reading, tone awareness, phonological memory, morphological awareness and rapid automatized naming (estimates ranged from .42 to .73), while shared environment exerted moderate to strong effects on receptive vocabulary, syllable and rhyme awareness and orthographic skills (estimates ranged from .35 to .63). Results were largely unchanged when scores were adjusted for nonverbal reasoning as well as age. Findings of this study are mostly similar to those found for English, a language with very different characteristics, and suggest the universality of genetic and environmental influences across languages.

  19. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  20. Early Determinants of Obesity: Genetic, Epigenetic, and In Utero Influences

    Directory of Open Access Journals (Sweden)

    Kyung E. Rhee

    2012-01-01

    Full Text Available There is an emerging body of work indicating that genes, epigenetics, and the in utero environment can impact whether or not a child is obese. While certain genes have been identified that increase one’s risk for becoming obese, other factors such as excess gestational weight gain, gestational diabetes mellitus, and smoking can also influence this risk. Understanding these influences can help to inform which behaviors and exposures should be targeted if we are to decrease the prevalence of obesity. By helping parents and young children change certain behaviors and exposures during critical time periods, we may be able to alter or modify one’s genetic predisposition. However, further research is needed to determine which efforts are effective at decreasing the incidence of obesity and to develop new methods of prevention. In this paper, we will discuss how genes, epigenetics, and in utero influences affect the development of obesity. We will then discuss current efforts to alter these influences and suggest future directions for this work.

  1. Genetic influences on the development of grip strength in adolescence.

    Science.gov (United States)

    Isen, Joshua; McGue, Matt; Iacono, William

    2014-06-01

    Enhanced physical strength is a secondary sex characteristic in males. Sexual dimorphism in physical strength far exceeds sex differences in stature or total body mass, suggesting a legacy of intense sexual selection. Upper-body strength is a particularly promising marker of intrasexual competitiveness in young men. Consequently, it is assumed that sex-influenced gene expression contributes to the development of physical strength. It is unclear, however, whether the underlying sources of individual differences in strength development are comparable across sex. We obtained three measurements of hand-grip strength (HGS) over a six-year period spanning adolescence in male and female same-sex twins (N = 2,513). Biometrical latent growth models were used to partition the HGS variance at age 11 (intercept) and its growth over time (slope) into genetic and environmental components. Results demonstrated that variance around the intercept was highly heritable in both males and females (88% and 79%, respectively). In males, variance around the slope exceeded that of the intercept, while the reverse held for females. Additive genetic effects accounted for most (80%) of the variance around the slope in males, but were of less importance in females (heritability = 28%). Absolute genetic variance around the slope was nearly nine-fold higher in males. This striking disparity suggests that the developmental processes shaping HGS growth are different between the sexes. We propose that this might account for the sex-specific pattern of associations between HGS and external measures (e.g., digit ratio and physical aggression) typically reported in the literature. Our results underscore the role of endogenous androgenic influences in the development of physical strength.

  2. Reaction time inhibition, working memory and 'delay aversion' performance : genetic influences and their interpretation

    NARCIS (Netherlands)

    Kuntsi, Jonna; Rogers, Hannah; Swinard, Greer; Börger, Norbert; van der Meere, Jaap; Rijsdijk, Fruhling; Asherson, Philip

    2006-01-01

    Background. For candidate endophenotypes to be useful for psychiatric genetic research, they first of all need to show significant genetic influences. To address the relative lack of previous data, we set to investigate the extent of genetic and environmental influences on performance in a set of th

  3. Genetic variations strongly influence phenotypic outcome in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Austin S Jelcick

    Full Text Available Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2(-nb1 at embryonic day 18.5 (E18.5 and postnatal day 30.5 (P30.5. Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.

  4. Geochemical Influence on Microbial Diversity in the Warm, Salty, Stinking Spring, Utah, USA

    Science.gov (United States)

    Spear, J. R.

    2012-12-01

    Little is known of the geochemistry and microbiology in the Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake, Utah. The International Geobiology Course of 2012 investigated the geochemistry, lipid abundances, dissolved inorganic carbon (DIC) uptake rates and microbial diversity on different kinds of samples from a number of locations in the spring. The measured pH, temperature, salinity, and sulfide concentration along the 100 m flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM - negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were sub-sampled according to their morphological characteristics; a range from floating to streamer-style in zones of higher flow rates to highly-layered mats in low- or sheet-flow zones. Geochemical characterization of the above plus metals, anions and cations were conducted at each site. Genomic DNA was extracted from each microbial sample / layer, and 16S rRNA genes were amplified and subjected to pyrosequencing. Fatty acids and pigments were extracted from the mat samples / layers and analyzed by liquid chromatography and mass spectrometry for lipid / pigment composition. Bicarbonate uptake rates for mat samples / layers were determined with 24 hour light and dark incubations of 13HCO3-spiked spring water. Microbial diversity varied by site and was generally high in all three domains of life with phototrophs, sulfur oxidizers, sulfate reducers, methanogens, and other bacteria / archaea identified by 16S rRNA gene sequence. Diatoms, identified by both microscopy and lipid analyses were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae and underlying sediments. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were also identified and

  5. Influence of hexavalent chromium on lactate-enriched Hanford groundwater microbial communities.

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Podar, Mircea [ORNL; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction and immobilization of chromate (Cr(VI)) is a plausible bioremediation strategy. However, higher Cr(VI) concentrations may impose stress on native Cr-reducing communities. We sought to determine if Cr(VI) would influence the lactate enriched native microbial community structure and function in groundwater from the Cr contaminated site at Hanford, WA. Steady state continuous flow bioreactors were amended with lactate and Cr(VI) (0.0, 0.1 and 3.0 mg/L). Microbial growth, metabolites, Cr(VI) concentrations, 16S rRNA gene sequences and GeoChip based functional gene composition in bioreactors were monitored for 15 weeks. Temporal trends and some differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) was reduced in the bioreactors. With lactate enrichment, the native communities did not significantly differ between Cr concentrations. Native bacterial communities were diverse, whereas after lactate enrichment, Pelosinus spp., and Sporotalea spp., were the most predominant groups in all bioreactors. Similarly, the Archaea diversity significantly decreased from Methanosaeta (35%), Methanosarcina (17%), Halobacteriales (12%), Methanoregula (8%) and others, to mostly Methanosarcina spp. (95%) after lactate enrichment. Composition of several key functional genes was distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant probes (chrA), Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result the 3.0 mg/L Cr(VI) did not appear to give chromate reducing strains a competitive advantage for proliferation or for increasing Cr-reduction.

  6. Influence of ceramic separator’s characteristics on microbial fuel cell performance

    Directory of Open Access Journals (Sweden)

    Anil N. Ghadge

    2014-12-01

    Full Text Available This study aimed at evaluating the influence of clay properties on the performance of microbial fuel cell made using ceramic separators. Performance of two clayware microbial fuel cells (CMFCs made from red soil (CMFC-1 typically rich in aluminum and silica and black soil (CMFC-2 with calcium, iron and magnesium predominant was evaluated. These MFCs were operated under batch mode using synthetic wastewater. Maximum sustainable volumetric power density of 1.49 W m-3 and 1.12 W m-3 was generated in CMFC-1 and CMFC-2, respectively. During polarization, the maximum power densities normalized to anode surface area of 51.65 mW m-2 and 31.20 mW m-2 were obtained for CMFC-1 and CMFC-2, respectively. Exchange current densities at cathodes of CMFC-1 and CMFC-2 are 3.38 and 2.05 times more than that of respective anodes, clearly indicating that the cathodes supported much faster reaction than the anode. Results of laboratory analysis support the presence of more number of exchangeable cations in red soil, representing higher proton exchange capacity of CMFC-1 than CMFC-2. Higher power generation was observed for CMFC-1 with separator made of red soil. Hence, separators made of red soil were more suitable for fabrication of MFC to generate higher power.

  7. Influence of dormancy on microbial competition under intermittent substrate supply: insights from model simulations.

    Science.gov (United States)

    Stolpovsky, Konstantin; Fetzer, Ingo; Van Cappellen, Philippe; Thullner, Martin

    2016-06-01

    Most natural environments are characterized by frequent changes of their abiotic conditions. Microorganisms can respond to such changes by switching their physiological state between activity and dormancy allowing them to endure periods of unfavorable abiotic conditions. As a consequence, the competitiveness of microbial species is not simply determined by their growth performance under favorable conditions but also by their ability and readiness to respond to periods of unfavorable environmental conditions. The present study investigates the relevance of factors controlling the abundance and activity of individual bacterial species competing for an intermittently supplied substrate. For this purpose, numerical experiments were performed addressing the response of microbial systems to regularly applied feeding pulses. Simulation results show that community dynamics may exhibit a non-trivial link to the frequency of the external constraints and that for a certain combination of these environmental conditions coexistence of species is possible. The ecological implication of our results is that even non-dominant, neglected species can have a strong influence on realized species composition of dominant key species, due to their invisible presence enable the coexistence between important key species and by this affecting provided function of the system.

  8. Influence of anthropogenic activities on microbial and nutrient levels along the Mara River tributaries, Kenya

    Directory of Open Access Journals (Sweden)

    Douglas Nyambane Anyona

    2014-05-01

    Full Text Available Background: A number of factors have a negative impact on natural surface water resources across the world. Although sources of surface water pollution are numerous, anthropogenic activities have been singled out as among the most important and of great concern. The aim of this study was to assess the influence of anthropogenic activities on nutrients and microbial levels along the Amala and Nyangores tributaries of the Mara River in Kenya. Materials and Methods: Four sampling sites along each tributary were specifically selected from which water samples were collected and analyzed for nutrients by use of spectrophotometric techniques, and coliform bacterial presence by a multiple tube fermentation technique. Results: Higher levels of total phosphorus were recorded along the Nyangores than the Amala tributary (P= 0.02. Significant differences in phosphorus levels were recorded between different sites along the Nyangores tributary (P=<0.001 and also along the Amala tributary (P= 0.0036. However, total nitrogen levels varied only within sites along the Nyangores tributary (P<0.0001 but not along the Amala tributary. Similarly, Escherichia coli and total coliform levels varied significantly within Nyangores tributary sites. Sites with frequent and direct human and livestock contact had higher microbial and nutrient levels, indicative of a localized pollution effect. Conclusion: The findings imply that the health of local communities who depend on this water for domestic use might be compromised. As such, regular monitoring, strict enforcement of environmental protection laws, public education and proper sewage disposal is recommended.

  9. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil

    Institute of Scientific and Technical Information of China (English)

    YANG Qingxiang; ZHANG Jing; ZHU Kongfang; ZHANG Hao

    2009-01-01

    The microbial community composition in wheat rhizosphere was analyzed by detecting colony forming units (CFUs) in agar plates. The total CFUs in rhizosphere were 1.04×109/g soil with 9.0×108/g bacteria, 1.37×108/g actinomyces and 3.6×106/g fungi. The 10 dominant bacteria were isolated from wheat rhizosphere and were grouped into genus Bacillus according to their full length 16S rRNA gene sequences. Although belonging to the same genus, the isolated strains exhibited different sensitivities to oxytetracycline. When a series of the rhizosphere soil was exposed under various concentrations of oxytetracycline, the microbial community structure was highly affected with significant decline of CFUs of bacteria and actinomyces (22.2% and 31.7% at 10 mg/kg antibiotic, respectively). This inhibition was clearly enhanced with the increase exposure dosage of antibiotic and could not be eliminated during 30 d incubation. There was no obvious influence of this treatment on fungi population. Among the four soil enzymes (alkaline phosphatase, acidic phosphatase, dehydrogenase and urease), only alkaline phosphatase was sensitive to oxytetracycline exposure with 41.3% decline of the enzyme activity at 10 mg/kg antibiotic and further decrease of 64.3%-80.8% when the dosage over 30 mg/kg.

  10. From mother to daughter. Psychic disease: genetic or environmental influence?

    Directory of Open Access Journals (Sweden)

    Roberto Infrasca

    2011-09-01

    Full Text Available The problem of genetic versus environmental influences in psychiatric disorders is widely discussed in biomedical literature, but remains still controversial. Familiarity has been observed in some disesase, such as obsessive-compulsive disorder and panic attack disorder. In this study we analyse three generations of women, for a total of 4 women (a mother, her two daughters, and a granddaughter followed by our Psychiatric Department for depressive and anxiety disorders. The aim of the study was to assess wheather there are similarities among the clinical status of the four women, and verify the relationship among those disorders. The Minnesota Multiphasic Personality Inventory (MMPI was administered to all the patients and the scores obtained were compared. We found out that the many aspects and psychological traits were present in all the four women. These similarities suggest the presence of a dynamic trans-generational transmission.

  11. Bone response to fluoride exposure is influenced by genetics.

    Directory of Open Access Journals (Sweden)

    Cláudia A N Kobayashi

    Full Text Available Genetic factors influence the effects of fluoride (F on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS, followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05. Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue.

  12. Influence of management practices on microbial nitrogen cyclers in agricultural soils

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; McMillan, Mary; Pereg, Lily

    2016-04-01

    Agricultural land management has great influences on soil properties, in particular on microbial communities, due to their sensitivity to the perturbations of the soils. This is even more relevant in Mediterranean agricultural areas under semi-arid conditions. The Mediterranean belt is suffering from an intense degradation of its soils due to the millennia of intense land use and due to unsustainable management practices. As a consequence this area is suffering from a depletion of N content. In this work we investigated the effect of several traditional agricultural management practices on specific functional groups related to the nitrogen cycle in the soil. A field experiment was performed with orchard orange trees (citrus sinesis) in Eastern Spain to assess the long-term effects of ploughing with inorganic fertilization (PI) and ecological practices (EP) (chipped pruned branches and weeds as well as manure from sheep and goats) on microbes that can undertake nitrogen fixation and denitrification. Nine samples of soil were taken from every treatment, near the drip irrigation point and in a zone without the influence of drip irrigation (between trees row), and total DNA extracted. DNA samples were stored at minus-20°C to be analysed by qPCR. Microbial populations involved in the N biochemical cycle were analysed by targeted amplification of key functional biomarker genes: the abundance of nifH (nitrogen fixation), nirS, nirK and nosZ (denitrification) detected by quantitative PCR (qPCR) has shown significant differences between treatments with higher abundance of all four genes in soils from ecological agricultural treatments. This may indicate that the ecological treatment created conditions that are more suitable for N cyclers in the soil and a better fertility and quality status of these soils.

  13. Genetic and pharmacological factors that influence reproductive aging in nematodes.

    Directory of Open Access Journals (Sweden)

    Stacie E Hughes

    2007-02-01

    Full Text Available Age-related degenerative changes in the reproductive system are an important aspect of aging, because reproductive success is the major determinant of evolutionary fitness. Caenorhabditis elegans is a prominent organism for studies of somatic aging, since many factors that extend adult lifespan have been identified. However, mechanisms that control reproductive aging in nematodes or other animals are not well characterized. To use C. elegans to measure reproductive aging, we analyzed mated hermaphrodites that do not become sperm depleted and monitored the duration and level of progeny production. Mated hermaphrodites display a decline of progeny production that culminates in reproductive cessation before the end of the lifespan, demonstrating that hermaphrodites undergo reproductive aging. To identify factors that influence reproductive aging, we analyzed genetic, environmental, and pharmacological factors that extend lifespan. Dietary restriction and reduced insulin/insulin-like growth factor signaling delayed reproductive aging, indicating that nutritional status and a signaling pathway that responds to environmental stress influence reproductive aging. Cold temperature delayed reproductive aging. The anticonvulsant medicine ethosuximide, which affects neural activity, delayed reproductive aging, indicating that neural activity can influence reproductive aging. Some of these factors decrease early progeny production, but there is no consistent relationship between early progeny production and reproductive aging in strains with an extended lifespan. To directly examine the effects of early progeny production on reproductive aging, we used sperm availability to modulate the level of early reproduction. Early progeny production neither accelerated nor delayed reproductive aging, indicating that reproductive aging is not controlled by use-dependent mechanisms. The implications of these findings for evolutionary theories of aging are discussed.

  14. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  15. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla; Huang, Yurong; Karpen , Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan A.; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  16. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla R.; Huang, Yurong; Karpen, Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  17. Influence of biocrusts coverage on microbial communities from underlying arid lands soils

    Science.gov (United States)

    Anguita-Maeso, Manuel; Miralles*, Isabel; van Wesemael, Bas; Lázaro, Roberto; Ortega, Raúl; García-Salcedo, José Antonio; Soriano**, Miguel

    2017-04-01

    In regions where the water availability limits the plant cover, biological soil crusts are especially essential in the development of an almost continuous living skin mediating the inputs and outputs across the soil surface boundary. However, the entire area is not covered equally and microbial communities from underlying soils might be influenced by biocrust type and the percentage of biocrust coverage. To clarify this question, we have collected underlying soils from biocrusts samples dominated by i) incipient colonization by cyanobacteria, ii) cyanobacteria, biocrusts formed by the lichens: iii) Diploschistes diacapsis and Squamarina lentigera and iv) Lepraria issidiata from Tabernas desert (southeast of Spain) so as to determine the differences in the microbial communities from these underlying soils at two extremes of its spatial distribution range: one with a high percentage of biocrust coverage and fewer degradation and other with a huge degradation and less percentage of biocrust coverage. DNA from these samples was isolated by using a commercial kit and it was taken as template for metagenomic analysis. We conducted a sequencing of the amplicons V4-V5 of the 16S rRNA gene with Next-Generation Sequencing (NGS) Illumina MiSeq platform and a relative quantity of bacteria and fungi were accomplished by quantitative qPCR of rRNA 16S and ITS1-5.8S, respectively. The high biocrust coverage position revealed the highest number of bacteria per gram of soil (1.64E+09 in L. issidiata, in 1.89E+09 D. diacapsis and S. lentigera, 1.63E+09 in cyanobacteria and 2.08E+09 in incipient colonization by cyanobacteria) whereas the less favourable position according to the percentage of biocrust coverage showed fewer amount (1.16E+09 in L. issidiata, 6.98E+08 in D. diacapsis and S. lentigera, 1.46E+09 in cyanobacteria and 7.92E+08 in incipient cyanobacteria biocrust). Similarly, the amount of fungi per gram of soil presented identical correlation ranging from the favourable

  18. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.

    Science.gov (United States)

    Commault, Audrey S; Lear, Gavin; Packer, Michael A; Weld, Richard J

    2013-07-01

    Through their ability to directly transfer electrons to electrodes, Geobacter sp. are key organisms for microbial fuel cell technology. This study presents a simple method to reproducibly select Geobacter-dominated anode biofilms from a mixed inoculum of bacteria using graphite electrodes initially poised at -0.25, -0.36 and -0.42 V vs. Ag/AgCl. The biofilms all produced maximum power density of approximately 270 m Wm(-2) (projected anode surface area). Analysis of 16S rRNA genes and intergenic spacer (ITS) sequences found that the biofilm communities were all dominated by bacteria closely related to Geobacter psychrophilus. Anodes initially poised at -0.25 V reproducibly selected biofilms that were dominated by a strain of G. psychrophilus that was genetically distinct from the strain that dominated the -0.36 and -0.42 V biofilms. This work demonstrates for the first time that closely related strains of Geobacter can have very different competitive advantages at different anode potentials.

  19. Thinning intensity influences on soil microbial and inorganic nitrogen in Pinus densiflora forests, central Korea

    Science.gov (United States)

    Kim, S.; Li, G.; Yun, H. M.; Han, S. H.; Lee, J.; Kim, C.; Lee, S. T.; Son, Y.

    2015-12-01

    With growing considerations for sustainable forest management, examining thinning effects on forest ecosystems becomes one of the principal research focuses. Soil microbial biomass and inorganic nitrogen (N) have, particularly, received increasing attentions, as they are the relevant indices for N availability in forests. Here, we investigated the influences of thinning on soil microbial biomass N (MBN) and inorganic N (NH4+ and NO3-) in two Pinus densiflora forests, central Korea. The thinning from below with different intensities based on stand density (site 1: control, 20%, and 30% thinning; site 2: control, 39%, and 74% thinning) was applied in 2008, and MBN, NH4+, and NO3- at 0-10 cm depth were measured seven years after thinning. The MBN, NH4+, and NO3- concentrations (mg kg-1) of the site 1 were 69.8, 9.8, and 6.3 in the control, 94.6, 9.3, and 4.0 in the 20% thinning plot, and 97.2, 8.4, and 5.2 in the 30% thinning plot, respectively. On the other hand, those of the site 2 were 34.5, 5.4, and 6.3 in the control, 37.3, 4.7, and 7.8 in the 39% thinning plot, and 44.4, 4.4, and 9.2 in the 74% thinning plot, respectively. The MBN of the thinning plots tended to be higher compared to those of the controls, although the analysis of variance reported the significant difference only for the MBN in the site 1 (P0.05). The results of the present study show that the application of thinning could differently affect MBN and inorganic N; accordingly, this difference might alter N availability of the study sites. This study was supported by Forest Practice Research Center, Korea Forest Research Institute.

  20. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs.

    Directory of Open Access Journals (Sweden)

    Yvette Marisa Piceno

    2014-08-01

    Full Text Available A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaska North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24-27°C, Kuparuk (47-70°C, Sag River (80°C, and Ivishak (80-83°C reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited. Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences.

  1. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium.

    Science.gov (United States)

    Molina, M Carmen; González, Natalia; Bautista, L Fernando; Sanz, Raquel; Simarro, Raquel; Sánchez, Irene; Sanz, José L

    2009-11-01

    Polycyclic aromatic hydrocarbons (PAH; naphthalene, anthracene and phenanthrene) degrading microbial consortium C2PL05 was obtained from a sandy soil chronically exposed to petroleum products, collected from a petrochemical complex in Puertollano (Ciudad Real, Spain). The consortium C2PL05 was highly efficient degrading completely naphthalene, phenanthrene and anthracene in around 18 days of cultivation. The toxicity (Microtox method) generated by the PAH and by the intermediate metabolites was reduced to levels close to non-toxic in almost 40 days of cultivation. The identified bacteria from the contaminated soil belonged to gamma-proteobacteria and could be include in Enterobacter and Pseudomonas genus. DGGE analysis revealed uncultured Stenotrophomonas ribotypes as a possible PAH degrader in the microbial consortium. The present work shows the potential use of these microorganisms and the total consortium for the bioremediation of PAH polluted areas since the biodegradation of these chemicals takes place along with a significant decrease in toxicity.

  2. Education modifies genetic and environmental influences on BMI

    DEFF Research Database (Denmark)

    Johnson, Wendy; Kyvik, Kirsten Ohm; Skytthe, Axel

    2011-01-01

    , and education data. Body mass index (BMI = kg weight/ m height(2)) was used to measure degree of obesity. We used quantitative genetic modeling to examine how genetic and shared and nonshared environmental variance in BMI differed by level of education and to estimate how genetic and shared and nonshared...

  3. Choice of Reading Comprehension Test Influences the Outcomes of Genetic Analyses

    Science.gov (United States)

    Betjemann, Rebecca S.; Keenan, Janice M.; Olson, Richard K.; DeFries, John C.

    2011-01-01

    Does the choice of test for assessing reading comprehension influence the outcome of genetic analyses? A twin design compared two types of reading comprehension tests classified as primarily associated with word decoding (RC-D) or listening comprehension (RC-LC). For both types of tests, the overall genetic influence is high and nearly identical.…

  4. Influence of aeolian activities on the distribution of microbial abundance in glacier ice

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2014-10-01

    Full Text Available Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.

  5. Rebellious teens? Genetic and environmental influences on the social attitudes of adolescents.

    Science.gov (United States)

    Abrahamson, Amy C; Baker, Laura A; Caspi, Avshalom

    2002-12-01

    Genetic and environmental influences in social attitudes were investigated in adopted and nonadopted children (N = 654) and their biological and adoptive relatives in the Colorado Adoption Project. Conservatism and religious attitudes were measured in the children annually from ages 12 to 15 and in the parents during the 12-year-old visit. Multivariate genetic model fitting indicated that both conservatism and religious attitudes are strongly influenced by shared-family environmental factors throughout adolescence. In contrast to previous findings from twin studies, which suggest that genetic influence on social attitudes does not emerge until adulthood, the present study detected significant genetic influence in conservatism as early as age 12. There was no evidence of genetic influence, however, on religious attitudes during adolescence.

  6. Genetic and environmental influences on the longitudinal structure of neuroticism: a trait-state approach.

    Science.gov (United States)

    Laceulle, Odilia M; Ormel, Johan; Aggen, Steven H; Neale, Michael C; Kendler, Kenneth S

    2013-09-01

    In this study, we sought to elucidate both stable and changing factors in the longitudinal structure of neuroticism using a behavioral genetic twin design. We tested whether this structure is best accounted for by a trait-state, a trait-only, or a state-only model. In line with classic views on personality, our results revealed substantial trait and state components. The contributions of genetic and environmental influences on the trait component were nearly equal, whereas environmental influences on the state component were much stronger than genetic influences. Although the overall findings were similar for older and younger twins, genetic influences on the trait component were stronger than environmental influences in younger twins, whereas the opposite was found for older twins. The current findings help to elucidate how the complex interplay between genetic and environmental factors contributes to both stability and change in neuroticism.

  7. Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality

    Science.gov (United States)

    Mocali, Stefano; Fabiano, Arturo; Kuramae, Eiko; de Hollander, Matias; Kowalchuck, George; Vignozzi, Nadia; Valboa, Giuseppe; Pastorelli, Roberta; Fornasier, Flavio; Priori, Simone; Costantini, Edoardo

    2014-05-01

    Introduction Despite the economic importance of vineyards in Italy, the wine sector is facing severe challenges from increased global competition and climate changes. The quality of the grape at harvest has a strong direct impact on final wine quality and the strong relationship between wine composition, aroma, taste and soil properties has been outlined in the "Terroir concept". However, information on the impact of soil microbial communities on soil functions, grapevine plants and wine quality is still lacking. Objectives The aim of this study was to explore the composition and the potential functions of soil microbial communities associated to grapevine plants grown in two soils which showed similar physical, chemical and hydrological properties but which provided a different wine quality. Materials and Methods Soils from two sites of the Chianti region in Tuscany (BRO11 and BRO12) cultivated with the grapevine cultivar Sangiovese with contrasting wine quality were examined by means of a structural and functional approach: specifically, GeoChip microarrays, pyrosequencing of 16S rRNA and 18S rRNA genes, enzyme assays and measurements of some soil biological properties, such as microbial biomass C and soil respiration, were carried out. Results Enzyme assays and soil biological analyses revealed a higher biological activity in BRO11 as compared to BRO12. The structure of soil microbial communities, assessed using 16S and 18S rRNA gene-targeted pyrosequencing, revealed a higher presence of Actinobacteria in the BRO12 than in the BRO11 soil where, in contrast, the alfa-Proteobacteria are more abundant. GeoChip microarray analyses revealed a consistent difference in genes involved in S cycling, with a significant overrepresentation of sulfur-oxidation genes in BRO11 and increased levels of sulfate reduction genes BRO12. These results are consistent with the high content of sulfates and the abundance of Firmicutes such as Sulfobacillus thermosulfidooxidans in the BRO

  8. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals

    Science.gov (United States)

    Harris, Stephen H.; Smith, Richard L.; Barker, Charles E.

    2008-01-01

    Lignite and subbituminous coals were investigated for their ability to support microbial methane production in laboratory incubations. Results show that naturally-occurring microorganisms associated with the coals produced substantial quantities of methane, although the factors influencing this process were variable among different samples tested. Methanogenic microbes in two coals from the Powder River Basin, Wyoming, USA, produced 140.5-374.6 mL CH4/kg ((4.5-12.0 standard cubic feet (scf)/ton) in response to an amendment of H2/CO2. The addition of high concentrations (5-10 mM) of acetate did not support substantive methane production under the laboratory conditions. However, acetate accumulated in control incubations where methanogenesis was inhibited, indicating that acetate was produced and consumed during the course of methane production. Acetogenesis from H2/CO2 was evident in these incubations and may serve as a competing metabolic mode influencing the cumulative amount of methane produced in coal. Two low-rank (lignite A) coals from Fort Yukon, Alaska, USA, demonstrated a comparable level of methane production (131.1-284.0 mL CH4/kg (4.2-9.1 scf/ton)) in the presence of an inorganic nutrient amendment, indicating that the source of energy and organic carbon was derived from the coal. The concentration of chloroform-extractable organic matter varied by almost three orders of magnitude among all the coals tested, and appeared to be related to methane production potential. These results indicate that substrate availability within the coal matrix and competition between different groups of microorganisms are two factors that may exert a profound influence on methanogenesis in subsurface coal beds.

  9. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    Science.gov (United States)

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  10. Longitudinal Stability of Genetic and Environmental Influences on Irritability: From Childhood to Young Adulthood.

    Science.gov (United States)

    Roberson-Nay, Roxann; Leibenluft, Ellen; Brotman, Melissa A; Myers, John; Larsson, Henrik; Lichtenstein, Paul; Kendler, Kenneth S

    2015-07-01

    Little is known about genetic influences on juvenile irritability and whether such influences are developmentally stable and/or dynamic. This study examined the temporal pattern of genetic and environmental effects on irritability using data from a prospective, four-wave longitudinal twin study. Parents and their twin children (N=2,620 children) from the Swedish Twin Study of Child and Adolescent Development reported on the children's irritability, defined using a previously identified scale from the Child Behavior Checklist. Genetic effects differed across the sexes, with males exhibiting increasing heritability from early childhood through young adulthood and females exhibiting decreasing heritability. Genetic innovation was also more prominent in males than in females, with new genetic risk factors affecting irritability in early and late adolescence for males. Shared environment was not a primary influence on irritability for males or females. Unique, nonshared environmental factors suggested strong effects early for males followed by an attenuating influence, whereas unique environmental factors were relatively stable for females. Genetic effects on irritability are developmentally dynamic from middle childhood through young adulthood, with males and females displaying differing patterns. As males age, genetic influences on irritability increase while nonshared environmental influences weaken. Genetic contributions are quite strong in females early in life but decline in importance with age. In girls, nonshared environmental influences are fairly stable throughout development.

  11. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Genetic influences on schizophrenia and subcortical brain volumes

    DEFF Research Database (Denmark)

    Franke, Barbara; Stein, Jason L; Ripke, Stephan;

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use...... genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk...... and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between...

  13. Disentangling the effects of genetic, prenatal and parenting influences on children’s cortisol variability

    OpenAIRE

    MARCEAU, KRISTINE; Ram, Nilam; Neiderhiser, Jenae M.; Laurent, Heidemarie K.; Daniel S Shaw; Fisher, Phil; Natsuaki, Misaki N.; Leve, Leslie D.

    2013-01-01

    Developmental plasticity models hypothesize the role of genetic and prenatal environmental influences on the development of the hypothalamic–pituitary–adrenal (HPA) axis and highlight that genes and the prenatal environment may moderate early postnatal environmental influences on HPA functioning. This article examines the interplay of genetic, prenatal and parenting influences across the first 4.5 years of life on a novel index of children’s cortisol variability. Repeated measures data were o...

  14. Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers

    Science.gov (United States)

    Naclerio, Gino; Petrella, Emma; Nerone, Valentina; Allocca, Vincenzo; de Vita, Pantaleone; Celico, Fulvio

    2008-09-01

    The aim of the research was to analyse the influence of a topsoil of pyroclastic origin on microbial contamination of groundwater in a carbonate aquifer and verify the reliability of thermotolerant coliforms and fecal enterococci as bacterial indicators. The research was carried out through hydrogeological and microbiological monitoring at an experimental field site in Italy during two hydrologic years and through column tests in a laboratory. The taxonomic classification of fecal indicators detected in spring water samples was performed using API20 galleries. Fecal enterococci were also identified by means of 16S rRNA gene sequencing. The topsoil of pyroclastic origin significantly retains both thermotolerant coliforms and fecal enterococci. Results of column tests carried out in soil blocks collected randomly within the test site suggest that Escherichia coli was more retained than Enterococcus faecalis, even though this difference is statistically significant in only two out of six soil samples. Thus, a non-uniform difference in retention is expected at field scale. This suggestion is in agreement with the results of the microbiological monitoring. In fact, fecal enterococci were a more reliable indicator than thermotolerant coliforms for detecting contamination at both seasonal springs of the aquifer system, while no significant differences were observed at the perennial spring.

  15. Development of the chick microbiome: How early exposure influences future microbial diversity

    Directory of Open Access Journals (Sweden)

    Anne L Ballou

    2016-01-01

    Full Text Available The concept of improving animal health through improved gut health has existed in food animal production for decades; however, only recently have we had the tools to identify microbes in the intestine associated with improved performance. Currently, little is known about how the avian microbiome develops or the factors that affect its composition. To begin to address this knowledge gap, the present study assessed the development of the cecal microbiome in chicks from hatch to 28 days of age with and without a live Salmonella vaccine and/or probiotic supplement; both are products intended to promote gut health. The microbiome of growing chicks develops rapidly from days 1-3, and the microbiome is primarily Enterobacteriaceae, but Firmicutes increase in abundance and taxonomic diversity starting around day 7. As the microbiome continues to develop, the influence of the treatments becomes stronger. Predicted metagenomic content suggests that functionally, treatment may stimulate more differences at day 14, despite the strong taxonomic differences at day 28. These results demonstrate that these live microbial treatments do impact the development of the bacterial taxa found in the growing chicks; however, additional experiments are needed to understand the biochemical and functional consequences of these alterations.

  16. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays.

    Science.gov (United States)

    Norris, Charlotte E; Preston, Caroline M; Hogg, Karen E; Titus, Brian D

    2011-03-01

    We examined how tannin structure influences reactivity in tannin assays and carbon and nitrogen mineralization. Condensed tannins from the foliage of ten tree and shrub species and from pecan shells (Carya illinoensis) had different proportions of: (a) epicatechin (cis) and catechin (trans) isomers, (b) procyanidin (PC) and prodelphinidin (PD) monomers, and (c) different chain lengths. The response of each tannin to several widely used tannin assays was determined. Although there was some variation in response to proanthocyanidin (butanol/HCl) and Folin Ciocalteu assays, we did not deduce any predictable relationship between tannin structure and response to either assay. There was little variation in protein precipitation among the different tannins. To assess biological activity, six of the tannins were incubated with forest humus for 22 days. We determined that, while PC-based tannins remained at least partly extractable for the duration of the incubation, tannins with a high proportion of PD subunits rapidly became unextractable from soil. There was a positive correlation between net nitrogen mineralization and cis chemical structure. Carbon mineralization was enhanced initially by the addition of tannins to humus, but after 22 days, a negative correlation between the proportion of cis subunits and respiration was determined. Overall, we were not able to demonstrate consistent effects of structure on either microbial mineralization or reactivity to chemical assays; such relationships remain elusive.

  17. Microbial consortium influence upon steel corrosion rate, using polarisation resistance and electrochemical noise techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gayosso, M.J.; Zavala Olivares, G.; Ruiz Ordaz, N.; Juarez Ramirez, C.; Garcia Esquivel, R.; Padilla Viveros, A

    2004-10-01

    The microbiologically influenced corrosion (MIC) is a process, which affects the oil industry, particularly the hydrocarbons extraction, transport and storage. MIC evaluation has been normally based upon microbiological tests, and just a few references mention alternating methods, such as the electrochemical techniques, which can be used as criteria for their evaluation. In this work, two different electrochemical laboratory techniques, polarisation resistance and electrochemical noise were used, in order to determine the corrosion behaviour of a microbial consortium, obtained from a gas transporting pipeline, located in the southeast of Mexico. The bacteria population growth was found to be different for sessile and plancktonic microorganisms. Moreover, long incubation times were required to reach the maximum concentration of sessile bacteria. The electrochemical techniques used in this study exhibited a similar tendency on the corrosion rate behaviour with time, and values above 0.3 mm year{sup -1} were observed at the end of the experiments. The experiments were complemented with surface analysis. Scanning electron microscope observation of APIXL52 steel coupons, exposed to the consortium action, revealed bacteria presence, as well as a damaged steel surface. A type of localized corrosion was observed on the metal surface, and it was associated to the bacteria effect.

  18. Fabrication of Slippery Lubricant-Infused Porous Surface for Inhibition of Microbially Influenced Corrosion.

    Science.gov (United States)

    Wang, Peng; Zhang, Dun; Lu, Zhou; Sun, Shimei

    2016-01-20

    Microbially influenced corrosion (MIC) accelerates the failure of metal in a marine environment. In this research, slippery lubricant-infused porous surface (SLIPS) was designed on aluminum, and its great potential for inhibiting MIC induced by sulfate-reducing bacteria (SRB) was demonstrated in a simulated marine environment. The inhibition mechanism of SLIPS to MIC was proposed based on its effective roles in the suppression of SRB settlement and isolation effect to corrosive metabolites. The liquid-like property is demonstrated to be the major contributor to the suppression effect of SLIPS to SRB settlement. The effects of environmental factors (static and dynamic conditions) and lubricant type to SRB settlement over SLIPS were also investigated. It was indicated that the as-fabricated SLIPS can inhibit the SRB settlement in both static and dynamic marine conditions, and lubricant type presents a negligible effect on the SRB settlement. These results will provide a series of foundational data for the future practical application of SLIPS in the marine environment, and also a lubricant selecting instruction to construct SLIPS for MIC control.

  19. Genetic and environmental influences on impulsivity: A meta-analysis of twin, family and adoption studies

    Science.gov (United States)

    Bezdjian, Serena; Baker, Laura A.; Tuvblad, Catherine

    2011-01-01

    A meta-analysis of twin, family and adoption studies was conducted to estimate the magnitude of genetic and environmental influences on impulsivity. The best fitting model for 41 key studies (58 independent samples from 14 month old infants to adults; N = 27,147) included equal proportions of variance due to genetic (0.50) and non-shared environmental (0.50) influences, with genetic effects being both additive (0.38) and non-additive (0.12). Shared environmental effects were unimportant in explaining individual differences in impulsivity. Age, sex, and study design (twin vs. adoption) were all significant moderators of the magnitude of genetic and environmental influences on impulsivity. The relative contribution of genetic effects (broad sense heritability) and unique environmental effects were also found to be important throughout development from childhood to adulthood. Total genetic effects were found to be important for all ages, but appeared to be strongest in children. Analyses also demonstrated that genetic effects appeared to be stronger in males than in females. Method of assessment (laboratory tasks vs. questionnaires), however, was not a significant moderator of the genetic and environmental influences on impulsivity. These results provide a structured synthesis of existing behavior genetic studies on impulsivity by providing a clearer understanding of the relative genetic and environmental contributions in impulsive traits through various stages of development. PMID:21889436

  20. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils

    NARCIS (Netherlands)

    Yergeau, E.; Bezemer, T.M.; Hedlund, K.; Mortimer, S.R.; Kowalchuk, G.A.; Putten, van der W.H.

    2010-01-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composit

  1. Influence of ionic strength and substratum hydrophobicity on the co-adhesion of oral microbial pairs

    NARCIS (Netherlands)

    vanderMei, HC; Busscher, HJ; Bos, R.R.M.

    1996-01-01

    Co-adhesion between oral microbial pairs (i.e. adhesion of a planktonic micro-organism, University of organism to a sessile organism adhering to a substratum surface) has been described as a highly specific interaction, mediated by stereochemical groups on the interacting microbial cell surfaces, an

  2. Bioclimatic regions influence genetic structure of four Jordanian Stipa species.

    Science.gov (United States)

    Hamasha, H R; Schmidt-Lebuhn, A N; Durka, W; Schleuning, M; Hensen, I

    2013-09-01

    Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi-desert species S. arabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi-desert species (Φ(ST) = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (Φ(ST) = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis (PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations.

  3. Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab

    Science.gov (United States)

    Al-Bachir, M.; Farah, S.; Othman, Y.

    2010-08-01

    Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1-4 °C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0-5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences ( p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.

  4. Genetic and Environmental Influences on Media Use and Communication Behaviors

    Science.gov (United States)

    Kirzinger, Ashley E.; Weber, Christopher; Johnson, Martin

    2012-01-01

    A great deal of scholarly work has explored the motivations behind media consumption and other various communication traits. However, little research has investigated the sources of these motivations and virtually no research considers their potential genetic underpinnings. Drawing on the field of behavior genetics, we use a classical twin design…

  5. Genetic and Environmental Influences on Media Use and Communication Behaviors

    Science.gov (United States)

    Kirzinger, Ashley E.; Weber, Christopher; Johnson, Martin

    2012-01-01

    A great deal of scholarly work has explored the motivations behind media consumption and other various communication traits. However, little research has investigated the sources of these motivations and virtually no research considers their potential genetic underpinnings. Drawing on the field of behavior genetics, we use a classical twin design…

  6. The influence of genetic constitution on migraine drug responses

    DEFF Research Database (Denmark)

    Christensen, Anne Francke; Esserlind, Ann-Louise; Werge, Thomas

    2016-01-01

    a stronger signal when analyzed together. The associations between response to triptans and genetic load and rs2651899 were partially confirmed in the independent sample. CONCLUSION: We show for the first time an association between genetic constitution and migraine drug response. This is a first step toward...

  7. Prenatal and postnatal genetic influence on lung function development

    DEFF Research Database (Denmark)

    Kreiner-Møller, Eskil; Bisgaard, Hans; Bønnelykke, Klaus

    2014-01-01

    BACKGROUND: It is unknown to what extent adult lung function genes affect lung function development from birth to childhood. OBJECTIVE: Our aim was to study the association of candidate genetic variants with neonatal lung function and lung function development until age 7 years. METHODS: Lung...... of methacholine causing a 20% decrease in lung function [PD20]) and with development from birth to age 7 years (FEV0.5/1, FEF50, and PD15/20). RESULTS: The genetic risk scores were not associated with lung function measures at age 1 month, but the FEV1/FVC genetic risk score was associated with reduced FEF50...... function genetic variants identified in adults were not associated with neonatal lung function or bronchial responsiveness but with the development of these lung function measures during early childhood, suggesting a window of opportunity for interventions targeting these genetic mechanisms....

  8. Influence of a microbial phytase and zinc oxide on young pig growth performance and serum minerals.

    Science.gov (United States)

    Walk, C L; Srinongkote, S; Wilcock, P

    2013-01-01

    Crossbred pigs (n=288; average age=21±3 d and BW=7.1±0.2 kg) were used in a 42-d trial to determine the influence of a microbial phytase and various doses of ZnO on growth performance and serum minerals. Pigs (6 castrated males or females/pen) were randomly allotted to treatments in a 2×3 factorial arrangement with 2 dietary levels of a microbial phytase (0 or 2,500 phytase units/kg) and 3 dietary levels of supplemental ZnO [0, 1750, or 3,500 mg/kg ZnO (72% Zn)] with 4 pens of castrated males and 4 pens of females per treatment. Diets were formulated to exceed all nutrient requirements, including Ca and P from d 0 to 21 (phase 1) and d 22 to 42 (phase 2). Growth performance, serum Zn, and serum P were not influenced (P>0.05) by a ZnO×phytase interaction during phase 1, phase 2, or overall (d 0 to 42). Phytase increased (P=0.01) ADFI and improved (P=0.02) ADG in phase 1 and improved (P=0.01) overall ADG, regardless of the level of ZnO supplemented. Zinc oxide supplementation linearly reduced (P=0.05) ADG, and ZnO at 3,500 mg/kg reduced (quadratic, P=0.04) G:F in pigs (phase 2). During phase 1, phytase increased serum Ca, but only in the absence of ZnO supplementation, which resulted in a ZnO×phytase interaction (P=0.02). Serum Zn was increased (linear, Psupplementation increased in the diet (phase 1). In phase 2, serum Ca was reduced (linear, P=0.04) and serum Zn was increased (linear, P=0.02) as ZnO supplementation increased in the diet. Phytase supplementation increased (P=0.009) serum Zn and increased (P=0.003) serum P (phase 1). There was no influence of phytase supplementation on serum minerals in phase 2. In summary, supplemental ZnO reduced growth performance in this experiment. Phytase supplementation improved ADG in Ca- and P-adequate diets regardless of the level of ZnO supplemented, which may be attributed to the reduction of phytate as an antinutrient. In addition, through phytate hydrolysis, phytase reduced phytate-Zn interactions and increased

  9. Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs

    DEFF Research Database (Denmark)

    Høgberg, Ann; Lindberg, Jan; Leser, Thomas

    2004-01-01

    -RFLP). The microbial diversity of the coliform flora of the ileal and rectal samples were defined by biochemical fingerprinting. It was observed that many terminal restriction fragments (TRFs) disappeared when new diets were introduced and that some characteristic TRFs were found in the high and low NSP diets......, respectively. Both the total gut microflora and the coliform flora were influenced by the dietary NSP content....

  10. Effects of genetically modified plants on microbial communities and processes in soil

    NARCIS (Netherlands)

    Bruinsma, M.; Kowalchuk, G.A.; Van Veen, J.A.

    2003-01-01

    The development and use of genetically modified plants (GMPs) has been a topic of considerable public debate in recent years. GMPs hold great promise for improving agricultural output, but the potential for unwanted effects of GMP use is still not fully understood. The majority of studies addressing

  11. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  12. Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank

    Directory of Open Access Journals (Sweden)

    Jessica M. Labonté

    2017-08-01

    Full Text Available Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327 to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae. These variations occur in relation to the type of sediment (clays versus carbonate-rich and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.

  13. Genetic Influences on Suicide and Nonfatal Suicidal Behavior: Twin Study Findings

    Science.gov (United States)

    Pedersen, Nancy L.

    2015-01-01

    It has been well established that suicidal behavior is familial. Twin studies provide a unique opportunity to distinguish genetic effects from other familial influences. Consistent with findings from previous twin studies, including case series and selected samples, data from the population-based Swedish Twin Registry clearly demonstrate the importance of genetic influences on suicide. Twin studies of suicidal ideation and suicide attempts also implicate genetic influences, even when accounting for the effects of psychopathology. Future work is needed to evaluate the possibility of age and gender differences in heritability of suicide and nonfatal suicidal behavior. PMID:20444580

  14. Understanding the influence of the electrode material on microbial fuel cell performance

    Science.gov (United States)

    Sanchez, David V. P.

    In this thesis, I deploy sets of electrodes into microbial fuel cells (MFC), characterize their performance, and evaluate the influence of both platinum catalysts and carbon-based electrodes on current production. The platinum work centers on improving current production by optimizing the use of the catalyst using nano-fabrication techniques. The carbon-electrode work seeks to determine the influence of the bare electrode on biofilm-anode current production. The development of electrodes for MFCs has boomed over the past decade, however, experiments aimed at identifying how catalyst deposition methods and electrode properties influence current production have been limited. The research conducted here is an attempt to expand this knowledge base for platinum catalysts and carbon electrodes. In the initial chapters (4 and 5), I discuss our attempt to decrease catalyst loadings while increasing current production through the use of platinum nanoparticles. The results demonstrate that incorporating platinum nanoparticles throughout the anode and cathode is an efficient means of increasing MFC current production relative to surface deposition because it increases catalyst surface area. The later chapters (chapters 6 and 7) develop an understanding of the importance of electrode properties (i.e. surface area, activation resistance, conductivity, surface morphology) by electrochemically evaluating well-studied anode-respiring pure cultures on different carbon electrode architectures. Two different architectures are produced by using tubular and platelet shaped constituent materials (i.e. carbon fibers and graphene nanoplatelets) and the morphologies of the electrodes are varied by altering the size of the constituent material. The electrodes are characterized and evaluated in MFCs using either Shewanella oneidensis MR-1 or Geobacter sulfurreducens as the innoculant because their bioelectrochemical physiologies are the most documented in the literature. Using the

  15. Genomic and genetic alterations influence the progression of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Stefania Nobili; Lorenzo Bruno; Ida Landini; Cristina Napoli; Paolo Bechi; Francesco Tonelli; Carlos A Rubio; Enrico Mini; Gabriella Nesi

    2011-01-01

    Gastric cancer is one of the leading causes of cancerrelated deaths worldwide, although the incidence has gradually decreased in many Western countries. Twomain gastric cancer histotypes, intestinal and diffuse, are recognised. Although most of the described genetic alterations have been observed in both types, different genetic pathways have been hypothesized. Genetic and epigenetic events, including 1q loss of heterozygosity (LOH), microsatellite instability and hypermethylation, have mostly been reported in intestinal-type gastric carcinoma and its precursor lesions, whereas 17p LOH, mutation or loss of E-cadherin are more often implicated in the development of diffuse-type gastric cancer.

  16. Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery.

    Science.gov (United States)

    Taylor, Erin B; Williams, Mark A

    2010-02-01

    The capacity to study the content and resolve the dynamics of the proteome of diverse microbial communities would help to revolutionize the way microbiologists study the function and activity of microorganisms in soil. To better understand the limitations of a proteomic approach to studying soil microbial communities, we characterized extractable soil microbial proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two methods were utilized to extract proteins from microorganisms residing in a Quitman and Benfield soil: (1) direct extraction of bulk protein from soil and (2) separation of the microorganisms from soil using density gradient centrifugation and subsequent extraction (DGC-EXT) of microbial protein. In addition, glucose and toluene amendments to soil were used to stimulate the growth of a subset of the microbial community. A bacterial culture and bovine serum albumin (BSA) were added to the soil to qualitatively assess their recovery following extraction. Direct extraction and resolution of microbial proteins using SDS-PAGE generally resulted in smeared and unresolved banding patterns on gels. DGC-EXT of microbial protein from soil followed by separation using SDS-PAGE, however, did resolve six to 10 bands in the Benfield but not the Quitman soil. DGC-EXT of microbial protein, but not direct extraction following the addition of glucose and toluene, markedly increased the number of bands (approximately 40) on the gels in both Benfield and Quitman soils. Low recoveries of added culture and BSA proteins using the direct extraction method suggest that proteins either bind to soil organic matter and mineral particles or that partial degradation takes place during extraction. Interestingly, DGC may have been preferentially selected for actively growing cells, as gauged by the 10-100x lower cy19:0/18:1omega7 ratio of the fatty acid methyl esters in the isolated community compared to that for the whole soil. DGC can be used to

  17. How does farmer connectivity influence livestock genetic structure?

    DEFF Research Database (Denmark)

    Berthouly, C; Do, Duy Ngoc; Thévenon, S

    2009-01-01

    Assessing how genes flow across populations is a key component of conservation genetics. Gene flow in a natural population depends on ecological traits and the local environment, whereas for a livestock population, gene flow is driven by human activities. Spatial organization, relationships between...... farmers and their husbandry practices will define the farmer's network and so determine farmer connectivity. It is thus assumed that farmer connectivity will affect the genetic structure of their livestock. To test this hypothesis, goats reared by four different ethnic groups in a Vietnamese province were......, ethnicity and husbandry practices. In this study, we clearly linked the livestock genetic pattern to farmer connectivity and showed the importance of taking into account spatial information in genetic studies....

  18. Genetic and environmental influences on water loss in ostrich eggs

    African Journals Online (AJOL)

    zanellb

    Genetic parameters for ostrich incubation traits in South Africa. Z. Brand. 1,2# ... A feasible selection strategy, however, needs to ... decades extensive research has been carried out on selective breeding to improve production traits in species.

  19. Assessment of the effects of microbially influenced degradation on a massive concrete structure. Final report, Report 5

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D. [Biodegradation Systems, Inc., Idaho Falls, ID (United States)

    1995-07-08

    There is a need to estimate the effect of environmental conditions on construction materials to be used in the repository at Yucca Mountain. Previous reports from this project have demonstrated that it is important to develop an understanding of microbially influenced degradation (MID) development and its influence on massive concrete structures. Further, it has been shown that the most effective way to obtain quantitative data on the effects of MID on the structural integrity of repository concrete is to study manmade, analog structures known to be susceptible to MID. The cooling tower shell located at the Ohaaki Power Station near Wairakei, New Zealand is such a structure.

  20. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique.

    Science.gov (United States)

    Raphael, Kathryn A; Shearman, Deborah C A; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies.

  1. Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Hopkins, William D; Keebaugh, Alaine C; Reamer, Lisa A;

    2014-01-01

    Despite their genetic similarity to humans, our understanding of the role of genes on cognitive traits in chimpanzees remains virtually unexplored. Here, we examined the relationship between genetic variation in the arginine vasopressin V1a receptor gene (AVPR1A) and social cognition in chimpanze....... The collective findings show that AVPR1A polymorphisms are associated with individual differences in performance on a receptive joint attention task in chimpanzees....

  2. Genetic influences on chronic obstructive pulmonary disease - a twin study

    DEFF Research Database (Denmark)

    Sylvan Ingebrigtsen, Truls; Thomsen, Simon Francis; Vestbo, Jørgen

    2010-01-01

    Genes that contribute to the risk of developing Chronic Obstructive Pulmonary Disease (COPD) have been identified, but an attempt to accurately quantify the total genetic contribution to COPD has to our knowledge never been conducted.......Genes that contribute to the risk of developing Chronic Obstructive Pulmonary Disease (COPD) have been identified, but an attempt to accurately quantify the total genetic contribution to COPD has to our knowledge never been conducted....

  3. Genetic influences on Chronic Obstructive Pulmonary Disease - a twin study

    DEFF Research Database (Denmark)

    Ingebrigtsen, Truls; Thomsen, Simon F; Vestbo, Jørgen

    2010-01-01

    Genes that contribute to the risk of developing Chronic Obstructive Pulmonary Disease (COPD) have been identified, but an attempt to accurately quantify the total genetic contribution to COPD has to our knowledge never been conducted.......Genes that contribute to the risk of developing Chronic Obstructive Pulmonary Disease (COPD) have been identified, but an attempt to accurately quantify the total genetic contribution to COPD has to our knowledge never been conducted....

  4. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF

    Science.gov (United States)

    Cong, Yingnan; Chan, Yao-ban; Phillips, Charles A.; Langston, Michael A.; Ragan, Mark A.

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k. Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k. PMID:28154557

  5. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)].

    Science.gov (United States)

    Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A

    2010-06-01

    The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers.

  6. Dual active ionic liquids and organic salts for inhibition of microbially influenced corrosion.

    Science.gov (United States)

    Seter, Marianne; Thomson, Melanie J; Stoimenovski, Jelena; MacFarlane, Douglas R; Forsyth, Maria

    2012-06-18

    We describe a series of novel compounds designed to combat the bacterial growth that leads to microbially induced corrosion on steel in the marine environment. A synergistic effect of the ionic components in these dual active organic salts is demonstrated.

  7. Reconstructing the Genetic Potential of the Microbially-Mediated Nitrogen Cycle in a Salt Marsh Ecosystem

    Science.gov (United States)

    Dini-Andreote, Francisco; Brossi, Maria Julia de L.; van Elsas, Jan Dirk; Salles, Joana F.

    2016-01-01

    Coastal ecosystems are considered buffer zones for the discharge of land-derived nutrients without accounting for potential negative side effects. Hence, there is an urgent need to better understand the ecological assembly and dynamics of the microorganisms that are involved in nitrogen (N) cycling in such systems. Here, we employed two complementary methodological approaches (i.e., shotgun metagenomics and quantitative PCR) to examine the distribution and abundance of selected microbial genes involved in N transformations. We used soil samples collected along a well-established pristine salt marsh soil chronosequence that spans over a century of ecosystem development at the island of Schiermonnikoog, The Netherlands. Across the examined soil successional stages, the structure of the populations of genes involved in N cycling processes was strongly related to (shifts in the) soil nitrogen levels (i.e., NO3−, NH4+), salinity and pH (explaining 73.8% of the total variation, R2 = 0.71). Quantification of the genes used as proxies for N fixation, nitrification and denitrification revealed clear successional signatures that corroborated the taxonomic assignments obtained by metagenomics. Notably, we found strong evidence for niche partitioning, as revealed by the abundance and distribution of marker genes for nitrification (ammonia-oxidizing bacteria and archaea) and denitrification (nitrite reductase nirK, nirS and nitrous oxide reductase nosZ clades I and II). This was supported by a distinct correlation between these genes and soil physico-chemical properties, such as soil physical structure, pH, salinity, organic matter, total N, NO3−, NH4+ and SO42−, across four seasonal samplings. Overall, this study sheds light on the successional trajectories of microbial N cycle genes along a naturally developing salt marsh ecosystem. The data obtained serve as a foundation to guide the formulation of ecological models that aim to effectively monitor and manage pristine

  8. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control

    OpenAIRE

    Anthony G. Fane; Bing Wu

    2012-01-01

    Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that inf...

  9. Genetic influence on blood pressure measured in the office, under laboratory stress and during real life

    National Research Council Canada - National Science Library

    Wang, Xiaoling; Ding, Xiuhua; Su, Shaoyong; Harshfield, Gregory; Treiber, Frank; Snieder, Harold

    To determine to what extent the genetic influences on blood pressure (BP) measured in the office, under psychologically stressful conditions in the laboratory and during real life are different from each other...

  10. Shared Genetic Influences on Negative Emotionality and Major Depression/Conduct Disorder Comorbidity

    Science.gov (United States)

    Tackett, Jennifer L.; Waldman, Irwin D.; Van Hulle, Carol A.; Lahey, Benjamin B.

    2011-01-01

    Objective: To investigate whether genetic contributions to major depressive disorder and conduct disorder comorbidity are shared with genetic influences on negative emotionality. Method: Primary caregivers of 2,022 same- and opposite-sex twin pairs 6 to 18 years of age comprised a population-based sample. Participants were randomly selected across…

  11. Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans

    NARCIS (Netherlands)

    Gutteling, E.W.; Doroszuk, A.; Riksen, J.A.G.; Prokop, Z.; Reszka, J.; Kammenga, J.E.

    2007-01-01

    Empirical evidence is mounting to suggesting that genetic correlations between life-history traits are environment specific. However, detailed knowledge about the loci underlying genetic correlations in different environments is scant. Here, we studied the influence of temperature (12°C and 24°C) on

  12. Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans

    NARCIS (Netherlands)

    Gutteling, E.W.; Doroszuk, A.; Riksen, J.A.G.; Prokop, Z.; Reszka, J.; Kammenga, J.E.

    2007-01-01

    Empirical evidence is mounting to suggesting that genetic correlations between life-history traits are environment specific. However, detailed knowledge about the loci underlying genetic correlations in different environments is scant. Here, we studied the influence of temperature (12°C and 24°C) on

  13. Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo

    2016-01-01

    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886–1994. Although genetic v...

  14. Twin Studies in Autism: What Might They Say about Genetic and Environmental Influences

    Science.gov (United States)

    Anderson, George M.

    2012-01-01

    Genetic and epigenetic differences exist within monozygote twin-pairs and might be especially important in the expression of autism. Assuming phenotypic differences between monozygotic twins are due to environmental influences may lead to mistaken conclusions regarding the relative genetic and environmental contribution to autism risk.

  15. Shared Genetic Influences on Negative Emotionality and Major Depression/Conduct Disorder Comorbidity

    Science.gov (United States)

    Tackett, Jennifer L.; Waldman, Irwin D.; Van Hulle, Carol A.; Lahey, Benjamin B.

    2011-01-01

    Objective: To investigate whether genetic contributions to major depressive disorder and conduct disorder comorbidity are shared with genetic influences on negative emotionality. Method: Primary caregivers of 2,022 same- and opposite-sex twin pairs 6 to 18 years of age comprised a population-based sample. Participants were randomly selected across…

  16. Children's History of Speech-Language Difficulties: Genetic Influences and Associations with Reading-Related Measures

    Science.gov (United States)

    DeThorne, Laura Segebart; Hart, Sara A.; Petrill, Stephen A.; Deater-Deckard, Kirby; Thompson, Lee Anne; Schatschneider, Chris; Davison, Megan Dunn

    2006-01-01

    Purpose: This study examined (a) the extent of genetic and environmental influences on children's articulation and language difficulties and (b) the phenotypic associations between such difficulties and direct assessments of reading-related skills during early school-age years. Method: Behavioral genetic analyses focused on parent-report data…

  17. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  18. Well-being & psychological distress : genetic and environmental influences on stability, change, and covariance

    OpenAIRE

    2007-01-01

    An important goal to psychological research is to advance knowledge on development and sustenance of positive mental health. This study is the first large scale twin study investigating the genetic and environmental influences on stability and change in both psychological well-being and distress during the developmental juncture of young adulthood. The study also aims to illuminate the extent to which genetic and environmental influences on indicators of well-being and distress are overlappin...

  19. Influence Factors on Consumers’ Cognition Level to Genetically Modified Food-taking Huangshi as an Example

    OpenAIRE

    Ruishan Chen; Yazhou Xiong; Jing Mo

    2015-01-01

    This study aims to analyze the influence factors on consumers’ cognition level to genetically modified food and improve the consumers’ cognition level. In recent years, genetically modified foods in people’s daily life are becoming more and more common, but there is a lot of controversy about them. Based on the analysis of influence factors on consumers’ cognition level to GMF, a comprehensive system is established from four aspects, including the consumers’ personal characteristics, social-e...

  20. Genetic and environmental factors influencing the Placental Growth Factor (PGF) variation in two populations

    DEFF Research Database (Denmark)

    Sorice, Rossella; Ruggiero, Daniela; Nutile, Teresa

    2012-01-01

    . However, to date, no information is available regarding the genetics of PGF variability. Furthermore, even though the effect of environmental factors (e.g.: cigarette smoking) on angiogenesis has been explored, no data on the influence of these factors on PGF levels have been reported so far. Here we have...... strongly replicated in the Danish sample. These results, for the first time, support the hypothesis of the presence of genetic and environmental factors influencing PGF plasma variability....

  1. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  2. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.

    Science.gov (United States)

    Almatouq, Abdullah; Babatunde, Akintunde O

    2016-03-29

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.

  3. Influence of Pig Slurry on Microbial and Biochemical Characteristics of Soil in Albacete Region, SE Spain

    Science.gov (United States)

    Halil Yanardaǧ, Ibrahim

    2013-04-01

    Soil quality is very important in terms of agricultural sustainability, ecosystem and terrestrial carbon (C) cycle. In turn, soil microbial and biochemical characteristics are indicative of nutrient cycling and soil organic matter dynamics. We investigated the effects of the pig slurries (raw pig slurry (RPS) and treated pig slurry (TPS) from liquid and solid feeding diets) on microbial and biochemical characteristics of soil under barley cropping system. Application doses of slurries are identified with legal doses of Castilla La Mancha Region, which is 210 kg N ha-1 year-1. Microbial biomass C, soluble C, black C and three soil enzymes (β-Glucosidase, β-galactosidase and Arylesterase enzymes) are studied to determine effect slurry on soil biochemical characteristics, which are very important in terms of C cycle in soil. Black carbon content and β-Glucosidase enzyme activities are increased with all pig slurry applications from liquid and traditional feeding diet, as well as microbial biomass and organic carbon content and β-galactosidase enzyme activities are increased with slurry from liquid feeding diet doses. However, pig slurry application from liquid feeding diet doses have increased yield, quality, length and total biomass content of barley. Bioavailable metal contents are increased with all slurry application and with using high doses of slurry can be caused soil pollution. Pig slurries from liquid feeding diet had positive impacts on microbial and biochemical characteristics in terms of soil quality in comparison to the different feeding diets. PS addition to soil had a very significant stimulating effect on the enzyme activities, microbial biomass, soluble and black C compared with different kind of PS and control plots on Mediterranean soil in barley monoculture. This effect may originate from the organic C, N, P and S compounds added with PS. The highest enzyme activity and microbial biomass were observed on the soil samples from the RPS treatment

  4. Community acquired pneumonia: genetic variants influencing systemic inflammation.

    Science.gov (United States)

    Ferrer Agüero, J M; Millán, S; Rodríguez de Castro, F; Martín-Loeches, I; Solé Violán, J

    2014-01-01

    The inflammatory response depends on several factors, including pathogenicity and duration of the stimulus, and also on the balance between inflammatory and antiinflammatory response. Several studies have presented evidence of the importance of genetic factors in severe infections. The innate immune response prevents the invasion and spread of pathogens during the first hours after infection. Each of the different processes involved in innate immunity may be affected by genetic polymorphisms, which can result in susceptibility or resistance to infection. The results obtained in the different studies do not irrefutably prove the role or function of a gene in the pathogenesis of respiratory infections. However, they can generate new hypotheses, suggest new candidate genes based on their role in the inflammatory response, and constitute a first step in understanding the underlying genetic factors. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  5. Shared Genetic Factors Influence Amygdala Volumes and Risk for Alcoholism

    Science.gov (United States)

    Dager, Alecia D; McKay, D Reese; Kent, Jack W; Curran, Joanne E; Knowles, Emma; Sprooten, Emma; Göring, Harald HH; Dyer, Thomas D; Pearlson, Godfrey D; Olvera, Rene L; Fox, Peter T; Lovallo, William R; Duggirala, Ravi; Almasy, Laura; Blangero, John; Glahn, David C

    2015-01-01

    Alcohol abuse and dependence (alcohol use disorders, AUDs) are associated with brain shrinkage. Subcortical structures including the amygdala, hippocampus, ventral striatum, dorsal striatum, and thalamus subserve reward functioning and may be particularly vulnerable to alcohol-related damage. These structures may also show pre-existing deficits impacting the development and maintenance of AUD. It remains unclear whether there are common genetic features underlying both subcortical volumes and AUD. In this study, structural brain images were acquired from 872 Mexican-American individuals from extended pedigrees. Subcortical volumes were obtained using FreeSurfer, and quantitative genetic analyses were performed in SOLAR. We hypothesized the following: (1) reduced subcortical volumes in individuals with lifetime AUD relative to unrelated controls; (2) reduced subcortical volumes in individuals with current relative to past AUD; (3) in non-AUD individuals, reduced subcortical volumes in those with a family history of AUD compared to those without; and (4) evidence for common genetic underpinnings (pleiotropy) between AUD risk and subcortical volumes. Results showed that individuals with lifetime AUD showed larger ventricular and smaller amygdala volumes compared to non-AUD individuals. For the amygdala, there were no differences in volume between current vs past AUD, and non-AUD individuals with a family history of AUD demonstrated reductions compared to those with no such family history. Finally, amygdala volume was genetically correlated with the risk for AUD. Together, these results suggest that reduced amygdala volume reflects a pre-existing difference rather than alcohol-induced neurotoxic damage. Our genetic correlation analysis provides evidence for a common genetic factor underlying both reduced amygdala volumes and AUD risk. PMID:25079289

  6. Shared genetic factors influence amygdala volumes and risk for alcoholism.

    Science.gov (United States)

    Dager, Alecia D; McKay, D Reese; Kent, Jack W; Curran, Joanne E; Knowles, Emma; Sprooten, Emma; Göring, Harald H H; Dyer, Thomas D; Pearlson, Godfrey D; Olvera, Rene L; Fox, Peter T; Lovallo, William R; Duggirala, Ravi; Almasy, Laura; Blangero, John; Glahn, David C

    2015-01-01

    Alcohol abuse and dependence (alcohol use disorders, AUDs) are associated with brain shrinkage. Subcortical structures including the amygdala, hippocampus, ventral striatum, dorsal striatum, and thalamus subserve reward functioning and may be particularly vulnerable to alcohol-related damage. These structures may also show pre-existing deficits impacting the development and maintenance of AUD. It remains unclear whether there are common genetic features underlying both subcortical volumes and AUD. In this study, structural brain images were acquired from 872 Mexican-American individuals from extended pedigrees. Subcortical volumes were obtained using FreeSurfer, and quantitative genetic analyses were performed in SOLAR. We hypothesized the following: (1) reduced subcortical volumes in individuals with lifetime AUD relative to unrelated controls; (2) reduced subcortical volumes in individuals with current relative to past AUD; (3) in non-AUD individuals, reduced subcortical volumes in those with a family history of AUD compared to those without; and (4) evidence for common genetic underpinnings (pleiotropy) between AUD risk and subcortical volumes. Results showed that individuals with lifetime AUD showed larger ventricular and smaller amygdala volumes compared to non-AUD individuals. For the amygdala, there were no differences in volume between current vs past AUD, and non-AUD individuals with a family history of AUD demonstrated reductions compared to those with no such family history. Finally, amygdala volume was genetically correlated with the risk for AUD. Together, these results suggest that reduced amygdala volume reflects a pre-existing difference rather than alcohol-induced neurotoxic damage. Our genetic correlation analysis provides evidence for a common genetic factor underlying both reduced amygdala volumes and AUD risk.

  7. Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs

    DEFF Research Database (Denmark)

    Høgberg, Ann; Lindberg, Jan; Leser, Thomas;

    2004-01-01

    were collected from the ileum, via intestinal post valve T-caecum (PVTC) cannulas surgically inserted at the ileo-caecal ostium, and from the rectum. The total microbial flora of the ileal samples were analysed for by defining base pair length with terminal restriction fraction length polymorphism (T......-RFLP). The microbial diversity of the coliform flora of the ileal and rectal samples were defined by biochemical fingerprinting. It was observed that many terminal restriction fragments (TRFs) disappeared when new diets were introduced and that some characteristic TRFs were found in the high and low NSP diets......, respectively. Both the total gut microflora and the coliform flora were influenced by the dietary NSP content....

  8. Microbial colonization of tailed and tailless intrauterine contraceptive devices: influence of the mode of insertion in the rabbit.

    Science.gov (United States)

    Jacques, M; Olson, M E; Costerton, J W

    1986-03-01

    An experimental rabbit model was developed to study the microbial colonization of intrauterine contraceptive devices. Tailed and tailless devices were surgically inserted into into the uterus by two different routes: surgically, directly into the uterine horn, thus avoiding contact with the vaginal and cervical microfloras, or via the vagina and cervix. After 1 to 8 weeks the devices were recovered and prepared for scanning electron microscopy. The surfaces of surgically inserted devices remained uncolonized all through the experiment whereas in those inserted via the cervix microorganisms colonized the core surface as early as 2 weeks after insertion. Our data suggest that in our experimental conditions the mode of insertion appears to be the major factor influencing the microbial colonization of intrauterine contraceptive devices and that the presence of a tail does not seem to play a significant role.

  9. Obesity among Black Adolescent Girls: Genetic, Psychosocial, and Cultural Influences

    Science.gov (United States)

    Alleyne, Sylvan I.; LaPoint, Velma

    2004-01-01

    This article focuses on the causes, consequences, and prevention of obesity among a subgroup of the American population, Black adolescent girls. Using an ecological perspective on obesity among Black adolescent girls, including feminist-womanist perspectives and historical and medical sociological perspectives, the authors discuss genetic,…

  10. Obesity among Black Adolescent Girls: Genetic, Psychosocial, and Cultural Influences

    Science.gov (United States)

    Alleyne, Sylvan I.; LaPoint, Velma

    2004-01-01

    This article focuses on the causes, consequences, and prevention of obesity among a subgroup of the American population, Black adolescent girls. Using an ecological perspective on obesity among Black adolescent girls, including feminist-womanist perspectives and historical and medical sociological perspectives, the authors discuss genetic,…

  11. Genetic variation may influence the development of persistent postsurgical pain

    DEFF Research Database (Denmark)

    Jeppesen, Maja Haunstrup; Gögenur, Ismail

    2014-01-01

    Persistent postsurgical pain is a major clinical problem. It is not fully understood why some patients develop persistent postsurgical pain while others do not. The genetic profile might play an important role in this development. In this article, we summarize the existing studies examining...

  12. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale.

    Science.gov (United States)

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-05-12

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity.

  13. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology?

    Science.gov (United States)

    Rylott, Elizabeth L; Johnston, Emily J; Bruce, Neil C

    2015-11-01

    It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms

    Science.gov (United States)

    Awate, Bhushan; Steidl, Rebecca J.; Hamlischer, Thilo; Reguera, Gemma

    2017-07-01

    Unwanted metabolites produced during fermentations reduce titers and productivity and increase the cost of downstream purification of the targeted product. As a result, the economic feasibility of otherwise attractive fermentations is low. Using ethanol fermentation by the consolidated bioprocessing cellulolytic bacterium Cellulomonas uda, we demonstrate the effectiveness of anodic electro-fermentations at maximizing titers and productivity in a single-chamber microbial electrolysis cell (SCMEC) without the need for metabolic engineering of the fermentative microbe. The performance of the SCMEC platform relied on the genetic improvements of anode biofilms of the exoelectrogen Geobacter sulfurreducens that prevented the oxidation of cathodic hydrogen and improved lactate oxidation. Furthermore, a hybrid bioanode was designed that maximized the removal of organic acids in the fermentation broth. The targeted approach increased cellobiose consumption rates and ethanol titers, yields, and productivity three-fold or more, prevented pH imbalances and reduced batch-to-batch variability. In addition, the sugar substrate was fully consumed and ethanol was enriched in the broth during the electro-fermentation, simplifying its downstream purification. Such improvements and the possibility of scaling up SCMEC configurations highlight the potential of anodic electro-fermentations to stimulate fermentative bacteria beyond their natural capacity and to levels required for industrial implementation.

  15. Genetic and environmental influences on oxidative damage assessed in elderly Danish twins

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Ribel-Madsen, Rasmus; Henriksen, Trine;

    2011-01-01

    -IsoP-M) was measured using liquid chromatography-tandem mass spectrometry. The environmental influence on nucleic acid oxidation and lipid peroxidation was predominant, leaving only little influence from genetic factors, as evidenced by no differences in intraclass correlations between monozygotic (MZ...

  16. Spatial P heterogeneity in forest soil: Influence on microbial P uptake and community structure

    Science.gov (United States)

    Zilla, Thomas; Angulo-Schipper, Bridith; Méndez, Juan Carlos; Dippold, Michaela A.; Kuzyakov, Yakov; Spielvogel, Sandra

    2017-04-01

    Other than nitrogen, phosphorus (P) is the most important growth limiting nutrient in soils. Yet, little information is available concerning the spatial heterogeneity of P content in forest soils. More so, the effects of a homogeneous vs. heterogeneous soil P distribution on microbial P acquisition and community structure have yet to be determined. Thus, a rhizotron experiment based on a P-deficient forest soil was conducted to investigate competitive P uptake strategies of microbes. F. sylvatica-bearing rhizotrons were labeled with Fe33PO4, a relatively immobile P source native to the study soil. Homogeneous and heterogeneous P patterns were created to study the effects of spatial P heterogeneity on plant and microbial P acquisition. P mobilization by microorganisms was tracked by an improved 33P-PLFA method, linking 33P incorporation in microbes with changes in microbial community structure in soils in situ. The microbial P uptake was enhanced in rhizotrons with high P availability and in those with a patchy P distribution. Characteristic PLFAs indicate a congregation of beech-associated ectomycorrhizal fungi in P-rich patches. These ectomycorrhizal fungi are likely to strongly increase P mobilization from the used Fe33PO4 in high P habitats. In contrast, habitats with low P availability require a more complex microbial community structure without a dominant group to mobilize this inaccessible P source. Therefore, hotspots of P are likely to promote the efforts of fungal hyphae for P mobilization - an effect which decreases with lower P content. Additionally, gram positive and negative bacteria exhibit a vastly higher P uptake under increasingly patchy P distributions. However, they form a smaller portion of the microbial community than in homogeneously P enriched rhizotrons, suggesting that filamentous organisms benefit from the patchy P distribution. Thus, only a heterogeneous P distribution promotes P acquisition of forest microbial communities from mineral P

  17. Genetic influence on inflammation variables in the elderly

    DEFF Research Database (Denmark)

    de Maat, Moniek P M; Bladbjerg, Else Marie; Hjelmborg, Jacob v. B.

    2004-01-01

    BACKGROUND: Inflammation variables (C-reactive protein [CRP], fibrinogen, and soluble intercellular adhesion molecule-1 [sICAM-1]) have been identified as risk factors for cardiovascular disease. It is still not known how much the regulation of inflammatory risk factors is determined by genetic...... factors, and the aim of this study was to determine the heritability of these inflammation variables and of the acute phase regulating cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) at older ages. METHODS AND RESULTS: The heritability of CRP, fibrinogen, sICAM-1, IL-6, and TNF...... factors accounted for 20% to 55% of the variation in plasma levels of the inflammation variables. The highest heritability was found for sICAM-1. The genetic polymorphisms we studied explained only a small, insignificant part of the heritability. CONCLUSIONS: This study in elderly twins provides evidence...

  18. Differential genetic and environmental influences on developmental trajectories of antisocial behavior from adolescence to young adulthood.

    Science.gov (United States)

    Zheng, Yao; Cleveland, H Harrington

    2015-12-01

    Little research has investigated differential genetic and environmental influences on different developmental trajectories of antisocial behavior. This study examined genetic and environmental influences on liabilities of being in life-course-persistent (LCP) and adolescent-limited (AL) type delinquent groups from adolescence to young adulthood while considering nonviolent and violent delinquency subtypes and gender differences. A genetically informative sample (n = 356, 15-16 years) from the first three waves of In-Home Interview of the National Longitudinal Study of Adolescent to Adult Health was used, with 94 monozygotic and 84 dizygotic pairs of same-sex twins (50% male). Biometric liability threshold models were fit and found that the male-specific LCP type class, chronic, showed more genetic influences, while the AL type classes, decliner and desister, showed more environmental influences. Genetic liability and shared environment both influence the persistence of antisocial behavior. The development of female antisocial behavior appears to be influenced more by shared environment.

  19. Using an adoption design to separate genetic, prenatal, and temperament influences on toddler executive function.

    Science.gov (United States)

    Leve, Leslie D; DeGarmo, David S; Bridgett, David J; Neiderhiser, Jenae M; Shaw, Daniel S; Harold, Gordon T; Natsuaki, Misaki N; Reiss, David

    2013-06-01

    Poor executive functioning has been implicated in children's concurrent and future behavioral difficulties, making work aimed at understanding processes related to the development of early executive function (EF) critical for models of developmental psychopathology. Deficits in EF have been associated with adverse prenatal experiences, genetic influences, and temperament characteristics. However, our ability to disentangle the predictive and independent effects of these influences has been limited by a dearth of genetically informed research designs that also consider prenatal influences. The present study examined EF and language development in a sample of 361 toddlers who were adopted at birth and reared in nonrelative adoptive families. Predictors included genetic influences (as inherited from birth mothers), prenatal risk, and growth in child negative emotionality. Structural equation modeling indicated that the effect of prenatal risk on toddler effortful attention at age 27 months became nonsignificant once genetic influences were considered in the model. In addition, genetic influences had unique effects on toddler effortful attention. Latent growth modeling indicated that increases in toddler negative emotionality from 9 to 27 months were associated with poorer delay of gratification and poorer language development. Similar results were obtained in models incorporating birth father data. Mechanisms of intergenerational transmission of EF deficits are discussed.

  20. A genetic variant near olfactory receptor genes influences cilantro preference

    OpenAIRE

    Eriksson, Nicholas; Wu, Shirley; Do, Chuong B.; Kiefer, Amy K.; Joyce Y Tung; Mountain, Joanna L.; Hinds, David A.; Francke, Uta

    2012-01-01

    The leaves of the Coriandrum sativum plant, known as cilantro or coriander, are widely used in many cuisines around the world. However, far from being a benign culinary herb, cilantro can be polarizing---many people love it while others claim that it tastes or smells foul, often like soap or dirt. This soapy or pungent aroma is largely attributed to several aldehydes present in cilantro. Cilantro preference is suspected to have a genetic component, yet to date nothing is known about specific ...

  1. Isolation and Characterization of Mobile Genetic Elements from Microbial Assemblages Obtained from the Field Research Center Site

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Sobecky; Cassie Hodges; Kerri Lafferty; Mike Humphreys; Melanie Raimondo; Kristin Tuttle; Tamar Barkay

    2004-03-17

    Considerable knowledge has been gained from the intensive study of a relatively limited group of bacterial plasmids. Recent efforts have begun to focus on the characterization of, at the molecular level, plasmid populations and associated mobile genetic elements (e.g., transposons, integrons) occurring in a wider range of aquatic and terrestrial habitats. Surprisingly, however, little information is available regarding the incidence and distribution of mobile genetic elements extant in contaminated subsurface environments. Such studies will provide greater knowledge on the ecology of plasmids and their contributions to the genetic plasticity (and adaptation) of naturally occurring subsurface microbial communities. We requested soil cores from the DOE NABIR Field Research Center (FRC) located on the Oak Ridge Reservation. The cores, received in February 2003, were sampled from four areas on the Oak Ridge Site: Area 1, Area 2, Area 3 (representing contaminated subsurface locales) and the background reference sites. The average core length (24 in) was subdivided into three profiles and soil pH and moisture content were determined. Uranium concentration was also determined in bulk samples. Replicate aliquots were fixed for total cell counts and for bacterial isolation. Four different isolation media were used to culture aerobic and facultative microbes from these four study areas. Colony forming units ranged from a minimum of 100 per gram soil to a maximum of 10,000 irrespective of media composition used. The vast majority of cultured subsurface isolates were gram-positive isolates and plasmid characterization was conducted per methods routinely used in the Sobecky laboratory. The percentage of plasmid incidence ranged from 10% to 60% of all isolates tested. This frequency appears to be somewhat higher than the incidence of plasmids we have observed in other habitats and we are increasing the number of isolates screened to confirm this observation. We are also

  2. Epilepsy After Febrile Seizures: Twins Suggest Genetic Influence.

    Science.gov (United States)

    Seinfeld, Syndi A; Pellock, John M; Kjeldsen, Marianne J; Nakken, Karl Otto; Corey, Linda A

    2016-02-01

    A history of complex febrile seizures can increase the risk of epilepsy, but the role of genetic factors is unclear. This analysis evaluated the relationship between febrile seizures and epilepsy. Information on the history of seizures was obtained by a questionnaire from twin pairs in the Mid-Atlantic, Danish, and Norwegian Twin Registries. The information was verified using medical records and detailed clinical and family interviews. The initial study evaluated the genetic epidemiology of febrile seizures in this population. Further information was analyzed and used to evaluate genetic associations of different febrile seizure subtypes. Histories of febrile seizures were validated in 1051 twins in 900 pairs. The febrile seizure type was classified as simple, complex, or febrile status epilepticus. There were 61% simple, 12% complex, and 7% febrile status epilepticus. There were 78 twins who developed epilepsy. The highest rate of epilepsy (22.2%) occurred in the febrile status epilepticus group. Concordance was highest in simple group. A twin with febrile status epilepticus is at the highest risk of developing epilepsy, but simple febrile seizures gave the highest risk for the unaffected twin to develop seizures or other neurological issues. These results are consistent with previous findings. There is a subgroup of febrile seizures that can be associated with long-term consequences. This subgroup can be associated with a significant financial and emotional burden. It is currently not possible to accurately identify which children will develop recurrent febrile seizures, epilepsy, or neuropsychological comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Genetic and Environmental Influences on Retinopathy of Prematurity

    Directory of Open Access Journals (Sweden)

    J. M. Ortega-Molina

    2015-01-01

    Full Text Available Objective. The goals were to isolate and study the genetic susceptibility to retinopathy of prematurity (ROP, as well as the gene-environment interaction established in this disease. Methods. A retrospective study (2000–2014 was performed about the heritability of retinopathy of prematurity in 257 infants who were born at a gestational age of ≤32 weeks. The ROP was studied and treated by a single pediatric ophthalmologist. A binary logistic regression analysis was completed between the presence or absence of ROP and the predictor variables. Results. Data obtained from 38 monozygotic twins, 66 dizygotic twins, and 153 of simple birth were analyzed. The clinical features of the cohorts of monozygotic and dizygotic twins were not significantly different. Genetic factors represented 72.8% of the variability in the stage of ROP, environmental factors 23.08%, and random factors 4.12%. The environmental variables representing the highest risk of ROP were the number of days of tracheal intubation (p < 0.001, postnatal weight gain (p = 0.001, and development of sepsis (p = 0.0014. Conclusion. The heritability of ROP was found to be 0.73. The environmental factors regulate and modify the expression of the genetic code.

  4. Genetic heterogeneity in HER2 testing may influence therapy eligibility.

    Science.gov (United States)

    Bernasconi, Barbara; Chiaravalli, Anna Maria; Finzi, Giovanna; Milani, Katia; Tibiletti, Maria Grazia

    2012-05-01

    Prospective studies have demonstrated that approximately 20% of HER2 testing may be inaccurate. When carefully validated testing is conducted, available data do not clearly demonstrate the superiority of either IHC or fluorescence in situ hybridization (FISH) as a predictor of benefit from anti-HER2 therapy. In addition, the interpretation of the findings of HER2 tests according to international guidelines is not uniform. The American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) recently published practice guidelines for a definition of HER2 amplification heterogeneity that can give rise to discrepant results between IHC and FISH assays for HER2. In this article, we compare the HER2 status of 291 non consecutive breast cancers. The status is determined by both IHC and FISH approaches, using a specific FISH strategy to investigate genetic heterogeneity. Our data demonstrate that HER2 amplified cells may be found as diffuse, clustered in a specific area or section, intermingled with non-amplified cells or confined to metastatic nodules. The correct evaluation of ratio value in the presence of genetic heterogeneity and of polysomy contributes to the accurate assessment of HER2 status and potentially affects the selection of appropriate anti-HER2 therapy. By taking into account the presence of different genetic cell populations, the immunotherapy eligibility criteria for HER2 FISH scoring proposed in the CAP (2009) and SIGU guidelines identify an additional subset of cases for trastuzumab or lapatinib therapy compared to the ASCO/CAP (2007) guidelines.

  5. Interpreting microarray data to build models of microbial genetic regulation networks

    Science.gov (United States)

    Sokhansanj, Bahrad A.; Garnham, Janine B.; Fitch, J. Patrick

    2002-06-01

    Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cell's global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments pose challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

  6. STABILITY IN REAL TIME OF SOME CRYOPRESERVED MICROBIAL STRAINS WITH REFERENCE TO GENETICALLY MODIFIED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    DANIELA VINTILĂ

    2013-12-01

    Full Text Available The aim of this work is to analyze the viability of microorganisms from Collection of Industrial Microorganisms from Faculty of Animal Science and Biotechnology – Timisoara, during freezing and thawing as part of cryopreservation technique. The stability in real time of 19 strains cryopreserved in 16% glycerol was evaluated during a 6-months period. The strains studied were: Escherichia coli, Lactobacillus acidophilus, Rhizobium meliloti, Saccharomyces cerevisiae, Aspergillus oryzae, Aspergillus niger, Trichoderma viride, Bacillus globigii, Bacillus licheniformis, and 9 strains of Bacillus subtilis. The strains cryopreserved at -20oC and -70oC were activated using the fast thawing protocol. A better cell recovery was achieved with the -70oC protocol reaching an average viability for E. coli of 86,3%, comparing with 78,6% in -20oC protocol. The cell recovery percentages for the other strains were: 92,4% for L. acidophilus, 93,9% for A.niger, 89% for A. oryzae, 86,7% for T. viride, 94,2% for R. meliloti, 82,1% for S. cerevisiae, 89,9% for B. licheniformis. Regarding the viability of genetically modified microorganisms, the values shows a good recovering after freezing and thawing, even after 180 days of cryopreservation. With the -20oC protocol lower viability was observed due probably to the formation of eutectic mixtures and recrystalization processes.

  7. High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae

    Directory of Open Access Journals (Sweden)

    Ping Sheng

    2015-07-01

    Full Text Available In this study, we used a culture-independent method based on library construction and sequencing to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of Holotrichia parallela larvae. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela. The total of 101 distinct gene fragments (similarity <95% of glycosyl hydrolase families including GH2 (24 genes, GH8 (27 genes, GH10 (19 genes, GH11 (14 genes and GH36 (17 genes families was retrieved, and certain sequences of GH2 (10.61%, GH8 (3.33%, and GH11 (18.42% families had <60% identities with known sequences in GenBank, indicating their novelty. Based on phylogenetic analysis, sequences from hemicellulase families were related to enzymes from Bacteroidetes and Firmicutes. Fragments from cellulase family were most associated with the phylum of Proteobacteria. Furthermore, a full-length endo-xylanase gene was obtained, and the enzyme exhibited activity over a broad range of pH levels. Our results indicate that there are large number of cellulolytic and xylanolytic bacteria in the hindgut of H. parallela larvae, and these symbiotic bacteria play an important role in the degradation of roots and other organic matter for the host insect.

  8. Interpreting Microarray Data to Build Models of Microbial Genetic Regulation Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B; Garnham, J B; Fitch, J P

    2002-01-23

    Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cells global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments poses challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

  9. The influence of dietary microbial phytase and calcium on the accumulation of cadmium in different organs of pigs

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, B.; Lantzsch, H.J.; Drochner, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Tierernaehrung

    2001-07-01

    A total of 72 barrows (initial body weight 16.7 kg) was used, to evaluate the influence of microbial phytase supplementation alone or in combination with calcium to barley soybean meal diets on the accumulation of cadmium (Cd) in kidney, liver, muscle, brain and bone. The control group received the basal diet with 6 g Ca and a low native Cd concentration of 0.03 mg/kg dry matter (DM). In the experimental groups 2, 3, 4 and 5 dietary cadmium concentration was elevated to 0.78 mg/kg DM. The diet of group 3 was supplemented with 800 U microbial phytase/kg, the diet of group 4 with 6 g Ca/kg. The diet of group 5 contained both supplements. The addition of microbial phytase caused an increase of Cd retention in kidney and liver at 30 and 50 kg body weight. This effect was counteracted by the contemporary addition of calcium. A supplementation of Ca alone showed no effect on the Cd accumulation in kidney and liver. In muscle, brain and bone no effects of phytase and calcium on the accumulation of Cd could be found. (orig.)

  10. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    Directory of Open Access Journals (Sweden)

    Xianjin Tang

    2014-03-01

    Full Text Available Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m. The concentration of Cd (2.16 mg·kg−1 and Cu (69.2 mg·kg−1 were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  11. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    Science.gov (United States)

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  12. Influence of geogenic factors on microbial communities in metallogenic Australian soils.

    Science.gov (United States)

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-11-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.

  13. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities.

    Science.gov (United States)

    Wang, Qiongshan; He, Mengchang; Wang, Ying

    2011-01-01

    The effects of both combined and single pollution of antimony (Sb) and arsenic (As) in different concentrations on culturable soil microbial populations and enzyme activities were studied under laboratory conditions. Joint effects of both Sb and As were different from that of Sb or As alone. The inhibition rate of culturable soil microbial populations under Sb and As pollution followed the order: bacterial > fungi > actinomycetes. There existed antagonistic inhibiting effect on urease and acid phophatase and synergistic inhibiting effect on protease under the combined pollution of Sb (III) and As (III). Only urease appeared to be the most sensitive indicator under Sb (V) and As (V) pollution, and there existed antagonistic inhibiting effect on acid phophatase and synergistic inhibiting effect on urease and protease under Sb (V) and As (V) combined pollution at most time. In this study, we also confirmed that the trivalent states of Sb and As were more toxic to all the microbes tested and more inhibitory on microbial enzyme activities then their pentavalent counterparts. The results also suggest that not only the application rate of the two metalloids but also the chemical form of metalloids should be considered while assessing the effect of metalloid on culturable microbial populations and enzyme activities. Urease and acid phosphatase can be used as potential biomarkers to evaluate the intensity of Sb (III) and As (III) stress.

  14. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W.-D. [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Y.-G. [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)]. E-mail: ygzhu@mail.rcees.ac.cn; Fu, B.-J. [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Marschner, P. [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, 5005 (Australia); He, J.-Z. [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2006-09-15

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 {mu}M), or Cu (0, 10, 20, 100 and 300 {mu}M), or combination of the two pollutants (OTC 0, 5, 11 {mu}M and Cu 0, 20 {mu}M). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 {mu}M for OTC and 20 {mu}M for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction.

  15. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croese, Elsemiek; Jeremiasse, Adriaan W.; Marshall, Ian P.G.; Spormann, Alfred M.; Euverink, Gert-Jan W.; Geelhoed, Jeanine S.; Stams, Alfons J.M.; Plugge, Caroline M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (

  16. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croese, Elsemiek; Jeremiasse, Adriaan W.; Marshall, Ian P.G.; Spormann, Alfred M.; Euverink, Gert-Jan W.; Geelhoed, Jeanine S.; Stams, Alfons J.M.; Plugge, Caroline M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design

  17. Microbial abundance and community composition influence production performance in a low-temperature petroleum reservoir.

    Science.gov (United States)

    Li, Guoqiang; Gao, Peike; Wu, Yunqiang; Tian, Huimei; Dai, Xuecheng; Wang, Yansen; Cui, Qingfeng; Zhang, Hongzuo; Pan, Xiaoxuan; Dong, Hanping; Ma, Ting

    2014-05-06

    Enhanced oil recovery using indigenous microorganisms has been successfully applied in the petroleum industry, but the role of microorganisms remains poorly understood. Here, we investigated the relationship between microbial population dynamics and oil production performance during a water flooding process coupled with nutrient injection in a low-temperature petroleum reservoir. Samples were collected monthly over a two-year period. The microbial composition of samples was determined using 16S rRNA gene pyrosequencing and real-time quantitative polymerase chain reaction analyses. Our results indicated that the microbial community structure in each production well microhabitat was dramatically altered during flooding with eutrophic water. As well as an increase in the density of microorganisms, biosurfactant producers, such as Pseudomonas, Alcaligenes, Rhodococcus, and Rhizobium, were detected in abundance. Furthermore, the density of these microorganisms was closely related to the incremental oil production. Oil emulsification and changes in the fluid-production profile were also observed. In addition, we found that microbial community structure was strongly correlated with environmental factors, such as water content and total nitrogen. These results suggest that injected nutrients increase the abundance of microorganisms, particularly biosurfactant producers. These bacteria and their metabolic products subsequently emulsify oil and alter fluid-production profiles to enhance oil recovery.

  18. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croesea, E.; Jeremiasse, A.W.; Marshall, I.P.G.; Spormann, A.M.; Euverink, G.J.W.; Geelhoed, J.S.; Stams, A.J.M.; Plugge, C.M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design

  19. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croese, Elsemiek; Jeremiasse, Adriaan W.; Marshall, Ian P.G.; Spormann, Alfred M.; Euverink, Gert-Jan W.; Geelhoed, Jeanine S.; Stams, Alfons J.M.; Plugge, Caroline M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (

  20. Influence of different buffers (HEPES/MOPS) on keratinocyte cell viability and microbial growth.

    Science.gov (United States)

    Dias, Kássia de Carvalho; Barbugli, Paula Aboud; Vergani, Carlos Eduardo

    2016-06-01

    This study assessed the effect of the buffers 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 3-(N-morpholino) propanesulfonic acid (MOPS) on keratinocyte cell viability and microbial growth. It was observed that RPMI buffered with HEPES, supplemented with l-glutamine and sodium bicarbonate, can be used as a more suitable medium to promote co-culture.

  1. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment, sulfate-re

  2. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment,

  3. Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout

    Science.gov (United States)

    Wofford, John E.B.; Gresswell, Robert E.; Banks, M.A.

    2005-01-01

    Because human land use activities often result in increased fragmentation of aquatic and terrestrial habitats, a better understanding of the effects of fragmentation on the genetic heterogeneity of animal populations may be useful for effective management. We used eight microsatellites to examine the genetic structure of coastal cutthroat trout (Oncorhynchus clarki clarki) in Camp Creek, an isolated headwater stream in western Oregon. Our objectives were to determine if coastal cutthroat trout were genetically structured within streams and to assess the effects of natural and anthropogenic barriers on coastal cutthroat trout genetic variation. Fish sampling occurred at 10 locations, and allele frequencies differed significantly among all sampling sections. Dispersal barriers strongly influenced coastal cutthroat trout genetic structure and were associated with reduced genetic diversity and increased genetic differentiation. Results indicate that Camp Creek coastal cutthroat trout exist as many small, partially independent populations that are strongly affected by genetic drift. In headwater streams, barriers to movement can result in genetic and demographic isolation leading to reduced coastal cutthroat trout genetic diversity, and potentially compromising long-term population persistence. When habitat fragmentation eliminates gene flow among small populations, similar results may occur in other species.

  4. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems

    Science.gov (United States)

    Schmidt, Victor; Davidson, John; Summerfelt, Steven

    2016-01-01

    ABSTRACT Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless

  5. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    Directory of Open Access Journals (Sweden)

    Andrea Burri

    Full Text Available BACKGROUND: Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT and adult gender identity (AGI. However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. METHODOLOGY/PRINCIPAL FINDINGS: Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426 who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%, AGI (11% and CGT (31%. For the multivariate analyses, a common pathway model best fitted the data. CONCLUSIONS/SIGNIFICANCE: This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  6. INFLUENCE OF MICROBIAL INOCULANTS ON FEEDING VALUE OF SPENT LENTINULA EDODES SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Yunfu Gu

    2012-01-01

    Full Text Available Sawdust-based Spent Lentinula Edodes Substrate (SLES is an important agricultural waste resource for its’ huge production amount, on the other hand, it is hard to recycling because of the low digestibility. For the purpose of recycling the SLES, a study was conducted to improve the feeding values of SLES via microbial inoculation. The SLES was ensiled with 0.5% (v/w Lactic Acid Bacteria (LAB, Lactobacillus plantarum or 0.5% (v/w yeast (Saccharomyces cerevisiae for 15 days. Four treatments were made included 100% SLES (control, 99% SLES +0.5% LAB (T1, 99% SLES +0.5% yeast (T2 and 99% SLES +0.5% LAB +0.5% yeast (T3. Compared with the raw SLES (not fermentation, 100% SLES (control after ensiling showed higher (p<0.05 pH (5.47 and lower lactic acid production. The addition of microbe to the SLES improved most of the physical parameters, fermentation parameters and microbial populations compared to the control experiments. On the other hand, microbial-blending to SLES decreased most of the chemical parameters except for the Crude Protein (CP. Compared to the raw, ensile fermentation would increase the amino acids and microbial inoculants to the SLES could increase the total amount of amino acids further and the most abundant component of essential-amino acid and non-essential amino acid were valine and glutamate, respectively. Among the four ensile treatments, the impact of the addition of 0.5% LAB and 0.5% yeast (T3 on the SLES storage and feeding value was the greatest one (p<0.05. In conclusion: Microbial inoculation improved ensiling and feeding values of SLES.

  7. 52 Genetic Loci Influencing Myocardial Mass

    DEFF Research Database (Denmark)

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek

    2016-01-01

    changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73......BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect...

  8. Genetic and Environmental Influences on Pulmonary Function and Muscle Strength: The Chinese Twin Study of Aging

    DEFF Research Database (Denmark)

    Tian, Xiaocao; Xu, Chunsheng; Wu, Yili

    2017-01-01

    Genetic and environmental influences on predictors of decline in daily functioning, including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), handgrip, and five-times-sit-to-stand test (FTSST), have not been addressed in the aging Chinese population. We performed classical twin...... modeling on FEV1, FVC, handgrip, and FTSST in 379 twin pairs (240 MZ and 139 DZ) with median age of 50 years (40-80 years). Data were analyzed by fitting univariate and bivariate twin models to estimate the genetic and environmental influences on these measures of physical function. Heritability...... environment (40-50%). Bivariate analysis showed highly positive genetic correlations between FEV1 and FVC (r G = 1.00), and moderately negative genetic correlations between FTSST and FEV1 (r G = -0.33) and FVC (r G = -0.42). FEV1 and FVC, as well as FEV1 and handgrip, displayed high common environmental...

  9. Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice.

    Science.gov (United States)

    Ashbrook, David George; Gini, Beatrice; Hager, Reinmar

    2015-12-23

    Conflict over parental investment between parent and offspring is predicted to lead to selection on genes expressed in offspring for traits influencing maternal investment, and on parentally expressed genes affecting offspring behaviour. However, the specific genetic variants that indirectly modify maternal or offspring behaviour remain largely unknown. Using a cross-fostered population of mice, we map maternal behaviour in genetically uniform mothers as a function of genetic variation in offspring and identify loci on offspring chromosomes 5 and 7 that modify maternal behaviour. Conversely, we found that genetic variation among mothers influences offspring development, independent of offspring genotype. Offspring solicitation and maternal behaviour show signs of coadaptation as they are negatively correlated between mothers and their biological offspring, which may be linked to costs of increased solicitation on growth found in our study. Overall, our results show levels of parental provisioning and offspring solicitation are unique to specific genotypes.

  10. Influence of Vegetations' Metabolites on the Composition and Functioning of Soil Microbial Complex

    Science.gov (United States)

    Biryukov, Mikhail

    2013-04-01

    Microbiota is one of the major factors of soils fertility. It transforms organic substances in soil and, therefore, serves as the main component in the cycles of carbon and nitrogen. Microbial communities (MC) are characterized as highly diverse and extremely complex structures. This allows them to adapt to any affection and provide all the necessary biospheric functions. Hence, the study of their functional diversity and adaptivity of microbiota provides the key to the understanding of the ecosystems' functioning and their adaptivity to the human impact. The formation of MC at the initial stage is regulated by the fluxes of substrates and biologically active substances (BAS), which vary greatly in soils under different vegetations. These fluxes are presented by: low molecular weights organic substances (LMWOS), which can be directly included in metabolism of microbes; polymers, that can be decomposed to LMWOS by exoenzymes; and more complex compounds, having different "drug effects" (e.g. different types of phenolic acids) and regulating growth and enzymatic properties of microbiota. Therefore, the main hypothesis of the research was formulated as follows: penetration of different types of substrates and BAS into soil leads to the emergence of MC varying in enzymatic properties and structure. As a soil matrix we used the soil from the untreated variant of the lysimeter model experiment taking place in the faculty of Soil Science of the MSU for over the last 40 years. It was sieved with a 2mm sieves, humidified and incubated at 25C during one week. Subsequently, the samples were air-dried with occasional stirring for one more week. Thereafter, aliquots of the prepared soil were taken for the different experimental variants. The samples were rewetted with solutions of various substrates (glucose, cellulose, starch, etc.) and thoroughly mixed. The control variant was established with addition of deionised water. The samples were incubated at the 25C. During the

  11. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Krych, Lukasz; Buschard, Karsten

    2014-01-01

    purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D...... development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals....

  12. Influence of a Small Fraction of Individuals with Enhanced Mutations on a Population Genetic Pool

    Science.gov (United States)

    Cebrat, S.; Stauffer, D.

    It has been observed that a higher mutation load could be introduced into the genomes of children conceived by assisted reproduction technology (fertilization in-vitro). This generates two effects — slightly higher mutational pressure on the whole genetic pool of population and inhomogeneity of mutation distributions in the genetic pool. Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.

  13. Genetic and environmental influences on the relation between parental social class and mortality

    DEFF Research Database (Denmark)

    Osler, Merete; Petersen, L.; Prescott, Eva Irene Bossano;

    2006-01-01

    Genetic and maternal prenatal environmental factors as well as the post-natal rearing environment may contribute to the association between childhood socioeconomic circumstances and later mortality. In order to disentangle these influences, we studied all-cause and cause-specific mortality in a c...... in a cohort of adoptees, in whom we estimated the effects of their biological and adoptive fathers' social classes as indicators of the genetic and/or prenatal environmental factors and the post-natal environment, respectively....

  14. Seventy-five genetic loci influencing the human red blood cell

    OpenAIRE

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Dirk S Paul; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X.; Albers, Cornelis A

    2012-01-01

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phe...

  15. Genetic and Environmental Influences on Temperament in Adolescence

    Directory of Open Access Journals (Sweden)

    Sergei B. Malykh

    2009-01-01

    Full Text Available This study, which is a part of a Moscow longitudinal twin project, aims to explore genetic and environmental contributions to inter-individual variability of temperamental traits in adolescence on the basis of a Russian sample. 85 monozygotic (MZ and 64 same-sex dizygotic (DZ twin pairs aged 12 – 14 years completed the children version of Rusalov Structure of Temperament Questionnaire (C-STQ. The results of model-fitting analyses indicate considerable hereditary determination of individual differences in 3 out of the 8 C-STQ dimensions - social tempo, objectrelated emotional sensitivity, and social emotional sensitivity. Non-shared environmental effects explained the rest of the total variance in these dimensions. Individual differences in the other STQ dimensions were due to environmental factors.

  16. Identifying the major influences on the microbial composition of roof harvested rainwater and the implications for water quality.

    Science.gov (United States)

    Evans, C A; Coombes, P J; Dunstan, R H; Harrison, T

    2007-01-01

    Perceptions of the quality of roof harvested rainwater remain an impediment to widespread implementation of rainwater tanks on urban allotments. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne environmental micro-organisms to roof catchment contamination and the issue of tank water quality. This paper outlines the findings of a recent study into the influence of weather on roof water contamination conducted at an urban housing development in Newcastle, on the east coast of Australia. Samples of direct roof run-off were collected during a number of separate rainfall events, and microbial counts were matched to climatic data corresponding to each of the monitored events. Roof run-off contamination was found to be under the strong influence of both wind speed and direction. The preliminary findings of an investigation currently under way into the microbial diversity of rainwater harvesting systems have also been presented. The results indicate that the composition of organisms present varied considerably from source to source and throughout the collection system. In all cases, evidence of faecal contamination was found to be negligible. The implications of these findings to the issues of tank water quality, health risk analysis and monitoring protocols have been discussed.

  17. Influence of Sedimentary and Seagrass Microbial Communities on Shallow-Water Benthic Optical Properties

    Science.gov (United States)

    2008-09-30

    Similarly, determine the biomass, composition, and temporal variation of microorganisms epiphytic on seagrass blades at Lee Stocking Island (turtle...following section. 1) In October, we will submit a manuscript, authored by Drake, Dobbs, and Zimmerman, and entitled “Effects of epiphyte load on... epiphytes collected from LSI and Monterey Bay. There are two types of lipid analyses we have performed. The first yields a microbial biomass value

  18. Added value measures in education show genetic as well as environmental influence.

    Science.gov (United States)

    Haworth, Claire M A; Asbury, Kathryn; Dale, Philip S; Plomin, Robert

    2011-02-02

    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.

  19. Genetic and environmental influences on word recognition and spelling deficits as a function of age.

    Science.gov (United States)

    Friend, Angela; DeFries, John C; Wadsworth, Sally J; Olson, Richard K

    2007-05-01

    Previous twin studies have suggested a possible developmental dissociation between genetic influences on word recognition and spelling deficits, wherein genetic influence declined across age for word recognition, and increased for spelling recognition. The present study included two measures of word recognition (timed, untimed) and two measures of spelling (recognition, production) in younger and older twins. The heritability estimates for the two word recognition measures were .65 (timed) and .64 (untimed) in the younger group and .65 and .58 respectively in the older group. For spelling, the corresponding estimates were .57 (recognition) and .51 (production) in the younger group and .65 and .67 in the older group. Although these age group differences were not significant, the pattern of decline in heritability across age for reading and increase for spelling conformed to that predicted by the developmental dissociation hypothesis. However, the tests for an interaction between genetic influences on word recognition and spelling deficits as a function of age were not significant.

  20. Analysis and modelling of predation on biofilm activated sludge process: Influence on microbial distribution, sludge production and nutrient dosage.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-11-01

    The influence of predation on the biofilm activated sludge (BAS) process is studied using a unified model that incorporates hydrolysis and predation phenomena into the two stages of the BAS system: moving bed biofilm reactor pre-treatment (bacterial-predator stage) and activated sludge (predator stage). The unified model adequately describes the experimental results obtained in a cellulose and viscose full-scale wastewater plant and has been used to evaluate the role and contribution of predator microorganisms towards removal of COD, nutrient requirements, sludge production and microbial distribution. The results indicate that predation is the main factor responsible for the reduction of both nutrient requirements and sludge production. Furthermore, increasing the sludge retention time (SRT) does not influence the total biomass content in the AS reactor of a BAS process in two different industrial wastewater treatments.

  1. The Influence and Role of Microbial Factors in Autoimmune Kidney Diseases: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Andreas Kronbichler

    2015-01-01

    Full Text Available A better understanding of the pathophysiology of autoimmune disorders is desired to allow tailored interventions. Despite increased scientific interest a direct pathogenic factor in autoimmune renal disease has been described only in a minority like membranous nephropathy or ANCA-associated vasculitis. Nonetheless the initial step leading to the formation of these antibodies is still obscure. In this review we will focus on the possible role of microbial factors in this context. Staphylococcus aureus may be a direct pathogenetic factor in granulomatosis with polyangiitis (GPA. Chronic bacterial colonization or chronic infections of the upper respiratory tract have been proposed as trigger of IgA vasculitis and IgA nephropathy. Interventions to remove major lymphoid organs, such as tonsillectomy, have shown conflicting results but may be an option in IgA vasculitis. Interestingly no clear clinical benefit despite similar local colonization with bacterial strains has been detected in patients with IgA nephropathy. In systemic lupus erythematosus injection of bacterial lipopolysaccharide induced progressive lupus nephritis in mouse models. The aim of this review is to discuss and summarize the knowledge of microbial antigens in autoimmune renal disease. Novel methods may provide insight into the involvement of microbial antigens in the onset, progression, and prognosis of autoimmune kidney disorders.

  2. Study of the Influence of Different Diphenol Compounds on Soil Microbial Activity by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    CHEN, Huilun; YAO, Jun; WANG, Fei; GYULA, Zaray

    2009-01-01

    Microcalorimetry was applied to follow the toxic effects caused by different diphenol compounds on microbial activity of Chinese fir soil. The activity of the microorganisms in soil was stimulated by adding 0.3 mL of a nutrient solution containing 2.5 mg of glucose and 2.5 mg of ammonium sulfate and the measurements were performed under a 35% controlled humidity at 28 ℃. Power-time curves recorded on a microcalorimeter were followed by increasing the amount of diphenol compounds, which affected directly the total thermal effects evolved by the microorganisms. The curves showed a synergism on total thermal effect obtained by the addition of 2000 mg·kg~(-1) of resorcinol, causing a consumption of resorcinol by the microorganisms as a new source of nutrients. Above this dose,the total thermal effect decreased exponentially. However, the addition of catechol and hydroquinone caused the total thermal effects to decrease directly. It was concluded that the increase in the diphenol concentration strongly affected the microbial life in this ecosystem. Microcalorimetry appears as a suitable technique to carry out both qualitative and quantitative comparative studies of microbial activity in soil.

  3. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata.

    Science.gov (United States)

    Kamutando, Casper N; Vikram, Surendra; Kamgan-Nkuekam, Gilbert; Makhalanyane, Thulani P; Greve, Michelle; Roux, Johannes J Le; Richardson, David M; Cowan, Don; Valverde, Angel

    2017-07-26

    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.

  4. A twin study of genetic influences on diurnal preference and risk for alcohol use outcomes.

    Science.gov (United States)

    Watson, Nathaniel F; Buchwald, Dedra; Harden, Kathryn Paige

    2013-12-15

    The population-based University of Washington Twin Registry (UWTR) was used to examine (1) genetic influences on chronobiology and (2) whether these genetic factors influence alcohol-use phenotypes. We used a reduced Horne-Östberg Morningness-Eveningness Questionnaire (rMEQ) to survey UWTR participants for diurnal preference. Frequency and quantity of alcohol use, as well as binge drinking (6+ drinks per occasion), were assessed on a 5-point Likert scale. Both diurnal preference and alcohol use were self-reported. Twin data were analyzed by using structural equation models. The sample consisted of 2,945 participants (mean age = 36.4 years), including 1,127 same-sex and opposite-sex twin pairs and 691 individual twins. The rMEQ range was 4-25, with a mean score of 15.3 (SD 4.0). Diurnal "morning types" comprised 30.7% (N = 903) of participants, while 17.4% (N = 513) were "evening types." Regarding alcohol use, 21.2% (N = 624) reported never drinking. Among drinkers, 35.7% (N = 829) reported ≥ 3 drinks per occasion and 48.1% (N = 1,116) reported at least one instance of binge drinking. Genetic influences accounted for 37% of the variance in diurnal preference, with the remaining 63% due to non-shared environmental influences. Genetic propensities toward diurnal eveningness were significantly associated with increased alcohol quantity (β = -0.17; SE = 0.05, p Genetic influences on diurnal preference confer elevated risk for problematic alcohol use, including increased quantity and binge drinking. Differences in circadian rhythm may be an important and understudied pathway of risk for genetic influences on alcohol use.

  5. The influence of mitonuclear genetic variation on personality in seed beetles.

    Science.gov (United States)

    Løvlie, Hanne; Immonen, Elina; Gustavsson, Emil; Kazancioğlu, Erem; Arnqvist, Göran

    2014-12-07

    There is a growing awareness of the influence of mitochondrial genetic variation on life-history phenotypes, particularly via epistatic interactions with nuclear genes. Owing to their direct effect on traits such as metabolic and growth rates, mitonuclear interactions may also affect variation in behavioural types or personalities (i.e. behavioural variation that is consistent within individuals, but differs among individuals). However, this possibility is largely unexplored. We used mitonuclear introgression lines, where three mitochondrial genomes were introgressed into three nuclear genetic backgrounds, to disentangle genetic effects on behavioural variation in a seed beetle. We found within-individual consistency in a suite of activity-related behaviours, providing evidence for variation in personality. Composite measures of overall activity of individuals in behavioural assays were influenced by both nuclear genetic variation and by the interaction between nuclear and mitochondrial genomes. More importantly, the degree of expression of behavioural and life-history phenotypes was correlated and mitonuclear genetic variation affected expression of these concerted phenotypes. These results show that mitonuclear genetic variation affects both behavioural and life-history traits, and they provide novel insights into the maintenance of genetic variation in behaviour and personality.

  6. Factors influencing QTL mapping accuracy under complicated genetic models by computer simulation.

    Science.gov (United States)

    Su, C F; Wang, W; Gong, S L; Zuo, J H; Li, S J

    2016-12-19

    The accuracy of quantitative trait loci (QTLs) identified using different sample sizes and marker densities was evaluated in different genetic models. Model I assumed one additive QTL; Model II assumed three additive QTLs plus one pair of epistatic QTLs; and Model III assumed two additive QTLs with opposite genetic effects plus two pairs of epistatic QTLs. Recombinant inbred lines (RILs) (50-1500 samples) were simulated according to the Models to study the influence of different sample sizes under different genetic models on QTL mapping accuracy. RILs with 10-100 target chromosome markers were simulated according to Models I and II to evaluate the influence of marker density on QTL mapping accuracy. Different marker densities did not significantly influence accurate estimation of genetic effects with simple additive models, but influenced QTL mapping accuracy in the additive and epistatic models. The optimum marker density was approximately 20 markers when the recombination fraction between two adjacent markers was 0.056 in the additive and epistatic models. A sample size of 150 was sufficient for detecting simple additive QTLs. Thus, a sample size of approximately 450 is needed to detect QTLs with additive and epistatic models. Sample size must be approximately 750 to detect QTLs with additive, epistatic, and combined effects between QTLs. The sample size should be increased to >750 if the genetic models of the data set become more complicated than Model III. Our results provide a theoretical basis for marker-assisted selection breeding and molecular design breeding.

  7. Understanding the cognitive and genetic underpinnings of procrastination: Evidence for shared genetic influences with goal management and executive function abilities.

    Science.gov (United States)

    Gustavson, Daniel E; Miyake, Akira; Hewitt, John K; Friedman, Naomi P

    2015-12-01

    Previous research has suggested that individual differences in procrastination are tied to everyday goal-management abilities, but little research has been conducted on specific cognitive abilities that may underlie tendencies for procrastination, such as executive functions (EFs). In this study, we used behavioral genetics methodology to investigate 2 hypotheses about the relationships between procrastination and EF ability: (a) that procrastination is negatively correlated with general EF ability, and (b) that this relationship is due to the genetic components of procrastination that are most related to other everyday goal-management abilities. The results confirmed both of these hypotheses. Procrastination was related to worse general EF ability at both the phenotypic and genetic levels, and this relationship was due to the component of procrastination shared with self-report measures of everyday goal-management failures. These results were observed even after controlling for potential self-report biases stemming from the urge to respond in a socially desirable manner. Together, these findings provide strong evidence for growing theories of procrastination emphasizing the importance of goal-related cognitive abilities and further highlight important genetic influences that underlie procrastination. (c) 2015 APA, all rights reserved).

  8. Microfluidics and microbial engineering.

    Science.gov (United States)

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  9. Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients

    DEFF Research Database (Denmark)

    Klepstad, P; Fladvad, T; Skorpen, F;

    2011-01-01

    Cancer pain patients need variable opioid doses. Preclinical and clinical studies suggest that opioid efficacy is related to genetic variability. However, the studies have small samples, findings are not replicated, and several candidate genes have not been studied. Therefore, a study of genetic...... variability with opioid doses in a large population using a confirmatory validation population was warranted. We recruited 2294 adult European patients using a World Health Organization (WHO) step III opioid and analyzed single nucleotide polymorphisms (SNPs) in genes with a putative influence on opioid...... mechanisms. The patients' mean age was 62.5 years, and the average pain intensity was 3.5. The patients' primary opioids were morphine (n=830), oxycodone (n=446), fentanyl (n=699), or other opioids (n=234). Pain intensity, time on opioids, age, gender, performance status, and bone or CNS metastases predicted...

  10. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm.

    Science.gov (United States)

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-09-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.

  11. Genetics blogs as a public health tool: assessing credibility and influence.

    Science.gov (United States)

    Wagner, L; Paquin, R; Persky, S

    2012-01-01

    The Internet is becoming an important source of information about genetics and holds promise for public health applications. However, the public has concerns about the credibility of online genetics information. We conducted a content analysis of genetics blogs (n = 94). Specifically, we assessed the prevalence of various genetics-related topics and perceived credibility indicators. The relationship between content indicators, credibility indicators, and blog influence, measured as links between blogs, was evaluated. Coverage of issues related to health or self-knowledge (31%) and life science (26%) was most common among genetics blogs. In terms of credibility indicators, most blogs disclosed authors' full names (81%) and biographical information (67%). Many blog authors reported having genetics (67%) or life science expertise (59%). However, only 7% of blogs were affiliated with educational or medical institutions. Overall, blogs that focused on ancestry, that had authors with life science expertise, and that posted more frequently tended to be more influential. Findings suggest that life scientists and those who blog frequently may figure more centrally in shaping the genetics information available to the public via blogs. There is room for institutions that are likely to be perceived as credible sources of genetics information to assume a greater presence through blogs.

  12. Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-11-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.

  13. 52 Genetic Loci Influencing Myocardial Mass.

    Science.gov (United States)

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T; Wang, Xinchen; Mateo Leach, Irene; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V; Dörr, Marcus; Kerr, Kathleen F; Magnani, Jared W; Del Greco M, Fabiola; Zhang, Weihua; Nolte, Ilja M; Silva, Claudia T; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R; Adriaens, Michiel E; Andersen, Karl; Barnett, Phil; Bis, Joshua C; Bodmer, Rolf; Buckley, Brendan M; Campbell, Harry; Cannon, Megan V; Chakravarti, Aravinda; Chen, Lin Y; Delitala, Alessandro; Devereux, Richard B; Doevendans, Pieter A; Dominiczak, Anna F; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G; Hillege, Hans L; Hirschhorn, Joel N; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K; Kooner, Jaspal S; Kors, Jan A; Lakatta, Edward G; Lage, Kasper; Launer, Lenore J; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S; Nutile, Teresa; Okin, Peter M; Olsen, Jesper V; Oostra, Ben A; Penninger, Josef M; Pennacchio, Len A; Pers, Tune H; Perz, Siegfried; Peters, Annette; Pinto, Yigal M; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P; Prins, Bram P; Raitakari, Olli T; Raychaudhuri, Soumya; Rice, Ken M; Rossin, Elizabeth J; Rotter, Jerome I; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O; Sehmi, Jobanpreet; Silljé, Herman H W; Sinagra, Gianfranco; Sinner, Moritz F; Slowikowski, Kamil; Soliman, Elsayed Z; Spector, Timothy D; Spiering, Wilko; Stamatoyannopoulos, John A; Stolk, Ronald P; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V; Trinh, Bosco; Uitterlinden, Andre G; van den Boogaard, Malou; van Duijn, Cornelia M; van Gilst, Wiek H; Viikari, Jorma S; Visscher, Peter M; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H; Yang, Jian; Bezzina, Connie R; Munroe, Patricia B; Snieder, Harold; Wright, Alan F; Rudan, Igor; Boyer, Laurie A; Asselbergs, Folkert W; van Veldhuisen, Dirk J; Stricker, Bruno H; Psaty, Bruce M; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B; Heckbert, Susan R; de Boer, Rudolf A; Newton-Cheh, Christopher; Hicks, Andrew A; Chambers, John C; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M; Isaacs, Aaron; Samani, Nilesh J; de Bakker, Paul I W

    2016-09-27

    Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. MET and AKT genetic influence on facial emotion perception.

    Directory of Open Access Journals (Sweden)

    Ming-Teng Lin

    Full Text Available BACKGROUND: Facial emotion perception is a major social skill, but its molecular signal pathway remains unclear. The MET/AKT cascade affects neurodevelopment in general populations and face recognition in patients with autism. This study explores the possible role of MET/AKT cascade in facial emotion perception. METHODS: One hundred and eighty two unrelated healthy volunteers (82 men and 100 women were recruited. Four single nucleotide polymorphisms (SNP of MET (rs2237717, rs41735, rs42336, and rs1858830 and AKT rs1130233 were genotyped and tested for their effects on facial emotion perception. Facial emotion perception was assessed by the face task of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT. Thorough neurocognitive functions were also assessed. RESULTS: Regarding MET rs2237717, individuals with the CT genotype performed better in facial emotion perception than those with TT (p = 0.016 by ANOVA, 0.018 by general linear regression model [GLM] to control for age, gender, and education duration, and showed no difference with those with CC. Carriers with the most common MET CGA haplotype (frequency = 50.5% performed better than non-carriers of CGA in facial emotion perception (p = 0.018, df = 1, F = 5.69, p = 0.009 by GLM. In MET rs2237717/AKT rs1130233 interaction, the C carrier/G carrier group showed better facial emotion perception than those with the TT/AA genotype (p = 0.035 by ANOVA, 0.015 by GLM, even when neurocognitive functions were controlled (p = 0.046 by GLM. CONCLUSIONS: To our knowledge, this is the first study to suggest that genetic factors can affect performance of facial emotion perception. The findings indicate that MET variances and MET/AKT interaction may affect facial emotion perception, implicating that the MET/AKT cascade plays a significant role in facial emotion perception. Further replication studies are needed.

  15. Influence of microbial acitivity on the stability of activated sludge flocs

    DEFF Research Database (Denmark)

    Wilén, Britt-Marie; Nielsen, Jeppe Lund; Keiding, Kristian

    2000-01-01

    . These results strongly suggested that microorganisms using oxygen and/or nitrate as electron acceptors were important for maintaining the floc strength. The increase in turbidity under deflocculation was well correlated with the number of bacteria and concentration of protein, humic substances and carbohydrates...... activity. When anaerobic conditions prevailed, a microbial iron reduction immediately started with iron reduction rates of 4–150 μmol/gVS·h. Subsequently, a decrease in floc strength was observed which could also be observed when the iron-reducing bacterium Shewanella alga BrY was added to the activated...

  16. The microbial community composition of anaerobic digesters is strongly influenced by immigration

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Kristensen, Jannie Munk

    on the microbial community and conducted detailed investigations of bacteria from the hitherto undescribed phylum Hyd24-12, which’s role in AD has been overlooked so far. A total of 32 AD reactors at 18 Danish full-scale wastewater treatment plants were sampled during five years of operation. The bacterial...... immigration into account, would highly bias the conclusions. One of the most abundant non-immigrating bacteria belonged to candidate phylum Hyd24-12. Using differential coverage binning of multiple AD metagenomes, we retrieved the first genome of Hyd24-12. The genome allowed for detailed metabolic...

  17. The occurrence of PAHs and faecal sterols in Dublin Bay and their influence on sedimentary microbial communities.

    Science.gov (United States)

    Murphy, Brian T; O'Reilly, Shane S; Monteys, Xavier; Reid, Barry F; Szpak, Michal T; McCaul, Margaret V; Jordan, Sean F; Allen, Christopher C R; Kelleher, Brian P

    2016-05-15

    The source, concentration, and potential impact of sewage discharge and incomplete organic matter (OM) combustion on sedimentary microbial populations were assessed in Dublin Bay, Ireland. Polycyclic aromatic hydrocarbons (PAHs) and faecal steroids were investigated in 30 surface sediment stations in the bay. Phospholipid fatty acid (PLFA) content at each station was used to identify and quantify the broad microbial groups present and the impact of particle size, total organic carbon (%TOC), total hydrogen (%H) and total nitrogen (%N) was also considered. Faecal sterols were found to be highest in areas with historical point sources of sewage discharge. PAH distribution was more strongly associated with areas of deposition containing high %silt and %clay content, suggesting that PAHs are from diffuse sources such as rainwater run-off and atmospheric deposition. The PAHs ranged from 12 to 3072ng/g, with 10 stations exceeding the suggested effect range low (ERL) for PAHs in marine sediments. PAH isomer pair ratios and sterol ratios were used to determine the source and extent of pollution. PLFAs were not impacted by sediment type or water depth but were strongly correlated to, and influenced by PAH and sewage levels. Certain biomarkers such as 10Me16:0, i17:0 and a17:0 were closely associated with PAH polluted sediments, while 16:1ω9, 16:1ω7c, Cy17:0, 18:1ω6, i16:0 and 15:0 all have strong positive correlations with faecal sterols. Overall, the results show that sedimentary microbial communities are impacted by anthropogenic pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Under the influence of genetics: how transdisciplinarity leads us to rethink social pathways to illness.

    Science.gov (United States)

    Pescosolido, Bernice A; Perry, Brea L; Long, J Scott; Martin, Jack K; Nurnberger, John I; Hesselbrock, Victor

    2008-01-01

    This article describes both sociological and genetic theories of illness causation and derives propositions expected under each and under a transdisciplinary theoretical frame. The authors draw propositions from three theories -- fundamental causes, social stress processes, and social safety net theories -- and tailor hypotheses to the case of alcohol dependence. Analyses of a later wave of the Collaborative Study on the Genetics of Alcoholism reveal a complex interplay of the GABRA2 gene with social structural factors to produce cases meeting DSM/ICD diagnoses. Only modest evidence suggests that genetic influence works through social conditions and experiences. Further, women are largely unaffected in their risk for alcohol dependence by allele status at this candidate gene; family support attenuates genetic influence; and childhood deprivation exacerbates genetic predispositions. These findings highlight the essential intradisciplinary tension in the role of proximal and distal influences in social processes and point to the promise of focusing directly on dynamic, networked sequences that produce different pathways to health and illness.

  19. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD.

    Science.gov (United States)

    Sun, Wei; Kechris, Katerina; Jacobson, Sean; Drummond, M Bradley; Hawkins, Gregory A; Yang, Jenny; Chen, Ting-Huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R Graham; Basta, Patricia V; Bleecker, Eugene R; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H; Comellas, Alejandro; Crapo, James D; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A; Couper, David J; Curtis, Jeffrey L; Doerschuk, Claire M; Freeman, Christine M; Gouskova, Natalia A; Han, MeiLan K; Hanania, Nicola A; Hansel, Nadia N; Hersh, Craig P; Hoffman, Eric A; Kaner, Robert J; Kanner, Richard E; Kleerup, Eric C; Lutz, Sharon; Martinez, Fernando J; Meyers, Deborah A; Peters, Stephen P; Regan, Elizabeth A; Rennard, Stephen I; Scholand, Mary Beth; Silverman, Edwin K; Woodruff, Prescott G; O'Neal, Wanda K; Bowler, Russell P

    2016-08-01

    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10-392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the

  20. Shared Genetic Factors Influence Risk for Bipolar Disorder and Alcohol Use Disorders

    Science.gov (United States)

    Carmiol, Nasdia; Peralta, Juan M; Almasy, Laura; Contreras, Javier; Pacheco, Adriana; Escamilla, Michael A; Knowles, Emma E; Raventós, Henriette; Glahn, David C

    2014-01-01

    Bipolar disorder and alcohol use disorder (AUD) have a high rate of comorbidity, more than 50% of individuals with bipolar disorder also receive a diagnosis of AUD in their lifetimes. Although both disorders are heritable, it is unclear if the same genetic factors mediate risk for bipolar disorder and AUD. We examined 733 Costa Rican individuals from 61 bipolar pedigrees. Based on a best-estimate process, 32% of the sample met criteria for bipolar disorder, 17% had a lifetime AUD diagnosis, 32% met criteria for lifetime nicotine dependence, and 21% had an anxiety disorder. AUD, nicotine dependence and anxiety disorders were relatively more common among individuals with bipolar disorder than in their non-bipolar relatives. All illnesses were shown to be heritable and bipolar disorder was genetically correlated with AUD, nicotine dependence and anxiety disorders. The genetic correlation between bipolar and AUD remained when controlling for anxiety, suggesting that unique genetic factors influence risk for comorbid bipolar and AUD independent of anxiety. Our findings provide evidence for shared genetic effects on bipolar disorder and AUD risk. Demonstrating that common genetic factors influence these independent diagnostic constructs could help to refine our diagnostic nosology. PMID:24321773

  1. The influence of dispositional optimism on post-visit anxiety and risk perception accuracy among breast cancer genetic counselees

    NARCIS (Netherlands)

    Wiering, B.M.; Albada, A.; Bensing, J.M.; Ausems, M.G.; Dulmen, A.M. van

    2013-01-01

    OBJECTIVE: Much is unknown about the influence of dispositional optimism and affective communication on genetic counselling outcomes. This study investigated the influence of counselees' optimism on the counselees' risk perception accuracy and anxiety, while taking into account the affective communi

  2. The influence of dispositional optimism on post-visit anxiety and risk perception accuracy among breast cancer genetic counselees.

    NARCIS (Netherlands)

    Wiering, B.M.; Albada, A.; Bensing, J.M.; Ausems, M.G.E.M.; Dulmen, A.M. van

    2013-01-01

    Objective: Much is unknown about the influence of dispositional optimism and affective communication on genetic counselling outcomes. This study investigated the influence of counselees' optimism on the counselees' risk perception accuracy and anxiety, while taking into account the affective communi

  3. Genetic and environmental influences on in vitro digestibility of alfalfa

    Directory of Open Access Journals (Sweden)

    F. Ruozzi

    2010-04-01

    Full Text Available To study the relationships between in vitro NDF or true dry matter digestibility (NDFD and IVTDMD and forage fibre content, 95 alfalfa samples from 5 cultivars grown in 3 different locations and from different cuts were analysed for fibre fractions and evaluated for NDFD and IVTDMD. NDFD was mainly influenced by order of cut and age of the fields. The multifoliate cultivar controlled did not appear to differ for fibre composition and NDFD from the other ones. Fibre fractions contents explained a large part of the difference in NDFD and IVTDMD, and no significant differences in this relationships appeared for first-cut vs. aftermath forage. The best predictive equation of NDFD from fibre factions was: NDFD = 73.61 -0.62 * NDF (% DM – 56.33 * ADL/NDF (R2=0.39. Variations in fibre content and quality do not completely explain differences in NDFD suggesting the interference of other factors that are worth to be better studied.

  4. Influence of microbial and synthetic surfactant on the biodegradation of atrazine.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2014-02-01

    The present study reports the effect of surfactants (rhamnolipids and triton X-100) on biodegradation of atrazine herbicide by strain A6, belonging to the genus Acinetobacter. The strain A6 was able to degrade nearly 80 % of the 250-ppm atrazine after 6 days of growth. The bacterium degraded atrazine by de-alkylation process. Bacterial cell surface hydrophobicity as well as atrazine solubility increased in the presence of surfactant. However, addition of surfactant to the mineral salt media reduced the rate and extent of atrazine degradation by decreasing the bioavailability of herbicide. On the contrary, addition of surfactant to atrazine-contaminated soil increased the rate and extent of biodegradation by increasing the bioavailability of herbicide. As compared to triton X-100, rhamnolipids were more efficient in enhancing microbial degradation of atrazine as a significant amount of atrazine was removed from the soil by rhamnolipids. Surfactants added for the purpose of hastening microbial degradation may have an unintended inhibitory effect on herbicide degradation depending upon contiguous condition, thus highlighting the fact that surfactant must be judiciously used in bioremediation of herbicides.

  5. Influence of moisture content on microbial activity and silage quality during ensilage of food processing residues.

    Science.gov (United States)

    Zheng, Yi; Yates, Matthew; Aung, Hnin; Cheng, Yu-Shen; Yu, Chaowei; Guo, Hongyun; Zhang, Ruihong; Vandergheynst, Jean; Jenkins, Bryan M

    2011-10-01

    Seasonally produced biomass such as sugar beet pulp (SBP) and tomato pomace (TP) needs to be stored properly to meet the demand of sustainable biofuel production industries. Ensilage was used to preserve the feedstock. The effect of moisture content (MC) on the performance of ensilage and the relationship between microorganism activities and MC were investigated. For SBP, MC levels investigated were 80, 55, 30, and 10% on a wet basis. For TP, MC levels investigated were 60, 45, 30, and 10%. Organic acids, ethanol, ammonia, pH and water soluble carbohydrates (WSC) were measured to evaluate the silage quality. Ensilage improved as the MC decreased from 80 to 55% for SBP and from 60 to 45% for TP. When the MC decreased to 30%, a little microbial activity was detected for both feedstocks. Storage at 10% MC prevented all the microbial activity. The naturally occurring microorganisms in TP were found to preserve TP during silage and were isolated and determined by polymerase chain reaction (PCR). The results suggest that partial drying followed by ensilage may be a good approach for stabilization of food processing residues for biofuels production.

  6. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity.

    Science.gov (United States)

    Marin, J A; Hernandez, T; Garcia, C

    2005-06-01

    Bioremediation of a refinery sludge containing hydrocarbons in a semi-arid climate using landfarming techniques is described. The objective of this study was to assess the ability of this technique to reduce the total hydrocarbon content added to the soil with the refinery sludge in semiarid climate (low rain and high temperature). In addition, we have evaluated the effect of this technique on the microbial activity of the soil involved. For this, biological parameters (carbon fractions, microbial biomass carbon, basal respiration and ATP) and biochemical parameters(different enzymatic activities) were determined. The results showed that 80% of the hydrocarbons were eliminated in eleven months, half of this reduction taking place during the first three months. The labile carbon fractions, MBC, basal respiration and ATP of the soils submitted to landfarming showed higher values than the control soil during the first months of the process, although these values fell down by the end of the experimental period as the hydrocarbons were degraded by mineralisation. All the enzymatic activities studied: oxidoreductases such as dehydrogenase activity, and hydrolases of C(beta-glucosidase activity) and N Cycle (urease and protease) showed higher values in the soils amended with the refinery sludge than in the control. As in the case of the previous parameters, these value fell down as the bioremediation of the hydrocarbons progressed, many of them reaching levels similar to those of the control soil after eleven months.

  7. Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs.

    Science.gov (United States)

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Xu, Juan; Sheng, Guo-Ping; Sun, Yu-Jiao; Yu, Han-Qing

    2011-04-01

    In this work, the heterotrophic growth on the microbial products of autotrophs and the effecting factors were evaluated with both experimental and modeling approaches. Fluorescence in situ hybridization (FISH) analysis illustrated that ammonia oxidizers (AOB), nitrite oxidizers (NOB), and heterotrophs accounted for about 65%, 20%, and 15% of the total bacteria, respectively. The mathematical evaluation of experimental data reported in literature indicated that heterotrophic growth in nitrifying biofilm (30-50%) and granules (30%) was significantly higher than that of nitrifying sludge (15%). It was found that low influent ammonium resulted in a lower availability of soluble microbial products (SMP) and a slower heterotrophic growth, but high ammonium (>150 mg N L(-1)) feeding would lead to purely AOB dominated sludge with high biomass-associated products contained effluent, although the absolute heterotrophic growth increased. Meanwhile, the total active biomass concentration increased gradually with the increasing solids retention time, whereas the factions of active AOB, NOB, and heterotrophs varied a lot at different solids retention times. This work could be useful for better understanding of the autotrophic wastewater treatment systems.

  8. The reactive transport of trichloroethene is influenced by residence time and microbial numbers

    Science.gov (United States)

    Haest, P. J.; Philips, J.; Springael, D.; Smolders, E.

    2011-01-01

    The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day - 1 ). Columns were loaded with an inoculated sand and eluted with a medium containing 1 mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.

  9. Effect of distance and depth on soil microbial biomass, N mineralization and genetic diversity of Rhizobia under Acacia senegal Tree

    Energy Technology Data Exchange (ETDEWEB)

    Fall, D.; Faye, A.; Sall, S. N.; Diouf, D.

    2009-07-01

    The relations between plants and soil biota involve positive and negative feedbacks between soil organisms, their chemical environment, and plants. Then, the characterization of microbial community functioning and their diversity are important to understand these linkages. An experiment was conducted in a field system for two years (2005 and 2006) to investigate the effect of distance from tree stem on soil microbial biomass, N mineral content and the diversity of rhizobia associated to Acacia senegal. (Author)

  10. Genetic and environmental influences on risky sexual behaviour and its relationship with personality.

    Science.gov (United States)

    Zietsch, B P; Verweij, K J H; Bailey, J M; Wright, M J; Martin, N G

    2010-01-01

    Risky sexual behaviour is a major health issue in society, and it is therefore important to understand factors that may predispose individuals to such behaviour. Research suggests a link between risky sexual behaviour and personality, but the basis of this link remains unknown. Hans Eysenck proposed that personality is related to sexual behaviour via biological underpinnings of both. Here we test the viability of this perspective by analysing data from identical and non-identical twins (N = 4,904) who completed a questionnaire assessing sexual attitudes and behaviour as well as personality. Using genetic modelling of the twin data, we found that risky sexual behaviour was significantly positively correlated with Impulsivity (r = .27), Extraversion (r = .24), Psychoticism (r = .20), and Neuroticism (r = .09), and that in each case the correlation was due primarily to overlapping genetic influences. These findings suggest that the genetic influences that shape our personality may also predispose us to risky sexual behaviour.

  11. Genetic and environmental influences on plasma homocysteine: results from a Danish twin study

    DEFF Research Database (Denmark)

    Bathum, Lise; Petersen, Inge; Christiansen, Lene;

    2007-01-01

    BACKGROUND: Increased plasma homocysteine has been linked to many clinical conditions including atherosclerosis and ischemic stroke. We assessed the genetic and environmental influences on homocysteine in adult twins and tested the influence of 3 candidate polymorphisms. METHODS: Homocysteine...... was analyzed in 1206 healthy twins, who were genotyped for 3 polymorphisms: MTHFR 677C>T, MTR 2756A>G, and NNMT (dbSNP: rs694539). To perform quantitative trait linkage analysis of the MTHFR locus, the genotyping was supplemented with 2 genetic markers localized on each site of the MTHFR locus. The twin data...... of the MTHFR locus is estimated to explain 53% (95% CI, 0.07-0.67) of the total phenotypic variation in persons 18-39 years old and 24% (95% CI, 0.00-0.39) in persons 40-65 years old, i.e., almost all additive genetic variance. CONCLUSIONS: Homocysteine concentrations have a high heritability that decreases...

  12. Genetic and Environmental Influences on Pulmonary Function and Muscle Strength: The Chinese Twin Study of Aging

    DEFF Research Database (Denmark)

    Tian, Xiaocao; Xu, Chunsheng; Wu, Yili;

    2017-01-01

    Genetic and environmental influences on predictors of decline in daily functioning, including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), handgrip, and five-times-sit-to-stand test (FTSST), have not been addressed in the aging Chinese population. We performed classical twin...... was moderate for FEV1, handgrip, and FTSST (55-60%) but insignificant for FVC. Only FVC showed moderate control, with shared environmental factors accounting for about 50% of the total variance. In contrast, all measures of pulmonary function and muscle strength showed modest influences from the unique...... direction. We conclude that genetic factors contribute significantly to the individual differences in common indicators of daily functioning (FEV1, handgrip, and FTSST). FEV1 and FVC were genetically and environmentally correlated. Pulmonary function and FTSST may share similar sets of genes...

  13. [Influence of milking technique, milking hygiene and environmental hygiene parameters on the microbial contamination of milking machines].

    Science.gov (United States)

    Feldmann, M; Zimmermann, A; Hoedemaker, M

    2006-07-01

    It was the aim of this study to investigate the effect of various factors of the milking technique, milking hygiene and environment on microbial contamination of the milking machine. In 31 dairy herds, the degree of bacterial contamination was examined by taking swabs at four locations (teat cup liner, claw, short and long milk tube) before the milking procedure was started using a standardized protocol (DIN ISO 6887-1:1999). Furthermore, the total germ count was determined in the first milk entering the bulk tank as well as in the bulk tank milk following milking. For each farm, the quality of the milking process and the condition of the milking machine as well as of various environmental factors were recorded. A subjective evaluation of the status of the milking cluster or other parts of the milking machine ("good" or "moderate-poor") gave more information about bacterial contamination than the determination of age and type of material used. A temperature of the rinsing water of teat cleaning before milking or of postmilking teat disinfection did not affect the contamination of the milking machine and the bulk tank milk with environmental bacteria. Furthermore, type of bedding material affected bacterial contamination of milking clusters and bulk tank milk. In conclusion, our results suggest that the microbial contamination of the milking machine is not only influenced by the sanitation pro-

  14. Effect of screening for cystic-fibrosis on the influence of genetic-counseling

    NARCIS (Netherlands)

    Dankert-Roelse, J E; te Meerman, G J; Knol, K; ten Kate, L P

    1987-01-01

    We studied the influence of genetic counseling for cystic fibrosis on family planning, using neonatal screening, family size at time of diagnosis, and maternal age as possible determinants for reproductive behaviour. The expected number of children born to mothers of equal age and parity in the same

  15. Twin study of genetic and environmental influences on adult body size, shape, and composition

    DEFF Research Database (Denmark)

    Schousboe, K; Visscher, P M; Erbas, B;

    2004-01-01

    OBJECTIVE: To investigate the genetic and environmental influences on adult body size, shape, and composition in women and men, and to assess the impact of age. MATERIALS AND METHODS: In this cross-sectional study of 325 female and 299 male like-sex healthy twin pairs, on average 38 y old (18-67 ...

  16. Shared aetiology of risky sexual behaviour and adolescent misconduct: Genetic and environmental influences

    NARCIS (Netherlands)

    Verweij, K.J.H.; Zietsch, B.P.; Bailey, J.M.; Martin, N.G.

    2009-01-01

    Risky sexual behaviour (RSB) is a major risk factor for serious diseases as well as unplanned pregnancy. It is not known if RSB has a genetic basis or if it is only influenced by social and cultural conditions. Adolescent conduct disorder has previously been linked to RSB and has been found to be in

  17. Genetic and environmental influences on cardiovascular risk factors and cognitive function

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Tian, Xiaocao; Sun, Jianping

    2017-01-01

    AIM: To explore the genetic and environmental influences on cardiovascular risk factors (CVRF) and cognitive function in the world's largest and rapidly aging Chinese population. METHODS: Cognitive function and CVRF, including body mass index, systolic blood pressure, diastolic blood pressure, pu...

  18. Genetic and environmental influences underlying externalizing behaviors, cigarette smoking and illicit drug use across adolescence.

    Science.gov (United States)

    Korhonen, Tellervo; Latvala, Antti; Dick, Danielle M; Pulkkinen, Lea; Rose, Richard J; Kaprio, Jaakko; Huizink, Anja C

    2012-07-01

    We investigated genetic and environmental influences common to adolescent externalizing behavior (at age 12), smoking (at age 14) and initiation of drug use (at age 17) using the FinnTwin12 cohort data. Multivariate Cholesky models were fit to data from 737 monozygotic and 722 dizygotic twin pairs. Heritability of externalizing behavior was 56%, that of smoking initiation/amount 20/32%, and initiation of drug use 27%. In the best-fitting model common environmental influences explained most of the covariance between externalizing behavior and smoking initiation (69%) and amount (77%). Covariance between smoking initiation/amount and drug use was due to additive genetic (42/22%) and common environmental (58/78%) influences. Half of the covariance between externalizing behavior and drug use was due to shared genetic and half due to the environments shared by co-twins. Using a longitudinal, prospective design, our results indicate that early observed externalizing behavior provides significant underlying genetic and environmental influences common to later substance use, here manifested as initiation of drug use in late adolescence.

  19. The bipolar puzzle, adding new pieces. Factors associated with bipolar disorder, Genetic and environmental influences

    NARCIS (Netherlands)

    van der Schot, A.C.

    2009-01-01

    The focus of this thesis is twofold. The first part will discuss the structural brain abnormalities and schoolperformance associated with bipolar disorder and the influence of genetic and/or environmental factors to this association. It is part of a large twin study investigating several potential b

  20. Seventy-five genetic loci influencing the human red blood cell

    NARCIS (Netherlands)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-01-01

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related

  1. The age-dependency of genetic and environmental influences on serum cytokine levels : a twin study

    NARCIS (Netherlands)

    Sas, Arthur A; Jamshidi, Yalda; Zheng, Dongling; Wu, Ting; Korf, Jakob; Alizadeh, Behrooz Z; Spector, Tim D; Snieder, Harold

    2012-01-01

    UNLABELLED: Previous epidemiologic studies have evaluated the use of immunological markers as possible tools for measuring ageing and predicting age-related pathology. The importance of both genetic and environmental influences in regulation of these markers has been emphasized. In order to further

  2. The age-dependency of genetic and environmental influences on serum cytokine levels : A twin study

    NARCIS (Netherlands)

    Sas, Arthur A.; Jamshidi, Yalda; Zheng, Dongling; Wu, Ting; Korf, Jakob; Alizadeh, Behrooz Z.; Snieder, Harold; Spector, Timothy D.

    2012-01-01

    Previous epidemiologic studies have evaluated the use of immunological markers as possible tools for measuring ageing and predicting age-related pathology. The importance of both genetic and environmental influences in regulation of these markers has been emphasized. In order to further evaluate thi

  3. Common Genetic and Environmental Influences on Major Depressive Disorder and Conduct Disorder

    Science.gov (United States)

    Subbarao, Anjali; Rhee, Soo Hyun; Young, Susan E.; Ehringer, Marissa A.; Corley, Robin P.; Hewitt, John K.

    2008-01-01

    The evidence for common genetic and environmental influences on conduct disorder (CD) and major depressive disorder (MDD) in adolescents was examined. A sample of 570 monozygotic twin pairs, 592 dizygotic twin pairs, and 426 non-twin siblings, aged 12-18 years, was recruited from the Colorado Twin Registry. For the past year data, there was a…

  4. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2010-01-01

    textabstractBackground: Genetic variation in SIRT1 has been associated with body mass index (BMI) and risk of obesity. SIRT1 may be influenced by diet. Objective: We studied the gene-diet interaction on BMI at the SIRT1 locus. Design: In 4575 elderly men and women in the population-based Rotterdam S

  5. Genetic and Environmental Influences on Pro-Inflammatory Monocytes in Bipolar Disorder A Twin Study

    NARCIS (Netherlands)

    Padmos, Roos C.; Van Baal, G. Caroline M.; Vonk, Ronald; Wijkhuijs, Annemarie J. M.; Kahn, Rene S.; Nolen, Willem A.; Drexhage, Hemmo A.

    Context: A monocyte pro-inflammatory state has previously been reported in bipolar disorder (BD). Objective: To determine the contribution of genetic and environmental influences on the association between monocyte pro- inflammatory state and BD. Design: A quantitative polymerase chain reaction

  6. Genetic and Environmental Influences on Extreme Personality Dispositions in Adolescent Female Twins

    Science.gov (United States)

    Pergadia, Michele L.; Madden, Pamela A. F.; Lessov, Christina N.; Todorov, Alexandre A.; Bucholz, Kathleen K.; Martin, Nicholas G.; Heath, Andrew C.

    2006-01-01

    Background: The objective was to determine whether the pattern of environmental and genetic influences on deviant personality scores differs from that observed for the normative range of personality, comparing results in adolescent and adult female twins. Methods: A sample of 2,796 female adolescent twins ascertained from birth records provided…

  7. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2010-01-01

    textabstractBackground: Genetic variation in SIRT1 has been associated with body mass index (BMI) and risk of obesity. SIRT1 may be influenced by diet. Objective: We studied the gene-diet interaction on BMI at the SIRT1 locus. Design: In 4575 elderly men and women in the population-based Rotterdam

  8. Genetic and environmental influences on height from infancy to early adulthood

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Sund, Reijo; Hur, Yoon-Mi

    2016-01-01

    Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180...

  9. Influence of genetic background on anthocyanin and copigment composition and behavior during thermoalkaline processing of maize

    Science.gov (United States)

    Visual color is a primary factor for foods purchase; identifying factors that influence in-situ color quality of pigmented maize during processing is important. We used 24 genetically distinct pigmented maize hybrids (red/blue, blue, red, and purple) to investigate the effect of pigment and copigme...

  10. Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat

    NARCIS (Netherlands)

    Simón, M.R.

    2003-01-01

    KeyWord:Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella

  11. Genetic and Environmental Influences on Extreme Personality Dispositions in Adolescent Female Twins

    Science.gov (United States)

    Pergadia, Michele L.; Madden, Pamela A. F.; Lessov, Christina N.; Todorov, Alexandre A.; Bucholz, Kathleen K.; Martin, Nicholas G.; Heath, Andrew C.

    2006-01-01

    Background: The objective was to determine whether the pattern of environmental and genetic influences on deviant personality scores differs from that observed for the normative range of personality, comparing results in adolescent and adult female twins. Methods: A sample of 2,796 female adolescent twins ascertained from birth records provided…

  12. Seventy-five genetic loci influencing the human red blood cell

    NARCIS (Netherlands)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-01-01

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related

  13. Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat

    NARCIS (Netherlands)

    Simón, M.R.

    2003-01-01

    KeyWord:Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella

  14. Non-genetic risk factors and their influence on the management of patients in the clinic.

    Science.gov (United States)

    Álvarez, Teresa; Soto, Immaculada; Astermark, Jan

    2015-02-01

    The development of inhibitors is the most serious iatrogenic complication affecting patients with haemophilia. This complication is associated with impaired vital or functional prognosis, reduced quality of life and increased cost of treatment. The reasons why some patients develop antibodies to factor replacement and others do not remain unclear. It is however clear that inhibitor development results from a complex multifactorial interaction between genetic and non-genetic risk factors. Environmental influences implicated in increasing the risk of inhibitor formation can be viewed as modifiable risk factors. Therefore, identification of the non-genetic risk factors may offer the possibility of personalising haemophilia therapy by modifying treatment strategies in high-risk patients in the critical early phase of factor VIII exposure. In this article, we review the non-genetic factors reported as well as the potential impact of danger signals and the different scores for inhibitor development risk stratification.

  15. On the Influence of Selection Operators on Performances in Cellular Genetic Algorithms

    CERN Document Server

    Simoncini, David; Verel, Sébastien; Clergue, Manuel

    2008-01-01

    In this paper, we study the influence of the selective pressure on the performance of cellular genetic algorithms. Cellular genetic algorithms are genetic algorithms where the population is embedded on a toroidal grid. This structure makes the propagation of the best so far individual slow down, and allows to keep in the population potentially good solutions. We present two selective pressure reducing strategies in order to slow down even more the best solution propagation. We experiment these strategies on a hard optimization problem, the quadratic assignment problem, and we show that there is a value for of the control parameter for both which gives the best performance. This optimal value does not find explanation on only the selective pressure, measured either by take over time and diversity evolution. This study makes us conclude that we need other tools than the sole selective pressure measures to explain the performances of cellular genetic algorithms.

  16. Genetic and environmental influences on applied creativity: A reared-apart twin study.

    Science.gov (United States)

    Velázquez, Jaime A; Segal, Nancy L; Horwitz, Briana N

    2015-03-01

    Applied creativity involves bringing innovation to real-life activities. The first reared-apart twin study assessing genetic and environmental origins of applied creativity, via Draw-a-House (DAH) and Draw-a-Person (DAP) tasks, is presented. Participants included 69 MZA and 53 DZA twin pairs from the Minnesota Study of Twins Reared Apart. Drawings were evaluated by four artists and four non-artists. Genetic effects were demonstrated for the DAP (.38-.47), but not for the DAH. Creative personality showed genetic effects (.50), and modest, but significant correlations with scores on the two drawings (rs = .17-.26). Both genetic and nonshared environmental influences underlie variance in applied creativity. Individuals concerned with enhancing creativity among students and others may better understand individual differences in performance and training.

  17. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    Directory of Open Access Journals (Sweden)

    Miriam A Mosing

    Full Text Available Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious and feel that they are in control of their own destiny (internal locus of control. We discuss that some of the genes underlying this relationship may include those influencing the function of

  18. Sex differences in genetic and environmental influences on educational attainment and income.

    Science.gov (United States)

    Orstavik, Ragnhild E; Czajkowski, Nikolai; Røysamb, Espen; Knudsen, Gun Peggy; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2014-12-01

    In many Western countries, women now reach educational levels comparable to men, although their income remains considerably lower. For the past decades, it has become increasingly clear that these measures of socio-economic status are influenced by genetic as well as environmental factors. Less is known about the relationship between education and income, and sex differences. The aim of this study was to explore genetic and environmental factors influencing education and income in a large cohort of young Norwegian twins, with special emphasis on gender differences. National register data on educational level and income were obtained for 7,710 twins (aged 29-41 years). Bivariate Cholesky models were applied to estimate qualitative and quantitative gender differences in genetic and environmental influences, the relative contribution of genetic and environmental factors to the correlation between education and income, and genetic correlations within and between sexes and phenotypes. The phenotypic correlation between educational level and income was 0.34 (0.32-0.39) for men and 0.45 (0.43-0.48) for women. An ACE model with both qualitative and quantitative sex differences fitted the data best. The genetic correlation between men and women (rg) was 0.66 (0.22-1.00) for educational attainment and 0.38 (0.01-0.75) for income, and between the two phenotypes 0.31 (0.08-0.52) for men and 0.72 (0.64-0.85) for women. Our results imply that, in relatively egalitarian societies with state-supported access to higher education and political awareness of gender equality, genetic factors may play an important role in explaining sex differences in the relationship between education and income.

  19. Microbiological Aspects of Geothermal Energy: Influence of Microbial Activity on Scaling and Clogging in a Cold Storage

    Science.gov (United States)

    Lerm, Stephanie; Alawi, Mashal; Miethling-Graff, Rona; Vieth, Andrea; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2010-05-01

    that bacteria and their metabolic activities were involved in the decrease of filter endurances. A strong biofilm formation of filamentous sulfur-oxidizing bacteria related to Thiothrix was observed. In the course of the disinfection measure the microbial composition in the process water changed significantly. Thiothrix could not be detected any longer and the biocoenosis in the fluid was dominated now by Flavobacterium, Acidovorax as well as Alcaligenaceae related organisms. In contrast, SRB analyzed by specific dissimilatory sulfite reductase genes were hardly affected by the disinfection measures. However, even if especially SRB are considered as the most important taxonomic group for microbiologically influenced corrosion (MIC), present operational results indicate that scaling and clogging were the predominant processes for the operation of the shallow cold storage in Berlin.

  20. The relationship between the genetic and environmental influences on common externalizing psychopathology and mental wellbeing.

    Science.gov (United States)

    Kendler, Kenneth S; Myers, John M; Keyes, Corey L M

    2011-12-01

    To determine the relationship between the genetic and environmental risk factors for externalizing psychopathology and mental wellbeing, we examined detailed measures of emotional, social and psychological wellbeing, and a history of alcohol-related problems and smoking behavior in the last year in 1,386 individual twins from same-sex pairs from the MIDUS national US sample assessed in 1995. Cholesky decomposition analyses were performed withthe Mx program. The best fit model contained one highly heritable common externalizing psychopathology factor for both substance use/abuse measures, and one strongly heritable common factor for the three wellbeing measures. Genetic and environmental risk factors for externalizing psychopathology were both negatively associated with levels of mental wellbeing and accounted for, respectively, 7% and 21% of its genetic and environmental influences. Adding internalizing psychopathology assessed in the last year to the model, genetic risk factors unique for externalizing psychopathology were now positively related to levels of mental wellbeing, although accounting for only 5% of the genetic variance. Environmental risk factors unique to externalizing psychopathology continued to be negatively associated with mental wellbeing, accounting for 26% of the environmental variance. When both internalizing psychopathology and externalizing psychopathology are associated with mental wellbeing, the strongest risk factors for low mental wellbeing are genetic factors that impact on both internalizing psychopathology and externalizing psychopathology, and environmental factors unique to externalizing psychopathology. In this model, genetic risk factors for externalizing psychopathology predict, albeit weakly, higher levels of mental wellbeing.

  1. Influences of microbial activity and sediment disturbance on hyporheic exchange in sandy sediments

    Science.gov (United States)

    Mendoza-Lera, C.; Mutz, M.

    2012-04-01

    Besides the vertical hydraulic gradient, sediment permeability is the main controlling factor of water exchange across the stream bed. Reduction of permeability by microbial activity is reported from unidirectional percolated sediment columns. We investigated effects of algal and bacterial activity on hyporheic exchange (vertical water flux, VWF) under semi-natural stream conditions in 16 outdoor sand-bed flumes during 30 day. Variability of bedform was considered by 8 flumes having plane-bed and 8 flumes ripple-bed. To gain information on the relative significance of algae and heterotrophic microorganisms, half of the flumes were operated under constant dark conditions (no-light flumes), while the others were exposed to daylight. After 21 days, the upper 2 cm of the sediments was manually disturbed simulating moderate sediment dynamics which frequently occurs in natural sand-bed streams. VWF was measured by tracing loss of uranine from the water column while flumes were operating in re-circulating mode. Algae and bacterial abundance, organic matter, and CaCO3 content in sediments were determined. Sediment potential respiration (SPR) was measured in flow through respiration chambers and oxygen bubbles from primary production were sampled. As expected, initial VWF was higher in ripple-bed. After 13 days, VWF was completely inhibited in both plane and ripple-bed flumes under daylight conditions. In no-light flumes reduction of VWF was moderate. Microbial precipitation of calcium carbonate and production of oxygen bubbles in the uppermost sediments blocked the pore space. After 3 weeks, abundance and biomass of algae and SPR in the upper 2 cm of sediment were higher in daylight flumes than in no-light flumes, while bacterial abundance was higher in no-light flumes. The sediment disturbance at day 21 released the oxygen bubbles increased bed permeability and therefore restored VWF to initial rates in day-light flumes. SPR was unaffected by the sediment disturbance. In

  2. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations.

    Directory of Open Access Journals (Sweden)

    Shi Ying

    Full Text Available Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.

  3. Disentangling the effects of genetic, prenatal and parenting influences on children's cortisol variability.

    Science.gov (United States)

    Marceau, Kristine; Ram, Nilam; Neiderhiser, Jenae M; Laurent, Heidemarie K; Shaw, Daniel S; Fisher, Phil; Natsuaki, Misaki N; Leve, Leslie D

    2013-11-01

    Developmental plasticity models hypothesize the role of genetic and prenatal environmental influences on the development of the hypothalamic-pituitary-adrenal (HPA) axis and highlight that genes and the prenatal environment may moderate early postnatal environmental influences on HPA functioning. This article examines the interplay of genetic, prenatal and parenting influences across the first 4.5 years of life on a novel index of children's cortisol variability. Repeated measures data were obtained from 134 adoption-linked families, adopted children and both their adoptive parents and birth mothers, who participated in a longitudinal, prospective US domestic adoption study. Genetic and prenatal influences moderated associations between inconsistency in overreactive parenting from child age 9 months to 4.5 years and children's cortisol variability at 4.5 years differently for mothers and fathers. Among children whose birth mothers had high morning cortisol, adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children with low birth mother morning cortisol adoptive fathers' inconsistent overreactive parenting predicted lower cortisol variability. Among children who experienced high levels of prenatal risk, adoptive mothers' inconsistent overreactive parenting predicted lower cortisol variability and adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children who experienced low levels of prenatal risk there were no associations between inconsistent overreactive parenting and children's cortisol variability. Findings supported developmental plasticity models and uncovered novel developmental, gene × environment and prenatal × environment influences on children's cortisol functioning.

  4. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.

    Science.gov (United States)

    Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A

    2016-08-01

    This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance.

  5. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells.

    Science.gov (United States)

    Croese, Elsemiek; Jeremiasse, Adriaan W; Marshall, Ian P G; Spormann, Alfred M; Euverink, Gert-Jan W; Geelhoed, Jeanine S; Stams, Alfons J M; Plugge, Caroline M

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (large versus small) including electrode material and flow path and in carbon source provided at the cathode (bicarbonate or acetate). A hydrogenase gene-based DNA microarray (Hydrogenase Chip) was used to analyze hydrogenase genes present in the three large setups. The small setups showed dominant groups of Firmicutes and two of the large setups showed dominant groups of Proteobacteria and Bacteroidetes. The third large setup received acetate but no sulfate (no sulfur source). In this setup an almost pure culture of a Promicromonospora sp. developed. Most of the hydrogenase genes detected were coding for bidirectional Hox-type hydrogenases, which have shown to be involved in cytoplasmatic H2 production.

  6. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Maximizing influence in a social network: Improved results using a genetic algorithm

    Science.gov (United States)

    Zhang, Kaiqi; Du, Haifeng; Feldman, Marcus W.

    2017-07-01

    The influence maximization problem focuses on finding a small subset of nodes in a social network that maximizes the spread of influence. While the greedy algorithm and some improvements to it have been applied to solve this problem, the long solution time remains a problem. Stochastic optimization algorithms, such as simulated annealing, are other choices for solving this problem, but they often become trapped in local optima. We propose a genetic algorithm to solve the influence maximization problem. Through multi-population competition, using this algorithm we achieve an optimal result while maintaining diversity of the solution. We tested our method with actual networks, and our genetic algorithm performed slightly worse than the greedy algorithm but better than other algorithms.

  8. Influence Factors on Consumers’ Cognition Level to Genetically Modified Food-taking Huangshi as an Example

    Directory of Open Access Journals (Sweden)

    Ruishan Chen

    2015-07-01

    Full Text Available This study aims to analyze the influence factors on consumers’ cognition level to genetically modified food and improve the consumers’ cognition level. In recent years, genetically modified foods in people’s daily life are becoming more and more common, but there is a lot of controversy about them. Based on the analysis of influence factors on consumers’ cognition level to GMF, a comprehensive system is established from four aspects, including the consumers’ personal characteristics, social-economic characteristics, household characteristics and awareness of risk. And Analytic Hierarchy Process (AHP method is used to make the quantitative research via investigation data of Huangshi, analyze the major influence on consumers’ cognition level to GMF. Finally some suggestions are proposed to promote the consumers’ cognition level to GMF.

  9. Microbial symbionts in insects influence down-regulation of defense genes in maize.

    Directory of Open Access Journals (Sweden)

    Kelli L Barr

    Full Text Available Diabrotica virgifera virgifera larvae are root-feeding insects and significant pests to maize in North America and Europe. Little is known regarding how plants respond to insect attack of roots, thus complicating the selection for plant defense targets. Diabrotica virgifera virgifera is the most successful species in its genus and is the only Diabrotica beetle harboring an almost species-wide Wolbachia infection. Diabrotica virgifera virgifera are infected with Wolbachia and the typical gut flora found in soil-living, phytophagous insects. Diabrotica virgifera virgifera larvae cannot be reared aseptically and thus, it is not possible to observe the response of maize to effects of insect gut flora or other transient microbes. Because Wolbachia are heritable, it is possible to investigate whether Wolbachia infection affects the regulation of maize defenses. To answer if the success of Diabrotica virgifera virgifera is the result of microbial infection, Diabrotica virgifera virgifera were treated with antibiotics to eliminate Wolbachia and a microarray experiment was performed. Direct comparisons made between the response of maize root tissue to the feeding of antibiotic treated and untreated Diabrotica virgifera virgifera show down-regulation of plant defenses in the untreated insects compared to the antibiotic treated and control treatments. Results were confirmed via QRT-PCR. Biological and behavioral assays indicate that microbes have integrated into Diabrotica virgifera virgifera physiology without inducing negative effects and that antibiotic treatment did not affect the behavior or biology of the insect. The expression data and suggest that the pressure of microbes, which are most likely Wolbachia, mediate the down-regulation of many maize defenses via their insect hosts. This is the first report of a potential link between a microbial symbiont of an insect and a silencing effect in the insect host plant. This is also the first expression

  10. Environmental heterogeneity and microbial inheritance influence sponge-associated bacterial composition of Spongia lamella.

    Science.gov (United States)

    Noyer, Charlotte; Casamayor, Emilio O; Becerro, Mikel A

    2014-10-01

    Sponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known. In this study, we investigated whether bacterial assemblages present in Spongia lamella remained constant or changed as a function of the environment and life cycle. Sponges were collected in multiple locations and at different times of the year in the western Mediterranean Sea and in nearby Atlantic Ocean to cover heterogeneous environmental variability. Co-occurring adult sponges and offsprings were compared at two of the sites. To explore the composition and abundance of the main bacteria present in the sponge mesohyl, embryos, and larvae, we applied both 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands and quantitative polymerase chain reactions (qPCR). On average, the overall core bacterial assemblage showed over 60 % similarity. The associated bacterial assemblage fingerprints varied both within and between sponge populations, and the abundance of specific bacterial taxa assessed by qPCR significantly differed among sponge populations and between adult sponge and offsprings (higher proportions of Actinobacteria in the latter). Sequences showed between 92 and 100 % identity to sequences previously reported in GenBank, and all were affiliated with uncultured invertebrate bacterial symbionts (mainly sponges). Sequences were mainly related to Chloroflexi and Acidobacteria and a few to Actinobacteria and Bacteroidetes. Additional populations may have been present under detection limits. Overall, these results support that both ecological and biological sponge features may shape the composition of endobiont bacterial communities in S. lamella.

  11. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].

    Science.gov (United States)

    Teng, Wen-Kai; Liu, Guang-Li; Luo, Hai-Ping; Zhang, Ren-Duo; Fu, Shi-Yu

    2015-03-01

    The chemical oxygen demand (COD) of substrate can affect the microbial activity of both anode and cathode biofilm in the single-chamber methanogenic microbial electrolysis cell (MEC). In order to investigate the effect of COD on the performance of MEC, a single chamber MEC was constructed with biocathode. With the change of initial concentration of COD (700, 1 000 and 1 350 mg x L(-1)), the methane production rate, COD removal and energy efficiency in the MEC were examined under different applied voltages. The results showed that the methane production rate and COD removal increased with the increasing COD. With the applied voltage changing from 0.3 to 0.7 V, the methane production rate increased at the COD of 700 mg x L(-1), while it increased at first and then decreased at the COD of 1000 mg x L(-1) and 1350 mg x L(-1). A similar trend was observed for the COD removal. The cathode potential reached the minimum (- 0.694 ± 0.001) V as the applied voltage was 0.5 V, which therefore facilitated the growth of methanogenic bacteria and improved the methane production rate and energy efficiency of the MEC. The maximum energy income was 0.44 kJ ± 0.09 kJ (1450 kJ x m(-3)) in the MEC, which was obtained at the initial COD of 1000 mg x L(-1) and the applied voltage of 0.5 V. Methanogenic MECs could be used for the treatment of wastewaters containing low organic concentrations to achieve positive energy production, which might provide a new method to recover energy from low-strength domestic wastewater.

  12. Factors influencing the microbial composition of metalworking fluids and potential implications for machine operator's lung.

    Science.gov (United States)

    Murat, Jean-Benjamin; Grenouillet, Frédéric; Reboux, Gabriel; Penven, Emmanuelle; Batchili, Adam; Dalphin, Jean-Charles; Thaon, Isabelle; Millon, Laurence

    2012-01-01

    Hypersensitivity pneumonitis, also known as "machine operator's lung" (MOL), has been related to microorganisms growing in metalworking fluids (MWFs), especially Mycobacterium immunogenum. We aimed to (i) describe the microbiological contamination of MWFs and (ii) look for chemical, physical, and environmental parameters associated with variations in microbiological profiles. We microbiologically analyzed 180 MWF samples from nonautomotive plants (e.g., screw-machining or metal-cutting plants) in the Franche-Comté region in eastern France and 165 samples from three French automotive plants in which cases of MOL had been proven. Our results revealed two types of microbial biomes: the first was from the nonautomotive industry, showed predominantly Gram-negative rods (GNR), and was associated with a low risk of MOL, and the second came from the automotive industry that was affected by cases of MOL and showed predominantly Gram-positive rods (GPR). Traces of M. immunogenum were sporadically detected in the first type, while it was highly prevalent in the automotive sector, with up to 38% of samples testing positive. The use of chromium, nickel, or iron was associated with growth of Gram-negative rods; conversely, growth of Gram-positive rods was associated with the absence of these metals. Synthetic MWFs were more frequently sterile than emulsions. Vegetable oil-based emulsions were associated with GNR, while mineral ones were associated with GPR. Our results suggest that metal types and the nature of MWF play a part in MWF contamination, and this work shall be followed by further in vitro simulation experiments on the kinetics of microbial populations, focusing on the phenomena of inhibition and synergy.

  13. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage.

    Science.gov (United States)

    Inglis, G D; Yanke, L J; Kawchuk, L M; McAllister, T A

    1999-01-01

    The aerobic decomposition of barley silage treated with two inoculants (LacA and LacB) containing mixtures of Lactobacillus plantarum and Enterococcus faecium was investigated over a 28-day period. Initially, yeast and bacterial populations were larger in silage inoculated with LacA than in silage treated with LacB or water alone (control). Differences in the succession of yeasts in silage treated with LacA were observed relative to the other two treatments. From silage treatment with LacA, Issatchenkia orientalis was the most prevalent yeast taxon over all of the sample times, and the filamentous fungus Microascus brevicaulis was also frequently isolated at later sample dates (> or = 14 days). In contrast, Saccharomyces exiguus was the most prominent yeast recovered from silage treated with LacB and water alone on days 2 and 4, although it was supplanted by I. orientalis at later sample times. Successional trends of bacteria were similar for all three treatments. Lactobacillus spp. were initially the most prevalent bacteria isolated, followed by Bacillus spp. (primarily Bacillus pumilus). However, the onset of Bacillus spp. prominence was faster in LacA silage, and Klebsiella planticola was frequently recovered at later sample times (> or = 14 days). More filamentous fungi were recovered from LacA silage on media containing carboxylmethylcellulose, pectin, or xylan. The most commonly isolated taxa were Absidia sp., Aspergillus flavus, Aspergillus fumigatus, Byssochlamys nivea, Monascus ruber, Penicillium brevicompactum, Pseudoallescheria boydii, and M. brevicaulis. The results of this study indicated that the two bacterial inoculants incorporated into barley at the time of ensilage affected the microbial ecology of silage decomposition following exposure to air. However, neither of the microbial inoculants effectively delayed aerobic spoilage of barley silage, and the rate of decomposition of silage treated with one of the inoculants (LacA) was actually enhanced.

  14. Genetic and Non-Genetic Influences during Pregnancy on Infant Global and Site Specific DNA Methylation: Role for Folate Gene Variants and Vitamin B12

    OpenAIRE

    McKay, Jill A; Alexandra Groom; Catherine Potter; Coneyworth, Lisa J.; Dianne Ford; Mathers, John C.; Relton, Caroline L

    2012-01-01

    Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Py...

  15. Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing.

    Science.gov (United States)

    Xie, Yongchao; Wu, Bing; Zhang, Xu-Xiang; Yin, Jinbao; Mao, Liang; Hu, Maojie

    2016-02-01

    Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota.

  16. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  17. Influence of landscape features on the microgeographic genetic structure of a resident songbird.

    Science.gov (United States)

    Adams, R V; Lazerte, S E; Otter, K A; Burg, T M

    2016-08-01

    Landscape features influence individual dispersal and as a result can affect both gene flow and genetic variation within and between populations. The landscape of British Columbia, Canada, is already highly heterogeneous because of natural ecological and geological transitions, but disturbance from human-mediated processes has further fragmented continuous habitat, particularly in the central plateau region. In this study, we evaluated the effects of landscape heterogeneity on the genetic structure of a common resident songbird, the black-capped chickadee (Poecile atricapillus). Previous work revealed significant population structuring in British Columbia that could not be explained by physical barriers, so our aim was to assess the pattern of genetic structure at a microgeographic scale and determine the effect of different landscape features on genetic differentiation. A total of 399 individuals from 15 populations were genotyped for fourteen microsatellite loci revealing significant population structuring in this species. Individual- and population-based analyses revealed as many as nine genetic clusters with isolation in the north, the central plateau and the south. Moreover, a mixed modelling approach that accounted for non-independence of pairwise distance values revealed a significant effect of land cover and elevation resistance on genetic differentiation. These results suggest that barriers in the landscape influence dispersal which has led to the unexpectedly high levels of population isolation. Our study demonstrates the importance of incorporating landscape features when interpreting patterns of population differentiation. Despite taking a microgeographic approach, our results have opened up additional questions concerning the processes influencing dispersal and gene flow at the local scale.

  18. Use of Geographical Information Systems to influence the selection of sampling site locations for the evaluation of microbial diversity

    Science.gov (United States)

    Soil microbial population densities can easily reach one billion cells per gram of soil; and soil microbial diversity has been estimated to reach ten thousand individual species per gram of soil. Soil type and underlying soil structure are considered primary determinants of microbial community struc...

  19. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  20. Genetic Influence on the Peripheral Blood CD4+ T-cell Differentiation Status in CMV Infection

    DEFF Research Database (Denmark)

    Goldeck, David; Larsen, Lisbeth Aagaard; Christiansen, Lene

    2016-01-01

    A latent infection with cytomegalovirus (CMV), a ubiquitous beta herpesvirus, is associated with an accumulation of late-differentiated memory T-cells, often accompanied by a reciprocal reduced frequency of early-differentiated cells (commonly also referred to as "naïve"). However, this impact...... heritability analysis confirmed a substantial contribution of genetics to the differentiation status of T-cells in CMV infection. The humoral (IgG) response to different CMV antigens also seems to be genetically influenced, suggesting that a similar degree of immune control of the virus in MZ twins might...

  1. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Krych, Lukasz; Buschard, Karsten;

    2014-01-01

    Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting β-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than...... purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D...

  2. Interaction between seroreactivity to microbial antigens and genetics in Crohn's disease: is there a role for defensins?

    Science.gov (United States)

    Lakatos, P L; Altorjay, I; Mándi, Y; Lakatos, L; Tumpek, J; Kovacs, A; Molnar, T; Tulassay, Z; Miheller, P; Palatka, K; Szamosi, T; Fischer, S; Papp, J; Papp, M

    2008-06-01

    Antibodies against different microbial epitopes are associated with disease phenotype, may be of diagnostic importance and may reflect a loss of tolerance in Crohn's disease (CD). Recently, an association was reported between the presence of these antibodies and mutations in pattern receptor genes. Our aim was to investigate whether mutations in various genes other than NOD2/CARD15 or TLR4 associated with CD (NOD1/CARD4, DLG5 and DEFB1) may influence the presence of antibodies against bacterial proteins and carbohydrates in a Hungarian cohort of CD patients. Three hundred and seventy-six well-characterized, unrelated, consecutive CD patients (male/female: 191/185, age at onset: 29.1 +/- 12.9 years, duration: 7.9 +/- 11.7 years) were investigated. Sera were assayed for anti-Omp, anti-Saccharomyces cerevisiae antibodies (ASCAs) immunoglobulin (Ig) A and IgG, and antibodies against a mannan epitope of S. cerevisiae (gASCA), laminaribioside (ALCA), chitobioside (ACCA), and mannobioside (AMCA). NOD1/CARD4, DLG5 and DEFB1 variants were tested by polymerase chain reaction-restriction fragment length polymorphism, and DEFB1 was genotyped in a subgroup of 160 patients. Detailed clinical phenotypes were determined by reviewing the patients' medical charts. The carriage of DEFB1 20A variant alleles less frequently led to antiglycan positivity compared with patients without (29.6% vs 46.2%, OR: 0.49, 95% CI: 0.25-0.97), regardless of disease location or behavior. Similar tendency was observed for DEFB1 44G (present: 21.6% vs absent: 10.2%, P = 0.06) and ALCA. A gene or serology dosage effect was not observed. However, no association was found between the DEFB1 G52A, DLG5 R30Q, and NOD1/CARD4 E266K variants and any of the serology markers. We found that variants in human beta-defensin 1 gene are inversely associated with antiglycan antibodies, further confirming an important role for innate immunity in the pathogenesis of CD.

  3. Effect of Brahman genetic influence on collagen enzymatic crosslinking gene expression and meat tenderness.

    Science.gov (United States)

    Gonzalez, J M; Johnson, D D; Elzo, M A; White, M C; Stelzleni, A M; Johnson, S E

    2014-01-01

    The objective of the study was to examine the effect of Brahman genetics on collagen enzymatic crosslinking gene expression and meat tenderness. Steers were randomly selected to represent a high percentage Brahman genetics (n = 13), Half-Blood genetics (n = 13), Brangus genetics (n = 13), and a high percentage Angus genetics (n = 13). Muscle samples from the Longissimus lumborum muscle were collected at weaning and harvest and reverse transcription quantitative PCR (qPCR) analysis was conducted to measure the mRNA expression of lysyl oxidase (LOX), bone morphogenetic protein 1 (BMP1), and cystatin C (CYS). Steaks from subject animals were collected at harvest, aged for 14 d and subjected to collagen analysis, Warner-Bratzler Shear Force (WBS) and trained sensory panel analysis (tenderness, juiciness, and connective tissue). Data indicated that Half-Blood and Brahman steers had greater (PBrahman and Half-Blood steaks when compared to Angus and Brangus steaks (P 0.10). At harvest, Brangus and Angus steers had greater LOX mRNA expression than Brahman cattle (P Brahman genetic influence.

  4. Temperature and relative humidity influence the microbial and physicochemical characteristics of Camembert-type cheese ripening.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Sicard, M; Trelea, I C; Picque, D; Corrieu, G

    2012-08-01

    To evaluate the effects of temperature and relative humidity (RH) on microbial and biochemical ripening kinetics, Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces marxianus, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical changes were studied under different ripening temperatures (8, 12, and 16°C) and RH (88, 92, and 98%). The central point runs (12°C, 92% RH) were both reproducible and repeatable, and for each microbial and biochemical parameter, 2 kinetic descriptors were defined. Temperature had significant effects on the growth of both K. marxianus and G. candidum, whereas RH did not affect it. Regardless of the temperature, at 98% RH the specific growth rate of P. camemberti spores was significantly higher [between 2 (8°C) and 106 times (16°C) higher]. However, at 16°C, the appearance of the rind was no longer suitable because mycelia were damaged. Brevibacterium aurantiacum growth depended on both temperature and RH. At 8°C under 88% RH, its growth was restricted (1.3 × 10(7) cfu/g), whereas at 16°C and 98% RH, its growth was favored, reaching 7.9 × 10(9) cfu/g, but the rind had a dark brown color after d 20. Temperature had a significant effect on carbon substrate consumption rates in the core as well as in the rind. In the rind, when temperature was 16°C rather than 8°C, the lactate consumption rate was approximately 2.9 times higher under 88% RH. Whatever the RH, temperature significantly affected the increase in rind pH (from 4.6 to 7.7 ± 0.2). At 8°C, an increase in rind pH was observed between d 6 and 9, whereas at 16°C, it was between d 2 and 3. Temperature and RH affected the increasing rate of the underrind thickness: at 16°C, half of the cheese thickness appeared ripened on d 14 (wrapping day). However, at 98% RH, the underrind was runny. In conclusion, some descriptors, such as yeast growth and the pH in the rind, depended solely on

  5. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.

    Science.gov (United States)

    Gozho, G N; Mutsvangwa, T

    2008-07-01

    Eight multiparous Holstein cows (676 +/- 57 kg of body weight; 121 +/- 17 d-in-milk) were used in a replicated 4 x 4 Latin square design to determine the effects of 4 sources of carbohydrate on milk yield and composition, ruminal fermentation, and microbial N flow to the duodenum. Four cows in one of the Latin squares were fitted with permanent ruminal cannulae. Diets contained (DM basis) 50% forage in combinations of alfalfa hay and barley silage, and 50% concentrate. The concentrate portion of the diets contained barley, corn, wheat, or oats grain as the primary source of carbohydrate. Intake of DM ranged from 24.0 to 26.2 kg/d, and it tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet; consequently, milk yield tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet. Cows fed the barley- or wheat-based diets had a lower milk fat content compared with those fed the corn-based diet. Ruminal fermentation characteristics were largely unaffected by the source of dietary carbohydrate, with similar ruminal pH and volatile fatty acid and ammonia concentrations for the first 6 h after the morning feeding. Dietary treatment did not affect total tract apparent digestibility of DM, organic matter, and neutral detergent fiber; however, total tract apparent digestibility of starch in cows fed the oats-based diet was higher compared with those fed the corn-and wheat-based diets. Nitrogen that was used for productive purposes (i.e., N secreted in milk + N apparently retained by the cow) tended to be lower in cows fed the wheat-based diet compared with cows fed the barley-, corn-, or oats-based diets. Urinary purine derivative (PD) excretion was similar in cows fed the barley-, corn-, and wheat-based diets; however, purine derivative excretion was higher in cows fed the barley-based diet compared with those fed the oats-based diet. Consequently, estimated microbial N flow to the duodenum was

  6. Factors influencing and modifying the decision to pursue genetic testing for skin cancer risk.

    Science.gov (United States)

    Fogel, Alexander L; Jaju, Prajakta D; Li, Shufeng; Halpern-Felsher, Bonnie; Tang, Jean Y; Sarin, Kavita Y

    2017-05-01

    Across cancers, the decision to pursue genetic testing is influenced more by subjective than objective factors. However, skin cancer, which is more prevalent, visual, and multifactorial than many other malignancies, may offer different motivations for pursuing such testing. The primary objective was to determine factors influencing the decision to receive genetic testing for skin cancer risk. A secondary objective was to assess the impact of priming with health questions on the decision to receive testing. We distributed anonymous online surveys through ResearchMatch.org to assess participant health, demographics, motivations, and interest in pursuing genetic testing for skin cancer risk. Two surveys with identical questions but different question ordering were used to assess the secondary objective. We received 3783 responses (64% response rate), and 85.8% desired testing. Subjective factors, including curiosity, perceptions of skin cancer, and anxiety, were the most statistically significant determinants of the decision to pursue testing (P skin cancer (odds ratio 0.5, P = .01). Age and family history of skin cancer did not influence this decision. Participants increasingly chose testing if first queried about health behaviors (P skin cancer is primarily determined by subjective factors, such as anxiety and curiosity. Health factors, including skin cancer history, also influenced decision-making. Priming with consideration of objective health factors can increase the desire to pursue testing. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches.

    Science.gov (United States)

    Hartmann, Martin; Frey, Beat; Kölliker, Roland; Widmer, Franco

    2005-06-01

    Cultivation independent analyses of soil microbial community structures are frequently used to describe microbiological soil characteristics. This approach is based on direct extraction of total soil DNA followed by PCR amplification of selected marker genes and subsequent genetic fingerprint analyses. Semi-automated genetic fingerprinting techniques such as terminal restriction fragment length polymorphism (T-RFLP) and ribosomal intergenic spacer analysis (RISA) yield high-resolution patterns of highly diverse soil microbial communities and hold great potential for use in routine soil quality monitoring, when rapid high throughput screening for differences or changes is more important than phylogenetic identification of organisms affected. Our objective was to perform profound statistical analysis to evaluate the cultivation independent approach and the consistency of results from T-RFLP and RISA. As a model system, we used two different heavy metal treated soils from an open top chamber experiment. Bacterial T-RFLP and RISA profiles of 16S rDNA were converted into numeric data matrices in order to allow for detailed statistical analyses with cluster analysis, Mantel test statistics, Monte Carlo permutation tests and ANOVA. Analyses revealed that soil DNA-contents were significantly correlated with soil microbial biomass in our system. T-RFLP and RISA yielded highly consistent and correlating results and both allowed to distinguish the four treatments with equal significance. While RISA represents a fast and general fingerprinting method of moderate cost and labor intensity, T-RFLP is technically more demanding but offers the advantage of phylogenetic identification of detected soil microorganisms. Therefore, selection of either of these methods should be based on the specific research question under investigation.

  8. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption?

    Science.gov (United States)

    Graça, M A S; Poquet, J M

    2014-03-01

    We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.

  9. Volatile fatty acids influence on the structure of microbial communities producing PHAs.

    Science.gov (United States)

    Ciesielski, Slawomir; Przybylek, Grzegorz

    2014-01-01

    Polyhydroxyalkanoates (PHAs) can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3 HB); 4 mL of acetic acid produced 279.8 mg/L 3 HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3 HB and 3 HV (hydroxyvalerate). Ribosomal Intergenic Spacer Analysis (RISA) was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3 HB; Paracoccus denitrificans in the biomass that produced 3 HB-co-3 HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  10. Methane Emissions and Microbial Communities as Influenced by Dual Cropping of Azolla along with Early Rice

    Science.gov (United States)

    Liu, Jingna; Xu, Heshui; Jiang, Ying; Zhang, Kai; Hu, Yuegao; Zeng, Zhaohai

    2017-01-01

    Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results showed that the dual cropping of Azolla significantly suppressed the methane emissions from paddies, likely due to the increase in redox potential in the root region and dissolved oxygen concentration at the soil-water interface. Furthermore, the floodwater pH decreased in association with Azolla cultivation, which is also a factor significantly correlated with the decrease in methane emissions. An increase in methanotrophic bacteria population (pmoA gene copies) and a reduction in methanogenic archaea (16S rRNA gene copies) were observed in association with Azolla growth. During rice cultivation period, dual cropping of Azolla also intensified increasing trend of 1/Simpson of methanogens and significantly decreased species richness (Chao 1) and species diversity (1/Simpson, 1/D) of methanotrophs. These results clearly demonstrate the suppression of CH4 emissions by culturing Azolla and show the environmental and microbial responses in paddy soil under Azolla cultivation.

  11. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    Directory of Open Access Journals (Sweden)

    Slawomir Ciesielski

    2014-06-01

    Full Text Available Polyhydroxyalkanoates (PHAs can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB; 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate. Ribosomal Intergenic Spacer Analysis (RISA was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  12. Microwave radiation and reactor design influence microbial communities during methane fermentation.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zieliński, Marcin; Jaranowska, Paulina

    2012-09-01

    The effect of reactor design and method of heating on the efficiency of methane fermentation and composition of microbial communities, especially methanogenic Archaea, were determined. The research was carried out using submerge- and trickling-bed reactors fed with wastewater and the heat supply into the reactors included a convection heating method and microwave radiation. The polymerase chain reaction-denaturing gradient gel electrophoresis and relative real-time PCR were used in order to assess the biofilm communities. The best fermentation results and the highest abundance of methanogenic Archaea in biomass were observed in microwave heated trickling-bed reactors. The research proved that in reactors of identical design, the application of microwaves enabled a higher fermentation efficiency to be obtained and simultaneously increased the diversity of methanogenic Archaea communities that favors process stability. All the identified sequences of Archaea belonged to Methanosarcina sp., suggesting that species from this genera are susceptible to non-thermal effects of microwaves. There were no effects from microwaves on the bacterial communities in both types of reactors, however, the bacterial species composition varied in the reactors of different design.

  13. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean

    Science.gov (United States)

    Maki, Teruya; Ishikawa, Akira; Mastunaga, Tomoki; Pointing, Stephen B.; Saito, Yuuki; Kasai, Tomoaki; Watanabe, Koichi; Aoki, Kazuma; Horiuchi, Amane; Lee, Kevin C.; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2016-12-01

    Atmospheric aerosols contain particulates that are deposited to oceanic surface waters. These can represent a major source of nutrients, trace metals, and organic compounds for the marine environment. The Japan Sea and the western Pacific Ocean are particularly affected by aerosols due to the transport of desert dust and industrially derived particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from continental Asia. We hypothesized that supplementing seawater with aerosol particulates would lead to measurable changes in surface water nutrient composition as well as shifts in the marine microbial community. Shipboard experiments in the Pacific Ocean involved the recovery of oligotrophic oceanic surface water and subsequent supplementation with aerosol particulates obtained from the nearby coastal mountains, to simulate marine particulate input in this region. Initial increases in nitrates due to the addition of aerosol particulates were followed by a decrease correlated with the increase in phytoplankton biomass, which was composed largely of Bacillariophyta (diatoms), including Pseudo-nitzschia and Chaetoceros species. This shift was accompanied by changes in the bacterial community, with apparent increases in the relative abundance of heterotrophic Rhodobacteraceae and Colwelliaceae in aerosol particulate treated seawater. Our findings provide empirical evidence revealing the impact of aerosol particulates on oceanic surface water microbiology by alleviating nitrogen limitation in the organisms.

  14. Evaluation of factors influencing soluble microbial product in submerged MBR through hybrid ASM model

    Institute of Scientific and Technical Information of China (English)

    Fangyue LI; Joachim BEHRENDT; Knut WICHMANN; Ralf OTTERPOHL

    2009-01-01

    In this study, a mathematical model was established to predict the formation of the soluble microbial product (SMP) in a submerged membrane bioreaetor. The developed model was calibrated under the reference condition. Simulation results were in good agreement with the measured results under the reference condition. The calibrated model was then used in the scenario studies to evaluate the effect of three chosen operating parameters: hydraulic retention time (HRT),dissolved oxygen concentration, and sludge retention time (SRT). Simulation results revealed that the SMP dominated the soluble organic substances in the supernatant. The scenario studies also revealed that the HRT can be decreased to 1 h without deteriorating the effluent quality; dissolved oxygen concentration in the reactor can be kept at 2-3 mg/L to maintain the effluent quality, reduce the content of SMP, and minimize operating costs; the optimal SRT can be controlled to 10-15 d to achieve complete nitrification process, less membrane fouling potential, and acceptable organic removal efficiency.

  15. Influence of triclosan and triclocarban antimicrobial agents on the microbial activity in three physicochemically differing soils of south Australia

    Directory of Open Access Journals (Sweden)

    Abid Ali, Muhammad Arshad, Zahir A. Zahir

    2011-11-01

    Full Text Available Antimicrobial agents are being used in numerous consumer and health care products on account of which their annual global consumption has reached in millions of kilograms. They are flushed down the drain and become the part of wastewater and sewage sludge and end up in the ultimate sink of agricultural soils. Once they are in the soil, they may disturb the soil’s ecology as a result of which microbial activity useful for soil fertility and biodegradation of xenobiotics may severely be impacted. The present study was designed to assess the influence of two antimicrobial agents triclosan (TCS and triclocarban (TCC, commonly used in consumer and health care products, on the microbial activity in the three agricultural soils from South Australia having different characteristics. The study was laid out following the two factors factorial design by applying 14C-glucose at 5 µg g-1 with either TCS at 0, 30, 90 and 270 µg g-1 or TCC at 0, 50, 150 and 450 µg g-1 in three agricultural soils, Freeling (Typic Rhodoxeralf–sodic, Booleroo (Typic Rhodoxeralf and Avon (Calcixerralic Xerochrepts. The 14CO2, which was released as a result of microbial respiration, was trapped in 3 mL 1M NaOH and was quantified on Wallac WinSpectral α/β 1414 Liquid Scintillation Counter. The results revealed a significant difference in amounts of 14C-glucose mineralized in the three soils. A significant concentration dependant suppressive effect of TCS on the biomineralization of 14C-glucose appeared in all the tested soils as opposed to TCC where no such concentration dependent effect could be recorded. The reduction in 14C-glucose biomineralization in the Freeling, Booleroo and Avon soils was recorded up to 53.6, 38.5 and 37.4 % by TCS at 270 µg g-1 and 13.0, 5.8 and 1.6 % by TCC at 450 µg g-1 respectively. However, a significant negative correlation of CEC and pH was recorded with TCS and TCC effects. These results may imply that presence of such antimicrobial agents

  16. Microbial decomposition of dead grassland roots and its influence on the carbon cycle under changing precipitation patterns

    Science.gov (United States)

    Becerra, C.; Schimel, J.

    2013-12-01

    Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol

  17. Influence of binder type and process parameters on the compression properties and microbial survival in diclofenac tablet formulations

    Directory of Open Access Journals (Sweden)

    John Oluwasogo Ayorinde

    2011-12-01

    Full Text Available The influence of binder type and process parameters on the compression properties and microbial survival in diclofenac tablet formulations were studied using a novel gum from Albizia zygia. Tablets were produced from diclofenac formulations containing corn starch, lactose and dicalcium phosphate. Formulations were analyzed using the Heckel and Kawakita plots. Determination of microbial viability in the formulations was done on the compressed tablets of both contaminated and uncontaminated tablets prepared from formulations. Direct compression imparted a higher plasticity on the materials than the wet granulation method. Tablets produced by wet granulation presented with a higher crushing strength than those produced by the direct compression method. Significantly higher microbial survival (pA influência do tipo de ligante e os parâmetros do processo de propriedades de compressão e sobrevivência microbiana em comprimidos de diclofenaco foram estudados utilizando uma nova goma de Albizia zygia. Os comprimidos foram produzidos a partir de formulações de diclofenaco contendo amido de milho, lactose e fosfato bicálcico. As formulações foram analisadas usando os gráficos de Heckel e Kawakita. A determinação da viabilidade microbiana nas formulações foi feita nos comprimidos contaminados e não contaminados preparados a partir de formulações. A compressão direta confere maior plasticidade dos materiais do que o método de granulação úmida. Comprimidos produzidos por granulação úmida apresentaram maior força de esmagamento do que aqueles produzidos pelo método de compressão direta. Observou-se sobrevivência significativamente maior (p<0,05 em formulações preparadas por compressão direta. A sobrevivência percentual dos esporos de Bacillus subtilis diminuiu com o aumento da concentração do agregante. O estudo mostrou que a goma de Albizia é capaz de conferir maior plasticidade aos materiais e apresentou maior redução da

  18. A Statistical Framework for Microbial Source Attribution: Measuring Uncertainty in Host Transmission Events Inferred from Genetic Data (Part 2 of a 2 Part Report)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Velsko, S

    2009-11-16

    This report explores the question of whether meaningful conclusions can be drawn regarding the transmission relationship between two microbial samples on the basis of differences observed between the two sample's respective genomes. Unlike similar forensic applications using human DNA, the rapid rate of microbial genome evolution combined with the dynamics of infectious disease require a shift in thinking on what it means for two samples to 'match' in support of a forensic hypothesis. Previous outbreaks for SARS-CoV, FMDV and HIV were examined to investigate the question of how microbial sequence data can be used to draw inferences that link two infected individuals by direct transmission. The results are counter intuitive with respect to human DNA forensic applications in that some genetic change rather than exact matching improve confidence in inferring direct transmission links, however, too much genetic change poses challenges, which can weaken confidence in inferred links. High rates of infection coupled with relatively weak selective pressure observed in the SARS-CoV and FMDV data lead to fairly low confidence for direct transmission links. Confidence values for forensic hypotheses increased when testing for the possibility that samples are separated by at most a few intermediate hosts. Moreover, the observed outbreak conditions support the potential to provide high confidence values for hypothesis that exclude direct transmission links. Transmission inferences are based on the total number of observed or inferred genetic changes separating two sequences rather than uniquely weighing the importance of any one genetic mismatch. Thus, inferences are surprisingly robust in the presence of sequencing errors provided the error rates are randomly distributed across all samples in the reference outbreak database and the novel sequence samples in question. When the number of observed nucleotide mutations are limited due to characteristics of the

  19. Overlapping genetic and child-specific nonshared environmental influences on listening comprehension, reading motivation, and reading comprehension.

    Science.gov (United States)

    Schenker, Victoria J; Petrill, Stephen A

    2015-01-01

    This study investigated the genetic and environmental influences on observed associations between listening comprehension, reading motivation, and reading comprehension. Univariate and multivariate quantitative genetic models were conducted in a sample of 284 pairs of twins at a mean age of 9.81 years. Genetic and nonshared environmental factors accounted for statistically significant variance in listening and reading comprehension, and nonshared environmental factors accounted for variance in reading motivation. Furthermore, listening comprehension demonstrated unique genetic and nonshared environmental influences but also had overlapping genetic influences with reading comprehension. Reading motivation and reading comprehension each had unique and overlapping nonshared environmental contributions. Therefore, listening comprehension appears to be related to reading primarily due to genetic factors whereas motivation appears to affect reading via child-specific, nonshared environmental effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Overlapping Genetic and Child-Specific Nonshared Environmental Influences on Listening Comprehension, Reading Motivation, and Reading Comprehension

    Science.gov (United States)

    Schenker, Victoria J.; Petrill, Stephen A.

    2015-01-01

    This study investigated the genetic and environmental influences on observed associations between listening comprehension, reading motivation, and reading comprehension. Univariate and multivariate quantitative genetic models were conducted in a sample of 284 pairs of twins at a mean age of 9.81 years. Genetic and nonshared environmental factors accounted for statistically significant variance in listening and reading comprehension, and nonshared environmental factors accounted for variance in reading motivation. Furthermore, listening comprehension demonstrated unique genetic and nonshared environmental influences but also had overlapping genetic influences with reading comprehension. Reading motivation and reading comprehension each had unique and overlapping nonshared environmental contributions. Therefore, listening comprehension appears to be related to reading primarily due to genetic factors whereas motivation appears to affect reading via child-specific, nonshared environmental effects. PMID:26321677

  1. Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism.

    Science.gov (United States)

    Yu, Li; Wu, YiMing; Wu, Bai-Lin

    2015-10-01

    Autism spectrum disorder (ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.

  2. Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action

    Science.gov (United States)

    Hagen, Casper P.; Sørensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Mieritz, Mikkel G.; Tinggaard, Jeanette; Wohlfart-Veje, Christine; Petersen, Jørgen Holm; Main, Katharina M.; Meyts, Ewa Rajpert-De; Almstrup, Kristian; Juul, Anders

    2014-01-01

    Age at pubertal onset varies substantially in healthy girls. Although genetic factors are responsible for more than half of the phenotypic variation, only a small part has been attributed to specific genetic polymorphisms identified so far. Follicle-stimulating hormone (FSH) stimulates ovarian follicle maturation and estradiol synthesis which is responsible for breast development. We assessed the effect of three polymorphisms influencing FSH action on age at breast deveopment in a population-based cohort of 964 healthy girls. Girls homozygous for FSHR -29AA (reduced FSH receptor expression) entered puberty 7.4 (2.5–12.4) months later than carriers of the common variants FSHR -29GG+GA, p = 0.003. To our knowledge, this is the strongest genetic effect on age at pubertal onset in girls published to date. PMID:25231187

  3. Genetic influences can protect against unresponsive parenting in the prediction of child social competence.

    Science.gov (United States)

    Van Ryzin, Mark J; Leve, Leslie D; Neiderhiser, Jenae M; Shaw, Daniel S; Natsuaki, Misaki N; Reiss, David

    2015-01-01

    Although social competence in children has been linked to the quality of parenting, prior research has typically not accounted for genetic similarities between parents and children, or for interactions between environmental (i.e., parental) and genetic influences. In this article, the possibility of a Gene x Environment (G × E) interaction in the prediction of social competence in school-age children is evaluated. Using a longitudinal, multimethod data set from a sample of children adopted at birth (N = 361), a significant interaction was found between birth parent sociability and sensitive, responsive adoptive parenting when predicting child social competence at school entry (age 6), even when controlling for potential confounds. An analysis of the interaction revealed that genetic strengths can buffer the effects of unresponsive parenting. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  4. The Genetic Influences on Oxycodone Response Characteristics in Human Experimental Pain

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Sato, Hiroe; Nielsen, Lecia Møller

    2015-01-01

    PTT (n = 41) were included. Genetic associations with pain outcomes were explored. Nineteen opioid receptor genetic polymorphisms were included in this study. Variability in oxycodone response to skin heat was associated with OPRM1 single-nucleotide polymorphisms (SNPs) rs589046 (P ...Human experimental pain studies are of value to study basic pain mechanisms under controlled conditions. The aim of this study was to investigate whether genetic variation across selected mu-, kappa- and delta-opioid receptor genes (OPRM1, OPRK1and OPRD1, respectively) influenced analgesic response...... to oxycodone in healthy volunteers. Experimental multimodal, multitissue pain data from previously published studies carried out in Caucasian volunteers were used. Data on thermal skin pain tolerance threshold (PTT) (n = 37), muscle pressure PTT (n = 31), mechanical visceral PTT (n = 43) and thermal visceral...

  5. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    affects phenotypic variation. This showed that the cytoplasmic variation had effects similar to, if not larger than, the largest individual nuclear locus. Inclusion of cytoplasmic variation into the genetic model greatly increased the explained phenotypic variation. Cytoplasmic genetic variation...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation......Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...

  6. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes.

    Science.gov (United States)

    Nielsen, Dennis S; Krych, Łukasz; Buschard, Karsten; Hansen, Camilla H F; Hansen, Axel K

    2014-11-17

    Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting β-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals.

  7. Influence of DNA extraction on oral microbial profiles obtained via 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Loreto Abusleme

    2014-04-01

    Full Text Available Background and objective: The advent of next-generation sequencing has significantly facilitated characterization of the oral microbiome. Despite great efforts in streamlining the processes of sequencing and data curation, upstream steps required for amplicon library generation could still influence 16S rRNA gene-based microbial profiles. Among upstream processes, DNA extraction is a critical step that could represent a great source of bias. Accounting for bias introduced by extraction procedures is important when comparing studies that use different methods. Identifying the method that best portrays communities is also desirable. Accordingly, the aim of this study was to evaluate bias introduced by different DNA extraction procedures on oral microbiome profiles. Design: Four DNA extraction methods were tested on mock communities consisting of seven representative oral bacteria. Additionally, supragingival plaque samples were collected from seven individuals and divided equally to test two commonly used DNA extraction procedures. Amplicon libraries of the 16S rRNA gene were generated and sequenced via 454-pyrosequencing. Results: Evaluation of mock communities revealed that DNA yield and bacterial species representation varied with DNA extraction methods. Despite producing the lowest yield of DNA, a method that included bead beating was the only protocol capable of detecting all seven species in the mock community. Comparison of the performance of two commonly used methods (crude lysis and a chemical/enzymatic lysis+column-based DNA isolation on plaque samples showed no effect of extraction protocols on taxa prevalence but global community structure and relative abundance of individual taxa were affected. At the phylum level, the latter method improved the recovery of Actinobacteria, Bacteroidetes, and Spirochaetes over crude lysis. Conclusion: DNA extraction distorts microbial profiles in simulated and clinical oral samples, reinforcing the

  8. Influence of DNA extraction on oral microbial profiles obtained via 16S rRNA gene sequencing.

    Science.gov (United States)

    Abusleme, Loreto; Hong, Bo-Young; Dupuy, Amanda K; Strausbaugh, Linda D; Diaz, Patricia I

    2014-01-01

    The advent of next-generation sequencing has significantly facilitated characterization of the oral microbiome. Despite great efforts in streamlining the processes of sequencing and data curation, upstream steps required for amplicon library generation could still influence 16S rRNA gene-based microbial profiles. Among upstream processes, DNA extraction is a critical step that could represent a great source of bias. Accounting for bias introduced by extraction procedures is important when comparing studies that use different methods. Identifying the method that best portrays communities is also desirable. Accordingly, the aim of this study was to evaluate bias introduced by different DNA extraction procedures on oral microbiome profiles. Four DNA extraction methods were tested on mock communities consisting of seven representative oral bacteria. Additionally, supragingival plaque samples were collected from seven individuals and divided equally to test two commonly used DNA extraction procedures. Amplicon libraries of the 16S rRNA gene were generated and sequenced via 454-pyrosequencing. Evaluation of mock communities revealed that DNA yield and bacterial species representation varied with DNA extraction methods. Despite producing the lowest yield of DNA, a method that included bead beating was the only protocol capable of detecting all seven species in the mock community. Comparison of the performance of two commonly used methods (crude lysis and a chemical/enzymatic lysis+column-based DNA isolation) on plaque samples showed no effect of extraction protocols on taxa prevalence but global community structure and relative abundance of individual taxa were affected. At the phylum level, the latter method improved the recovery of Actinobacteria, Bacteroidetes, and Spirochaetes over crude lysis. DNA extraction distorts microbial profiles in simulated and clinical oral samples, reinforcing the importance of careful selection of a DNA extraction protocol to improve

  9. Influence of geochemical properties and land-use types on the microbial reduction of Fe(III) in subtropical soils.

    Science.gov (United States)

    Liu, Chengshuai; Wang, Yongkui; Li, Fangbai; Chen, Manjia; Zhai, Guangshu; Tao, Liang; Liu, Chuanping

    2014-08-01

    Microbial Fe(III) reduction significantly impacts the geochemical processes and the composition of most subsurface soils. However, up to now, the factors influencing the efficiency of Fe(III) reduction in soils have not been fully described. In this study, soil Fe(III) reduction processes related to geochemical properties and land-use types were systematically investigated using iron-rich soils. The results showed that microbial Fe(III) reduction processes were efficient and their rates varied significantly in different types of soils. Fe(III) reduction rates were 1.1-5.6 times as much in soils with glucose added as in those without glucose. Furthermore, Fe(III) reduction rates were similar in soils from the same parent materials, while they were highest in soils developed from sediments, with a mean rate of 1.87 mM per day when supplemented with glucose. In addition, the Fe(III) reduction rates, reaching 0.99 and 0.59 mM per day on average with and without glucose added, respectively, were higher in the paddy soils affected heavily by human activities than those in the forest soils (average rates of 0.38 and 0.15 mM per day when with and without glucose, respectively). All the soil weathering indices correlated linearly with Fe(III) reduction rates, even though the reduction of iron in soils with higher weathering degrees was partly inhibited by a higher soil protonation trend and fewer available iron reduction sites in the soils, which gives lower reduction rates. These results clearly illustrate that soil Fe(III) reduction rates are greatly dependent on soil geochemical properties and land-use types and help define which soil types exhibit similar degrees of Fe(III) reduction under field conditions.

  10. Genetic and environmental factors influencing the Placental Growth Factor (PGF) variation in two populations

    DEFF Research Database (Denmark)

    Sorice, Rossella; Ruggiero, Daniela; Nutile, Teresa

    2012-01-01

    . However, to date, no information is available regarding the genetics of PGF variability. Furthermore, even though the effect of environmental factors (e.g.: cigarette smoking) on angiogenesis has been explored, no data on the influence of these factors on PGF levels have been reported so far. Here we have...... first investigated PGF variability in two cohorts focusing on non-genetic risk factors: a study sample from two isolated villages in the Cilento region, South Italy (N=871) and a replication sample from the general Danish population (N=1,812). A significant difference in PGF mean levels was found...... between the two cohorts. However, in both samples, we observed a strong correlation of PGF levels with ageing and sex, men displaying PGF levels significantly higher than women. Interestingly, smoking was also found to influence the trait in the two populations, although differently. We have then focused...

  11. Genetic and environmental influences on emotion-modulated startle reflex: a twin study.

    Science.gov (United States)

    Anokhin, Andrey P; Golosheykin, Simon; Heath, Andrew C

    2007-01-01

    Emotion-modulated startle reflex is an important indicator of traitlike differences in affective processing implicated in the biological basis of personality and psychopathology. This study examined heritability of startle modulation by affective pictures in 66 pairs of monozygotic and 57 pairs of dizygotic female twins. Consistent with previous studies, startle magnitude was significantly influenced by emotional valence of the picture (positive < neutral < negative). Absolute response magnitude showed high heritability in all three valence conditions (59-61%); however, there were no significant genetic influences on the amount of startle modulation. Thus, our data do not support the hypothesis that emotion-modulated startle can serve as an indicator of genetically transmitted individual differences in affective processing.

  12. Summer eczema in exported Icelandic horses: influence of environmental and genetic factors

    Directory of Open Access Journals (Sweden)

    Broström Hans

    2006-05-01

    Full Text Available Abstract A cross sectional study was designed to estimate the prevalence of summer eczema (a chronic, recurrent seasonal dermatitis in exported Icelandic horses and the influence of environmental and genetic factors on the development of the disease. Among 330 horses, which had been exported to Germany, Denmark and Sweden, 114 (34.5% were found to have clinical signs of summer eczema. The prevalence was highest 2 years after export and the exposure to the biting midges Culicoides spp., was found to be the main risk factor for developing the disease. Genetic influence on the sensitivity for the disease was not established. It was concluded that exported Icelandic horses are predisposed for summer dermatitis and the fact that they are not introduced to the antigens of the biting midges early in live, due to it's absence in Iceland, is likely to explain the high prevalence of the disease after export.

  13. Traces of microbial activity in the deep sediment of the Dead Sea: How is life influencing the sedimentary record of this hypersaline lake ?

    Science.gov (United States)

    Thomas, Camille; Ebert, Yael; Kiro, Yael; Stein, Mordechai; Ariztegui, Daniel

    2016-04-01

    As part of the ICDP-sponsored Dead Sea Deep Drilling Project (DSDDP), a multi-disciplinary study has been carried out to understand the influence that microbial communities can have on the Dead Sea sedimentary record. Organic matter (lipids) and DNA extraction have been performed along the main core retrieved from the center of the modern Dead Sea. They revealed different associations of microbial communities, influenced by changing climatic and limnological regimes during sedimentation. Moreover, imaging and chemical characterization of authigenic iron-sulfur minerals have revealed the unexpected presence of an active sulfur cycle in the sediment. In particular, their morphology and Fe/S ratios are coherent with incomplete sulfate reduction, limited by sulfur reduction, and often resulting in the preservation of greigite. In glacial period intervals, pyritization may be complete, indicating full sulfate reduction probably allowed by significant accumulation of organic matter in the alternating aragonite and detritus (aad) facies. The DSDDP core provides a unique opportunity to investigate deep diagenetic processes and to assess the role of microbial activity in the Dead Sea hypersaline sediment. Our study shows that this microbial activity influences the carbon and sulfur phases, as well as magnetic fractions, potentially affecting proxies used for paleoenvironmental and paleoclimatic reconstructions.

  14. Influence of roadside pollution on the phylloplane microbial community of Alnus nepalensis (Betulaceae).

    Science.gov (United States)

    Joshi, S R

    2008-09-01

    The North Eastern region of India is undergoing industrial development at a faster rate than expected. Roads form the main system of transportation and communication owing to the hilly topography of the region. Automobiles discharge a number of gaseous and trace metal contaminants. Human activities like stone grinding, road construction and sand milling also increase the atmospheric dust and heavy metal contaminant level. These contaminants get settled on leaf surfaces at roadsides and enter in contact with phylloplane microorganisms. This study compares microorganisms on leaf surfaces of alder (Alnus nepalensis (Betulaceae)) on roadside and non-roadside environments. Two sites dominated by alder were selected. One at a busy road intersection on the National Highway no. 44 in Shillong with high traffic density (8 000-9 000 heavy vehicles/day), taken as the polluted site and the other one in a forest approximately 500 m away from the roadside considered as the unpolluted site. Analysis of phylloplane microorganisms, lead, zinc, copper, cadmium and sulphur was carried out from leaves. The bacterial population was higher at the unpolluted site. Bacterial population showed a significant negative correlation with lead, zinc, copper, cadmium and sulphur. Similarly, fungal population was higher at the unpolluted site. A total of 29 fungal species were isolated from the phylloplane of A. nepalensis (polluted site 16 species; unpolluted site 28 species). Some fungal forms like Mortierella sp., Fusarium oxysporum and Aureobasidium pollulans were dominant in the polluted site. Numbers of phylloplane fungi and bacteria were significantly reduced in the polluted site. The correlation coefficient indicated a detrimental effect of metals like lead, zinc, copper, cadmium and sulphur on the microbial community of leaf surfaces. The specificity of certain fungi to the unpolluted site may be attributed to their sensitivity to pollution. The predominance of Aureobasidium pollulans

  15. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-01

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).

  16. Genetic variants influencing effectiveness of exercise training programmes in obesity - an overview of human studies.

    Science.gov (United States)

    Leońska-Duniec, A; Ahmetov, I I; Zmijewski, P

    2016-09-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary.

  17. Local environment but not genetic differentiation influences biparental care in ten plover populations.

    Directory of Open Access Journals (Sweden)

    Orsolya Vincze

    Full Text Available Social behaviours are highly variable between species, populations and individuals. However, it is contentious whether behavioural variations are primarily moulded by the environment, caused by genetic differences, or a combination of both. Here we establish that biparental care, a complex social behaviour that involves rearing of young by both parents, differs between closely related populations, and then test two potential sources of variation in parental behaviour between populations: ambient environment and genetic differentiation. We use 2904 hours behavioural data from 10 geographically distinct Kentish (Charadrius alexandrinus and snowy plover (C. nivosus populations in America, Europe, the Middle East and North Africa to test these two sources of behavioural variation. We show that local ambient temperature has a significant influence on parental care: with extreme heat (above 40 °C total incubation (i.e. % of time the male or female incubated the nest increased, and female share (% female share of incubation decreased. By contrast, neither genetic differences between populations, nor geographic distances predicted total incubation or female's share of incubation. These results suggest that the local environment has a stronger influence on a social behaviour than genetic differentiation, at least between populations of closely related species.

  18. Multi-taxa integrated landscape genetics for zoonotic infectious diseases: deciphering variables influencing disease emergence.

    Science.gov (United States)

    Leo, Sarah S T; Gonzalez, Andrew; Millien, Virginie

    2016-05-01

    Zoonotic disease transmission systems involve sets of species interacting with each other and their environment. This complexity impedes development of disease monitoring and control programs that require reliable identification of spatial and biotic variables and mechanisms facilitating disease emergence. To overcome this difficulty, we propose a framework that simultaneously examines all species involved in disease emergence by integrating concepts and methods from population genetics, landscape ecology, and spatial statistics. Multi-taxa integrated landscape genetics (MTILG) can reveal how interspecific interactions and landscape variables influence disease emergence patterns. We test the potential of our MTILG-based framework by modelling the emergence of a disease system across multiple species dispersal, interspecific interaction, and landscape scenarios. Our simulations showed that both interspecific-dependent dispersal patterns and landscape characteristics significantly influenced disease spread. Using our framework, we were able to detect statistically similar inter-population genetic differences and highly correlated spatial genetic patterns that imply species-dependent dispersal. Additionally, species that were assigned coupled-dispersal patterns were affected to the same degree by similar landscape variables. This study underlines the importance of an integrated approach to investigating emergence of disease systems. MTILG is a robust approach for such studies and can identify potential avenues for targeted disease management strategies.

  19. Mouse models for studying genetic influences on factors determining smoking cessation success in humans

    Science.gov (United States)

    Hall, F. Scott; Markou, Athina; Levin, Edward D.; Uhl, George R.

    2014-01-01

    Humans differ in their ability to quit using addictive substances, including nicotine, the major psychoactive ingredient in tobacco. For tobacco smoking, a substantial body of evidence, largely derived from twin studies, indicates that approximately half of these individual differences in ability to quit are heritable [1, 2], genetic influences that likely overlap with those for other addictive substances [3]. Both twin and molecular genetic studies support overlapping influences on nicotine addiction vulnerability and smoking cessation success, although there is little formal analysis of the twin data that supports this important point [2, 3]. None of the current datasets provides clear data concerning which heritable factors might provide robust dimensions around which individuals differ in ability to quit smoking. One approach to this problem is to test mice with genetic variations in genes that contain human variants that alter quit-success. This review considers which features of quit success should be included in a comprehensive approach to elucidating the genetics of quit success, and how those features may be modeled in mice. PMID:22304675

  20. Genetic and environmental influences on individual differences in attitudes toward homosexuality: an Australian twin study.

    Science.gov (United States)

    Verweij, Karin J H; Shekar, Sri N; Zietsch, Brendan P; Eaves, Lindon J; Bailey, J Michael; Boomsma, Dorret I; Martin, Nicholas G

    2008-05-01

    Previous research has shown that many heterosexuals hold negative attitudes toward homosexuals and homosexuality (homophobia). Although a great deal of research has focused on the profile of homophobic individuals, this research provides little theoretical insight into the aetiology of homophobia. To examine genetic and environmental influences on variation in attitudes toward homophobia, we analysed data from 4,688 twins who completed a questionnaire concerning sexual behaviour and attitudes, including attitudes toward homosexuality. Results show that, in accordance with literature, males have significantly more negative attitudes toward homosexuality than females and non-heterosexuals are less homophobic than heterosexuals. In contrast with some earlier findings, age had no significant effect on the homophobia scores in this study. Genetic modelling showed that variation in homophobia scores could be explained by additive genetic (36%), shared environmental (18%) and unique environmental factors (46%). However, corrections based on previous findings show that the shared environmental estimate may be almost entirely accounted for as extra additive genetic variance arising from assortative mating for homophobic attitudes. The results suggest that variation in attitudes toward homosexuality is substantially inherited, and that social environmental influences are relatively minor.

  1. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality

    Science.gov (United States)

    Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.

    2015-01-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286

  2. Environmental and Genetic Influences in Attention Deficit Hyperactivity Disorder (ADHD) and its Comorbidities

    OpenAIRE

    Johansson Capusan, Andrea

    2016-01-01

    Research in past decades has demonstrated the persistence of attention deficit hyperactivity disorder (ADHD) into adulthood, but many questions regarding prevalence, causes, and comorbidities of ADHD in adults remain to be investigated. Previous research focusing on childhood ADHD identified high heritability. Genetic and environmental influences on ADHD symptoms in adults and their association with comorbid conditions are not fully understood. The overall aim of this thesis was to study adul...

  3. Genetic and Environmental Influences on Individual Differences in Attitudes Toward Homosexuality: An Australian Twin Study.

    OpenAIRE

    Verweij, K.J.H.; Shekar, S. N.; Zietsch, B.P.; Eaves, L.J; Bailey, J. M.; Boomsma, D. I.; Martin, N.G.

    2008-01-01

    Previous research has shown that many heterosexuals hold negative attitudes toward homosexuals and homosexuality (homophobia). Although a great deal of research has focused on the profile of homophobic individuals, this research provides little theoretical insight into the aetiology of homophobia. To examine genetic and environmental influences on variation in attitudes toward homophobia, we analysed data from 4,688 twins who completed a questionnaire concerning sexual behaviour and attitudes...

  4. Neuropathic pain as part of chronic widespread pain: environmental and genetic influences

    OpenAIRE

    Momi, Sukhleen K.; Fabiane, Stella Maris; Lachance, Genevieve; Livshits, Gregory; Williams, Frances M. K.

    2015-01-01

    Abstract Chronic widespread pain (CWP) has complex aetiology and forms part of the fibromyalgia syndrome. Recent evidence suggests a higher frequency of neuropathic pain features in those with CWP than previously thought. The aim of this study was to determine the prevalence of neuropathic pain features in individuals with CWP and to estimate the influence of genetic and environmental factors on neuropathic pain in CWP. Validated questionnaires (the London Fibromyalgia Screening Study questio...

  5. The effect of host genetics on the gut microbiome

    NARCIS (Netherlands)

    Bonder, Marc Jan; Kurilshchikov, Aleksandr; Tigchelaar-Feenstra, Ettje; Mujagic, Zlatan; Imhann, Floris; Vila, Arnau Vich; Deelen, Patrick; Vatanen, Tommi; Schirmer, Melanie; Smeekens, Sanne P; Zhernakova, Daria V; Jankipersadsing, Soesma A; Jaeger, Martin; Oosting, Marije; Cenit, Maria Carmen; Masclee, Ad A M; Swertz, Morris A; Li, Yang; Kumar, Vinod; Joosten, Leo; Harmsen, Hermie; Weersma, Rinse K; Franke, Lude; Hofker, Marten H; Xavier, Ramnik J; Jonkers, Daisy; Netea, Mihai G; Wijmenga, Cisca; Fu, Jingyuan; Zhernakova, Alexandra

    2016-01-01

    The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified

  6. Behavioral and Environmental Modification of the Genetic Influence on Body Mass Index: A Twin Study.

    Science.gov (United States)

    Horn, Erin E; Turkheimer, Eric; Strachan, Eric; Duncan, Glen E

    2015-07-01

    Body mass index (BMI) has a strong genetic basis, with a heritability around 0.75, but is also influenced by numerous behavioral and environmental factors. Aspects of the built environment (e.g., environmental walkability) are hypothesized to influence obesity by directly affecting BMI, by facilitating or inhibiting behaviors such as physical activity that are related to BMI, or by suppressing genetic tendencies toward higher BMI. The present study investigated relative influences of physical activity and walkability on variance in BMI using 5079 same-sex adult twin pairs (70 % monozygotic, 65 % female). High activity and walkability levels independently suppressed genetic variance in BMI. Estimating their effects simultaneously, however, suggested that the walkability effect was mediated by activity. The suppressive effect of activity on variance in BMI was present even with a tendency for low-BMI individuals to select into environments that require higher activity levels. Overall, our results point to community- or macro-level interventions that facilitate individual-level behaviors as a plausible approach to addressing the obesity epidemic among US adults.

  7. Genetic influences on free and cued recall in long-term memory tasks.

    Science.gov (United States)

    Volk, Heather E; McDermott, Kathleen B; Roediger, Henry L; Todd, Richard D

    2006-10-01

    Long-term memory (LTM) problems are associated with many psychiatric and neurological illnesses and are commonly measured using free and cued recall tasks. Although LTM has been linked with biologic mechanisms, the etiology of distinct LTM tasks is unknown. We studied LTM in 95 healthy female twin pairs identified through birth records in the state of Missouri. Performance on tasks of free recall of unrelated words, free and cued recall of categorized words, and the vocabulary section of the Wechsler Adult Intelligence Scale (WAIS-R) were examined using structural equation modeling. Additive genetic and unique environmental factors influenced LTM and intelligence. Free recall of unrelated and categorized words, and cued recall of categorized words, were moderately heritable (55%, 38%, and 37%). WAIS-R vocabulary score was highly heritable (77%). Controlling for verbal intelligence in multivariate analyses of recall, two components of genetic influence on LTM were found; one for all three recall scores and one for free and cued categorized word recall. Recall of unrelated and categorized words is influenced by different genetic and environmental factors indicating heterogeneity in LTM. Verbal intelligence is etiologically different from LTM indicating that these two abilities utilize different brain functions.

  8. Genetic influences on exercise participation in 37,051 twin pairs from seven countries.

    Directory of Open Access Journals (Sweden)

    Janine H Stubbe

    Full Text Available BACKGROUND: A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used. METHODOLOGY: Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, The Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents. PRINCIPAL FINDINGS: Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19-40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males. CONCLUSIONS: Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments.

  9. Geography has more influence than language on maternal genetic structure of various northeastern Thai ethnicities.

    Science.gov (United States)

    Kutanan, Wibhu; Ghirotto, Silvia; Bertorelle, Giorgio; Srithawong, Suparat; Srithongdaeng, Kanokpohn; Pontham, Nattapon; Kangwanpong, Daoroong

    2014-09-01

    Several literatures have shown the influence of geographic and linguistic factors in shaping genetic variation patterns, but their relative impact, if any, in the very heterogeneous northeastern region of Thailand has not yet been studied. This area, called Isan, is geographically structured in two wide basins, the Sakon Nakorn Basin and the Korat Basin, serving today as home to diverse ethnicities encompassing two different linguistic families, that is, the Austro-Asiatic; Suay (Kui), Mon, Chaobon (Nyahkur), So and Khmer, and the Tai-Kadai; Saek, Nyaw, Phu Tai, Kaleung and Lao Isan. In this study, we evaluated the relative role of geographic distance and barriers as well as linguistic differences as possible causes affecting the maternal genetic distances among northeastern Thai ethnicities. A 596-bp segment of the hypervariable region I mitochondrial DNA was utilized to elucidate the genetic structure and biological affinity from 433 individuals. Different statistical analyses agreed in suggesting that most ethnic groups in the Sakon Nakorn Basin are closely related. Mantel test revealed that genetic distances were highly associated to geographic (r = 0.445, P0.01) distances. Three evolutionary models were compared by Approximate Bayesian Computation. The posterior probability of the scenario, which assumed an initial population divergence possibly related to reduced gene flow among basins, was equal or higher than 0.87. All analyses exhibited concordant results supporting that geography was the most relevant factor in determining the maternal genetic structure of northeastern Thai populations.

  10. Genetic and environmental influences on psychological traits and eating attitudes in a sample of Spanish schoolchildren.

    Science.gov (United States)

    Rojo-Moreno, Luis; Iranzo-Tatay, Carmen; Gimeno-Clemente, Natalia; Barberá-Fons, Maria Antonia; Rojo-Bofill, Luis Miguel; Livianos-Aldana, Lorenzo

    The heritability of eating disorders has been estimated to range from 22% to over 62%.The aim of this study is to determine the relative influence of genetics and environment that contribute to the drive for thinness, body dissatisfaction, perfectionism, and ineffectiveness, by evaluating sex differences in a sample of adolescent twins from Valencia, Spain. Five hundred eighty-four pairs of adolescent twins between 13 and 18 years of age completed the study. To determine zygosity, teachers responded to a questionnaire on physical similarity. Psychological traits of eating disorders were assessed with four sub-scales of the Eating Disorder Inventory (EDI); drive for thinness, body dissatisfaction, perfectionism, and ineffectiveness. Twin models were used to assess genetic and environmental (common and unique) factors affecting these four psychological traits. All four traits showed significant genetic contributions among girls, with heritability estimates of 37.7% for ineffectiveness, 42.8% for perfectionism, 56.9% for drive for thinness, and 65.5% for body dissatisfaction. Among boys, body dissatisfaction showed no additive genetic contributions, indicating significant shared and individual specific environment effects. The three other traits in boys showed significant additive genetic contributions, but were lower than in girls. With the exception of body dissatisfaction in boys, psychological traits of eating disorders show heritability patterns that differ according to sex. Copyright © 2014 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia.

    Directory of Open Access Journals (Sweden)

    Paola Pollegioni

    Full Text Available Common walnut (Juglans regia L is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan, where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history.

  12. Behavioral Microbiomics: A Multi-Dimensional Approach to Microbial Influence on Behavior

    OpenAIRE

    2015-01-01

    The role of microbes as a part of animal systems has historically been an under-appreciated aspect of animal life histories. Recently, evidence has emerged that microbes have wide-ranging influences on animal behaviour. Elucidating the complex relationships between host-microbe interactions and behaviour requires an expanded ecological perspective, involving the host, the microbiome and the environment; which, in combination, is termed the holobiont. We begin by seeking insights from the lite...

  13. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment.

    Science.gov (United States)

    Valentín-Vargas, Alexis; Root, Robert A; Neilson, Julia W; Chorover, Jon; Maier, Raina M

    2014-12-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  14. The influence of salinity and restoration on wetland soil microbial communities and carbon cycling in the San Francisco Bay-Delta Region

    Science.gov (United States)

    Theroux, S.; Hartman, W.; He, S.; Windham-Myers, L.; Tringe, S. G.

    2014-12-01

    Climate change is predicted to increase the average salinity of the San Francisco Bay-Delta watershed as sea levels rise and alpine snow volume decreases. Wetland soil microbial communities are responsible for cycling greenhouse gases and their response to climate change will heavily influence whether increasing salinity will have a negative or positive effect on the net greenhouse gas budgets of wetlands. To better understand the underlying factors determining the balance of greenhouse gas flux in wetland soils, we targeted the microbial communities along a salinity gradient ranging from freshwater to full seawater in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we sampled sixteen sites capturing a range of wetland plant types and restoration states. We determined a suite of soil biogeochemical parameters including moisture, carbon and nutrient contents, pH, sulfate, chloride, and trace metal concentrations. The results of our microbial diversity survey (16S rRNA gene Illumina tag sequencing) showed that salinity and sampling location were the primary drivers of belowground microbial community composition. Freshwater wetland soils, with lower sulfate concentrations, produced more methane than saline sites and we found a parallel increase in the relative abundance of methanogen populations in the high-methane samples. Surprisingly, wetland restoration status did not significantly alter microbial community composition, despite orders of magnitude greater methane flux in restored wetlands compared to reference sites. Deeper metagenomic and metatranscriptomic sequencing in a restored wetland allowed us to further evaluate the roles of methanogen abundance and activity in shaping soil methane production. Our study links belowground microbial communities with their greenhouse gas production, providing a mechanistic microbial framework for assessing climate change feedbacks in wetland soils resulting from sea

  15. Environmental Factors Influencing the Structural Dynamics of Soil Microbial Communities During Assisted Phytostabilization of Acid-Generating Mine Tailings: a Mesocosm Experiment

    Science.gov (United States)

    Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  16. [Influence of buffer solutions on the performance of microbial fuel cell electricity generation].

    Science.gov (United States)

    Qiang, Lin; Yuan, Lin-jiang; Ding, Qing

    2011-05-01

    Microbial fuel cell (MFC) is a potential green technology due to its application in wastewater treatment and renewable energy generation. Phosphate buffer solution (PBS) has been commonly used in MFC studies to maintain a suitable pH for electricity generating bacteria and/or to increase the solution conductivity. However, it has some drawbacks using PBS in MFC: One is that the addition of a high concentration of phosphate buffer in MFCs is expensive, especially for the application in wastewater treatment; the other is that phosphates can contribute to the eutrophication conditions of water bodies if the effluents are discharged without the removal of phosphates. By adding PBS buffer as the comparison, the study investigated the effect of borax buffer and in the absence of buffer on the performance of electrical power, coulomb efficiency and effluent pH. 200 mmol/L PBS was the best, conductivity was 1.973 mS/cm,the maximum power density was 36.4 mW/m2 and the maximum coulomb efficiency was 2.92%, effluent pH was almost at (7.00 +/- 0.05). 100 mmol/L borax buffer solution, conductivity was 1.553 mS/cm; the maximum power density was 26.2 mW/m2 coulomb efficiency of 6.26%, which was 2.14 times to PBS and greatly increased the electron recovery efficiency with the effluent pH was (7.35 +/- 0.05). While free buffer solution conductivity was 0.314 mS/cm, maximum power density was 27.64 mW/m2; coulomb efficiency was 2.82% and the effluent pH of approximately 7.43. The electrolyte which in absence of buffer solution conductivity was 1/6 of adding PBS buffer, 1/5 of borax buffer, while its power density lower 8.76 mW/mr2 than adding PBS and higher 1.24 mW/m2 than borax buffer. The results showed that adding the suitable concentration of borax buffer may improve the electron recovery efficiency and under batch conditions, MFC run successfully without adding buffer solution to MFC.

  17. Temporal variability of the microbial food web (viruses to ciliates under the influence of the Black Sea Water inflow (N. Aegean, E. Mediterranean

    Directory of Open Access Journals (Sweden)

    A. GIANNAKOUROU

    2015-01-01

    Full Text Available Τhe entire pelagic microbial food web was studied during the winter-spring period in the frontal area of the North Aegean Sea. Abundance of viruses, heterotrophic bacteria, cyanobacteria, auto- and hetero-trophic flagellates, and ciliates, as well as bacterial production, were measured at three stations (MD1, MD2, MD3 situated along a N-S transect between the area directly influenced by the inflowing Black Sea water and the area covered by the Levantine water. Samples were collected in December 2009, and January, March, April, and May 2011. Station MD1 exhibited the highest values of abundance and integrated biomass of all microbial groups and bacterial production during all months, and MD3 the lowest. Bacteria dominated the total integrated biomass at all stations and months, followed by cyanobacteria, auto-, hetero-trophic flagellates and ciliates. On a temporal scale, the microbial food web was less important in March as all microbial parameters at all stations showed the lowest values. After the phytoplankton bloom in March, the heterotrophic part of the microbial food web (mainly strongly increased, though the intensity of the phenomenon was diminished from North to South. Pico-sized plankton was found to be heterotrophic whereas nanoplankton was autotrophic. It seems that the influence of the Black Sea water on station MD1, permanent throughout the study period of early winter to late spring, was reflected in all microbial populations studied, and produced a more productive pelagic food web system, with potential consequences for the upper trophic levels.

  18. Influence of livestock density on the amount and structure of soil microbial communities in rangelands of SW Spain

    Science.gov (United States)

    Anguita, Manuel; Pulido, Manuel; Schnabel, Susanne; Lavado-Contador, Francisco; Ortega, Raul; Soriano, Miguel; Miralles, Isabel

    2017-04-01

    soils excluded to grazing recorded the lowest fungi amount (1.21E+10). These data suggest that the increase in grazing intensity favour the proliferation of bacteria and fungi due probably to the increase of organic matter via animal excreta. Taxonomic results revealed a high bacterial presence of phylum Acidobacteria (Gp1, Gp3, and Gp6) and a uniform distribution of the genus WPS-1_genera_incertae_sedis in different states of grazing intensity. Thus, the most abundant genus was Gp1 in soils excluded to grazing and in soils with low and moderate livestock density (14.25%, 16.80% and 12.38%, respectively) while Gp3 (8.76%) was the most abundant genus in soils with high livestock density. Curiously, the genus Gp6 tended to be located in moderate and highly grazed areas instead of those with low livestock density. Our results suggest livestock density might influence the edaphic microbial structure affecting the quantity and type of microorganisms.

  19. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient

    Science.gov (United States)

    Lanzén, Anders; Epelde, Lur; Blanco, Fernando; Martín, Iker; Artetxe, Unai; Garbisu, Carlos

    2016-06-01

    Mountain elevation gradients are invaluable sites for understanding the effects of climate change on ecosystem function, community structure and distribution. However, relatively little is known about the impact on soil microbial communities, in spite of their importance for the functioning of the soil ecosystem. Previous studies of microbial diversity along elevational gradients were often limited by confounding variables such as vegetation, pH, and nutrients. Here, we utilised a transect in the Pyrenees established to minimise variation in such parameters, to examine prokaryotic, fungal, protist and metazoan communities throughout three consecutive years. We aimed to determine the influences of climate and environmental parameters on soil microbial community structure; as well as on the relationships between those microbial communities. Further, functional diversity of heterotrophic bacteria was determined using Biolog. Prokaryotic and fungal community structure, but not alpha-diversity, correlated significantly with elevation. However, carbon-to-nitrogen ratio and pH appeared to affect prokaryotic and protist communities more strongly. Both community structure and physicochemical parameters varied considerably between years, illustrating the value of long-term monitoring of the dynamic processes controlling the soil ecosystem. Our study also illustrates both the challenges and strengths of using microbial communities as indicators of potential impacts of climate change.

  20. The interplay of genetic influences and social processes in developmental theory: specific mechanisms are coming into view.

    Science.gov (United States)

    Reiss, D; Neiderhiser, J M

    2000-01-01

    In the coming years we can look forward to research that clarifies specific mechanisms that account for the interplay between genetic and environmental influences on psychological development. Certain misconceptions, arising from research traditions initiated by Francis Galton on the one hand and G. Stanley Hall on the other, may now be set aside in the light of new evidence. Three important findings promise a new synthesis. First, while each of us is born with about 100,000 genes that, under ordinary circumstances, do not change, the expression of these genes on behavior is dynamic. Some genetic influences are expressed early in development, but others are manifest many years later. Second, genetic factors often account not only for some of the individual differences in the measures of adjustments we typically use to monitor development but also for individual differences in environmental experiences that covary with those measures of adjustment. Indeed, genetic factors have been found to account for a surprising amount of covariance between measures of the social environment and of adjustment in young children, adolescents, and adults. Third, the expression of genetic influences are very malleable and responsive to the social environment. These new findings are revealing specific mechanisms for the interplay of genetic and social environmental factors in four domains. First, the social environment may play both a necessary and specific role in the expression of particular genetic influences on a range of behaviors from depression to social responsibility. Second, an understanding of the interplay between the social environment and genetics may lead to a clearer definition of the phenotypic manifestations of particular genetic influences. Third, we will-as a result of these studies-have a clearer fix on the timing of important events and their sequence in development. Fourth, this new genre of work promises to illumine more completely mechanisms by which the

  1. Influence of dietary recombinant microbial lipase on performance and quality characteristics of rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Samuelsen, Troels; Isaksen, Mai; McLean, Ewen

    2001-01-01

    In order to assess whether supplementary lipase affected growth and body composition of trout, four diets were produced, consisting of (A) feed containing high (2083 mg kg(-1)), (B) low (208.3 mg kg(-1)) concentrations of lipase, (C) heat-treated (inactivated) lipase (2083 mg kg(-1)), and (D...... higher(P 0.05) on growth, fillet proximate composition, hepatosomatic, cardiac, or gut indices, and carcass percentage. However, lipase supplementation influenced the mono-unsaturated fatty acid profiles of the fillet (P

  2. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study.

    Directory of Open Access Journals (Sweden)

    Greta Snellman

    Full Text Available BACKGROUND: Although environmental factors, mainly nutrition and UV-B radiation, have been considered major determinants of vitamin D status, they have only explained a modest proportion of the variation in serum 25-hydroxyvitamin D. We aimed to study the seasonal impact of genetic factors on serum 25-hydroxyvitamin D concentrations. METHODOLOGY/PRINCIPAL FINDINGS: 204 same-sex twins, aged 39-85 years and living at northern latitude 60 degrees, were recruited from the Swedish Twin Registry. Serum 25-hydroxyvitamin D was analysed by high-pressure liquid chromatography and mass spectrometry. Genetic modelling techniques estimated the relative contributions of genetic, shared and individual-specific environmental factors to the variation in serum vitamin D. The average serum 25-hydroxyvitamin D concentration was 84.8 nmol/l (95% CI 81.0-88.6 but the seasonal variation was substantial, with 24.2 nmol/l (95% CI 16.3-32.2 lower values during the winter as compared to the summer season. Half of the variability in 25-hydroxyvitamin D during the summer season was attributed to genetic factors. In contrast, the winter season variation was largely attributable to shared environmental influences (72%; 95% CI 48-86%, i.e., solar altitude. Individual-specific environmental influences were found to explain one fourth of the variation in serum 25-hydroxyvitamin D independent of season. CONCLUSIONS/SIGNIFICANCE: There exists a moderate genetic impact on serum vitamin D status during the summer season, probably through the skin synthesis of vitamin D. Further studies are warranted to identify the genes impacting on vitamin D status.

  3. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice.

    Directory of Open Access Journals (Sweden)

    Jules B Panksepp

    Full Text Available Social approach is crucial for establishing relationships among individuals. In rodents, social approach has been studied primarily within the context of behavioral phenomena related to sexual reproduction, such as mating, territory defense and parental care. However, many forms of social interaction occur before the onset of reproductive maturity, which suggests that some processes underlying social approach among juvenile animals are probably distinct from those in adults. We conducted a longitudinal study of social investigation (SI in mice from two inbred strains to assess the extent to which genetic factors influence the motivation for young mice to approach one another. Early-adolescent C57BL/6J (B6 mice, tested 4-6 days after weaning, investigated former cage mates to a greater degree than BALB/cJ (BALB mice, irrespective of the sex composition within an interacting pair. This strain difference was not due to variation in maternal care, the phenotypic characteristics of stimulus mice or sensitivity to the length of isolation prior to testing, nor was it attributable to a general difference in appetitive motivation. Ultrasonic vocalization (USV production was positively correlated with the SI responses of mice from both strains. Interestingly, several USV characteristics segregated with the genetic background of young mice, including a higher average frequency and shorter duration for the USVs emitted by B6 mice. An assessment of conditioned place preference responses indicated that there was a strain-dependent difference in the rewarding nature of social contact. As adolescent mice aged, SI responses gradually became less sensitive to genetic background and more responsive to the particular sex of individuals within an interacting pair. We have thus identified a specific, genetic influence on the motivation of early-adolescent mice to approach one another. Consistent with classical theories of motivation, which propose a functional

  4. Genetic and environmental factors influencing the Placental Growth Factor (PGF variation in two populations.

    Directory of Open Access Journals (Sweden)

    Rossella Sorice

    Full Text Available Placental Growth Factor (PGF is a key molecule in angiogenesis. Several studies have revealed an important role of PGF primarily in pathological conditions (e.g.: ischaemia, tumour formation, cardiovascular diseases and inflammatory processes suggesting its use as a potential therapeutic agent. However, to date, no information is available regarding the genetics of PGF variability. Furthermore, even though the effect of environmental factors (e.g.: cigarette smoking on angiogenesis has been explored, no data on the influence of these factors on PGF levels have been reported so far. Here we have first investigated PGF variability in two cohorts focusing on non-genetic risk factors: a study sample from two isolated villages in the Cilento region, South Italy (N=871 and a replication sample from the general Danish population (N=1,812. A significant difference in PGF mean levels was found between the two cohorts. However, in both samples, we observed a strong correlation of PGF levels with ageing and sex, men displaying PGF levels significantly higher than women. Interestingly, smoking was also found to influence the trait in the two populations, although differently. We have then focused on genetic risk factors. The association between five single nucleotide polymorphisms (SNPs located in the PGF gene and the plasma levels of the protein was investigated. Two polymorphisms (rs11850328 and rs2268614 were associated with the PGF plasma levels in the Cilento sample and these associations were strongly replicated in the Danish sample. These results, for the first time, support the hypothesis of the presence of genetic and environmental factors influencing PGF plasma variability.

  5. Genetic influences on adolescent sexual behavior: Why genes matter for environmentally oriented researchers.

    Science.gov (United States)

    Harden, K Paige

    2014-03-01

    There are dramatic individual differences among adolescents in how and when they become sexually active adults, and early sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically informed research on adolescent sexual behavior compares twins and family members as a form of quasi experiment: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of Gene × Environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally oriented theory and research.

  6. Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in eastern Kenya.

    Directory of Open Access Journals (Sweden)

    Vanesse Labeyrie

    Full Text Available Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the

  7. Genetic Influences on Adolescent Sexual Behavior: Why Genes Matter for Environmentally-Oriented Researchers

    Science.gov (United States)

    Harden, K. Paige

    2013-01-01

    There are dramatic individual differences among adolescents in how and when they become sexually active adults, and “early” sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically-informed research on adolescent sexual behavior compares twins and family members as a form of “quasi-experiment”: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically-informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of gene × environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally-oriented theory and research. PMID:23855958

  8. The influence of biofilm formation on electricity production from tempe wastewater using tubular membraneless microbial fuel cell reactor

    Science.gov (United States)

    Siagian, Nathania Dwi Karina; Arbianti, Rita; Utami, Tania Surya

    2017-05-01

    Microbial fuel cell (MFC) technology can be potentially developed as an alternative energy source since it can convert various substrates from renewable sources into electricity using bacteria as biocatalyst. Tempe wastewater as MFC substrate gives advantages in tempe wastewater treatment and reducing the purchasing cost of bacteria. Currently, the applications of MFCs are still limited due to the relatively low electricity production, so many studies have been conducted to improve the electricity production by MFC. This study focused on investigating the influence of biofilm formation time and the use of macromolecule as additional substrate towards electricity production from MFC system with tubular membranless reactor and tempe wastewater as substrate. This study suggested that biofilm formation on anode could improve the electricity production up to 10-folds while the use of glucose as substrate addition reduce the electricity production up to 60%. The biggest electricity output was obtained from the experiment of biofilm formation for 14 days with EPS content in biofilm 0,13 mg/cm2 where the maximum voltage and power density produced was respectively 34,81 mV and 0,26 mW/m2.

  9. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    Science.gov (United States)

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2017-06-01

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m(-2), respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10(-6) mW m(-2), respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L(-1) d(-1)), whereas by using carbon paper the rate decreased to 270 mg COD L(-1) d(-1). Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  10. Influences of hydraulic loading rate on SVOC removal and microbial community structure in drinking water treatment biofilters.

    Science.gov (United States)

    Zhang, Xu-Xiang; Zhang, Zong-Yao; Ma, Li-Ping; Liu, Ning; Wu, Bing; Zhang, Yan; Li, Ai-Min; Cheng, Shu-Pei

    2010-06-15

    Six biofilters were used for advanced treatment of Yangtze River source water to investigate the effects of hydraulic loading rate (HLR) on pollutant removal and microbial community. HLR was found to exert significant influences on the removal efficiency of the conventional pollutants and 24 detectable semivolatile organic compounds (SVOCs). More than 85% of chemical oxygen demand and assimilable organic carbon was removed at the optimal HLR of 3.0 m h(-1). With the increase of HLR, SVOC removal showed a decreasing trend. Di-n-butyl phthalate and bis(2-ethylhexyl)phthalate, two main SVOCs in the source water, had the highest removals of 71.2% and 84.4%, respectively. Nearly 65% of 2,6-dinitrotoluene and 80% of isophorone were removed at the lowest HLR. Phylogenetic analysis showed that Escherichia coli, Shigella sp., E. fergusonii and Firmicutes bacteria predominated in the bioreactors. The dominance of E. coli in the low-HLR biofilters might contribute greatly to the high SVOC removal.

  11. Influence of Organic Manures (Biofertilizers on Soil Microbial Population in the Rhizosphere of Mulberry (Morus Indica L.

    Directory of Open Access Journals (Sweden)

    L. Christilda Louis Mary

    2015-03-01

    Full Text Available The effect of different kinds of organic manures on soil microbial population and mulberry production was assessed. A field experiment wascarried out at Periyar EVR College, Tamil Nadu, India in basic soil to study the influence of organic manures on soil bacterial population andmulberry production. The 4 groups of mulberry plants of MR2 variety were biofertilized with FYM, Azospirillum, Phosphobacteria andVermicompost respectively. The biofertilizers lodged bacteria on the rhizosphere of mulberry plants. When the root microorganism areanalyzed Farm yard manure biofertilized mulberry plant root tips had Gluconacobacter diazotrophicus, Bacillus pumilus, Pseudomonas putida,Bacillus coagulans, Bacillus sonorensis, Azotobacter chrococcum; Azospirillum biofertilized mulberry plants root tips had Bacillus coaculans,Azotobactor chrococcum, Azotobactor vinelandii, Bacillus subtilis and Azospirillum brasilense. Phosphobacteria biofertilized mulberry plantroot tips had Pseudomonas putida, Bacillus stearothermophilus, Brevibacillus borslelansis and Streptomycies thermonitrificans andvermicompost biofertilized mulberry plant root tips had lodged bacterias like Bacillus megaterium, Bacillus subtilis, Gluconacobacterdiazotrophicus, Pseudomonas putida, Azotobacter chrococcum, Azotobacter vinelandi, Bacillus stearothermophilus, Brevibacillus borslelansisand Bacillus sonorensis. Microbiology work reveals luxuriant growth of bacteria in all the biofertizer treated rhizosphere in the order FYM

  12. The microbial food web in the Doñana marshland: Influence of trophic state and hydrology

    Science.gov (United States)

    Àvila, Núria; López-Flores, Rocío; Quintana, Xavier D.; Serrano, Laura

    2016-10-01

    We investigated the composition of the microbial food web in the marshland of Doñana National Park (SW Spain). We analysed factors affecting the predominance of autotrophic (A) or heterotrophic (H) microorganisms in a set of 16 marshland water bodies that differ in their hydrological pattern. Autotrophic organisms were predominant in the Doñana marshland, with autotrophs between 0.3 and 25.3 times higher than heterotrophs in biomass. The variance partitioning analysis using the log A:H biomass ratio (A/H) as a response variable revealed that water body spatial position accounted for the largest portion of total variance (16% of unique effects), followed by environmental variables (13%), with a shared variation of 24%. Zooplankton biomass had no significant influence on A/H ratio. The two first axes of RDA analysis were related to soluble reactive phosphate (SRP) and dissolved inorganic nitrogen (DIN) concentrations respectively. Cyanobacteria were predominant in waters with high SRP, while other organisms were distributed in relation to DIN by their size, with small organisms predominating with low DIN and large ones with high DIN. Spatial effects reflect the importance of location with respect to the water source in this marshland, where flooding areas are very much dominated by autotrophs, while confined areas, which are a long way from nutrient sources, have a more balanced abundance of autotrophs and heterotrophs.

  13. THE INFLUENCE OF KAPOK (Ceiba pentandra SEED OIL SUPPLEMENTATION ON CELLULOLYTIC ENZYME AND RUMEN MICROBIAL FERMENTATION ACTIVITY OF LOCAL SHEEP

    Directory of Open Access Journals (Sweden)

    W. Widiyanto

    2014-10-01

    Full Text Available This research was conducted to study the influence of kapok seed oil (KSO supplementation oncellulolytic enzyme and microbial fermentation activity. Sheep rumen fluid was used as enzyme sourceand inoculant, whereas carboxymethylcellulose (CMC was used as the substrate. There were 4 levels ofKSO supplementation as treatment, i.e. : 0% (T0, 5% (T1, 10% (T2, and 15% (T3. Two measuredvariables were reduced sugar production rate and gas fermentation production. The data were analyzedby analysis of variance in completely randomized design. The result showed that reduced sugarproduction rate in T0, T1, T2 and T3 treatment groups were 2.58; 2.93; 2.08 and 1.58 mg/gCMC/minute, respectively, whereas gas production were : 15.97; 13.26; 10.54 and 7.57 mg/g CMC,respectively. Kapok seed oil supplementation up to 5% DM of cellulose substrate (CMC did notinfluence the ruminal cellulolytic enzyme activity. The KSO supplementation level 10% - 15%decreased the ruminal cellulolytic enzyme activity.

  14. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients

    Directory of Open Access Journals (Sweden)

    Daniel McDonald

    2015-03-01

    Full Text Available Differences in the gut microbiota have been reported between individuals with autism spectrum disorders (ASD and neurotypical controls, although direct evidence that changes in the microbiome contribute to causing ASD has been scarce to date. Here we summarize some considerations of experimental design that can help untangle causality in this complex system. In particular, large cross-sectional studies that can factor out important variables such as diet, prospective longitudinal studies that remove some of the influence of interpersonal variation in the microbiome (which is generally high, especially in children, and studies transferring microbial communities into germ-free mice may be especially useful. Controlling for the effects of technical variables, which have complicated efforts to combine existing studies, is critical when biological effect sizes are small. Large citizen-science studies with thousands of participants such as the American Gut Project have been effective at uncovering subtle microbiome effects in self-collected samples and with self-reported diet and behavior data, and may provide a useful complement to other types of traditionally funded and conducted studies in the case of ASD, especially in the hypothesis generation phase.

  15. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    Science.gov (United States)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  16. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms.

    Science.gov (United States)

    Kim, Yong-Hak; Cerniglia, Carl E

    2005-07-01

    Degradation of erythromycin A was studied using two sediment samples obtained from the salmon and trout hatchery sites at Hupp Springs (HS) and Goldendale (GD), Washington, United States. The former site had been treated for 3 years with erythromycin-medicated feed prior to the experiments, and the latter site had not been treated with any antibiotic for at least 6 years. The two sediment microcosms treated with either N-[methyl-14C]erythromycin A or [1,3,5,7,9,11,13-14C]erythromycin A showed S-curves for erythromycin A mineralization with a prolonged lag time of 120 days, except for GD microcosms treated with [1,3,5,7,9,11,13-14C]erythromycin A. We proposed a simplified logistic model to interpret the mineralization curves under the assumption of the low densities of initial populations metabolizing erythromycin A. The model was helpful for knowing the biological potential for erythromycin A degradation in sediments. Although erythromycin A added to the two sediment microcosms did not significantly alter the numbers of total viable aerobic bacteria or erythromycin-resistant bacteria, it affected the bacterial composition. The influence on the bacterial composition appeared to be greater in GD microcosms without pre-exposure to antibiotics. PCR-RFLP and DNA sequence analyses of the 16S ribosomal RNA gene and the erythromycin esterase (ere) gene revealed that ereA type 2 (ereA2) was present in potentially erythromycin-degrading Pseudomonas spp. strains GD100, GD200, HS100, HS200 and HS300, isolated from erythromycin-treated and non-treated GD and HS microcosms. Erythromycin A appeared to influence the development and proliferation of strain GD200, possibly via the lateral gene transfer of ereA2.

  17. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Hak [Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)]. E-mail: yhkim660628@hotmail.com; Cerniglia, Carl E. [Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)]. E-mail: ccerniglia@nctr.fda.gov

    2005-07-01

    Degradation of erythromycin A was studied using two sediment samples obtained from the salmon and trout hatchery sites at Hupp Springs (HS) and Goldendale (GD), Washington, United States. The former site had been treated for 3 years with erythromycin-medicated feed prior to the experiments, and the latter site had not been treated with any antibiotic for at least 6 years. The two sediment microcosms treated with either N-[methyl-{sup 14}C]erythromycin A or [1,3,5,7,9,11,13-{sup 14}C]erythromycin A showed S-curves for erythromycin A mineralization with a prolonged lag time of 120 days, except for GD microcosms treated with [1,3,5,7,9,11,13-{sup 14}C]erythromycin A. We proposed a simplified logistic model to interpret the mineralization curves under the assumption of the low densities of initial populations metabolizing erythromycin A. The model was helpful for knowing the biological potential for erythromycin A degradation in sediments. Although erythromycin A added to the two sediment microcosms did not significantly alter the numbers of total viable aerobic bacteria or erythromycin-resistant bacteria, it affected the bacterial composition. The influence on the bacterial composition appeared to be greater in GD microcosms without pre-exposure to antibiotics. PCR-RFLP and DNA sequence analyses of the 16S ribosomal RNA gene and the erythromycin esterase (ere) gene revealed that ereA type 2 (ereA2) was present in potentially erythromycin-degrading Pseudomonas spp. strains GD100, GD200, HS100, HS200 and HS300, isolated from erythromycin-treated and non-treated GD and HS microcosms. Erythromycin A appeared to influence the development and proliferation of strain GD200, possibly via the lateral gene transfer of ereA2.

  18. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality.

    Science.gov (United States)

    Lewis, G J; Panizzon, M S; Eyler, L; Fennema-Notestine, C; Chen, C-H; Neale, M C; Jernigan, T L; Lyons, M J; Dale, A M; Kremen, W S; Franz, C E

    2014-12-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean=55 years) male twins (complete MZ pairs=120; complete DZ pairs=84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (r(p)) and genetic (r(g)) correlations were observed between left amygdala volume and positive emotionality (r(p)=.16, porbitofrontal cortex thickness and negative emotionality were also observed (r(g)=.34, p<.01; r(e)=-.19, p<.05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation.

  19. Genetic and environmental influences on blood pressure variability: a study in twins.

    Science.gov (United States)

    Xu, Xiaojing; Ding, Xiuhua; Zhang, Xinyan; Su, Shaoyong; Treiber, Frank A; Vlietinck, Robert; Fagard, Robert; Derom, Catherine; Gielen, Marij; Loos, Ruth J F; Snieder, Harold; Wang, Xiaoling

    2013-04-01

    Blood pressure variability (BPV) and its reduction in response to antihypertensive treatment are predictors of clinical outcomes; however, little is known about its heritability. In this study, we examined the relative influence of genetic and environmental sources of variance of BPV and the extent to which it may depend on race or sex in young twins. Twins were enrolled from two studies. One study included 703 white twins (308 pairs and 87 singletons) aged 18-34 years, whereas another study included 242 white twins (108 pairs and 26 singletons) and 188 black twins (79 pairs and 30 singletons) aged 12-30 years. BPV was calculated from 24-h ambulatory blood pressure recording. Twin modeling showed similar results in the separate analysis in both twin studies and in the meta-analysis. Familial aggregation was identified for SBP variability (SBPV) and DBP variability (DBPV) with genetic factors and common environmental factors together accounting for 18-40% and 23-31% of the total variance of SBPV and DBPV, respectively. Unique environmental factors were the largest contributor explaining up to 82-77% of the total variance of SBPV and DBPV. No sex or race difference in BPV variance components was observed. The results remained the same after adjustment for 24-h blood pressure levels. The variance in BPV is predominantly determined by unique environment in youth and young adults, although familial aggregation due to additive genetic and/or common environment influences was also identified explaining about 25% of the variance in BPV.

  20. Genetic and Environmental Influences on Parent-Child Conflict and Child Depression Through Late Adolescence.

    Science.gov (United States)

    Samek, Diana R; Wilson, Sylia; McGue, Matt; Iacono, William G

    2016-04-04

    Few studies have investigated potential gender differences in the genetic and environmental influences on the prospective associations between parent-child conflict and later depression, a notable gap given substantial gender differences in rates of depression and suggestive evidence of differences in the etiology of depression among females and males. To fill this gap, we evaluated whether the prospective relationship between parent-child conflict and major depressive disorder symptoms varied as a function of parent-child gender composition. A combined twin and adoption sample was used (53% female; 85% European ancestry), containing 1,627 adolescent sibling pairs (789 monozygotic twin pairs, 594 dizygotic/full-biological pairs, 244 genetically unrelated pairs) with assessments at two time points in adolescence (approximate ages 15 and 18). Prospective associations between parent-child conflict and subsequent adolescent depression were explained predominately through common genetic influences for mother-daughter and mother-son pairs but less so for father-daughter and father-son pairs. Results support the notion that processes of gene-environment correlation involved in the prospective associations between parent-child conflict, and later adolescent depression appear to be less relevant to father-child relationships in comparison to mother-child relationships. Notably, results did not show that parent-child conflict was more relevant to the etiology of major depressive disorder (MDD) for girls than boys; gender differences in depression do not appear to be due to differences in the associations between parent-child conflict and child depression.

  1. Influence of roadside pollution on the phylloplane microbial community of Alnus nepalensis (Betulaceae

    Directory of Open Access Journals (Sweden)

    S.R Joshi

    2008-09-01

    Full Text Available The North Eastern region of India is undergoing industrial development at a faster rate than expected. Roads form the main system of transportation and communication owing to the hilly topography of the region. Automobiles discharge a number of gaseous and trace metal contaminants. Human activities like stone grinding, road construction and sand milling also increase the atmospheric dust and heavy metal contaminant level. These contaminants get settled on leaf surfaces at roadsides and enter in contact with phylloplane microorganisms. This study compares microorganisms on leaf surfaces of alder (Alnus nepalensis (Betulaceae on roadside and non-roadside environments. Two sites dominated by alder were selected. One at a busy road intersection on the National Highway no. 44 in Shillong with high traffic density (8 000-9 000 heavy vehicles/day, taken as the polluted site and the other one in a forest approximately 500 m away from the roadside considered as the unpolluted site. Analysis of phylloplane microorganisms, lead, zinc, copper, cadmium and sulphur was carried out from leaves. The bacterial population was higher at the unpolluted site. Bacterial population showed a significant negative correlation with lead, zinc, copper, cadmium and sulphur. Similarly, fungal population was higher at the unpolluted site. A total of 29 fungal species were isolated from the phylloplane of A. nepalensis (polluted site 16 species; unpolluted site 28 species. Some fungal forms like Mortierella sp., Fusarium oxysporum and Aureobasidium pollulans were dominant in the polluted site. Numbers of phylloplane fungi and bacteria were significantly reduced in the polluted site. The correlation coefficient indicated a detrimental effect of metals like lead, zinc, copper, cadmium and sulphur on the microbial community of leaf surfaces. The specificity of certain fungi to the unpolluted site may be attributed to their sensitivity to pollution. The predominance of

  2. Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry

    Science.gov (United States)

    Microbial decomposer C metabolism is considered a factor controlling soil C stability, a key regulator of global climate. The plant rhizosphere is now recognized as a crucial driver of soil C dynamics but specific mechanisms are unclear. Climate change could affect microbial C metabolism via impacts...

  3. The influence of genetic background versus commercial breeding programs on chicken immunocompetence.

    Science.gov (United States)

    Emam, Mehdi; Mehrabani-Yeganeh, Hassan; Barjesteh, Neda; Nikbakht, Gholamreza; Thompson-Crispi, Kathleen; Charkhkar, Saeid; Mallard, Bonnie

    2014-01-01

    Immunocompetence of livestock plays an important role in farm profitability because it directly affects health maintenance. Genetics significantly influences the immune system, and the genotypic structure of modern fast-growing chickens has been changed, particularly after decades of breeding for higher production. Therefore, this study was designed to help determine if intensive breeding programs have adversely affected immunocompetence or whether the immune response profiles are controlled to greater extent by genetic background. Thus, 3 indigenous chicken populations from different genetic backgrounds and 2 globally available modern broiler strains, Ross 308 and Cobb 500, were evaluated for various aspects of immune response. These included antibody responses against sheep red blood cells and Brucella abortus antigen, as well as some aspects of cell-mediated immunocompetence by toe web swelling test and in vitro blood mononuclear cell proliferation. Significant differences (P chickens is most likely due to differences in the genetic background between each strain of chicken rather than by commercial selection programs for high production.

  4. Influence of genetic and environmental factors on oral diseases and function in aged twins.

    Science.gov (United States)

    Kurushima, Y; Ikebe, K; Matsuda, K; Enoki, K; Ogata, S; Yamashita, M; Murakami, S; Hayakawa, K; Maeda, Y

    2015-01-01

    This study was conducted to quantify the genetic and environmental contributions to oral disease and function in twins. Participants were middle-aged and old twins, 116 monozygotic and 16 dizygotic pairs whose mean age was 66·1 ± 10·3 (SD) years. Number of teeth, percentage of decayed, filled and missing teeth and periodontal status were recorded as indicators of oral disease. The widths of upper and lower dental arch served as indicators of morphological figures. Furthermore, stimulated salivary flow rate, occlusal force and masticatory performance were measured as indicators of oral function. Univariate genetic analysis with monozygotic and dizygotic twin pairs was conducted to detect the fittest structural equation model of each outcome. Both number of teeth and periodontal status fitted the model composed of common environmental factor and unique environmental factor. Decayed, filled and missing teeth, morphological figures and measurements of oral function fitted the model composed of additive genetic factor and unique environmental factor. The model fitting of each measurement suggested that periodontal disease was mainly affected by environmental factors, while morphological figures and oral functions were influenced by both genetic and environmental factors.

  5. Seventy-five genetic loci influencing the human red blood cell

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Leach, Irene Mateo; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S.; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X.; Albers, Cornelis A.; Al-Hussani, Abtehale; Asselbergs, Folkert W.; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M.; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E.; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M.; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M.; O’Reilly, Paul F.; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S.; Shin, So-Youn; Tang, Clara S.; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O.; Cookson, William O.; Das, Debashish; de Bakker, Paul I. W.; de Boer, Rudolf A.; de Geus, Eco J. C.; de Moor, Marleen H.; Dimitriou, Maria; Domingues, Francisco S.; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F.; Genser, Bernd; Gibson, Quince D.; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E.; Hartikainen, Anna-Liisa; Hastie, Claire E.; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P.; Kemp, John P.; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J. F.; Meacham, Stuart; Medland, Sarah E.; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F.; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T.; Parracciani, Debora; Penninx, Brenda W.; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M.; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H. W.; Sladek, Rob; Smit, Johannes H.; Starr, John M.; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H.; van Pelt, L. Joost; van Veldhuisen, Dirk J.; Völker, Uwe; Whitfield, John B.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d’Adamo, Adamo Pio; Danesh, John; Deary, Ian J.; Dominiczak, Anna F.; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L.; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G.; Metspalu, Andres; Mitchell, Braxton D.; Montgomery, Grant W.; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P.; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R.; Smith, George Davey; Smith, J. Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D.; Stefansson, Kari; Stumvoll, Michael; Wilson Tang, W. H.; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M.; Vollenweider, Peter; Wareham, Nicholas J.; Wolffenbuttel, Bruce H. R.; Boomsma, Dorret I.; Beckmann, Jacques S.; Dedoussis, George V.; Deloukas, Panos; Ferreira, Manuel A.; Sanna, Serena; Uda, Manuela; Hicks, Andrew A.; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S.; Ouwehand, Willem H.; Soranzo, Nicole; Chambers, John C

    2013-01-01

    Anaemia is a chief determinant of globalill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P <10−8, which together explain 4–9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function. PMID:23222517

  6. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia.

    Science.gov (United States)

    Rangan, Haripriya; Bell, Karen L; Baum, David A; Fowler, Rachael; McConvell, Patrick; Saunders, Thomas; Spronck, Stef; Kull, Christian A; Murphy, Daniel J

    2015-01-01

    This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

  7. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia.

    Directory of Open Access Journals (Sweden)

    Haripriya Rangan

    Full Text Available This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

  8. Seventy-five genetic loci influencing the human red blood cell.

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-12-20

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

  9. Influence of microstructure on the microbial corrosión behaviour of stainless steels

    Directory of Open Access Journals (Sweden)

    Moreno, Diego Alejandro

    2000-08-01

    Full Text Available Several stainless steels (Types UNS S30300, S30400, S30403, S31600, S31603 and S42000 with different microstructural characteristics have been used to study the influence of heat treatments on microbiologically influenced corrosion (MIC. Biocorrosion and accelerated electrochemical testing was performed in various microbiological media. Two species of sulphate-reducing bacteria (SRB have been used in order to ascertain the influence of microstructure. The morphology of corrosion pits produced in both chloride and chloride plus sulphide -SRB metabolites- was inspected by optical and scanning electron microscopy (SEM complemented with energy-dispersive X-ray (EDX analysis. Results have shown different behaviours regarding corrosion resistance in each case studied. Sensitized austenitic stainless steels were more affected by the presence of aggressive anions and pitting potential (Ep values were more cathodic than those of as-received state. A corrosion enhancement is produced by the synergistic action of biogenic sulphides and chloride anions. Pitting corrosion in martensitic stainless Steel Type UNS S42000 was found in a- biocorrosion test. The pitting morphology is correlated to the chemical composition, the microstructure and the electrolyte.

    Se han utilizado aceros inoxidables de los tipos UNS S30300, S30400, S30403, S31600, S31603 y S42000, en diferentes estados microestructurales, para estudiar la influencia de los tratamientos térmicos sobre la corrosión microbiana. Para ello, se han realizado ensayos electroquímicos y ensayos de biocorrosión, en diferentes medios microbiológicos, utilizándose dos especies de bacterias reductoras de sulfatos (SRB. La morfología de las picaduras, producidas en presencia de cloruros y en presencia de cloruros más sulfuros -metabolitos de SRB-, se ha analizado por microscopía óptica y por microscopía electrónica de barrido (SEM complementada con análisis por energía dispersiva de rayos X

  10. Influence of chromium compounds on microbial growth and nucleic acid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshihiko; Usui, Masauji; Yatome, Chizuko; Idaka, Eiichi (Gifu Univ., Gifu City (Japan))

    1989-08-01

    The wastewaters of the dyeing and the tanning industry contain often various chromium compounds, e.g. K{sub 2}Cr{sub 2}O{sub 7} and CrCl{sub 3}, with a large quantity of organic substances. Biological treatments have generally been employed in these industrial factories for the biodegradation of organic substances. The toxicity of the chromium compounds have been studied regarding mutagenicity and carcinogenicity from the medical view point. This is also of interest from the view point of wastewater biological treatments. The inhibitory effects of the compounds on the cell growth and the respiration in activated sludge have been reported in detail, but mechanisms have not been sufficiently elucidated. Therefore, the influence of K{sub 2}Cr{sub 2}O{sub 7} and CrCl{sub 3} on the cell growth and on the nucleic acid content was measured. Both compounds were the inhibitors of DNA synthesis. These action resulted in increased generation time a decrease in cell division. Chromium compounds and dyes coexist often in the wastewaters of the dyeing industries. The growth inhibitions of the mixed solution were measured.

  11. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy.

    Science.gov (United States)

    Lv, Tao; Carvalho, Pedro N; Zhang, Liang; Zhang, Yang; Button, Mark; Arias, Carlos A; Weber, Kela P; Brix, Hans

    2017-03-01

    The objective of this study was to compare the microbial community metabolic function from both unsaturated and saturated constructed wetland mesocosms (CWs) when treating the pesticide tebuconazole. The comparison was performed for both interstitial water and substrate biofilm by community level physiological profiling (CLPP) via BIOLOG™ EcoPlates. For each CW design (saturated or unsaturated), six mesocosms were established including one unplanted and five planted individually with either Juncus effusus, Typha latifolia, Berula erecta, Phragmites australis or Iris pseudacorus. Microbial activity and metabolic richness of interstitial water from unsaturated CWs were significantly lower than that from saturated CWs. However, in general, the opposite result was observed for biofilm samples. Wetland plants promoted significantly higher biofilm microbial activity and metabolic richness than unplanted CWs in both CW designs. Differences in the microbial community functional profiles between plant species were only found for saturated CWs. Biofilm microbial metabolic richness was generally statistically higher than that of interstitial water in both unsaturated (1.4-24 times higher) and saturated (1.2-1.7 times higher) CWs. Carbon source (guild) utilization patterns were generally different between interstitial water and biofilm samples. Functionality of the biofilm microbial community was positively correlated to the removal of all pollutants (TN, NH4(+)-N, TP, TOC and tebuconazole) for both unsaturated and saturated CWs, suggesting the biofilm plays a more important role in pollutant removal than the interstitial water microbial community. Thus, merely observing the interstitial water microbial communities may underestimate the role of the microbial community in CW performance. Interestingly, the ability for the biofilm microbial community to utilize amino acids and amines/amides was positively correlated with tebuconazole removal in all system types.

  12. Genetic and environmental influences on self-reported reduced hearing in the old and oldest old

    DEFF Research Database (Denmark)

    Christensen, Kaare; Frederiksen, H; Hoffman, H J

    2001-01-01

    : The prevalence of self-reported reduced hearing corresponded to previous studies and showed the expected age and sex dependence. Concordance rates, odds ratios, and correlations were consistently higher for monozygotic twin pairs than for dizygotic twin pairs in all age and sex categories, indicating heritable......-reported reduced hearing in both men and women age 70 and older. Because self-reports of reduced hearing involve misclassification, this estimate of the genetic influence on hearing disabilities is probably conservative. Hence, genetic and environmental factors play a substantial role in reduced hearing among...... the old and oldest old. This suggests that clinical epidemiological studies of age-related hearing loss should include not only information on environmental exposures but also on family history of hearing loss and, if possible, biological samples for future studies of candidate genes for hearing loss....

  13. Genetic and environmental influences on sexual orientation and its correlates in an Australian twin sample.

    Science.gov (United States)

    Bailey, J M; Dunne, M P; Martin, N G

    2000-03-01

    We recruited twins systematically from the Australian Twin Registry and assessed their sexual orientation and 2 related traits: childhood gender nonconformity and continuous gender identity. Men and women differed in their distributions of sexual orientation, with women more likely to have slight-to-moderate degrees of homosexual attraction, and men more likely to have high degrees of homosexual attraction. Twin concordances for nonheterosexual orientation were lower than in prior studies. Univariate analyses showed that familial factors were important for all traits, but were less successful in distinguishing genetic from shared environmental influences. Only childhood gender nonconformity was significantly heritable for both men and women. Multivariate analyses suggested that the causal architecture differed between men and women, and, for women, provided significant evidence for the importance of genetic factors to the traits' covariation.

  14. Genetic and environmental influence on DNA strand break repair: a twin study

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander

    2013-01-01

    factors are likely to influence DNA repair capacity. In order to gain more insight into the genetic and environmental contribution to the molecular basis of DNA repair, we have performed a human twin study, where we focused on the consequences of some of the most abundant types of DNA damage (single......Accumulation of DNA damage deriving from exogenous and endogenous sources has significant consequences for cellular survival, and is implicated in aging, cancer, and neurological diseases. Different DNA repair pathways have evolved in order to maintain genomic stability. Genetic and environmental......-strand breaks), and some of the most hazardous lesions (DNA double-strand breaks). DNA damage signaling response (Gamma-H2AX signaling), relative amount of endogenous damage, and DNA-strand break repair capacities were studied in peripheral blood mononuclear cells from 198 twins (94 monozygotic and 104...

  15. How does genetics influence valley fever? research underway now to answer this question

    Directory of Open Access Journals (Sweden)

    Galgiani JN

    2014-10-01

    Full Text Available After decades of interest and speculation about what possible genetic influences are involved in determining the severity of Valley Fever infections, there are now two separate studies underway to address this question, each taking a different and complementary approach. At the very least, such information would be valuable for risk stratification, either for persons wanting that information before travelling to the coccidioidal endemic area or early in the course of a new coccidioidal infection. However, depending upon the success of this research, understanding the genetics could possibly suggest new therapeutic options. Most helped by this work will be Arizonans where two-thirds of all Valley Fever infections in the United States occur.