WorldWideScience

Sample records for genetic engineering strategies

  1. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  2. Rabbit defensin (NP-1) genetic engineering of plant | Ting | African ...

    African Journals Online (AJOL)

    Rabbit defensin (NP-1) genetic engineering of plant. ... Log in or Register to get access to full text downloads. ... defensin genetic engineering of plant in recent years, and also focuses on the existing problems and new strategies in this area.

  3. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  5. Genetic Engineering Workshop Report, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Slezak, T

    2010-11-03

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected and characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industries that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of

  6. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  7. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering

    Directory of Open Access Journals (Sweden)

    Lucille ePourcel

    2013-05-01

    Full Text Available Thiamin (vitamin B1 is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP. Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants.

  8. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  9. Genetic engineering of cyanobacteria as biodiesel feedstock.

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne.; Trahan, Christine Alexandra; Jones, Howland D. T.

    2013-01-01

    Algal biofuels are a renewable energy source with the potential to replace conventional petroleum-based fuels, while simultaneously reducing greenhouse gas emissions. The economic feasibility of commercial algal fuel production, however, is limited by low productivity of the natural algal strains. The project described in this SAND report addresses this low algal productivity by genetically engineering cyanobacteria (i.e. blue-green algae) to produce free fatty acids as fuel precursors. The engineered strains were characterized using Sandias unique imaging capabilities along with cutting-edge RNA-seq technology. These tools are applied to identify additional genetic targets for improving fuel production in cyanobacteria. This proof-of-concept study demonstrates successful fuel production from engineered cyanobacteria, identifies potential limitations, and investigates several strategies to overcome these limitations. This project was funded from FY10-FY13 through the President Harry S. Truman Fellowship in National Security Science and Engineering, a program sponsored by the LDRD office at Sandia National Laboratories.

  10. Genetic Optimization Algorithm for Metabolic Engineering Revisited

    Directory of Open Access Journals (Sweden)

    Tobias B. Alter

    2018-05-01

    Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.

  11. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  13. Genetic engineering and sustainable production of ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Clarke, Jihong Liu; Müller, Renate

    2012-01-01

    Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduct......Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources....... This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed......, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors...

  14. Genetically engineered foods

    Science.gov (United States)

    Bioengineered foods; GMOs; Genetically modified foods ... helps speed up the process of creating new foods with desired traits. The possible benefits of genetic engineering include: More nutritious food Tastier food Disease- and ...

  15. Selected Readings in Genetic Engineering

    Science.gov (United States)

    Mertens, Thomas R.; Robinson, Sandra K.

    1973-01-01

    Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)

  16. Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts

    KAUST Repository

    Levin, Rachel A.; Voolstra, Christian R.; Agrawal, Shobhit; Steinberg, Peter D.; Suggett, David J.; van Oppen, Madeleine J. H.

    2017-01-01

    Elevated sea surface temperatures from a severe and prolonged El Niño event (2014–2016) fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium, and in turn, coral reefs.

  17. Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts

    KAUST Repository

    Levin, Rachel A.

    2017-06-30

    Elevated sea surface temperatures from a severe and prolonged El Niño event (2014–2016) fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium, and in turn, coral reefs.

  18. Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts

    Directory of Open Access Journals (Sweden)

    Rachel A. Levin

    2017-06-01

    Full Text Available Elevated sea surface temperatures from a severe and prolonged El Niño event (2014–2016 fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium, and in turn, coral reefs.

  19. Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts.

    Science.gov (United States)

    Levin, Rachel A; Voolstra, Christian R; Agrawal, Shobhit; Steinberg, Peter D; Suggett, David J; van Oppen, Madeleine J H

    2017-01-01

    Elevated sea surface temperatures from a severe and prolonged El Niño event (2014-2016) fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium , and in turn, coral reefs.

  20. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  1. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  2. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  3. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Moral Fantasy in Genetic Engineering.

    Science.gov (United States)

    Boone, C. Keith

    1984-01-01

    Discusses the main ethical issues generated by the new genetics and suggests ways to think about them. Concerns include "playing God," violation of the natural order of the universe, and abuse of genetic technology. Critical distinctions for making difficult decisions about genetic engineering issues are noted. (DH)

  5. Possible people, complaints, and the distinction between genetic planning and genetic engineering.

    Science.gov (United States)

    Delaney, James J

    2011-07-01

    Advances in the understanding of genetics have led to the belief that it may become possible to use genetic engineering to manipulate the DNA of humans at the embryonic stage to produce certain desirable traits. Although this currently cannot be done on a large scale, many people nevertheless object in principle to such practices. Most often, they argue that genetic enhancements would harm the children who were engineered, cause societal harms, or that the risks of perfecting the procedures are too high to proceed. However, many of these same people do not have serious objections to what is called 'genetic planning' procedures (such as the selection of sperm donors with desirable traits) that essentially have the same ends. The author calls the view that genetic engineering enhancements are impermissible while genetic planning enhancements are permissible the 'popular view', and argues that the typical reasons people give for the popular view fail to distinguish the two practices. This paper provides a principle that can salvage the popular view, which stresses that offspring from genetic engineering practices have grounds for complaint because they are identical to the pre-enhanced embryo, whereas offspring who are the result of genetic planning have no such grounds.

  6. Safe genetically engineered plants

    International Nuclear Information System (INIS)

    Rosellini, D; Veronesi, F

    2007-01-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work

  7. Safe genetically engineered plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosellini, D; Veronesi, F [Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Universita degli Studi di Perugia, Borgo XX giugno 74, 06121 Perugia (Italy)

    2007-10-03

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  8. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  9. Genetic engineering in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bedate, C.A.; Morales, J.C.; Lopez, E.H.

    1981-09-01

    The objective of this book is to encourage the use of genetic engineering for economic development. The report covers: (1) Precedents of genetic engineering; (2) a brief description of the technology, including the transfer of DNA in bacteria (vectors, E. coli and B. subtilis hosts, stages, and technical problems), practical examples of techniques used and their products (interferon; growth hormone; insulin; treatment of blood cells, Talasemia, and Lesch-Nyhan syndrome; and more nutritious soya), transfer to higher organisms, and cellular fusion; (3) biological risks and precautions; (4) possible applications (production of hydrogen, hydrocarbons, alcohol, chemicals, enzymes, peptides, viral antigens, monoclonal antibodies, genes, proteins, and insecticides; metal extraction; nitrogen fixation; biodegradation; and new varieties of plants and animals; and (5) international activities.

  10. Genetic Engineering of Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min

    2016-01-01

    Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.

  11. Teacher-to-Teacher: An Annotated Bibliography on DNA and Genetic Engineering.

    Science.gov (United States)

    Mertens, Thomas R., Comp.

    1984-01-01

    Presented is an annotated bibliography of 24 books on DNA and genetic engineering. Areas considered in these books include: basic biological concepts to help understand advances in genetic engineering; applications of genetic engineering; social, legal, and moral issues of genetic engineering; and historical aspects leading to advances in…

  12. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  13. Paper Genetic Engineering.

    Science.gov (United States)

    MacClintic, Scott D.; Nelson, Genevieve M.

    Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…

  14. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  15. Phage Genetic Engineering Using CRISPR–Cas Systems

    Directory of Open Access Journals (Sweden)

    Asma Hatoum-Aslan

    2018-06-01

    Full Text Available Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR–Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR–Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR–Cas systems, specifically the three major types (I, II, and III, can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR–Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.

  16. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  17. German politics of genetic engineering and its deconstruction.

    Science.gov (United States)

    Gottweis, H

    1995-05-01

    Policy-making, as exemplified by biotechnology policy, can be understood as an attempt to manage a field of discursivity, to construct regularity in a dispersed multitude of combinable elements. Following this perspective of politics as a textual process, the paper interprets the politicization of genetic engineering in Germany as a defence of the political as a regime of heterogeneity, as a field of 'dissensus' rather than 'consensus', and a rejection of the idea that the framing of technological transformation is an autonomous process. From its beginning in the early 1970s, genetic engineering was symbolically entrenched as a key technology of the future, and as an integral element of the German politics of modernization. Attempts by new social movements and the Green Party to displace the egalitarian imaginary of democratic discourse into the politics of genetic engineering were construed by the political élites as an attack on the political order of post-World War II Germany. The 1990 Genetic Engineering Law attempted a closure of this controversy. But it is precisely the homogenizing idiom of this 'settlement' which continues to nourish the social movements and their radical challenge to the definitions and codings of the politics of genetic engineering.

  18. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  19. Genetically engineered orange petunias on the market

    OpenAIRE

    Bashandy, Hany; Teeri, Teemu Heikki

    2017-01-01

    Main conclusion Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20?years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce. Electronic supplementary material The online version of ...

  20. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    Science.gov (United States)

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  1. Study on biofortification of rice by targeted genetic engineering

    Directory of Open Access Journals (Sweden)

    Sumon M. Hossain

    2012-12-01

    Full Text Available Micronutrient malnutrition is a major health problem in Bangladesh and also in many other developing countries, where a diversified diet is not affordable for the majority. In the present world- one, out of seven people suffers from hunger. Yet, there is a stealthier form of hunger than lack of food: micronutrient malnutrition or hidden hunger. While often providing enough calories, monotonous diets (of rural poor frequently fail to deliver sufficient quantities of essential minerals and vitamins. Due to micronutrient deficiencies different characteristic features have been observed to the victims. Various estimates indicate that over two-thirds of the world population, for the most part women and children specially, pre-school children are deficient in at least one micronutrient. This can have devastating consequences for the life, health and well being of the individuals concerned (like premature death, blindness, weakened immune systems etc. Genetic engineering approach is the upcoming strategy to solve this problem. Genetically engineered biofortified staple crops specially, rice that are high in essential micronutrients (Fe, Zn, vitamin A and adapted to local growing environments have the potential to significantly reduce the prevalence of micronutrient deficiencies specially to the rural poor.

  2. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  3. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    Science.gov (United States)

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    Science.gov (United States)

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  5. Perspectives of genetic engineering in radiobiology

    International Nuclear Information System (INIS)

    Khanson, K.P.; Zvonareva, N.B.; Evtushenko, V.I.

    1988-01-01

    Present evidence on the use of genetic engineering methods in studying the molecular mechanism of radiation damage and repair of DNA, as well as radiation mutagenesis and carcinogenesis has been summarized. The new approach to radiobiological research has proved to be extremely fruitful. Some previously unknown types of structural disorders in DNA molecule have been discovered, some repair genes isolated and their primary structure established, some aspects of radiation mutagenesis elucidated, and research into disiphering the molecular bases of neoplastic transformations of exposed cells are being successfully investigated. The perspectives of using genetic engineering methods in radiobiology are discussed

  6. Recent Advances in Genetic Engineering - A Review

    OpenAIRE

    Sobiah Rauf; Zubair Anwar; Hussain Mustatab Wahedi; Jabar Zaman Khan Khattak; Talal Jamil

    2012-01-01

    Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial imp...

  7. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering

    Science.gov (United States)

    Ramsey, Paul

    1972-01-01

    Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)

  8. Genetic Engineering: The Modification of Man

    Science.gov (United States)

    Sinsheimer, Robert L.

    1970-01-01

    Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…

  9. Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making

    Directory of Open Access Journals (Sweden)

    Paul Vincelli

    2016-05-01

    Full Text Available Genetic engineering (GE offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals.

  10. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    Science.gov (United States)

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  12. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia.

    Directory of Open Access Journals (Sweden)

    Renaud Lacroix

    Full Text Available BACKGROUND: Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. METHODOLOGY/PRINCIPAL FINDINGS: Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered 'genetically sterile' (OX513A and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m, but mean distance travelled of the OX513A strain was lower (52 vs. 100 m. Life expectancy was similar (2.0 vs. 2.2 days. Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. CONCLUSIONS/SIGNIFICANCE: After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.

  13. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    Science.gov (United States)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  14. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  15. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications.

    Science.gov (United States)

    Telugu, Bhanu P; Park, Ki-Eun; Park, Chi-Hun

    2017-08-01

    Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.

  16. Genetic engineering applied to agriculture has a long row to hoe.

    Science.gov (United States)

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  17. Site-specific selfish genes as tools for the control and genetic engineering of natural populations.

    Science.gov (United States)

    Burt, Austin

    2003-05-07

    Site-specific selfish genes exploit host functions to copy themselves into a defined target DNA sequence, and include homing endonuclease genes, group II introns and some LINE-like transposable elements. If such genes can be engineered to target new host sequences, then they can be used to manipulate natural populations, even if the number of individuals released is a small fraction of the entire population. For example, a genetic load sufficient to eradicate a population can be imposed in fewer than 20 generations, if the target is an essential host gene, the knockout is recessive and the selfish gene has an appropriate promoter. There will be selection for resistance, but several strategies are available for reducing the likelihood of it evolving. These genes may also be used to genetically engineer natural populations, by means of population-wide gene knockouts, gene replacements and genetic transformations. By targeting sex-linked loci just prior to meiosis one may skew the population sex ratio, and by changing the promoter one may limit the spread of the gene to neighbouring populations. The proposed constructs are evolutionarily stable in the face of the mutations most likely to arise during their spread, and strategies are also available for reversing the manipulations.

  18. Consumer attitudes and decision-making with regard to genetically engineered food products: A review of the literature and a presentation of models for future research

    DEFF Research Database (Denmark)

    Bredahl, Lone; Grunert, Klaus G.; Frewer, Lynn

    Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard t...... Likelihood Model and Social Judgment Theory. The model specifically takes into account the impact of credibility and various informational factors, such as persuasive content of the information provided, on attitudes.......Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard...... engineering in food production in general as additional determinants of behavioural intentions. 5. How consumers' attitudes towards genetically engineered food products are affected by various information strategies is explained in an attitude change model, which integrates aspects of the Elaboration...

  19. Consumer attitudes and decision-making with regard to genetically engineered food products: A review of the literature and a presentation of models for future research

    DEFF Research Database (Denmark)

    Bredahl, Lone; Grunert, Klaus G.; Frewer, Lynn

    1998-01-01

    Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard t...... Likelihood Model and Social Judgment Theory. The model specifically takes into account the impact of credibility and various informational factors, such as persuasive content of the information provided, on attitudes.......Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard...... engineering in food production in general as additional determinants of behavioural intentions. 5. How consumers' attitudes towards genetically engineered food products are affected by various information strategies is explained in an attitude change model, which integrates aspects of the Elaboration...

  20. Effects of genetic engineering on the pharmacokinetics of antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K.

    1999-01-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment

  1. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  2. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    Science.gov (United States)

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  3. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. [Research progress of genetic engineering on medicinal plants].

    Science.gov (United States)

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  5. TMTI Task 1.6 Genetic Engineering Methods and Detection

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Lenhoff, R; Allen, J; Borucki, M; Vitalis, E; Gardner, S

    2009-12-04

    A large number of GE techniques can be adapted from other microorganisms to biothreat bacteria and viruses. Detection of GE in a microorganism increases in difficulty as the size of the genetic change decreases. In addition to the size of the engineered change, the consensus genomic sequence of the microorganism can impact the difficulty of detecting an engineered change in genomes that are highly variable from strain to strain. This problem will require comprehensive databases of whole genome sequences for more genetically variable biothreat bacteria and viruses. Preliminary work with microarrays for detecting synthetic elements or virulence genes and analytic bioinformatic approaches for whole genome sequence comparison to detect genetic engineering show promise for attacking this difficult problem but a large amount of future work remains.

  6. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  7. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    Science.gov (United States)

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  8. Refresher Course in Plant Genetic Engineering

    Indian Academy of Sciences (India)

    A Refresher Course in Plant Genetic Engineering for postgraduate College ... that the teachers can perform the same set of experiments in their respective College/ ... research. The teachers are encouraged to add a note on their 'expectations' ...

  9. Analysis and design of a genetic circuit for dynamic metabolic engineering.

    Science.gov (United States)

    Anesiadis, Nikolaos; Kobayashi, Hideki; Cluett, William R; Mahadevan, Radhakrishnan

    2013-08-16

    Recent advances in synthetic biology have equipped us with new tools for bioprocess optimization at the genetic level. Previously, we have presented an integrated in silico design for the dynamic control of gene expression based on a density-sensing unit and a genetic toggle switch. In the present paper, analysis of a serine-producing Escherichia coli mutant shows that an instantaneous ON-OFF switch leads to a maximum theoretical productivity improvement of 29.6% compared to the mutant. To further the design, global sensitivity analysis is applied here to a mathematical model of serine production in E. coli coupled with a genetic circuit. The model of the quorum sensing and the toggle switch involves 13 parameters of which 3 are identified as having a significant effect on serine concentration. Simulations conducted in this reduced parameter space further identified the optimal ranges for these 3 key parameters to achieve productivity values close to the maximum theoretical values. This analysis can now be used to guide the experimental implementation of a dynamic metabolic engineering strategy and reduce the time required to design the genetic circuit components.

  10. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  11. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  12. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Industry and genetic engineering of plants

    International Nuclear Information System (INIS)

    Posada, Mario

    1995-01-01

    The paper is about the importance of the genetic engineering and their development in the plants like is the resistance to the insects, to the mushrooms, retard in the maturation of the fruits and improvement of the quality of vegetables oils, among other aspects

  14. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    genetic engineering to reconstruct the life of the human person. Negatively .... height, beauty or intelligence. Apart from ... cloning and stem-cell researches, artificial insemination. ..... form of manufacturing children involving their quality control.

  15. 76 FR 5780 - Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the...

    Science.gov (United States)

    2011-02-02

    ...] Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate... decision and determination on the petition regarding the regulated status of alfalfa genetically engineered... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on an...

  16. Genetically engineered rice. The source of β-carotene

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    Full Text Available β-carotene is a precursor of vitamin A. It is converted to vitamin A in the humans intestine by the β-carotene-15,15’-monooxygenase. Vitamin A is essential to support vision, as an antioxidant it protects the body from free radicals, it helps to integrate the immune system, as well as takes part in cellular differentiation and proliferation. Vitamin A deficiency is a major public health problem especially among developing countries. Nyctalopia, commonly known as „Night Blindness” is one of the major symptoms of Vitamin A deficiency (VAD. Plants such as apricots, broccoli, carrots, and sweet potatoes are rich in β-carotene. Some of the plants are characterized by a higher content of provitamin-A. Among vegetables rich sources of β-carotene are: carrots, pumpkin, spinach, lettuce, green peas, tomatoes, watercress, broccoli and parsley leaves. Amongst fruits the highest content of β-carotene is in apricot, cherry, sweet cherry, plum, orange and mango. The aim of the present study was to analyze available literature data of increasing the content of β-carotene in genetically engineered rice. The genetically modified cultivar contains additional genes: PSY and CRTI thanks to which rice seed endosperm contains β-carotene. Genetically engineered rice with β-carotene is an effective source of vitamin A, it contains approximately 30 μg β-carotene per 1 g. Fortunately some of the advantages of Genetically Modified Food give an opportunity to reduce VAD worldwide, by introducing the rice which has been genetically engineered to be rich in β-carotene. The popularity of this plant as an element of nutrition is simultaneously a source of vitamin A.

  17. Recent advances in systems metabolic engineering tools and strategies.

    Science.gov (United States)

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genetic engineering for improvement of Musa production in Africa ...

    African Journals Online (AJOL)

    The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, bacterial and viral diseases. This article discusses the applications of genetic engineering for the enhancement of Musa production.

  19. Induction of atherosclerosis in mice and hamsters without germline genetic engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions...

  20. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  1. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available Molecular Profiling Techniques as Tools to Detect Potential Unintended Effects in Genetically Engineered Maize Eugenia Barros Introduction In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants... systems. In a recent paper published in Plant Biotechnology Journal,4 we compared two transgenic white maize lines with the non-transgenic counterpart to investigate two possible sources of variation: genetic engineering and environmental variation...

  2. human genetic engineering and social justice in south africa

    African Journals Online (AJOL)

    resources, are also acutely visible in the health-care sector. Genetic ... engineering (GE)2 from a South African perspective might not, initially, seem like an obvious ... prevalence of so-called genetic tourism, where couples from developed countries travel to countries in the developing world to undergo in vitro fertilisation ...

  3. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  4. Lack of genetic differentiation between contrasted overwintering strategies of a major pest predator Episyrphus balteatus (Diptera: Syrphidae: implications for biocontrol.

    Directory of Open Access Journals (Sweden)

    Lucie Raymond

    Full Text Available Winter ecology of natural enemies has a great influence on the level and efficiency of biological control at spring. The hoverfly Episyrphus balteatus (DeGeer (Diptera: Syrphidae is one of the most important natural predators of crop aphids in Europe. Three different overwintering strategies coexist in this species which makes it a good model in order to study ecologically-based speciation processes. The purpose of this study was to determine whether E. balteatus populations with alternative overwintering strategies are genetically differentiated. To that aim, we developed 12 specific microsatellite markers and evaluated the level of neutral genetic differentiation between E. balteatus field populations that overwinter in the three different ways described in this species (i.e. migration, local overwintering at a pre-imaginal stage, and local overwintering at adult stage. Results showed a lack of neutral genetic differentiation between individuals with different overwintering strategies although there are strong ecological differences between them. All pair-wise FST values are below 0.025 and non-significant, and Bayesian clustering showed K=1 was the most likely number of genetic clusters throughout our sample. The three overwintering strategies form one unique panmictic population. This suggests that all the individuals may have genetic material for the expression of different overwintering phenotypes, and that their commitment in one particular overwintering strategy may depend on environmental and individual factors. Consequently, the prevalence of the different overwintering strategies would be potentially modified by landscape engineering and habitat management which could have major implications for biological control.

  5. "Genetic Engineering" Gains Momentum (Science/Society Case Study).

    Science.gov (United States)

    Moore, John W.; Moore, Elizabeth A., Eds.

    1980-01-01

    Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)

  6. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis

    Directory of Open Access Journals (Sweden)

    Kiyan Shabestary

    2016-12-01

    Full Text Available Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could increase biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid based fuels require creating imbalances in intracellular ATP and NADPH production and consumption. The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in the literature. We also discuss the physiological and practical feasibility of implementing these knockouts. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel productivities. Keywords: Cyanobacteria, Modeling, Flux balance analysis, Biofuel, MOMA, OptFlux, OptKnock

  7. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  9. Genetic engineering and therapy for inherited and acquired cardiomyopathies.

    Science.gov (United States)

    Day, Sharlene; Davis, Jennifer; Westfall, Margaret; Metzger, Joseph

    2006-10-01

    The cardiac myofilaments consist of a highly ordered assembly of proteins that collectively generate force in a calcium-dependent manner. Defects in myofilament function and its regulation have been implicated in various forms of acquired and inherited human heart disease. For example, during cardiac ischemia, cardiac myocyte contractile performance is dramatically downregulated due in part to a reduced sensitivity of the myofilaments to calcium under acidic pH conditions. Over the last several years, the thin filament regulatory protein, troponin I, has been identified as an important mediator of this response. Mutations in troponin I and other sarcomere genes are also linked to several distinct inherited cardiomyopathic phenotypes, including hypertrophic, dilated, and restrictive cardiomyopathies. With the cardiac sarcomere emerging as a central player for such a diverse array of human heart diseases, genetic-based strategies that target the myofilament will likely have broad therapeutic potential. The development of safe vector systems for efficient gene delivery will be a critical hurdle to overcome before these types of therapies can be successfully applied. Nonetheless, studies focusing on the principles of acute genetic engineering of the sarcomere hold value as they lay the essential foundation on which to build potential gene-based therapies for heart disease.

  10. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  11. Food safety evaluation of crops produced through genetic engineering--how to reduce unintended effects?

    Science.gov (United States)

    Jelenić, Srećko

    2005-06-01

    Scientists started applying genetic engineering techniques to improve crops two decades ago; about 70 varieties obtained via genetic engineering have been approved to date. Although genetic engineering offers the most precise and controllable genetic modification of crops in entire history of plant improvement, the site of insertion of a desirable gene cannot be predicted during the application of this technology. As a consequence, unintended effects might occur due to activation or silencing of genes, giving rise to allergic reactions or toxicity. Therefore, extensive chemical, biochemical and nutritional analyses are performed on each new genetically engineered variety. Since the unintended effects may be predictable on the basis of what is known about the insertion place of the transgenic DNA, an important aim of plant biotechnology is to define techniques for the insertion of transgene into the predetermined chromosomal position (gene targeting). Although gene targeting cannot be applied routinely in crop plants, given the recent advances, that goal may be reached in the near future.

  12. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  13. Entrepreneurship and response strategies to challenges in engineering and design education

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Pineda, Andres Felipe Valderrama

    2012-01-01

    Entrepreneurship is one of the contemporary expectations to engineers and their training at engineering schools. But what is entrepreneurship? We propose three different conceptualizations of entrepreneurship in engineering and design programs. They are: (1) the technology-driven promotion response...... centered in technological development; (2) the business selection response strategy centered in business skills (which should be additional to the technical skills); and (3) the design intervention response strategy focused on a network approach to technology, business and society. These conceptualizations...... are response strategies from engineering communities, professors and institutions to perceived challenges. We argue that all engineering educators deal in one way or another with the three response strategies when approaching issues of curricular design, academicreform and the international accreditation...

  14. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering.

    Science.gov (United States)

    Heinsch, Stephen C; Das, Siba R; Smanski, Michael J

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems.

  15. Genetically engineered tissue to screen for glycan function in tissue formation

    DEFF Research Database (Denmark)

    M., Adamopoulou; E.M., Pallesen; A., Levann

    2017-01-01

    engineered GlycoSkin tissue models can be used to study biological interactions involving glycan structure on lipids, or glycosaminoglycans. This engineering approach will allow us to investigate the functions of glycans in homeostasis and elucidate the role of glycans in normal epithelial formation....... We use genetic engineering with CRISPR/Cas9 combined with 3D organotypic skin models to examine how distinct glycans influence epithelial formation. We have performed knockout and knockin of more than 100 select genes in the genome of human immortalized human keratinocytes, enabling a systematic...... analysis of the impact of specific glycans in the formation and transformation of the human skin. The genetic engineered human skin models (GlycoSkin) was designed with and without all major biosynthetic pathways in mammalian glycan biosynthesis, including GalNAc-O-glycans, O-fucosylation, O...

  16. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  17. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  18. Genetic engineering: a matter that requires further refinement in Spanish secondary school textbooks

    Science.gov (United States)

    Martínez-Gracia, M. V.; Gil-Quýlez, M. J.

    2003-09-01

    Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with fundamental genetic principles, and how it aims to improve the genetic literacy of students. The results show that genetic engineering was normally introduced without a clear reference to the universal genetic code, protein expression or the genetic material shared by all species. In most cases it was poorly defined, without a clear explanation of all the relevant processes involved. Some procedures (such as vectors) were explained in detail without considering previous student knowledge or skills. Some books emphasized applications such as the human genome project without describing DNA sequencing. All books included possible repercussions, but in most cases only fashionable topics such as human cloning. There was an excess of information that was not always well founded and hence was unsuitable to provide a meaningful understanding of DNA technology required for citizens in the twenty-first century.

  19. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  20. Possible Health Hazards from Genetically Engineered Crops ...

    African Journals Online (AJOL)

    The paradox of Genetic Engineering of crops is evident from the unending revolution in the seeding and growth of new multibillion naira industries while it also poses the greatest hazards to life on the planet Earth. Recombination DNA technology is used to insert, delete, transpose and substitute new genes in plants that ...

  1. Genetic engineering: frost damage trial halted.

    Science.gov (United States)

    Budiansky, S

    The University of California at Berkeley has announced the postponement of a planned experiment involving the field testing of bacteria genetically engineered to reduce frost damage to crops. The action came after Jeremy Rifkin, who had earlier filed suit against the National Institutes of Health after its Recombinant DNA Advisory Committee had approved the experiment, threatened to seek a temporary restraining order against the university to halt the experiment.

  2. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  3. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  4. Evolutionary engineering of industrial microorganisms-strategies and applications.

    Science.gov (United States)

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  5. Genetic Engineering: A Matter that Requires Further Refinement in Spanish Secondary School Textbooks

    Science.gov (United States)

    Martinez-Gracia, M. V.; Gil-Quylez, M. J.; Osada, J.

    2003-01-01

    Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with…

  6. Agrobacterium: nature's genetic engineer.

    Science.gov (United States)

    Nester, Eugene W

    2014-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun's old observations and also explain why Agrobacterium is nature's genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering.

  7. 76 FR 8707 - Syngenta Seeds, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered To...

    Science.gov (United States)

    2011-02-15

    ... Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There... genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  8. Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects.

    Science.gov (United States)

    Citadin, Cristiane T; Ibrahim, Abdulrazak B; Aragão, Francisco J L

    2011-01-01

    In the last three decades, a number of attempts have been made to develop reproducible protocols for generating transgenic cowpea that permit the expression of genes of agronomic importance. Pioneer works focused on the development of such systems vis-à-vis an in vitro culture system that would guarantee de novo regeneration of transgenic cowpea arising from cells amenable to one form of gene delivery system or another, but any such system has eluded researchers over the years. Despite this apparent failure, significant progress has been made in generating transgenic cowpea, bringing researchers much nearer to their goal than thirty years ago. Now, various researchers have successfully established transgenic procedures for cowpea with evidence of inherent transgenes of interest, effected by progenies in a Mendelian fashion. New opportunities have thus emerged to optimize existing protocols and devise new strategies to ensure the development of transgenic cowpea with desirable agronomic traits. This review chronicles the important milestones in the last thirty years that have marked the evolution of genetic engineering of cowpea. It also highlights the progress made and describes new strategies that have arisen, culminating in the current status of transgenic technologies for cowpea.

  9. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  10. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  11. From Precaution to Peril: Public Relations Across Forty Years of Genetic Engineering.

    Science.gov (United States)

    Hogan, Andrew J

    2016-12-01

    The Asilomar conference on genetic engineering in 1975 has long been pointed to by scientists as a model for internal regulation and public engagement. In 2015, the organizers of the International Summit on Human Gene Editing in Washington, DC looked to Asilomar as they sought to address the implications of the new CRISPR gene editing technique. Like at Asilomar, the conveners chose to limit the discussion to a narrow set of potential CRISPR applications, involving inheritable human genome editing. The adoption by scientists in 2015 of an Asilomar-like script for discussing genetic engineering offers historians the opportunity to analyze the adjustments that have been made since 1975, and to identify the blind spots that remain in public engagement. Scientists did take important lessons from the fallout of their limited engagement with public concerns at Asilomar. Nonetheless, the scientific community has continued to overlook some of the longstanding public concerns about genetic engineering, in particular the broad and often covert genetic modification of food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Impact of Teaching Communication Strategies on English Speaking of Engineering Undergraduates

    Science.gov (United States)

    Kongsom, Tiwaporn

    2016-01-01

    This study investigates the impact of teaching communication strategies on Thai engineering undergraduate students' communication strategy use and strategic competence. Fifty-seven engineering undergraduate students were taught ten communication strategies for ten weeks and responded to a self-report communication strategy questionnaire before and…

  13. Comprehensive bidding strategies with genetic programming/finite state automata

    International Nuclear Information System (INIS)

    Richter, C.W. Jr.; Sheble, G.B.; Ashlock, D.

    1999-01-01

    This research is an extension of the authors' previous work in double auctions aimed at developing bidding strategies for electric utilities which trade electricity competitively. The improvements detailed in this paper come from using data structures which combine genetic programming and finite state automata termed GP-Automata. The strategies developed by the method described here are adaptive--reacting to inputs--whereas the previously developed strategies were only suitable in the particular scenario for which they had been designed. The strategies encoded in the GP-Automata are tested in an auction simulator. The simulator pits them against other distribution companies (distcos) and generation companies (gencos), buying and selling power via double auctions implemented in regional commodity exchanges. The GP-Automata are evolved with a genetic algorithm so that they possess certain characteristics. In addition to designing successful bidding strategies (whose usage would result in higher profits) the resulting strategies can also be designed to imitate certain types of trading behaviors. The resulting strategies can be implemented directly in on-line trading, or can be used as realistic competitors in an off-line trading simulator

  14. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Science.gov (United States)

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  15. U.S. Adults with Agricultural Experience Report More Genetic Engineering Familiarity than Those Without

    Science.gov (United States)

    Stofer, Kathryn A.; Schiebel, Tracee M.

    2017-01-01

    Researchers and pollsters still debate the acceptance of genetic engineering technology among U.S. adults, and continue to assess their knowledge as part of this research. While decision-making may not rely entirely on knowledge, querying opinions and perceptions rely on public understanding of genetic engineering terms. Experience with…

  16. Intrinsic Value and the Genetic Engineering of Animals.

    NARCIS (Netherlands)

    Vries, R.B.M. de

    2008-01-01

    The concept of intrinsic value is often invoked to articulate objections to the genetic engineering of animals, particularly those objections that are not directed at the negative effects the technique might have on the health and welfare of the modified animals. However, this concept was not

  17. University Students' Knowledge and Attitude about Genetic Engineering

    Science.gov (United States)

    Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun

    2007-01-01

    Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…

  18. Application of genetic algorithm with genetic modification and quality map in production strategy optimization; Aplicacao de algoritmo genetico com modificacao genetica e mapa de qualidade na otimizacao de estrategia de producao

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Lincoln; Maschio, Celio; Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    The definition of position and number of wells is the most important stage on production strategy selection, since it will affect the reservoir behavior, which influences future decisions. However this process is time-consuming and it is often a trial-and-error approach. Many studies have been made in order to reduce the engineer's effort in this stage, by minimizing the number of simulation runs through proxy models or by automating the whole process, using some optimization algorithm. This work proposes a methodology that integrates genetic algorithm and quality map to automate the production strategy optimization. It is also introduced the concept of genetic modification, which is the procedure to update the quality map according to the wells production of each evaluated strategy. The objective is to improve the evolutionary process, allowing the evaluation of more promising alternatives, improving the chance of obtaining better solutions without a substantial increase in the number of simulations. (author)

  19. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs

    DEFF Research Database (Denmark)

    Pedde, R. Daniel; Mirani, Bahram; Navaei, Ali

    2017-01-01

    , outlines the use of common biomaterials and advanced hybrid scaffolds, and describes several design considerations including the structural, physical, biological, and economical parameters that are crucial for the fabrication of functional, complex, engineered tissues. Finally, the applications...... of these biofabrication strategies in neural, skin, connective, and muscle tissue engineering are explored.......The demand for organ transplantation and repair, coupled with a shortage of available donors, poses an urgent clinical need for the development of innovative treatment strategies for long-term repair and regeneration of injured or diseased tissues and organs. Bioengineering organs, by growing...

  20. New Teaching Strategies for Engineering Students

    DEFF Research Database (Denmark)

    Reng, Lars; Kofoed, Lise

    2016-01-01

    This paper presents the challenges for university teachers when new teaching strategies are implemented. Blended learning, flipped classroom, gamification as well as a combination of traditional and new pedagogical approaches are on the agenda in engineering educations. One of the challenges...

  1. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.

    Science.gov (United States)

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A; Park, Yong Ho; Seo, Keun Seok

    2017-03-21

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.

  2. History and future of genetically engineered food animal regulation: an open request.

    Science.gov (United States)

    Wells, Kevin D

    2016-06-01

    Modern biotechnology resulted from of a series of incremental improvements in the understanding of DNA and the enzymes that nature evolved to manipulate it. As the potential impact of genetic engineering became apparent, scientists began the process of trying to identify the potential unintended consequences. Restrictions to recombinant DNA experimentation were at first self-imposed. Collaborative efforts between scientists and lawyers formalized an initial set of guidelines. These guidelines have been used to promulgate regulations around world. However, the initial guidelines were only intended as a starting point and were motivated by a specific set of concerns. As new data became available, the guidelines and regulations should have been adapted to the new knowledge. Instead, other social drivers drove the development of regulations. For most species and most applications, the framework that was established has slowly allowed some products to reach the market. However, genetically engineered livestock that are intended for food have been left in a regulatory state of limbo. To date, no genetically engineered food animal is available in the marketplace. A short history and a U.S.-based genetic engineer's perspective are presented. In addition, a request to regulatory agencies is presented for consideration as regulation continues to evolve. Regulators appear to have shown preference for the slow, random progression of evolution over the efficiency of intentional design.

  3. Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement

    Science.gov (United States)

    Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...

  4. Perception of risks and benefits of in vitro fertilization, genetic engineering and biotechnology.

    Science.gov (United States)

    Macer, D R

    1994-01-01

    The use of new biotechnology in medicine has become an everyday experience, but many people still express concern about biotechnology. Concerns are evoked particularly by the phrases genetic engineering and in vitro fertilization (IVF), and these concerns persist despite more than a decade of their use in medicine. Mailed nationwide opinion surveys on attitudes to biotechnology were conducted in Japan, among samples of the public (N = 551), high school biology teachers (N = 228), scientists (N = 555) and nurses (N = 301). People do see more benefits coming from science than harm when balanced against the risks. There were especially mixed perceptions of benefit and risk about IVF and genetic engineering, and a relatively high degree of worry compared to other developments of science and technology. A discussion of assisted reproductive technologies and surrogacy in Japan is also made. The opinions of people in Japan were compared to the results of previous surveys conducted in Japan, and international surveys conducted in Australia, China, Europe, New Zealand, U.K. and U.S.A. Japanese have a very high awareness of biotechnology, 97% saying that they had heard of the word. They also have a high level of awareness of IVF and genetic engineering. Genetic engineering was said to be a worthwhile research area for Japan by 76%, while 58% perceived research on IVF as being worthwhile, however 61% were worried about research on IVF or genetic engineering. Japanese expressed more concern about IVF and genetic engineering than New Zealanders. The major reason cited for rejection of genetic manipulation research in Japan and New Zealand was that it was seen as interfering with nature, playing God or as unethical. The emotions concerning these technologies are complex, and we should avoid using simplistic public opinion data as measures of public perceptions. The level of concern expressed by scientists and teachers in Japan suggest that public education "technology promotion

  5. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations

    OpenAIRE

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called ?the mental ecology? (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capabl...

  6. The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering

    Science.gov (United States)

    Güccük, Ahmet; Köksal, Mustafa Serdar

    2017-01-01

    The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…

  7. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    Science.gov (United States)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  8. Optimization strategies for complex engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, M.S.

    1998-02-01

    LDRD research activities have focused on increasing the robustness and efficiency of optimization studies for computationally complex engineering problems. Engineering applications can be characterized by extreme computational expense, lack of gradient information, discrete parameters, non-converging simulations, and nonsmooth, multimodal, and discontinuous response variations. Guided by these challenges, the LDRD research activities have developed application-specific techniques, fundamental optimization algorithms, multilevel hybrid and sequential approximate optimization strategies, parallel processing approaches, and automatic differentiation and adjoint augmentation methods. This report surveys these activities and summarizes the key findings and recommendations.

  9. 76 FR 80869 - Monsanto Co.; Determination of Nonregulated Status of Corn Genetically Engineered for Drought...

    Science.gov (United States)

    2011-12-27

    ... and products altered or produced through genetic engineering that are plant pests or that there is... in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  10. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  11. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  13. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 76 FR 63278 - Bayer CropScience LP; Determination of Nonregulated Status for Cotton Genetically Engineered for...

    Science.gov (United States)

    2011-10-12

    ... part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering... regulations governing the introduction of certain genetically engineered organisms. Our determination is based... things, the introduction (importation, interstate movement, or release into the environment) of organisms...

  15. MODERN OR TRADITIONAL TEACHING STRATEGY IN LEARNING ENGINEERING MATHEMATICS COURSE

    Directory of Open Access Journals (Sweden)

    N. RAZALI

    2016-11-01

    Full Text Available First-year engineering students of the Faculty of Engineering and Built Environment, UKM are in the process of transition in the way they learn mathematics from pre-university level to the undergraduate level. It is essential for good engineers to have the ability to unfold mathematical problems in an efficient way. Thus, this research is done to investigate students preference in learning KKKQ1123 Engineering Mathematics I (Vector Calculus (VC course; either individually or in a team; using modern (e-learning or traditional (cooperative-learning teaching strategy. Questionnaires are given to the first year Chemical and Process Engineering students from academic year 2015/2016 and the results were analysed. Based on the finding, the students believed that the physical educators or teachers play an important role and that they have slightest preference in the traditional teaching strategy to learn engineering mathematics course.

  16. 76 FR 63279 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered for Insect...

    Science.gov (United States)

    2011-10-12

    ... and products altered or produced through genetic engineering that are plant pests or that there is... regulations in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  17. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  18. Gender and Health Impacts of Genetically Engineered Crops in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Gender and Health Impacts of Genetically Engineered Crops in Developing Countries ... exists, the gender and health impacts have so far received only cursory attention. ... New funding opportunity for gender equality and climate change ... social inequality, promote greater gender parity, and empower women and girls.

  19. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.

    Directory of Open Access Journals (Sweden)

    Ying-Erh Chen

    Full Text Available Patients with Lynch syndrome (LS have a significantly increased risk of developing colorectal cancer (CRC and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing

  20. PERFORMANCE EVALUATION OF EXTERNAL MIXTURE FORMATION STRATEGY IN HYDROGEN-FUELED ENGINE

    OpenAIRE

    Mohammed Kamil; M. M. Rahman; Rosli A. Bakar

    2011-01-01

    Mohammed Kamil1, M. M. Rahman2 and Rosli A. Bakar2Hydrogen induction strategy in an internal combustion engine plays a vital role in increasing the power density and prohibiting combustion anomalies. This paper inspects the performance characteristics of cylinder hydrogen-fueled engine with port injection feeding strategy. To that end, a one-dimensional gas dynamic model has been built to represent the flow and heat transfer in the components of the engine. The governing equations are introdu...

  1. Agrobacterium: nature’s genetic engineer

    Science.gov (United States)

    Nester, Eugene W.

    2015-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun’s old observations and also explain why Agrobacterium is nature’s genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  2. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    Science.gov (United States)

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  3. A genetic replacement system for selection-based engineering of essential proteins

    Science.gov (United States)

    2012-01-01

    Background Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. Results We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. Conclusions We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies. PMID:22898007

  4. A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates

    Science.gov (United States)

    Venables, Anne; Tan, Grace

    2007-01-01

    Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…

  5. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  6. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  7. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    Science.gov (United States)

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  8. Introduction to the application of genetic algorithms in engineering

    Directory of Open Access Journals (Sweden)

    I. S. Shaw

    1998-07-01

    Full Text Available Genetic algorithms constitute a new research area in the field of artificial intelligence. This work is aimed at their application in specific areas of engineering where good results have already been achieved. The purpose of this work is to provide a basic introduction for students as well as experienced engineers who wish to upgrade their knowledge. A distinctive feature of artificial intelligence is that instead of mathematical models, either direct human experience or certain functions of the human brain for the modelling of physical phenomena are used.

  9. Genetic Engineering--A Lesson on Bioethics for the Classroom.

    Science.gov (United States)

    Armstrong, Kerri; Weber, Kurt

    1991-01-01

    A unit designed to cover the topic of genetic engineering and its ethical considerations is presented. Students are expected to learn the material while using a debate format. A list of objectives for the unit, the debate format, and the results from an opinion questionnaire are described. (KR)

  10. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  11. Analysis of startup strategies for a particle bed reactor nuclear rocket engine

    Science.gov (United States)

    Suzuki, D. E.

    1993-06-01

    This paper develops and analyzes engine system startup strategies for a particle bed reactor (PBR) nuclear rocket engine. The strategies are designed to maintain stable flow through the PBR fuel element while reaching the design conditions as quickly as possible. The analyses are conducted using a computer model of a representative particle bed reactor and engine system. Elements of the startup strategy considered include: the coordinated control of reactor power and coolant flow; turbine inlet temperature and flow control; and use of an external starter system. The simulation results indicate that the use of an external starter system enables the engine to reach design conditions very quickly while maintaining the flow well away from the unstable regime. If a bootstrap start is used instead, the transient does not progress as fast and approaches closer to the unstable flow regime, but allows for greater engine reusability. These results can provide important information for engine designers and mission planners.

  12. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  13. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  14. EU member states' voting for authorizing genetically engineered crops

    NARCIS (Netherlands)

    Smart, Richard D.; Blum, Matthias; Wesseler, Justus

    2015-01-01

    Several authors suggest a gridlock of the European Union's (EU's) approval process for genetically engineered (GE) crops. We analyse the voting behaviour of EU Member States (MSs) for voting results from 2003 to 2015 on the approval of GE crops to test for a gridlock; no reliable data are

  15. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    Science.gov (United States)

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  16. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    Science.gov (United States)

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  17. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Science.gov (United States)

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  18. American chestnut: A test case for genetic engineering?

    Science.gov (United States)

    Leila Pinchot

    2014-01-01

    The thought of genetically engineered (GE) trees might conjure images of mutant trees with unnatural and invasive tendencies, but there is much more to the story. GE trees are a new reality that, like it or not, will probably be part of the future of forestry. The basic inclination of most Forest Guild stewards is to reject GE trees as violating our principle to...

  19. Comparing Artificial Intelligence and Genetic Engineering: Commercialization Lessons

    OpenAIRE

    Dickson, Edward M.

    1984-01-01

    Artificial Intelligence is rapidly leaving its academic home and moving into the marketplace. There are few precedents for an arcane academic subject becoming commercialized so rapidly. But, genetic engineering, which recently burst forth from academia to become the foundation for the hot new biotechnology industry, provides useful insights into the rites of passage awaiting the commercialization of artificial intelligence. This article examines the structural similarities and dissimilarities...

  20. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies

    Directory of Open Access Journals (Sweden)

    Nils J. H. Averesch

    2018-03-01

    Full Text Available The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Reconstruction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.

  1. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The effect of genetically engineered glucagon on glucose recovery after hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Jørgensen, S; Hilsted, J

    1992-01-01

    To compare the effect on glucose recovery after insulin-induced hypoglycaemia of intramuscular genetically engineered glucagon, intramuscular glucagon from pancreatic extraction and intravenous glucose, we examined 10 healthy subjects during blockage of glucose counterregulation with somatostatin...... appearance rate were far more protracted after i.m. glucagon than after i.v. glucose. These results suggest that genetically engineered glucagon and glucagon from pancreatic extraction have a similar effect on hepatic glucose production rate. Due to the protracted effect of intramuscular glucagon, a combined......, propranolol and phentolamine. Each subject was studied on three separate occasions. Thirty min after a bolus injection of 0.075 iu soluble insulin per kilogram body weight the subjects received one of the following treatments: 1 mg glucagon from pancreatic extraction intramuscularly; 1 mg genetically...

  3. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The ethics of using genetic engineering for sex selection.

    Science.gov (United States)

    Liao, S Matthew

    2005-02-01

    It is quite likely that parents will soon be able to use genetic engineering to select the sex of their child by directly manipulating the sex of an embryo. Some might think that this method would be a more ethical method of sex selection than present technologies such as preimplantation genetic diagnosis (PGD) because, unlike PGD, it does not need to create and destroy "wrong gendered" embryos. This paper argues that those who object to present technologies on the grounds that the embryo is a person are unlikely to be persuaded by this proposal, though for different reasons.

  5. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  6. Strategy2D: Turn-based Strategy Video Game Engine for Mobile Devices

    OpenAIRE

    Calvo Villazón, Javier

    2014-01-01

    Multi-platform video game engine for the development of turn-based strategy games for mobile devices. Developed in C++ within the Cocos2d-x framework, It provides a scalable and configurable tool for the creation of this type of games.

  7. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    OpenAIRE

    Zhu, Yong-Guan; Rosen, Barry P

    2009-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loa...

  8. Engineering and Humanities Students' Strategies for Vocabulary Acquisition: An Iranian Experience

    Directory of Open Access Journals (Sweden)

    Hassan Soodmand Afshar

    2014-05-01

    Full Text Available The present study set out to investigate the differences between EAP (English for Academic Purposes students of Humanities and Engineering in terms of vocabulary strategy choice and use. One hundred and five undergraduate Iranian students (39 students from Engineering Faculty and 66 from Humanities Faculty studying at Bu-Ali Sina University Hamedan, during the academic year of 2011–2012 participated in this study. For data collection purposes, a pilot-tested factor-analyzed five-point Likert-scale vocabulary learning strategies questionnaire (VLSQ containing 45 statements was adopted. The results of independent samples t-test indicated that, overall, the two groups were not significantly different in the choice and use of vocabulary learning strategies. However, running Chi square analyses, significant differences were found in individual strategy use in 6 out of 45 strategies. That is, while Humanities students used more superficial and straightforward strategies like repetition strategy and seeking help from others, the Engineering students preferred much deeper, thought-provoking and sophisticated strategies like using a monolingual dictionary and learning vocabulary through collocations and coordinates. Further, the most and the least frequently used vocabulary learning strategies by the two groups were specified, out of which only two strategies in each category were commonly shared by both groups. The possible reasons why the results have turned out to be so as well as the implications of the study are discussed in details in the paper.

  9. The Discussions around Precision Genetic Engineering: Role of and Impact on Disabled People

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2016-09-01

    Full Text Available Genetic researchers are advancing in their abilities to extract precise genetic information from biological and human entities bringing genetic research steps closer to accurately modifying genes of biological entities, including that of humans. In this analytical essay, we focus on the discussions about precision genetic intervention that have taken place since March 2015 as they pertain to disabled people. We focus on two areas; one being the role of disabled people in the recent gene editing discussions and the second being the utility of existing legal instruments. Within our first focus we address the following questions: (a What is the visibility of disabled people in the gene-editing discussions that have taken place since March 2015? (b What has been the impact of those discussions on disabled people? (c Were social problems which disabled people face taken into account in those discussions; (d How does the reality of engagement with disabled people in these discussions fit with science, technology and innovation governance discourses that ask for more stakeholder, bottom up and anticipatory involvement? Within our second focus we address the following questions: (a What is the utility of the United Nations Convention on the Right of Persons with Disabilities (UNCRPD; and (b What is the utility of existing legal instruments covering genetic interventions: for preventing negative social consequences of genetic engineering developments for disabled people. We argue that (a the genetic engineering debates since March 2015 have portrayed disabled people dominantly through a medical lens; (b that the governance of science, technology and innovation of genetic engineering including anticipatory governance and responsible innovation discourses has not yet engaged with the social impact of gene editing on disabled people; (c that few scholars that focus on the social situation of disabled people are visible in the governance discussions of gene

  10. Evolutionary programming as a platform for in silico metabolic engineering

    Directory of Open Access Journals (Sweden)

    Förster Jochen

    2005-12-01

    Full Text Available Abstract Background Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span

  11. Establishing sustainable strategies in urban underground engineering.

    Science.gov (United States)

    Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A

    2004-07-01

    Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.

  12. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  13. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  14. Reproductive cloning, genetic engineering and the autonomy of the child: the moral agent and the open future.

    Science.gov (United States)

    Mameli, M

    2007-02-01

    Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans.

  15. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  16. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  17. Commodifying animals: ethical issues in genetic engineering of animals.

    Science.gov (United States)

    Almond, B

    2000-03-01

    The genetic modification of living beings raises special ethical concerns which go beyond general discussion of animal rights or welfare. Although the goals may be similar, biotechnology has accelerated the process of modification of types traditionally carried out by cross-breeding. These changes are discussed in relation to two areas: biomedicine, and animal husbandry. Alternative ethical approaches are reviewed, and it is argued that the teleological thesis underlying virtue ethics has special relevance here. The case for and the case against genetic engineering and patenting of life-forms are examined, and conclusions are drawn which favour regulation, caution and respect for animals and animal species.

  18. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao

    2013-01-01

    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  19. De-Problematizing 'GMOs': Suggestions for Communicating about Genetic Engineering.

    Science.gov (United States)

    Blancke, Stefaan; Grunewald, Wim; De Jaeger, Geert

    2017-03-01

    The public debates concerning genetic engineering (GE) involve many non-scientific issues. The ensuing complexity is one reason why biotechnologists are reluctant to become involved. By sharing our personal experiences in science communication and suggesting ways to de-problematize GE, we aim to inspire our colleagues to engage with the public. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Integrated Emission Management strategy for cost-optimal engine-aftertreatment operation

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.

    2011-01-01

    A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of

  1. Field cage studies and progressive evaluation of genetically-engineered mosquitoes.

    Directory of Open Access Journals (Sweden)

    Luca Facchinelli

    Full Text Available A genetically-engineered strain of the dengue mosquito vector Aedes aegypti, designated OX3604C, was evaluated in large outdoor cage trials for its potential to improve dengue prevention efforts by inducing population suppression. OX3604C is engineered with a repressible genetic construct that causes a female-specific flightless phenotype. Wild-type females that mate with homozygous OX3604C males will not produce reproductive female offspring. Weekly introductions of OX3604C males eliminated all three targeted Ae. aegypti populations after 10-20 weeks in a previous laboratory cage experiment. As part of the phased, progressive evaluation of this technology, we carried out an assessment in large outdoor field enclosures in dengue endemic southern Mexico.OX3604C males were introduced weekly into field cages containing stable target populations, initially at 10:1 ratios. Statistically significant target population decreases were detected in 4 of 5 treatment cages after 17 weeks, but none of the treatment populations were eliminated. Mating competitiveness experiments, carried out to explore the discrepancy between lab and field cage results revealed a maximum mating disadvantage of up 59.1% for OX3604C males, which accounted for a significant part of the 97% fitness cost predicted by a mathematical model to be necessary to produce the field cage results.Our results indicate that OX3604C may not be effective in large-scale releases. A strain with the same transgene that is not encumbered by a large mating disadvantage, however, could have improved prospects for dengue prevention. Insights from large outdoor cage experiments may provide an important part of the progressive, stepwise evaluation of genetically-engineered mosquitoes.

  2. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  3. Engineering Values into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility

    OpenAIRE

    Sankar, Pamela L.; Cho, Mildred K.

    2015-01-01

    Recent experiments have been used to “edit” genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a “gene drive” that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working ...

  4. Natural genetic engineering: intelligence & design in evolution?

    DEFF Research Database (Denmark)

    Ussery, David

    2011-01-01

    There are many things that I like about James Shapiro's new book "Evolution: A View from the 21st Century" (FT Press Science, 2011). He begins the book by saying that it is the creation of novelty, and not selection, that is important in the history of life. In the presence of heritable traits...... function. Shapiro argues that what we see in genomes is 'Natural Genetic Engineering', or designed evolution: "Thinking about genomes from an informatics perspective, it is apparent that systems engineering is a better metaphor for the evolutionary process than the conventional view of evolution...... as a select-biased random walk through limitless space of possible DNA configurations" (page 6). In this review, I will have a look at four topics: 1.) why I think genomics is not the whole story; 2.) my own perspective of E. coli genomics, and how I think it relates to this book; 3.) a brief discussion...

  5. Conditions for success of engineered underdominance gene drive systems.

    Science.gov (United States)

    Edgington, Matthew P; Alphey, Luke S

    2017-10-07

    Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. PERFORMANCE EVALUATION OF EXTERNAL MIXTURE FORMATION STRATEGY IN HYDROGEN-FUELED ENGINE

    Directory of Open Access Journals (Sweden)

    Mohammed Kamil

    2011-12-01

    Full Text Available Mohammed Kamil1, M. M. Rahman2 and Rosli A. Bakar2Hydrogen induction strategy in an internal combustion engine plays a vital role in increasing the power density and prohibiting combustion anomalies. This paper inspects the performance characteristics of cylinder hydrogen-fueled engine with port injection feeding strategy. To that end, a one-dimensional gas dynamic model has been built to represent the flow and heat transfer in the components of the engine. The governing equations are introduced followed by the performance parameters and model description. Air-fuel ratio was varied from a stoichiometric limit to a lean limit. The rotational speed of the engine was also changed from 1000 to 4500 RPM. The injector location was fixed in the mid-point of the intake port. The general behavior of the hydrogen engine was similar to that of a gasoline engine, apart from a reduction in the power density, which was due to a decrease in the volumetric efficiency. This emphasizes the ability of retrofitting traditional engines for hydrogen fuel with minor modifications. The decrease in the volumetric efficiency needs to be rectified.

  7. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  8. Point defect engineering strategies to retard phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Bracht, Hartmut A.

    2013-01-01

    The diffusion of phosphorous in germanium is very fast, requiring point defect engineering strategies to retard it in support of technological application. Density functional theory corroborated with hybrid density functional calculations are used to investigate the influence of the isovalent codopants tin and hafnium in the migration of phosphorous via the vacancy-mediated diffusion process. The migration energy barriers for phosphorous are increased significantly in the presence of oversized isovalent codopants. Therefore, it is proposed that tin and in particular hafnium codoping are efficient point defect engineering strategies to retard phosphorous migration. © the Owner Societies 2013.

  9. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  10. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  11. Gas Station Pricing Game: A Lesson in Engineering Economics and Business Strategies.

    Science.gov (United States)

    Sin, Aaron; Center, Alfred M.

    2002-01-01

    Describes an educational game designed for engineering majors that demonstrates engineering economics and business strategies, specifically the concepts of customer perception of product value, convenience, and price differentiation. (YDS)

  12. Genetic engineering of crops: a ray of hope for enhanced food security.

    Science.gov (United States)

    Gill, Sarvajeet Singh; Gill, Ritu; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    Crop improvement has been a basic and essential chase since organized cultivation of crops began thousands of years ago. Abiotic stresses as a whole are regarded as the crucial factors restricting the plant species to reach their full genetic potential to deliver desired productivity. The changing global climatic conditions are making them worse and pointing toward food insecurity. Agriculture biotechnology or genetic engineering has allowed us to look into and understand the complex nature of abiotic stresses and measures to improve the crop productivity under adverse conditions. Various candidate genes have been identified and transformed in model plants as well as agriculturally important crop plants to develop abiotic stress-tolerant plants for crop improvement. The views presented here are an attempt toward realizing the potential of genetic engineering for improving crops to better tolerate abiotic stresses in the era of climate change, which is now essential for global food security. There is great urgency in speeding up crop improvement programs that can use modern biotechnological tools in addition to current breeding practices for providing enhanced food security.

  13. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    Science.gov (United States)

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  14. Elaboration of the Reciprocal-Engagement Model of Genetic Counseling Practice: a Qualitative Investigation of Goals and Strategies.

    Science.gov (United States)

    Redlinger-Grosse, Krista; Veach, Patricia McCarthy; LeRoy, Bonnie S; Zierhut, Heather

    2017-12-01

    As the genetic counseling field evolves, a comprehensive model of practice is critical. The Reciprocal-Engagement Model (REM) consists of 5 tenets and 17 goals. Lacking in the REM, however, are well-articulated counselor strategies and behaviors. The purpose of the present study was to further elaborate and provide supporting evidence for the REM by identifying and mapping genetic counseling strategies to the REM goals. A secondary, qualitative analysis was conducted on data from two prior studies: 1) focus group results of genetic counseling outcomes (Redlinger-Grosse et al., Journal of Genetic Counseling, 2015); and 2) genetic counselors' examples of successful and unsuccessful genetic counseling sessions (Geiser et al. 2009). Using directed content analysis, 337 unique strategies were extracted from focus group data. A Q-sort of the 337 strategies yielded 15 broader strategy domains that were then mapped to the successful and unsuccessful session examples. Differing prevalence of strategy domains identified in successful sessions versus the prevalence of domains identified as lacking in unsuccessful sessions provide further support for the REM goals. The most prevalent domains for successful sessions were Information Giving and Use Psychosocial Skills and Strategies; and for unsuccessful sessions, Information Giving and Establish Working Alliance. Identified strategies support the REM's reciprocal nature, especially with regard to addressing patients' informational and psychosocial needs. Patients' contributions to success (or lack thereof) of sessions was also noted, supporting a REM tenet that individual characteristics and the counselor-patient relationship are central to processes and outcomes. The elaborated REM could be used as a framework for certain graduate curricular objectives, and REM components could also inform process and outcomes research studies to document and further characterize genetic counselor strategies.

  15. Evolutionary programming as a platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Rocha, Isabel; Förster, Jochen

    2005-01-01

    , and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters...... of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span several different pathways and may be necessary for solving challenging metabolic engineering problems....

  16. Engineering strategy of yeast metabolism for higher alcohol production

    Directory of Open Access Journals (Sweden)

    Shimizu Hiroshi

    2011-09-01

    Full Text Available Abstract Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  17. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    Science.gov (United States)

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  18. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  19. Genetic engineering in agriculture and corporate engineering in public debate: risk, public relations, and public debate over genetically modified crops.

    Science.gov (United States)

    Patel, Rajeev; Torres, Robert J; Rosset, Peter

    2005-01-01

    Corporations have long influenced environmental and occupational health in agriculture, doing a great deal of damage, making substantial profits, and shaping public debate to make it appear that environmental misfortunes are accidents of an otherwise well-functioning system, rather than systemic. The debate over the genetically modified (GM) crops is an example. The largest producer of commercial GM seeds, Monsanto, exemplifies the industry's strategies: the invocation of poor people as beneficiaries, characterization of opposition as technophobic or anti-progress, and portrayal of their products as environmentally beneficial in the absence of or despite the evidence. This strategy is endemic to contemporary market capitalism, with its incentives to companies to externalize health and environmental costs to increase profits.

  20. Telos, conservation of welfare, and ethical issues in genetic engineering of animals.

    Science.gov (United States)

    Rollin, Bernard E

    2015-01-01

    The most long-lived metaphysics or view of reality in the history of Western thought is Aristotle's teleology, which reigned for almost 2,000 years. Biology was expressed in terms of function or telos, and accorded perfectly with common sense. The rise of mechanistic, Newtonian science vanquished teleological explanations. Understanding and accommodating animal telos was essential to success in animal husbandry, which involved respect for telos, and was presuppositional to our "ancient contract" with domestic animals. Telos was further abandoned with the rise of industrial agriculture, which utilized "technological fixes" to force animal into environments they were unsuited for, while continuing to be productive. Loss of husbandry and respect for telos created major issues for farm animal welfare, and forced the creation of a new ethic demanding respect for telos. As genetic engineering developed, the notion arose of modifying animals to fit their environment in order to avoid animal suffering, rather than fitting them into congenial environments. Most people do not favor changing the animals, rather than changing the conditions under which they are reared. Aesthetic appreciation of husbandry and virtue ethics militate in favor of restoring husbandry, rather than radically changing animal teloi. One, however, does not morally wrong teloi by changing them-one can only wrong individuals. In biomedical research, we do indeed inflict major pain, suffering and disease on animals. And genetic engineering seems to augment our ability to create animals to model diseases, particularly more than 3,000 known human genetic diseases. The disease, known as Lesch-Nyhan's syndrome or HPRT deficiency, which causes self-mutilation and mental retardation, provides us with a real possibility for genetically creating "animal models" of this disease, animals doomed to a life of great and unalleviable suffering. This of course creates a major moral dilemma. Perhaps one can use the very

  1. Efficacy of Sunitinib and Radiotherapy in Genetically Engineered Mouse Model of Soft-Tissue Sarcoma

    International Nuclear Information System (INIS)

    Yoon, Sam S.; Stangenberg, Lars; Lee, Yoon-Jin; Rothrock, Courtney; Dreyfuss, Jonathan M.; Baek, Kwan-Hyuck; Waterman, Peter R.; Nielsen, G. Petur; Weissleder, Ralph; Mahmood, Umar; Park, Peter J.; Jacks, Tyler

    2009-01-01

    Purpose: Sunitinib (SU) is a multitargeted receptor tyrosine kinase inhibitor of the vascular endothelial growth factor and platelet-derived growth factor receptors. The present study examined SU and radiotherapy (RT) in a genetically engineered mouse model of soft tissue sarcoma (STS). Methods and Materials: Primary extremity STSs were generated in genetically engineered mice. The mice were randomized to treatment with SU, RT (10 Gy x 2), or both (SU+RT). Changes in the tumor vasculature before and after treatment were assessed in vivo using fluorescence-mediated tomography. The control and treated tumors were harvested and extensively analyzed. Results: The mean fluorescence in the tumors was not decreased by RT but decreased 38-44% in tumors treated with SU or SU+RT. The control tumors grew to a mean of 1378 mm 3 after 12 days. SU alone or RT alone delayed tumor growth by 56% and 41%, respectively, but maximal growth inhibition (71%) was observed with the combination therapy. SU target effects were confirmed by loss of target receptor phosphorylation and alterations in SU-related gene expression. Cancer cell proliferation was decreased and apoptosis increased in the SU and RT groups, with a synergistic effect on apoptosis observed in the SU+RT group. RT had a minimal effect on the tumor microvessel density and endothelial cell-specific apoptosis, but SU alone or SU+RT decreased the microvessel density by >66% and induced significant endothelial cell apoptosis. Conclusion: SU inhibited STS growth by effects on both cancer cells and tumor vasculature. SU also augmented the efficacy of RT, suggesting that this combination strategy could improve local control of STS.

  2. Exploiting Genetic Interference for Antiviral Therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Tanner

    2016-05-01

    Full Text Available Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  3. Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses

    Science.gov (United States)

    Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff

    2013-01-01

    Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…

  4. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  5. The Significance of Content Knowledge for Informal Reasoning regarding Socioscientific Issues: Applying Genetics Knowledge to Genetic Engineering Issues

    Science.gov (United States)

    Sadler, Troy D.; Zeidler, Dana L.

    2005-01-01

    This study focused on informal reasoning regarding socioscientific issues. It sought to explore how content knowledge influenced the negotiation and resolution of contentious and complex scenarios based on genetic engineering. Two hundred and sixty-nine students drawn from undergraduate natural science and nonnatural science courses completed a…

  6. Reasoning Strategies in the Context of Engineering Design with Everyday Materials

    Science.gov (United States)

    Worsley, Marcelo; Blikstein, Paulo

    2016-01-01

    "Making" represents an increasingly popular label for describing a form of engineering design. While making is growing in popularity, there are still open questions about the strategies that students are using in these activities. Assessing and improving learning in making/ engineering design contexts require that we have a better…

  7. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    Science.gov (United States)

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery

  8. Genetic engineering: Rifkin strikes at corn this time.

    Science.gov (United States)

    Budiansky, S

    As a result of a threatened suit by Jeremy Rifkin, Stanford University has postponed an experiment involving a test plot of genetically-engineered corn. At issue is an injunction forbidding the Recombinant DNA Advisory Committee of the National Institutes of Health from approving federal funding of experiments entailing the release of recombinant DNA into the environment. Rifkin's legal argument is that an environmnental impact statement must be filed for both commercially- and federally-funded research. It is expected that Rifkin's demand for equal treatment regardless of funding source will be agreed to by NIH.

  9. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  10. Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

    OpenAIRE

    Kuo Catherine K; Marturano Joseph E; Tuan Rocky S

    2010-01-01

    Abstract Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics criti...

  11. Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm

    International Nuclear Information System (INIS)

    Kim, Heungseob; Kim, Pansoo

    2017-01-01

    To maximize the reliability of a system, the traditional reliability–redundancy allocation problem (RRAP) determines the component reliability and level of redundancy for each subsystem. This paper proposes an advanced RRAP that also considers the optimal redundancy strategy, either active or cold standby. In addition, new examples are presented for it. Furthermore, the exact reliability function for a cold standby redundant subsystem with an imperfect detector/switch is suggested, and is expected to replace the previous approximating model that has been used in most related studies. A parallel genetic algorithm for solving the RRAP as a mixed-integer nonlinear programming model is presented, and its performance is compared with those of previous studies by using numerical examples on three benchmark problems. - Highlights: • Optimal strategy is proposed to solve reliability redundancy allocation problem. • The redundancy strategy uses parallel genetic algorithm. • Improved reliability function for a cold standby subsystem is suggested. • Proposed redundancy strategy enhances the system reliability.

  12. Strategies for Integrated Analysis of Genetic, Epigenetic, and Gene Expression Variation in Cancer

    DEFF Research Database (Denmark)

    Thingholm, Louise B; Andersen, Lars; Makalic, Enes

    2016-01-01

    The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis...... to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured...

  13. Race, genetics, and human reproductive strategies.

    Science.gov (United States)

    Rushton, J P

    1996-02-01

    The international literature on racial differences is reviewed, novel data are reported, and a distinct pattern is found. People of east Asian ancestry and people of African ancestry average at opposite ends of a continuum, with people of European ancestry averaging intermediately, albeit with much variability within each major race. The racial matrix emerges from measures taken of reproductive behavior, sex hormones, twinning rate, speed of physical maturation, personality, family stability, brain size, intelligence, law abidingness, and social organization. An evolutionary theory of human reproduction is proposed, familiar to biologists as the r-K scale of reproductive strategies. At one end of this scale are r-strategies, which emphasize high reproductive rates; at the other end are K-strategies, which emphasize high levels of parental investment. This scale is generally used to compare the life histories of widely disparate species, but here it is used to describe the immensely smaller variations among human races. It is hypothesized that, again on average, Mongoloid people are more K-selected than Caucasoids, who are more K-selected than Negroids. The r-K scale of reproductive strategies is also mapped on to human evolution. Genetic distances indicate that Africans emerged from the ancestral hominid line about 200,000 years ago, with an African/non-African split about 110,000 years ago, and a Caucasoid/Mongoloid split about 41,000 years ago. Such an ordering fits with and explains how and why the variables cluster.

  14. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.

    Science.gov (United States)

    Grabundzija, Ivana; Izsvák, Zsuzsanna; Ivics, Zoltán

    2011-01-01

    Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.

  15. Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

    OpenAIRE

    N. K. Srivastava; M. K. Jha; I. D. Mall; Davinder Singh

    2010-01-01

    The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing indus...

  16. Notification: Evaluation of Office of Pesticide Programs’ Genetically Engineered Corn Insect Resistance Management

    Science.gov (United States)

    Project #OPE-FY15-0055, July 09, 2015. The EPA OIG plans to begin preliminary research on the EPA's ability to manage and prevent increased insect resistance to genetically engineered Bacillus thuringiensis (Bt) corn.

  17. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  18. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    Science.gov (United States)

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  19. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    Science.gov (United States)

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  20. Search Engine Marketing (SEM): Financial & Competitive Advantages of an Effective Hotel SEM Strategy

    OpenAIRE

    Leora Halpern Lanz

    2015-01-01

    Search Engine Marketing and Optimization (SEO, SEM) are keystones of a hotels marketing strategy, in fact research shows that 90% of travelers start their vacation planning with a Google search. Learn five strategies that can enhance a hotels SEO and SEM strategies to boost bookings.

  1. Search Engine Marketing (SEM: Financial & Competitive Advantages of an Effective Hotel SEM Strategy

    Directory of Open Access Journals (Sweden)

    Leora Halpern Lanz

    2015-05-01

    Full Text Available Search Engine Marketing and Optimization (SEO, SEM are keystones of a hotels marketing strategy, in fact research shows that 90% of travelers start their vacation planning with a Google search. Learn five strategies that can enhance a hotels SEO and SEM strategies to boost bookings.

  2. Research on the optimization strategy of web search engine based on data mining

    Science.gov (United States)

    Chen, Ronghua

    2018-04-01

    With the wide application of search engines, web site information has become an important way for people to obtain information. People have found that they are growing in an increasingly explosive manner. Web site information is verydifficult to find the information they need, and now the search engine can not meet the need, so there is an urgent need for the network to provide website personalized information service, data mining technology for this new challenge is to find a breakthrough. In order to improve people's accuracy of finding information from websites, a website search engine optimization strategy based on data mining is proposed, and verified by website search engine optimization experiment. The results show that the proposed strategy improves the accuracy of the people to find information, and reduces the time for people to find information. It has an important practical value.

  3. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy.

    Science.gov (United States)

    Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie

    2017-03-12

    Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.

  4. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy

    Science.gov (United States)

    Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie

    2017-01-01

    Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling. PMID:28287497

  5. Science, law, and politics in the Food and Drug Administration's genetically engineered foods policy: FDA's 1992 policy statement.

    Science.gov (United States)

    Pelletier, David L

    2005-05-01

    The US Food and Drug Administration's (FDA's) 1992 policy statement was developed in the context of critical gaps in scientific knowledge concerning the compositional effects of genetic transformation and severe limitations in methods for safety testing. FDA acknowledged that pleiotropy and insertional mutagenesis may cause unintended changes, but it was unknown whether this happens to a greater extent in genetic engineering compared with traditional breeding. Moreover, the agency was not able to identify methods by which producers could screen for unintended allergens and toxicants. Despite these uncertainties, FDA granted genetically engineered foods the presumption of GRAS (Generally Recognized As Safe) and recommended that producers use voluntary consultations before marketing them.

  6. Risk communication strategy development using the aerospace systems engineering process

    Science.gov (United States)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  7. Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves

    NARCIS (Netherlands)

    Koenraadt, C.J.M.; Kormaksson, M.; Harrington, L.C.

    2010-01-01

    Background - Genetic modification of mosquitoes offers a promising strategy for the prevention and control of mosquito-borne diseases. For such a strategy to be effective, it is critically important that engineered strains are competitive enough to serve their intended function in population

  8. Pertussis toxins, other antigens become likely targets for genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Marwick, C.

    1990-11-14

    Genetically engineered pertussis vaccines have yet to be fully tested clinically. But early human, animal, and in vitro studies indicate effectiveness in reducing toxic effects due to Bordetella pertussis. The licensed pertussis vaccines consists of inactivated whole cells of the organism. Although highly effective, they have been associated with neurologic complications. While the evidence continues to mount that these complications are extremely rare, if they occur at all, it has affected the public's acceptance of pertussis immunization.

  9. Nitrogen, corn, and forest genetics: the agricultural yield strategy-implications for Douglas-fir management.

    Science.gov (United States)

    Roy R. Silen

    1982-01-01

    Agricultural yield strategy simply aims to increase number of grain bearing stalks per acre. Forestry strategies look to thinning, fertilizer, and genetics, each to provide gains. The agricultural strategies applied to Douglas-fir appear to be impractical for long rotations. Concern is expressed for commitments to perpetual inputs of materials and energy to keep a...

  10. Introducing the Adherence Strategy Engineering Framework (ASEF)

    DEFF Research Database (Denmark)

    Wagner, Stefan Rahr; Toftegaard, Thomas Skjødeberg; Bertelsen, Olav W.

    2013-01-01

    . Methods: Key concepts related to self-care and adherence were defined, discussed, and implemented as part of the ASEF framework. ASEF was applied to seven self-care case studies, and the perceived usefulness and feasibility of ASEF was evaluated in a questionnaire study by the case study participants...... resulting in reduced data quality and suboptimal treatment. Objectives: The aim of this paper is to introduce the Adherence Strategy Engineering Framework (ASEF) as a method for developing novel technology-based adherence strategies to assess and improve patient adherence levels in the unsupervised setting....... Finally, we reviewed the individual case studies usage of ASEF. Results: A range of central self-care concepts were defined and the ASEF methodological framework was introduced. ASEF was successfully used in seven case studies with a total of 25 participants. Of these, 16 provided answers...

  11. Genetic Regulation of Embryological Limb Development with Relation to Congenital Limb Deformity in Humans

    OpenAIRE

    Barham, Guy; Clarke, Nicholas M. P.

    2008-01-01

    Over the last 15 years, great improvements in genetic engineering and genetic manipulation strategies have led to significant advances in the understanding of the genetics governing embryological limb development. This field of science continues to develop, and the complex genetic interactions and signalling pathways are still not fully understood. In this review we will discuss the roles of the principle genes involved in the three-dimensional patterning of the developing limb and will discu...

  12. Molecular Cloning Designer Simulator (MCDS: All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects

    Directory of Open Access Journals (Sweden)

    Zhenyu Shi

    2016-12-01

    Full Text Available Molecular Cloning Designer Simulator (MCDS is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1 it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2 it can perform a user-defined workflow of cloning steps in a single execution of the software; (3 it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4 it includes experimental information to conveniently guide wet lab work; and (5 it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com. Keywords: BioCAD, Genetic engineering software, Molecular cloning software, Synthetic biology, Workflow simulation and management

  13. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  14. Crop Resources Ethic in Plant Genetic Engineering and Fortune Transfer Between Generations

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; LIANG Xueqing

    2006-01-01

    The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable development, furthermore, to choose and form the production structure that is favorable to saving crop resources and protecting the ecology of crops. Plant genetic engineering is the technology of molecule breeding of rearrangement of inheritance materials at the level of molecule directionally, of improving plant properties and of breeding high quality and yield varieties of crops. The prominent effects of the technology on the crop ecological system are human subjective factors increasing as well as violating the nature and intensifying the conflict between human being and nature.Therefore, in plant genetic engineering, crop resources exploitation should follow certain ethic principles. Under the theory of ethics of natural resources, by the means of biologioal statistics, the author systematically analyzed the possible model of crop resources transfer between generations as well as the transfer mode of magnitude of real materials and magnitude of value.

  15. The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas

    Science.gov (United States)

    Sadler, Troy D.; Zeidler, Dana L.

    2004-01-01

    The ability to negotiate and resolve socioscientific issues has been posited as integral components of scientific literacy. Although philosophers and science educators have argued that socioscientific issues inherently involve moral and ethical considerations, the ultimate arbiters of morality are individual decision-makers. This study explored the extent to which college students construe genetic engineering issues as moral problems. Twenty college students participated in interviews designed to elicit their ideas, reactions, and feelings regarding a series of gene therapy and cloning scenarios. Qualitative analyses revealed that moral considerations were significant influences on decision-making, indicating a tendency for students to construe genetic engineering issues as moral problems. Students engaged in moral reasoning based on utilitarian analyses of consequences as well as the application of principles. Issue construal was also influenced by affective features such as emotion and intuition. In addition to moral considerations, a series of other factors emerged as important dimensions of socioscientific decision-making. These factors included personal experiences, family biases, background knowledge, and the impact of popular culture. The implications for classroom science instruction and future research are discussed.

  16. Genetic Engineering and the Amelioration of Genetic Defect

    Science.gov (United States)

    Lederberg, Joshua

    1970-01-01

    Discusses the claims for a brave new world of genetic manipulation" and concludes that if we could agree upon applying genetic (or any other effective) remedies to global problems we probably would need no rescourse to them. Suggests that effective methods of preventing genetic disease are prevention of mutations and detection and…

  17. Tissue-engineering strategies for the tendon/ligament-to-bone insertion.

    Science.gov (United States)

    Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros

    2012-01-01

    Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.

  18. Projecting potential adoption of genetically engineered freeze-tolerant Eucalyptus in the United States

    Science.gov (United States)

    David N. Wear; Ernest Dixon IV; Robert C. Abt; Navinder Singh

    2015-01-01

    Development of commercial Eucalyptus plantations has been limited in the United States because of the species’ sensitivity to freezing temperatures. Recently developed genetically engineered clones of a Eucalyptus hybrid, which confer freeze tolerance, could expand the range of commercial plantations. This study explores how...

  19. EGG transformation through the use of irradiated pollen: 'Poor man's genetic engineering'

    International Nuclear Information System (INIS)

    Pandey, K.K.

    1981-01-01

    There is no way that the 'fertilization cummutation hypothesis' can be considered to be an alternative to transformation. 'Poor man's genetic engineering' as a tool for plant breeders should be the development and application of the knowledge about growth-promothing genes which are thought to occur in self-compatible as well as in self-incompatible species. (AJ)

  20. Strategies for the Cooperation of Educational Institutions and Companies in Mechanical Engineering

    Science.gov (United States)

    Kettunen, Juha

    2006-01-01

    Purpose: The purpose of this study is to analyse the strategic planning of the Centre for Mechanical Engineering, which is a joint venture of educational institutions and companies in Southwest Finland. Design/methodology/approach: The paper presents the strategies of focus and cost efficiency and how the selected strategies can be adjusted…

  1. Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2012-03-01

    In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.

  2. Study Strategies for Engineering Students at DTU

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2002-01-01

    The study strategies of first year Master students are investigated at DTU fall 1999 - spring 2002. The results show that the students study less than their teachers expect. And they spend most time on activities not leading to deep understanding and engineering competencies. The students spend...... almost half of their study time on theoretical calculations and only little on authentic problems. They attend many lectures but read very little. This may be a reasonable response to the teaching and examination they encounter; but not with respect to learning. Changing the teaching structure at DTU has...

  3. Insulated transcriptional elements enable precise design of genetic circuits.

    Science.gov (United States)

    Zong, Yeqing; Zhang, Haoqian M; Lyu, Cheng; Ji, Xiangyu; Hou, Junran; Guo, Xian; Ouyang, Qi; Lou, Chunbo

    2017-07-03

    Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of 96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.Unwanted interactions between cellular components can complicate rational engineering of biological systems. Here the authors design insulated minimal promoters and operators that enable biophysical modeling of bacterial transcription without free parameters for precise circuit design.

  4. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    Science.gov (United States)

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  5. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    Directory of Open Access Journals (Sweden)

    Yu-Shuang Dong

    2014-01-01

    Full Text Available The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  6. DECOMPOSTION OF GENETICALLY ENGINEERED TOBACCO UNDER FIELD CONDITIONS: PERSISTENCE OF THE PROTEINASE INHIBITOR I PRODUCT AND EFFECTS OF SOIL MICROBIAL RESPIRATION AND PROTOZOA, NEMATODE AND MICROARTHR

    Science.gov (United States)

    1. To evaluate the potential effects of genetically engineered (transgenic) plants on soil ecosystems, litterbags containing leaves of non-engineered (parental) and transgenic tobacco plants were buried in field plots. The transgenic tobacco plants were genetically engineered to ...

  7. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  8. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil

    Directory of Open Access Journals (Sweden)

    Mardani Gashtasb

    2016-01-01

    Full Text Available Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p0.05 but it was few impact on this process (more than 2%. Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.

  9. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    Science.gov (United States)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  10. 'HoneySweet' plum - a valuable genetically engineered fruit-tree cultivar and germplasm resource

    Science.gov (United States)

    ‘HoneySweet’ is a plum variety developed through genetic engineering to be highly resistant to plum pox potyvirus (PPV), the causal agent of sharka disease, that threatens stone-fruit industries world-wide and most specifically, in Europe. Field testing for over 15 years in Europe has demonstrated ...

  11. Research on Channel Strategies of Modern Agricultural Engineering Demonstration Sites in Guangzhou

    OpenAIRE

    Wen-guang Liang; Chun Xie; Qian-qian Pang

    2015-01-01

    The research discusses the channel structure of modern agricultural engineering demonstration sites in Guangzhou. It analyzes the strategies of channel competition, personnel combination, transportation combination and terminal network construction. Enterprises adapt different marketing channel strategies on the basis of the type of the market. The research has made certain achievement and has certain guiding significance.

  12. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  13. Skip cycle system for spark ignition engines: An experimental investigation of a new type working strategy

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper T.

    2007-01-01

    A new type working strategy for spark ignition engine, named skip cycle, is examined. The main idea is to reduce the effective stroke volume of an engine by cutting off fuel injection and spark ignition in some of the classical four stroke cycles. When the cycle is skipped, additionally, a rotary valve is used in the intake to reduce pumping losses in part load conditions. The effect of this strategy is similar to that of variable displacement engines. Alternative power stroke fractions in one cycle and applicability in single cylinder engines are specific advantageous properties of the proposed system. A thermodynamic model, besides experimental results, is used to explain the skip cycle strategy in more detail. This theoretical investigation shows considerable potential to increase the efficiency at part load conditions. Experimental results obtained with this novel strategy show that the throttle valve of the engine opens wider and the minimum spark advance for maximum brake torque decreases in comparison to those of the classical operation system. The brake specific fuel consumption decreases at very low speed and load, while it increases at higher speed and load due to the increased fuel loss within the skipped cycles. In this working mode, the engine operates at lower idle speed without any stability problem; and moreover with less fuel consumption

  14. Cycle-skipping strategies for pumping loss reduction in spark ignition engines: An experimental approach

    International Nuclear Information System (INIS)

    Yüksek, Levent; Özener, Orkun; Sandalcı, Tarkan

    2012-01-01

    Highlights: ► A cycle density variation technique called cycle-skipping was applied. ► Effect on fuel consumption and gaseous emissions was investigated. ► Fuel consumption and gaseous tail-pipe emissions improved at partial loading conditions. - Abstract: Spark ignition (SI) engines are widely used for power generation, especially in the automotive industry. SI engines have a lower thermal efficiency than diesel engines due to a lower compression ratio, higher charge-induction work and lower end of compression stroke pressure. A significant amount of charge induction work is lost when an SI engine runs under partial loading conditions. Under partial loading conditions, a lower intake charge is required, which can be theoretically achieved by varying the displacement volume or the stroke number of the engine without using a throttle. Reducing the displacement volume to control the engine load can be achieved by skipping cycles in single-cylinder engines. This study investigates the effect of cycle-skipping strategies on the brake specific fuel consumption (BSFC) and exhaust emissions of an SI engine under partial loading conditions. Three different skipping modes were applied: normal, normal-skip and normal-normal-skip. A significant improvement in BSFC and carbon monoxide emission was obtained by applying cycle-skipping strategies.

  15. Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns.

    Science.gov (United States)

    Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A

    2016-09-01

    Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.

  16. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  17. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  18. Reasoning Strategies in the Context of Engineering Design with Everyday Materials

    OpenAIRE

    Worsley, Marcelo; Blikstein, Paulo

    2017-01-01

    ‘‘Making’’ represents an increasingly popular label for describing a form of engineering design. While making is growing in popularity, there are still open questions about the strategies that students are using in these activities. Assessing and improving learning in making/ engineering design contexts require that we have a better understanding of where students’ ideas are coming from and a better way to characterize student progress in open-ended learning environments. In this article, we ...

  19. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Science.gov (United States)

    2013-02-27

    ...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by the Syngenta Biotechnology... evaluation of data submitted by Syngenta Biotechnology, Inc., in its petition for a determination of...

  20. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  1. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  2. Effects of exhaust gas recirculation in diesel engines featuring late PCCI type combustion strategies

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2015-01-01

    Highlights: • The effects that a high EGR rate can have on PCCI type combustion strategies have been analyzed. • The dependence of engine emissions and combustion noise on EGR has been addressed. • The time histories of the main in-cylinder variables have been plotted for different EGR rates. - Abstract: The influence of exhaust gas recirculation (EGR) has been analyzed considering experimental results obtained from a Euro 5 diesel engine calibrated with an optimized pilot-main double injection strategy. The engine features a late premixed charge compression ignition (PCCI) type combustion mode. Different steady-state key-points that are representative of the engine application in a passenger car over the New European Driving Cycle (NEDC) have been studied. The engine was fully instrumented to obtain a complete overview of the most important variables. The pressure time history in the combustion chamber has been measured to perform calculations with single and three-zone combustion diagnostic models. These models allow the in-cylinder emissions and the temperature of the burned and unburned zones to be evaluated as functions of the crankshaft angle. The EGR mass fraction was experimentally varied within the 0–50% range. The results of the investigation have shown the influence that high EGR rates can have on intake and exhaust temperatures, in-cylinder pressure and heat release rate time histories, engine-out emissions (CO, HC, NO_x, soot), brake specific fuel consumption and combustion noise for a PCCI type combustion strategy. The outputs of the diagnostic models have been used to conduct a detailed analysis of the cause-and-effect relationships between the EGR rate variations and the engine performance. Finally, the effect of the EGR on the cycle-to-cycle variability of the engine torque has been experimentally investigated.

  3. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    Science.gov (United States)

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  4. Generation of a monoclonal antibody against the glycosylphosphatidylinositol-linked protein Rae-1 using genetically engineered tumor cells.

    Science.gov (United States)

    Hu, Jiemiao; Vien, Long T; Xia, Xueqing; Bover, Laura; Li, Shulin

    2014-02-04

    Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry. The lack of high-quality mAbs limits the in-depth analysis of Rae-1 fate, such as shedding and internalization, in murine models. Moreover, currently available screening approaches for identifying high-quality mAbs are excessively time-consuming and costly. We used Rae-1-overexpressing CT26 tumor cells to generate 60 hybridomas that secreted mAbs against Rae-1. We also developed a streamlined screening strategy for selecting the best anti-Rae-1 mAb for use in flow cytometry assay, enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Our cell line-based immunization approach can yield mAbs against GPI-anchored proteins, and our streamlined screening strategy can be used to select the ideal hybridoma for producing such mAbs.

  5. Strategies for improving the nutritional quality of Phaseolus beans through gene engineering

    Directory of Open Access Journals (Sweden)

    Kapila J.

    1999-01-01

    Full Text Available Although Phaseolus species are still difficult to transform, progress in this field now opens the way to engineering beans with a higher nutritional value. The opportunities for gene engineering in nutritional quality improvement, the strategies which canbe adopted and the constraints we are still facing are briefly outlined, using the enhancement of the seed methionine content and the reduction in antinutritional factors as examples.

  6. Model-based problem solving through symbolic regression via pareto genetic programming

    NARCIS (Netherlands)

    Vladislavleva, E.

    2008-01-01

    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust

  7. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli.

    Science.gov (United States)

    Wu, Tao; Ye, Lijun; Zhao, Dongdong; Li, Siwei; Li, Qingyan; Zhang, Bolin; Bi, Changhao; Zhang, Xueli

    2017-09-01

    Carotenoids are a class of terpenes of commercial interest that exert important biological functions. While various strategies have been applied to engineer β-carotene production in microbial cell factories, no work has been done to study and improve the storage of hydrophobic terpene products inside the heterologous host cells. Although the membrane is thought to be the cell compartment that accumulates hydrophobic terpenes such as β-carotene, direct evidence is still lacking. In this work, we engineered the membrane of Escherichia coli in both its morphological and biosynthetic aspects, as a means to study and improve its storage capacity for β-carotene. Engineering the membrane morphology by overexpressing membrane-bending proteins resulted in a 28% increase of β-carotene specific producton value, while engineering the membrane synthesis pathway led to a 43% increase. Moreover, the combination of these two strategies had a synergistic effect, which caused a 2.9-fold increase of β-carotene specific production value (from 6.7 to 19.6mg/g DCW). Inward membrane stacks were observed in electron microscopy images of the engineered E. coli cells, which indicated that morphological changes were associated with the increased β-carotene storage capacity. Finally, membrane separation and analysis confirmed that the increased β-carotene was mainly accumulated within the cell membrane. This membrane engineering strategy was also applied to the β-carotene hyperproducing strain CAR025, which led to a 39% increase of the already high β-carotene specific production value (from 31.8 to 44.2mg/g DCW in shake flasks), resulting in one of the highest reported specific production values under comparable culture conditions. The membrane engineering strategy developed in this work opens up a new direction for engineering and improving microbial terpene producers. It is quite possible that a wide range of strains used to produce hydrophobic compounds can be further improved

  8. Self-Regulated Learning Strategies Applied to Undergraduate, Graduate and Specialization Students from Civil Engineering

    Directory of Open Access Journals (Sweden)

    Jose Carlos Redaelli

    2013-03-01

    Full Text Available The current demand for civil engineering work requires new skills and knowledge and calls for new and effective learning methods. This paper shows self-regulated learning strategies applied to undergraduate, graduate and specialization students from Civil Engineering in a Brazilian University. A Scale of Evaluation of Learning Strategies was administered with a view to identifying students´ cognitive, metacognitive and dysfunctional learning strategies.

  9. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A.

    2010-07-15

    Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel greenhouse gas (GHG) emissions and sequestering C in the soil through extensive root systems. Carbon captured in plant biomass can also contribute to C sequestration through the deliberate addition of biochar to soil, wood burial, or the use of durable plant products. Increasing our understanding of plant, microbial, and soil biology, and harnessing the benefits of traditional genetics and genetic engineering, will help us fully realize the GHG mitigation potential of phytosequestration.

  10. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  11. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  12. A Competitive and Experiential Assignment in Search Engine Optimization Strategy

    Science.gov (United States)

    Clarke, Theresa B.; Clarke, Irvine, III

    2014-01-01

    Despite an increase in ad spending and demand for employees with expertise in search engine optimization (SEO), methods for teaching this important marketing strategy have received little coverage in the literature. Using Bloom's cognitive goals hierarchy as a framework, this experiential assignment provides a process for educators who may be new…

  13. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  14. Evolution of Strategies for "Prisoner's Dilemma" using Genetic Algorithm

    OpenAIRE

    Heinz, Jan

    2010-01-01

    The subject of this thesis is the software application "Prisoner's Dilemma". The program creates a population of players of "Prisoner's Dilemma", has them play against each other, and - based on their results - performs an evolution of their strategies by means of a genetic algorithm (selection, mutation, and crossover). The program was written in Microsoft Visual Studio, in the C++ programming language, and its interface makes use of the .NET Framework. The thesis includes examples of strate...

  15. Formulation Strategies and Particle Engineering Technologies for Pulmonary Delivery of Biopharmaceuticals

    DEFF Research Database (Denmark)

    Cun, Dongmei; Wan, Feng; Yang, Mingshi

    2015-01-01

    . In this review we discussed the formulation strategies and particle engineering technologies to improve the efficiency of pulmonary delivery of biopharmaceutical, with a focus on systemic therapy of pharmaceutical proteins/peptides and local delivery of siRNA via the lung administration....

  16. Engineering precursor supply in Saccharomyces cerevisiae : New strategies for cytosolic acetyl-CoA formation

    NARCIS (Netherlands)

    Kozak, B.U.

    2015-01-01

    Metabolic engineering – the improvement and addition, by genetic modification, of industrially relevant properties of microorganisms with respect to catalysis, transport and regulatory functions – is a well-established method for development of more cost-effective and ‘green’ industrial processes.

  17. Co-cultures and cell sheet engineering as relevant tools to improve the outcome of bone tissue engineering strategies

    OpenAIRE

    Pirraco, Rogério

    2011-01-01

    Taking into consideration the complex biology of bone tissue it is quite clear that the understanding of the cellular interactions that regulate the homeostasis and regeneration of this remarkable tissue is essential for a successful Tissue Engineering strategy. The in vitro study of these cellular interactions relies on co-culture systems, a tremendously useful methodology where two or more cell types are cultured at the same time. Such strategy increases the complexity of typ...

  18. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  19. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  20. Affective strategies, attitudes, and a model of speaking performance development for engineering students

    Science.gov (United States)

    Wijirahayu, S.; Dorand, P.

    2018-01-01

    Learning English as a Foreign language (EFL) as one of the challenges especially for students majoring in Telecommunication Engineering to develop their communication skill as a professional could be one of the chances for them to face a more global era. Yet, there are important factors that may influence the progress of the speaking performance and attitude is one of them. Therefore, a survey involving two main psychological variables in language learning namely attitude and affective strategies and the third variable is speaking performance was conducted and a model of affective strategies in language learning developing through the application of Content Language Integrated Learning and multimedia instruction was introduced. This study involved 71 sophomore students and two classes of university students majoring in Telecommunication Engineering and Electrical Engineering. The researchers used both survey and action research method with quantitative as well as qualitative in approach.

  1. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy

    Science.gov (United States)

    Li, Chao; Tao, Fei; Ni, Jun; Wang, Yu; Yao, Feng; Xu, Ping

    2015-05-01

    It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme D-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NADPH. Then, the engineered enzyme was introduced into Synechococcus elongatus PCC7942 to construct an efficient light-driven system that produces D-lactic acid from CO2. Mutation of LdhD drove a fundamental shift in cofactor preference towards NADPH, and increased D-lactate productivity by over 3.6-fold. We further demonstrated that introduction of a lactic acid transporter and bubbling CO2-enriched air also enhanced D-lactate productivity. Using this combinational strategy, increased D-lactate concentration and productivity were achieved. The present strategy may also be used to engineer cyanobacteria for producing other useful chemicals.

  2. Strategies for Integrated Analysis of Genetic, Epigenetic, and Gene Expression Variation in Cancer: Addressing the Challenges

    DEFF Research Database (Denmark)

    Thingholm, Louise Bruun; Andersen, Lars; Makalic, Enes

    2016-01-01

    to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured......The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis...

  3. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    Science.gov (United States)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  4. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  5. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  6. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas

    DEFF Research Database (Denmark)

    Specht, Elizabeth A; Nour-Eldin, Hussam Hassan; Hoang, Kevin T D

    2015-01-01

    The model alga Chlamydomonas reinhardtii has been used to pioneer genetic engineering techniques for high-value protein and biofuel production from algae. To date, most studies of transgenic Chlamydomonas have utilized the chloroplast genome due to its ease of engineering, with a sizeable suite o...

  7. Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid

    NARCIS (Netherlands)

    Kos, M.; Houshyani, B.; Overeem, A.J.; Bouwmeester, H.J.; Weldegergis, B.T.; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2013-01-01

    BACKGROUND: Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be

  8. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review.

    Science.gov (United States)

    Ho, Jasmine; Walsh, Claire; Yue, Dominic; Dardik, Alan; Cheema, Umber

    2017-06-01

    Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.

  9. Genetic gain and economic values of selection strategies including semen traits in three- and four-way crossbreeding systems for swine production.

    Science.gov (United States)

    González-Peña, D; Knox, R V; MacNeil, M D; Rodriguez-Zas, S L

    2015-03-01

    Four semen traits: volume (VOL), concentration (CON), progressive motility of spermatozoa (MOT), and abnormal spermatozoa (ABN) provide complementary information on boar fertility. Assessment of the impact of selection for semen traits is hindered by limited information on economic parameters. Objectives of this study were to estimate economic values for semen traits and to evaluate the genetic gain when these traits are incorporated into traditional selection strategies in a 3-tier system of swine production. Three-way (maternal nucleus lines A and B and paternal nucleus line C) and 4-way (additional paternal nucleus line D) crossbreeding schemes were compared. A novel population structure that accommodated selection for semen traits was developed. Three selection strategies were simulated. Selection Strategy I (baseline) encompassed selection for maternal traits: number of pigs born alive (NBA), litter birth weight (LBW), adjusted 21-d litter weight (A21), and number of pigs at 21 d (N21); and paternal traits: number of days to 113.5 kg (D113), backfat (BF), ADG, feed efficiency (FE), and carcass lean % (LEAN). Selection Strategy II included Strategy I and the number of usable semen doses per collection (DOSES), a function of the 4 semen traits. Selection Strategy III included Strategy I and the 4 semen traits individually. The estimated economic values of VOL, CON, MOT, ABN, and DOSES for 7 to 1 collections/wk ranged from $0.21 to $1.44/mL, $0.12 to $0.83/10 spermatozoa/mm, $0.61 to $12.66/%, -$0.53 to -$10.88/%, and $2.01 to $41.43/%, respectively. The decrease in the relative economic values of semen traits and DOSES with higher number of collections per wk was sharper between 1 and 2.33 collections/wk than between 2.33 and 7 collections/wk. The higher economic value of MOT and ABN relative to VOL and CON could be linked to the genetic variances and covariances of these traits. Average genetic gains for the maternal traits were comparable across strategies

  10. Genetically engineered plants in the product development pipeline in India.

    Science.gov (United States)

    Warrier, Ranjini; Pande, Hem

    2016-01-02

    In order to proactively identify emerging issues that may impact the risk assessment and risk management functions of the Indian biosafety regulatory system, the Ministry of Environment, Forests and Climate Change sought to understand the nature and diversity of genetically engineered crops that may move to product commercialization within the next 10 y. This paper describes the findings from a questionnaire designed to solicit information about public and private sector research and development (R&D) activities in plant biotechnology. It is the first comprehensive overview of the R&D pipeline for GE crops in India.

  11. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  12. The Structural Engineering Strategy for Photonic Material Research and Device Development

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2007-01-01

    Full Text Available A new structural engineering strategy is introduced for optimizing the fabrication of arrayed nanorod materials, optimizing superlattice structures for realizing a strong coupling, and directly developing nanophotonic devices. The strategy can be regarded as “combinatorial” because of the high efficiency in optimizing structures. In this article, this strategy was applied to grow ZnO nanorod arrays, and to develop a new multifunctional photodetector using such nanorod arrays, which is able to simultaneously detect power, energy, and polarization of an incident ultraviolet radiation. The strategy was also used to study the extraordinary dielectric behavior of relaxor ferroelectric lead titanate doped lead magnesium niobate heterophase superlattices in the terahertz frequencies, in order to investigate their dielectric polariton physics and the potential to be integrated with tunable surface resonant plasmonics devices.

  13. Stakeholder views on the creation and use of genetically-engineered animals in research.

    Science.gov (United States)

    Ormandy, Elisabeth H

    2016-05-01

    This interview-based study examined the diversity of views relating to the creation and use of genetically-engineered (GE) animals in biomedical science. Twenty Canadian participants (eight researchers, five research technicians and seven members of the public) took part in the interviews, in which four main themes were discussed: a) how participants felt about the genetic engineering of animals as a practice; b) governance of the creation and use of GE animals in research, and whether current guidelines are sufficient; c) the Three Rs (Replacement, Reduction, Refinement) and how they are applied during the creation and use of GE animals in research; and d) whether public opinion should play a greater role in the creation and use of GE animals. Most of the participants felt that the creation and use of GE animals for biomedical research purposes (as opposed to food purposes) is acceptable, provided that tangible human health benefits are gained. However, obstacles to Three Rs implementation were identified, and the participants agreed that more effort should be placed on engaging the public on the use of GE animals in research. 2016 FRAME.

  14. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Deployment of e-health services - a business model engineering strategy.

    Science.gov (United States)

    Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R

    2010-01-01

    We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.

  16. Engineering microbial electrocatalysis for chemical and fuel production.

    Science.gov (United States)

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Monika Yadav

    2018-06-01

    Full Text Available Bioenergy, biofuels, and a range of valuable chemicals may be extracted from the abundantly available lignocellulosic biomass. To reduce the recalcitrance imposed by the complex cell wall structure, genetic engineering has been proposed over the years as a suitable solution to modify the genes, thereby, controlling the overall phenotypic expression. The present review provides a brief description of the plant cell wall structure and its compositional array i.e., lignin, cellulose, hemicellulose, wall proteins, and pectin, along with their effect on biomass digestibility. Also, this review discusses the potential to increase biomass by gene modification. Furthermore, the review highlights the potential genes associated with the regulation of cell wall structure, which can be targeted for achieving energy crops with desired phenotypes. These genetic approaches provide a robust and assured method to bring about the desired modifications in cell wall structure, composition, and characteristics. Ultimately, these genetic modifications pave the way for achieving enhanced biomass yield and enzymatic digestibility of energy crops, which is crucial for maximizing the outcomes of energy crop breeding and biorefinery applications.

  18. Chapter 7. Management strategies for dwarf mistletoes: Biological, chemical, and genetic approaches

    Science.gov (United States)

    S. F. Shamoun; L. E. DeWald

    2002-01-01

    The opportunity and need for management of mistletoe populations with biological, chemical, and genetic approaches are greatest for application to the dwarf mistletoes. Although much information is available on these management strategies (see reviews by Hawksworth 1972, Knutson 1978), significant research and development are still required for these to become...

  19. Using Learning Analytics to Characterize Student Experimentation Strategies in Engineering Design

    Science.gov (United States)

    Vieira, Camilo; Goldstein, Molly Hathaway; Purzer, Senay; Magana, Alejandra J.

    2016-01-01

    Engineering design is a complex process both for students to participate in and for instructors to assess. Informed designers use the key strategy of conducting experiments as they test ideas to inform next steps. Conversely, beginning designers experiment less, often with confounding variables. These behaviours are not easy to assess in…

  20. Role-playing is an effective instructional strategy for genetic counseling training: an investigation and comparative study.

    Science.gov (United States)

    Xu, Xiao-Feng; Wang, Yan; Wang, Yan-Yan; Song, Ming; Xiao, Wen-Gang; Bai, Yun

    2016-09-02

    Genetic diseases represent a significant public health challenge in China that will need to be addressed by a correspondingly large number of professional genetic counselors. However, neither an official training program for genetic counseling, nor formal board certification, was available in China before 2015. In 2009, a genetic counseling training program based on role-playing was implemented as a pilot study at the Third Military Medical University to train third-year medical students. Questionnaires on participant attitudes to the program and role-playing were randomly administered to 324 students after they had finished their training. Pre- and post-training instructional tests, focusing on 42 key components of genetic counseling, were administered randomly to 200 participants to assess mastery of each component. Finally, scores in final examinations of 578 participants from 2009 to 2011 were compared to scores obtained by 614 non-participating students from 2006 to 2008 to further assess program efficacy. Both the training program and the instructional strategy of role-playing were accepted by most participants. Students believed that role-playing improved their practice of genetic counseling and medical genetics, enhanced their communication skills, and would likely contribute to future professional performance. The average understanding of 40 of the key points in genetic counseling was significantly improved, and most students approached excellent levels of mastery. Scores in final examinations and the percentages of students scoring above 90 were also significantly elevated. Role-playing is a feasible and effective instructional strategy for training genetic counselors in China as well as in other developing countries.

  1. Biomolecular strategies for cell surface engineering

    Science.gov (United States)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL

  2. Development and analysis of startup strategies for particle bed nuclear rocket engine

    Science.gov (United States)

    Suzuki, David E.

    1993-06-01

    The particle bed reactor (PBR) nuclear thermal propulsion rocket engine concept is the focus of the Air Force's Space Nuclear Thermal Propulsion program. While much progress has been made in developing the concept, several technical issues remain. Perhaps foremost among these concerns is the issue of flow stability through the porous, heated bed of fuel particles. There are two complementary technical issues associated with this concern: the identification of the flow stability boundary and the design of the engine controller to maintain stable operation. This thesis examines a portion of the latter issue which has yet to be addressed in detail. Specifically, it develops and analyzes general engine system startup strategies which maintain stable flow through the PBR fuel elements while reaching the design conditions as quickly as possible. The PBR engine studies are conducted using a computer model of a representative particle bed reactor and engine system. The computer program utilized is an augmented version of SAFSIM, an existing nuclear thermal propulsion modeling code; the augmentation, dubbed SAFSIM+, was developed by the author and provides a more complete engine system modeling tool.

  3. Engineering microbes for tolerance to next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Dunlop Mary J

    2011-09-01

    Full Text Available Abstract A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

  4. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols.

    Science.gov (United States)

    Madry, H; Alini, M; Stoddart, M J; Evans, C; Miclau, T; Steiner, S

    2014-05-06

    Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  5. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols

    Directory of Open Access Journals (Sweden)

    H Madry

    2014-05-01

    Full Text Available Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  6. The true meaning of 'exotic species' as a model for genetically engineered organisms.

    Science.gov (United States)

    Regal, P J

    1993-03-15

    The exotic or non-indigenous species model for deliberately introduced genetically engineered organisms (GEOs) has often been misunderstood or misrepresented. Yet proper comparisons of of ecologically competent GEOs to the patterns of adaptation of introduced species have been highly useful among scientists in attempting to determine how to apply biological theory to specific GEO risk issues, and in attempting to define the probabilities and scale of ecological risks with GEOs. In truth, the model predicts that most projects may be environmentally safe, but a significant minority may be very risky. The model includes a history of institutional follies that also should remind workers of the danger of oversimplifying biological issues, and warn against repeating the sorts of professional misjudgements that have too often been made in introducing organisms to new settings. We once expected that the non-indigenous species model would be refined by more analysis of species eruptions, ecological genetics, and the biology of select GEOs themselves, as outlined. But there has been political resistance to the effective regulation of GEOs, and a bureaucratic tendency to focus research agendas on narrow data collection. Thus there has been too little promotion by responsible agencies of studies to provide the broad conceptual base for truly science-based regulation. In its presently unrefined state, the non-indigenous species comparison would overestimate the risks of GEOs if it were (mis)applied to genetically disrupted, ecologically crippled GEOs, but in some cases of wild-type organisms with novel engineered traits, it could greatly underestimate the risks. Further analysis is urgently needed.

  7. Genetic engineering of microbial pesticides

    Science.gov (United States)

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  8. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    Science.gov (United States)

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  9. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  10. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases.

    Science.gov (United States)

    Mattoo, Autar K; Shukla, Vijaya; Fatima, Tahira; Handa, Avtar K; Yachha, Surender K

    2010-01-01

    Nutrition studies have provided unambiguous evidence that a number of human health maladies including chronic coronary artery, hypertension, diabetes, osteoporosis, cancer and age- and lifestyle-related diseases are associated with the diet. Several favorable and a few deleterious natural dietary ingredients have been identified that predispose human populations to various genetic and epigenetic based disorders. Media dissemination of this information has greatly raised public awareness of the beneficial effects due to increased consumption of fruit, vegetables and whole grain cereals-foods rich in phytonutrients, protein and fiber. However, the presence of intrinsically low levels of the beneficial phytonutrients in the available genotypes of crop plants is not always at par with the recommended daily allowance (RDA) for different phytonutrients (nutraceuticals). Molecular engineering of crop plants has offered a number of tools to markedly enhance intracellular concentrations of some of the beneficial nutrients, levels that, in some cases, are closer to the RDA threshold. This review brings together literature on various strategies utilized for bioengineering both major and minor crops to increase the levels of desirable phytonutrients while also decreasing the concentrations of deleterious metabolites. Some of these include increases in: protein level in potato; lysine in corn and rice; methionine in alfalfa; carotenoids (beta-carotene, phytoene, lycopene, zeaxanthin and lutein) in rice, potato, canola, tomato; choline in tomato; folates in rice, corn, tomato and lettuce; vitamin C in corn and lettuce; polyphenolics such as flavonol, isoflavone, resveratrol, chlorogenic acid and other flavonoids in tomato; anthocyanin levels in tomato and potato; alpha-tocopherol in soybean, oil seed, lettuce and potato; iron and zinc in transgenic rice. Also, molecular engineering has succeeded in considerably reducing the levels of the offending protein glutelin in rice

  11. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    Science.gov (United States)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  12. Selection and Penalty Strategies for Genetic Algorithms Designed to Solve Spatial Forest Planning Problems

    International Nuclear Information System (INIS)

    Thompson, M.P.; Sessions, J.; Hamann, J.D.

    2009-01-01

    Genetic algorithms (GAs) have demonstrated success in solving spatial forest planning problems. We present an adaptive GA that incorporates population-level statistics to dynamically update penalty functions, a process analogous to strategic oscillation from the tabu search literature. We also explore performance of various selection strategies. The GA identified feasible solutions within 96%, 98%, and 93% of a non spatial relaxed upper bound calculated for landscapes of 100, 500, and 1000 units, respectively. The problem solved includes forest structure constraints limiting harvest opening sizes and requiring minimally sized patches of mature forest. Results suggest that the dynamic penalty strategy is superior to the more standard static penalty implementation. Results also suggest that tournament selection can be superior to the more standard implementation of proportional selection for smaller problems, but becomes susceptible to premature convergence as problem size increases. It is therefore important to balance selection pressure with appropriate disruption. We conclude that integrating intelligent search strategies into the context of genetic algorithms can yield improvements and should be investigated for future use in spatial planning with ecological goals.

  13. Development and implementation strategy for the of product configuration systems in engineer-to-order companies

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Hvam, Lars

    2016-01-01

    This paper will address how to develop a strategy when developing and implementing product configuration systems (PCSs) in engineer-to-order (ETO) companies. PCSs are often gradually implemented especially where there are complex products and processes in order to break down the overall project...... and reduce risk. This highlights the importance of having an overall strategy to guide the long-term development and implementation of PCSs In this paper, guideline for making the strategy are provided and supplemented with examples based on a case study. The guideline includes the main objectives...... for the development and implementation process, PCSs to be used to support the sales and /or the engineering processes, more uniform IT support for making product configurations, combining output from different PCSs and finally integrations that includes both internal and external IT systems. Based...

  14. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.

    Science.gov (United States)

    Liu, Jiaheng; Li, Huiling; Zhao, Guangrong; Caiyin, Qinggele; Qiao, Jianjun

    2018-05-01

    NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

  15. Mechanism-based strategies for protein thermostabilization.

    Science.gov (United States)

    Mozhaev, V V

    1993-03-01

    Strategies for stabilizing enzymes can be derived from a two-step model of irreversible inactivation that involves preliminary reversible unfolding, followed by an irreversible step. Reversible unfolding is best prevented by covalent immobilization, whereas methods such as covalent modification of amino acid residues or 'medium engineering' (by the addition of low-molecular-weight compounds) are effective against irreversible 'incorrect' refolding. Genetic modification of the protein sequence is the most effective approach for preventing chemical deterioration.

  16. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  17. A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs.

    Science.gov (United States)

    Athirasala, Avathamsa; Lins, Fernanda; Tahayeri, Anthony; Hinds, Monica; Smith, Anthony J; Sedgley, Christine; Ferracane, Jack; Bertassoni, Luiz E

    2017-06-12

    The requirement for immediate vascularization of engineered dental pulp poses a major hurdle towards successful implementation of pulp regeneration as an effective therapeutic strategy for root canal therapy, especially in adult teeth. Here, we demonstrate a novel strategy to engineer pre-vascularized, cell-laden hydrogel pulp-like tissue constructs in full-length root canals for dental pulp regeneration. We utilized gelatin methacryloyl (GelMA) hydrogels with tunable physical and mechanical properties to determine the microenvironmental conditions (microstructure, degradation, swelling and elastic modulus) that enhanced viability, spreading and proliferation of encapsulated odontoblast-like cells (OD21), and the formation of endothelial monolayers by endothelial colony forming cells (ECFCs). GelMA hydrogels with higher polymer concentration (15% w/v) and stiffness enhanced OD21 cell viability, spreading and proliferation, as well as endothelial cell spreading and monolayer formation. We then fabricated pre-vascularized, full-length, dental pulp-like tissue constructs by dispensing OD21 cell-laden GelMA hydrogel prepolymer in root canals of extracted teeth and fabricating 500 µm channels throughout the root canals. ECFCs seeded into the microchannels successfully formed monolayers and underwent angiogenic sprouting within 7 days in culture. In summary, the proposed approach is a simple and effective strategy for engineering of pre-vascularized dental pulp constructs offering potentially beneficial translational outcomes.

  18. The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies

    NARCIS (Netherlands)

    Hiemstra, S.J.; Lende, van der T.; Woelders, H.

    2006-01-01

    This chapter focuses on ex situ conservation. An overview of the state of the art cryopreservation and reproductive technology for farm animals and fish is followed by a discussion on the implications of ex situ conservation strategies. Ex situ conservation of genetic material from livestock and

  19. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Mukhtar, Z.; Khan, S.A.; Zafar, Y.

    2005-01-01

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  20. Genetic engineering, a potential aid to conventional plant breeding

    International Nuclear Information System (INIS)

    Baloch, M.J.; Soomro, B.A.

    1993-01-01

    To develop improve crop varieties, the most basic elements are crossing of desirable parents to provide genetic variation for evaluation and selection of desirable plants among the progenies. In conventional plant breeding, gene transfer is achieved by back crossing or less frequently by recurrent selection. Both processes take several generations to reach to a point where genetic milieu of the parents remains. Plant breeders also face the most difficult situation when the desired gene is present in the entirely diverse species where wide crosses become inevitable. In addition, genomic disharmony, unfavourable genic interaction and chromosomal instability also account for limited success of wide hybridization in the field crops. Under such circumstances, tissue culture techniques, such as somaclonal variation, Embryo Rescue Technique and Somatic hybridization are the ultimate options. There may be other cases where desired genes are present in entirely different genera or organisms and crossings of donor with recipient is no more a concern. Plant breeders also spend much of their time manipulating quantitatively inherited traits such as yield, that have low heritability. These characters are assumed to be determined by a large number of genes each with minor and additive effects. Direct selection for such traits is less effective. Genetic Engineering approaches like isozymes and Restriction Fragment Length Polymorphism (RFLP) with heritability of 1.0 make the selection very efficient and accurate as indirect selection criteria for quantitatively inherited traits. Hence isozymes and RFLPs techniques can easily be exercised at cellular or seedling stages thus reducing the time and labour oriented screening of plants at maturity. Rather new approach such as polymerase chain reaction (PCR) will also be discussed in this article. (Orig./A.B.)

  1. Analytical strategies for discovery and replication of genetic effects in pharmacogenomic studies

    Directory of Open Access Journals (Sweden)

    Kohler JR

    2014-08-01

    Full Text Available Jared R Kohler, Tobias Guennel, Scott L MarshallBioStat Solutions, Inc., Frederick, MD, USAAbstract: In the past decade, the pharmaceutical industry and biomedical research sector have devoted considerable resources to pharmacogenomics (PGx with the hope that understanding genetic variation in patients would deliver on the promise of personalized medicine. With the advent of new technologies and the improved collection of DNA samples, the roadblock to advancements in PGx discovery is no longer the lack of high-density genetic information captured on patient populations, but rather the development, adaptation, and tailoring of analytical strategies to effectively harness this wealth of information. The current analytical paradigm in PGx considers the single-nucleotide polymorphism (SNP as the genomic feature of interest and performs single SNP association tests to discover PGx effects – ie, genetic effects impacting drug response. While it can be straightforward to process single SNP results and to consider how this information may be extended for use in downstream patient stratification, the rate of replication for single SNP associations has been low and the desired success of producing clinically and commercially viable biomarkers has not been realized. This may be due to the fact that single SNP association testing is suboptimal given the complexities of PGx discovery in the clinical trial setting, including: 1 relatively small sample sizes; 2 diverse clinical cohorts within and across trials due to genetic ancestry (potentially impacting the ability to replicate findings; and 3 the potential polygenic nature of a drug response. Subsequently, a shift in the current paradigm is proposed: to consider the gene as the genomic feature of interest in PGx discovery. The proof-of-concept study presented in this manuscript demonstrates that genomic region-based association testing has the potential to improve the power of detecting single SNP or

  2. Trends in approval times for genetically engineered crops in the United States and the European Unio

    NARCIS (Netherlands)

    Smart, Richard D.; Blum, Matthias; Wesseler, J.H.H.

    2017-01-01

    Genetically engineered (GE) crops are subject to regulatory oversight to Ensure their safety for humans and the environment. Their approval in the European Union (EU) starts with an application in a given Member State followed by a scientific risk assessment, and ends with a political

  3. Application of genetic algorithm in the fuel management optimization for the high flux engineering test reactor

    International Nuclear Information System (INIS)

    Shi Xueming; Wu Hongchun; Sun Shouhua; Liu Shuiqing

    2003-01-01

    The in-core fuel management optimization model based on the genetic algorithm has been established. An encode/decode technique based on the assemblies position is presented according to the characteristics of HFETR. Different reproduction strategies have been studied. The expert knowledge and the adaptive genetic algorithms are incorporated into the code to get the optimized loading patterns that can be used in HFETR

  4. Arming Technology in Yeast—Novel Strategy for Whole-cell Biocatalyst and Protein Engineering

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Ueda

    2013-09-01

    Full Text Available Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called “arming technology”, can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  5. Concurrent engineering: effective deployment strategies

    Directory of Open Access Journals (Sweden)

    Unny Menon

    1996-12-01

    Full Text Available This paper provides a comprehensive insight into current trends and developments in Concurrent Engineering for integrated development of products and processes with the goal of completing the entire cycle in a shorter time, at lower overall cost and with fewer engineering design changes after product release. The evolution and definition of Concurrent Engineering are addressed first, followed by a concise review of the following elements of the concurrent engineering approach to product development: Concept Development: The Front-End Process, identifying Customer Needs and Quality Function Deployment, Establishing Product Specifications, Concept Selection, Product Architecture, Design for Manufacturing, Effective Rapid Prototyping, and The Economics of Product Development. An outline of a computer-based tutorial developed by the authors and other graduate students funded by NASA ( accessible via the world-wide-web . is provided in this paper. A brief discussion of teamwork for successful concurrent engineering is included, t'ase histories of concurrent engineering implementation at North American and European companies are outlined with references to textbooks authored by Professor Menon and other writers. A comprehensive bibliography on concurrent engineering is included in the paper.

  6. Proposing an Evidence-Based Strategy for Software Requirements Engineering.

    Science.gov (United States)

    Lindoerfer, Doris; Mansmann, Ulrich

    2016-01-01

    This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.

  7. Measuring Engineering Faculty Views about Benefits and Costs of Using Student-Centered Strategies

    Directory of Open Access Journals (Sweden)

    Eugene Judson

    2017-06-01

    Full Text Available Dispositions of 286 engineering faculty members were assessed to determine views about three student-centered classroom strategies and how frequently faculty used those strategies. The student-centered classroom strategies examined were: using formative feedback to adjust instruction, integrating real-world applications, and promoting student-to-student discussions during formal class time. The Value, Expectancy, and Cost of Testing Educational Reforms Survey (VECTERS, based on expectancy theory, was designed, tested, and validated for this purpose. Results indicate using strategies, such as formative feedback, are significantly tied to perceived benefits and expectation of success. Using student-centered strategies is inversely related to the perceived cost of implementation – with more frequent users perceiving lower cost of time and materials.

  8. Constructs and methods for genome editing and genetic engineering of fungi and protists

    Science.gov (United States)

    Hittinger, Christopher Todd; Alexander, William Gerald

    2018-01-30

    Provided herein are constructs for genome editing or genetic engineering in fungi or protists, methods of using the constructs and media for use in selecting cells. The construct include a polynucleotide encoding a thymidine kinase operably connected to a promoter, suitably a constitutive promoter; a polynucleotide encoding an endonuclease operably connected to an inducible promoter; and a recognition site for the endonuclease. The constructs may also include selectable markers for use in selecting recombinations.

  9. Strategies for outcrossing and genetic manipulation of Drosophila compound autosome stocks.

    Science.gov (United States)

    Martins, T; Kotadia, S; Malmanche, N; Sunkel, C E; Sullivan, W

    2013-01-01

    Among all organisms, Drosophila melanogaster has the most extensive well-characterized collection of large-scale chromosome rearrangements. Compound chromosomes, rearrangements in which homologous chromosome arms share a centromere, have proven especially useful in genetic-based surveys of the entire genome. However, their potential has not been fully realized because compound autosome stocks are refractile to standard genetic manipulations: if outcrossed, they yield inviable aneuploid progeny. Here we describe two strategies, cold-shock and use of the bubR1 mutant alleles, to produce nullo gametes through nondisjunction. These gametes are complementary to the compound chromosome-bearing gametes and thus produce viable progeny. Using these techniques, we created a compound chromosome two C(2)EN stock bearing a red fluorescent protein-histone transgene, facilitating live analysis of these unusually long chromosomes.

  10. An Equivalent Emission Minimization Strategy for Causal Optimal Control of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Stephan Zentner

    2014-02-01

    Full Text Available One of the main challenges during the development of operating strategies for modern diesel engines is the reduction of the CO2 emissions, while complying with ever more stringent limits for the pollutant emissions. The inherent trade-off between the emissions of CO2 and pollutants renders a simultaneous reduction difficult. Therefore, an optimal operating strategy is sought that yields minimal CO2 emissions, while holding the cumulative pollutant emissions at the allowed level. Such an operating strategy can be obtained offline by solving a constrained optimal control problem. However, the final-value constraint on the cumulated pollutant emissions prevents this approach from being adopted for causal control. This paper proposes a framework for causal optimal control of diesel engines. The optimization problem can be solved online when the constrained minimization of the CO2 emissions is reformulated as an unconstrained minimization of the CO2 emissions and the weighted pollutant emissions (i.e., equivalent emissions. However, the weighting factors are not known a priori. A method for the online calculation of these weighting factors is proposed. It is based on the Hamilton–Jacobi–Bellman (HJB equation and a physically motivated approximation of the optimal cost-to-go. A case study shows that the causal control strategy defined by the online calculation of the equivalence factor and the minimization of the equivalent emissions is only slightly inferior to the non-causal offline optimization, while being applicable to online control.

  11. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...

  12. A combined strategy to reduce restenosis for vascular tissue engineering applications.

    Science.gov (United States)

    Patel, Hemang J; Su, Shih-Horng; Patterson, Cam; Nguyen, Kytai T

    2006-01-01

    Biodegradable polymers including poly(l-lactic acid) (PLLA) have been used to develop cardiovascular prostheses such as vascular grafts and stents. However, implant-associated thrombosis, inflammation, and restenosis are still major obstacles for the utility of these devices. The lack of an endothelial cell (EC) lining (endothelialization) on the implants and the responses of the immune systems toward the implants have been associated with these complications. In our research strategy, we have combined the drug delivery principle with the strategies of tissue engineering, the controlled release of anti-inflammation drugs and enhanced endothelialization, to reduce the implant-associated adverse responses. We first integrated curcumin, an anti-inflammatory drug and anti-smooth muscle cell (SMC) proliferative drug, with PLLA. This curcumin-loaded PLLA material was then modified using adsorptive coating of adhesive proteins such as fibronectin, collagen-I, vitronectin, laminin, and matrigel to improve the endothelial cell (EC) adhesion and proliferation, and ECs were seeded on top of these modified surfaces. Our results showed steady drug release kinetics over the period of 50 days from curcumin-loaded PLLA materials. Additionally, integration of curcumin in PLLA increased the roughness of the scaffold at the nanometric scale using an atomic force microscopic analysis. Moreover, coating with fibronectin on curcumin-loaded PLLA surfaces gave the highest EC adhesion and proliferation compared to other adhesive proteins using PicoGreen DNA assays. The ability of our strategy to release the curcumin for producing anti-inflammation and anti-proliferation responses and to improve EC adhesion and growth after EC seeding suggests this strategy may reduce implant-associated adverse responses and be a better approach for vascular tissue engineering applications.

  13. Metabolic Engineering Strategies for the Optimization of Medicinal and Aromatic Plants : Expectations and Realities

    NARCIS (Netherlands)

    Kayser, O.; Baricevic, D; Novak, J; Pank, F

    2010-01-01

    In recent years classic genetic and molecular biology strategies (Bioballistics, Agrobacterium tumefaciens transformation, recombinant enzymes) for production of natural compounds or even breeding of medicinal and aromatic plants have expanded and improved productivity of plant-derived fine

  14. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts.

    Science.gov (United States)

    Bernal, Claudia; Rodríguez, Karen; Martínez, Ronny

    2018-06-09

    Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, -thus not reusable- and their performance under real operational conditions is uncertain. Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts. In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel "immobilized biocatalyst engineering" research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications. Copyright © 2018. Published by Elsevier Inc.

  15. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 50. Brazilian congress on genetics. 50 years developing genetics. Abstracts

    International Nuclear Information System (INIS)

    2004-01-01

    Use of radioisotopes and ionizing radiations in genetics is presented. Several aspects related to men, animals,plants and microorganisms are reported highlighting biological radiation effects, evolution, mutagenesis and genetic engineering. Genetic mapping, gene mutations, genetic diversity, DNA damages, plant cultivation and plant grow are studied as well

  18. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    Science.gov (United States)

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  19. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    Science.gov (United States)

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  20. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  1. Engineered CRISPR Systems for Next Generation Gene Therapies.

    Science.gov (United States)

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  2. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    Science.gov (United States)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  3. Tissue engineering strategies for alveolar cleft reconstruction: a systematic review of the literature

    NARCIS (Netherlands)

    Janssen, N.G.; Weijs, W.L.J.; Koole, R.A.; Rosenberg, A.J.; Meijer, G.J.

    2014-01-01

    OBJECTIVES: To date, a great number of tissue engineering strategies have been suggested for alveolar cleft reconstruction; however, autologous bone grafting seems to remain the golden standard. MATERIALS AND METHODS: A systematic review of the literature was conducted in order to evaluate the

  4. BONDI-97 A novel neutron energy spectrum unfolding tool using a genetic algorithm

    CERN Document Server

    Mukherjee, B

    1999-01-01

    The neutron spectrum unfolding procedure using the count rate data obtained from a set of Bonner sphere neutron detectors requires the solution of the Fredholm integral equation of the first kind by using complex mathematical methods. This paper reports a new approach for the unfolding of neutron spectra using the Genetic Algorithm tool BONDI-97 (BOnner sphere Neutron DIfferentiation). The BONDI-97 was used as the input for Genetic Algorithm engine EVOLVER to search for a globally optimised solution vector from a population of randomly generated solutions. This solution vector corresponds to the unfolded neutron energy spectrum. The Genetic Algorithm engine emulates the Darwinian 'Survival of the Fittest' strategy, the key ingredient of the 'Theory of Evolution'. The spectra of sup 2 sup 4 sup 1 Am/Be (alpha,n) and sup 2 sup 3 sup 9 Pu/Be (alpha,n) neutron sources were unfolded using the BONDI-97 tool. (author)

  5. Impact of Professional Learning on Teachers' Representational Strategies and Students' Cognitive Engagement with Molecular Genetics Concepts

    Science.gov (United States)

    Nichols, Kim

    2018-01-01

    A variety of practices and specialised representational systems are required to understand, communicate and construct molecular genetics knowledge. This study describes teachers' use of multimodal representations of molecular genetics concepts and how their strategies and choice of resources were interpreted, understood and used by students to…

  6. Genetic structure of three Croatian horse breeds: implications for their conservation strategy

    Directory of Open Access Journals (Sweden)

    Miljenko Konjačić

    2010-01-01

    Full Text Available The genetic variability for a sample of 107 animals from three autochthonous Croatian horse breeds was estimated using 20 microsatellites. The average number of alleles per locus (6.3 and proportion of heterozygosity (0.732 indicated a moderate variability. The expected heterozygosity was similar among all breeds and ranged between 0.724 in the Posavina horse, and 0.737 in the Croatian Coldblood and Murinsulaner horse. The inbreeding coefficient FIS was low and non-significant over the three populations. The genetic differentiation among the three populations was low (FST=0.026, suggesting that only 2.6% of the total genetic variability was due to differences between the breeds, and 97% to individual differences. The results of pairwise genetic differentiation suggest that the Posavina horse and the Croatian Coldblood were the most closely related populations (FST=0.016. These results are confirmed by Nei’s genetic distances with the highest value observed between the Posavina horse and the Murinsulaner (0.082 and the lowest between the Posavina horse and the Croatian Coldblood (0.044. An assignment test correctly assigned 82% of individuals to the correct breed. Strategies for preserving the original native genes in the Croatian native horse breeds should be considered in order to prevent these breeds from becoming extinct and include them in the future breeding programmes.

  7. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    -length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A...

  8. A puzzle assembly strategy for fabrication of large engineered cartilage tissue constructs.

    Science.gov (United States)

    Nover, Adam B; Jones, Brian K; Yu, William T; Donovan, Daniel S; Podolnick, Jeremy D; Cook, James L; Ateshian, Gerard A; Hung, Clark T

    2016-03-21

    Engineering of large articular cartilage tissue constructs remains a challenge as tissue growth is limited by nutrient diffusion. Here, a novel strategy is investigated, generating large constructs through the assembly of individually cultured, interlocking, smaller puzzle-shaped subunits. These constructs can be engineered consistently with more desirable mechanical and biochemical properties than larger constructs (~4-fold greater Young׳s modulus). A failure testing technique was developed to evaluate the physiologic functionality of constructs, which were cultured as individual subunits for 28 days, then assembled and cultured for an additional 21-35 days. Assembled puzzle constructs withstood large deformations (40-50% compressive strain) prior to failure. Their ability to withstand physiologic loads may be enhanced by increases in subunit strength and assembled culture time. A nude mouse model was utilized to show biocompatibility and fusion of assembled puzzle pieces in vivo. Overall, the technique offers a novel, effective approach to scaling up engineered tissues and may be combined with other techniques and/or applied to the engineering of other tissues. Future studies will aim to optimize this system in an effort to engineer and integrate robust subunits to fill large defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    Science.gov (United States)

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Delivering the Goods for Genome Engineering and Editing.

    Science.gov (United States)

    Skipper, Kristian Alsbjerg; Mikkelsen, Jacob Giehm

    2015-08-01

    A basic understanding of genome evolution and the life and impact of microorganisms, like viruses and bacteria, has been fundamental in the quest for efficient genetic therapies. The expanding tool box for genetic engineering now contains transposases, recombinases, and nucleases, all created from naturally occurring genome-modifying proteins. Whereas conventional gene therapies have sought to establish sustained expression of therapeutic genes, genomic tools are needed only in a short time window and should be delivered to cells ideally in a balanced "hit-and-run" fashion. Current state-of-the-art delivery strategies are based on intracellular production of protein from transfected plasmid DNA or in vitro-transcribed RNA, or from transduced viral templates. Here, we discuss advantages and challenges of intracellular production strategies and describe emerging approaches based on the direct delivery of protein either by transfer of recombinant protein or by lentiviral protein transduction. With focus on adapting viruses for protein delivery, we describe the concept of "all-in-one" lentiviral particles engineered to codeliver effector proteins and donor sequences for DNA transposition or homologous recombination. With optimized delivery methods-based on transferring DNA, RNA, or protein-it is no longer far-fetched that researchers in the field will indeed deliver the goods for somatic gene therapies.

  11. Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Boronat, Vicente

    2017-01-01

    Highlights: • Optimized dual-fuel strategy to cover the whole engine load-speed map. • EURO VI NOx levels up to 14 bar IMEP with fully and highly premixed RCCI strategies. • Dual-fuel provides up to 7% higher efficiency than CDC if urea consumption is considered. - Abstract: This experimental work investigates the capabilities of the reactivity controlled compression ignition combustion concept to be operated in the whole engine map and discusses its benefits when compared to conventional diesel combustion. The experiments were conducted using a single-cylinder medium-duty diesel engine fueled with regular gasoline and diesel fuels. The main modification on the stock engine architecture was the addition of a port fuel injector in the intake manifold. In addition, with the aim of extending the reactivity controlled compression ignition operating range towards higher loads, the piston bowl volume was increased to reduce the compression ratio of the engine from 17.5:1 (stock) down to 15.3:1. To allow the dual-fuel operation over the whole engine map without exceeding the mechanical limitations of the engine, an optimized dual-fuel combustion strategy is proposed in this research. The combustion strategy changes as the engine load increases, starting from a fully premixed reactivity controlled compression ignition combustion up to around 8 bar IMEP, then switching to a highly premixed reactivity controlled compression ignition combustion up to 15 bar IMEP, and finally moving to a mainly diffusive dual-fuel combustion to reach the full load operation. The engine mapping results obtained using this combustion strategy show that reactivity controlled compression ignition combustion allows fulfilling the EURO VI NOx limit up to 14 bar IMEP. Ultra-low soot emissions are also achieved when the fully premixed combustion is promoted, however, the soot levels rise notably as the combustion strategy moves to a less premixed pattern. Finally, the direct comparison of

  12. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  13. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    Science.gov (United States)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  14. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  15. Strategies for MCMC computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibanez, Noelia; Sorensen, Daniel

    2006-01-01

    Given observations of a trait and a pedigree for a group of animals, the basic model in quantitative genetics is a linear mixed model with genetic random effects. The correlation matrix of the genetic random effects is determined by the pedigree and is typically very highdimensional but with a sp......Given observations of a trait and a pedigree for a group of animals, the basic model in quantitative genetics is a linear mixed model with genetic random effects. The correlation matrix of the genetic random effects is determined by the pedigree and is typically very highdimensional...

  16. Win the game of Googleopoly unlocking the secret strategy of search engines

    CERN Document Server

    Bradley, Sean V

    2015-01-01

    Rank higher in search results with this guide to SEO and content building supremacy Google is not only the number one search engine in the world, it is also the number one website in the world. Only 5 percent of site visitors search past the first page of Google, so if you're not in those top ten results, you are essentially invisible. Winning the Game of Googleopoly is the ultimate roadmap to Page One Domination. The POD strategy is what gets you on that super-critical first page of Google results by increasing your page views. You'll learn how to shape your online presence for Search Engine

  17. [Innovation guidelines and strategies for pharmaceutical engineering of Chinese medicine and their industrial translation].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2013-01-01

    This paper briefly analyzes the bottlenecks and major technical requirements for pharmaceutical industry of Chinese medicine, providing current status of pharmaceutical engineering of Chinese medicine. The innovation directions and strategies of the pharmaceutical engineering for manufacturing Chinese medicine are proposed along with the framework of their core technology. As a consequence, the development of the third-generation pharmaceutical technology for Chinese medicine, featured as "precision, digital and intelligent", is recommended. The prospects of the pharmaceutical technology are also forecasted.

  18. Construction of genetically engineered Candida tropicalis for conversion of l-arabinose to l-ribulose.

    Science.gov (United States)

    Yeo, In-Seok; Shim, Woo-Yong; Kim, Jung Hoe

    2018-05-20

    For the biological production of l-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce l-ribulose by fermentation with a glucose/l-arabinose mixture. For the uptake of l-arabinose as a substrate and conversion of l-arabinose to l-ribulose, two heterologous genes coding for l-arabinose transporter and l-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated l-arabinose transporter gene (STP2)-expressing strain exhibited a high l-arabinose uptake rate of 0.103 g/g cell/h and the expression of l-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of l-arabinose. This genetically engineered strain can be used for l-ribulose production by fermentation using mixed sugars of glucose and l-arabinose. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    Science.gov (United States)

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  1. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei

    2015-01-01

    This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation

  2. NUTRITIONAL ENHANCEMENT OF ALFALFA THROUGH GENETIC ENGINEERING

    Directory of Open Access Journals (Sweden)

    J. Faragó

    2008-09-01

    Full Text Available Alfalfa (Medicago sativa L. is a pasture legume crop of primary importance to animal production throughout the world. The nutritional quality of alfalfa, as of other leguminous forage crops, is mainly determined by their content in selected essential amino acids (EAAs, such as methionine (Met and cysteine (Cys. In alfalfa, however, these S-containing amino acids constitute only about 1% or less of crude proteins (Frame et al., 1998. This is significantly less than the 3.5% Met+Cys content in the recommended FAO reference protein (FAO, 1973. Recent advances in genetic engineering allow to use the transgenic approach to increase the content of specific essential amino acids in target plant species. A number of different molecular approaches have been developed to address this issue, such as over-expression of a heterologous or homologous Met-rich protein, expression of a synthetic protein, modification of protein sequence, and metabolic engineering of the free amino acid pool and protein sink. To study the possibility of transgenic enhancement of nutritional quality of alfalfa, we used the approach of expression of a heterologous protein rich in Met+Cys in cells of alfalfa. The T-DNA introduced into the genome of alfalfa, using Agrobacterium tumefaciens-mediated genetic transformation, contained the selectable merker gene nptII for kanamycin (Kn resistance, and a cDNA of Ov gene from Japanese quail (Coturnix coturnix coding for a high Met+Cys containing ovalbumine (Mucha et al., 1991, both under constitutive promoters. After cocultivation of petiole segment- and leaf blade-explants of two highly embryogenic alfalfa genotypes Rg9/I-14-22 and Rg11/I-10-68 (Faragó et al., 1997 with cells of A. tumefaciens strain AGL1 carrying the nptII and Ov genes, and selection of transgenic cells on Kn containing selective media, more than one hundred putatively transgenic regenerants were obtained through somatic embryogenesis. Biological (Kn rooting assay

  3. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.

    Science.gov (United States)

    Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob

    2017-07-01

    Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.

  4. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  5. Application of genetically engineered microorganisms to bioremediation and wastewater treatment. Idenshi sosa biseibutsu no kankyo joka mizushori eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M; Ike, M [Osaka University, Osaka (Japan). Faculty of Engineering

    1993-11-10

    This paper summarizes the following techniques: a gene engineering method for bioremediation and wastewater treatment, microorganism breeding using the former method, and a monitoring technique for genetical and ecological stability of genetically engineered microorganisms. Recombination bacteria reinforced with PH genes showed higher phenol removing rate than wild strains, but presented accumulation of catechol in such a large quantity as cannot be seen in wild strains, with the complete degradation rate rather decreased. Gene recombined bacteria structured by introducing the recombined plasmid, pBH500, had high genetic stability when P.putida BH-1 is used as a host. E.coli C600 having recombined plasmid and P.putida BH were added and cultivated in activated sludge. As a result, both recombined bacteria showed rapid logarithmic decrease just after the addition, then, maintained the relatively stable population groups, and remained in the activated sludge for an extended period of time. In monitoring techniques, the colony hybridization process detected clearly the gene recombined bacteria. 9 refs., 7 figs., 1 tab.

  6. Barriers and paths to market for genetically engineered crops.

    Science.gov (United States)

    Rommens, Caius M

    2010-02-01

    Each year, billions of dollars are invested in efforts to improve crops through genetic engineering (GE). These activities have resulted in a surge of publications and patents on technologies and genes: a momentum in basic research that, unfortunately, is not sustained throughout the subsequent phases of product development. After more than two decades of intensive research, the market for transgenic crops is still dominated by applications of just a handful of methods and genes. This discrepancy between research and development reflects difficulties in understanding and overcoming seven main barriers-to-entry: (1) trait efficacy in the field, (2) critical product concepts, (3) freedom-to-operate, (4) industry support, (5) identity preservation and stewardship, (6) regulatory approval and (7) retail and consumer acceptance. In this review, I describe the various roadblocks to market for transgenic crops and also discuss methods and approaches on how to overcome these, especially in the United States.

  7. Improving the efficacy and safety of engineered T cell therapy for cancer.

    Science.gov (United States)

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. A Comparative Study of Fuzzy Logic, Genetic Algorithm, and Gradient-Genetic Algorithm Optimization Methods for Solving the Unit Commitment Problem

    Directory of Open Access Journals (Sweden)

    Sahbi Marrouchi

    2014-01-01

    Full Text Available Due to the continuous increase of the population and the perpetual progress of industry, the energy management presents nowadays a relevant topic that concerns researchers in electrical engineering. Indeed, in order to establish a good exploitation of the electrical grid, it is necessary to solve technical and economic problems. This can only be done through the resolution of the Unit Commitment Problem. Unit Commitment Problem allows optimizing the combination of the production units’ states and determining their production planning, in order to satisfy the expected consumption with minimal cost during a specified period which varies usually from 24 hours to one week. However, each production unit has some constraints that make this problem complex, combinatorial, and nonlinear. This paper presents a comparative study between a strategy based on hybrid gradient-genetic algorithm method and two strategies based on metaheuristic methods, fuzzy logic, and genetic algorithm, in order to predict the combinations and the unit commitment scheduling of each production unit in one side and to minimize the total production cost in the other side. To test the performance of the optimization proposed strategies, strategies have been applied to the IEEE electrical network 14 busses and the obtained results are very promising.

  9. 'HoneySweet' (C5), the first genetically engineered Plum pox virus-resistant plum (Prunus domestica L.) cultivar

    Science.gov (United States)

    ‘HoneySweet’ plum was released by the U.S. Department of Agriculture, Agricultural Research Service, to provide U.S. growers and P. domestica plum breeders with a high fruit quality plum cultivar resistant to Plum pox virus (PPV). ‘HoneySweet’ was developed through genetic engineering utilizing the...

  10. Numerical Analysis of the Combustion and Emission Characteristics of Diesel Engines with Multiple Injection Strategies Using a Modified 2-D Flamelet Model

    Directory of Open Access Journals (Sweden)

    Gyujin Kim

    2017-08-01

    Full Text Available The multiple injection strategy has been widely used in diesel engines to reduce engine noise, NOx and soot formation. Fuel injection developments such as the common-rail and piezo-actuator system provide more precise control of the injection quantity and time under higher injection pressures. As various injection strategies become accessible, it is important to understand the interaction of each fuel stream and following combustion process under the multiple injection strategy. To investigate these complex processes quantitatively, numerical analysis using CFD is a good alternative to overcome the limitation of experiments. A modified 2-D flamelet model is further developed from previous work to model multi-fuel streams with higher accuracy. The model was validated under various engine operating conditions and captures the combustion and emissions characteristics as well as several parametric variations. The model is expected to be used to suggest advanced injection strategies in engine development processes.

  11. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.

    Science.gov (United States)

    Figueroa, Jose A; Reidy, Adair; Mirandola, Leonardo; Trotter, Kayley; Suvorava, Natallia; Figueroa, Alejandro; Konala, Venu; Aulakh, Amardeep; Littlefield, Lauren; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Musgrove, Breeanna; Radhi, Saba; D'Cunha, Nicholas; D'Cunha, Luke N; Hermonat, Paul L; Cobos, Everardo; Chiriva-Internati, Maurizio

    2015-03-01

    Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.

  12. Strategies for integrated analysis of genetic, epigenetic and gene expression variation in cancer: addressing the challenges

    Directory of Open Access Journals (Sweden)

    Louise Bruun Thingholm

    2016-02-01

    Full Text Available The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis. However, integration of heterogeneous measurements of biological variation is a non-trivial exercise due to the diversity of the human genome and the variety of output data formats and genome coverage obtained from the commonly used molecular platforms. This review article will provide an introduction to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured – making the assessment of disease risk against a composite genomic factor possible. The focus of this review is to provide an overview and introduction to the main strategies and to discuss where there is a need for further development.

  13. A Two-Step Strategy for System Identification of Civil Structures for Structural Health Monitoring Using Wavelet Transform and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Carlos Andres Perez-Ramirez

    2017-01-01

    Full Text Available Nowadays, the accurate identification of natural frequencies and damping ratios play an important role in smart civil engineering, since they can be used for seismic design, vibration control, and condition assessment, among others. To achieve it in practical way, it is required to instrument the structure and apply techniques which are able to deal with noise-corrupted and non-linear signals, as they are common features in real-life civil structures. In this article, a two-step strategy is proposed for performing accurate modal parameters identification in an automated manner. In the first step, it is obtained and decomposed the measured signals using the natural excitation technique and the synchrosqueezed wavelet transform, respectively. Then, the second step estimates the modal parameters by solving an optimization problem employing a genetic algorithm-based approach, where the micropopulation concept is used to improve the speed convergence as well as the accuracy of the estimated values. The accuracy and effectiveness of the proposal are tested using both the simulated response of a benchmark structure and the measurements of a real eight-story building. The obtained results show that the proposed strategy can estimate the modal parameters accurately, indicating than the proposal can be considered as an alternative to perform the abovementioned task.

  14. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  15. Surveys suck: Consumer preferences when purchasing genetically engineered foods.

    Science.gov (United States)

    Powell, Douglas A

    2013-01-01

    Many studies have attempted to gauge consumers' acceptance of genetically engineered or modified (GM) foods. Surveys, asking people about attitudes and intentions, are easy-to-collect proxies of consumer behavior. However, participants tend to respond as citizens of society, not discrete individuals, thereby inaccurately portraying their potential behavior. The Theory of Planned Behavior improved the accuracy of self-reported information, but its limited capacity to account for intention variance has been attributed to the hypothetical scenarios to which survey participants must respond. Valuation methods, asking how much consumers may be willing to pay or accept for GM foods, have revealed that consumers are usually willing to accept them at some price, or in some cases willing to pay a premium. Ultimately, it's consumers' actual--not intended--behavior that is of most interest to policy makers and business decision-makers. Real choice experiments offer the best avenue for revealing consumers' food choices in normal life.

  16. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    Science.gov (United States)

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  17. A review on breeding and genetic strategies in Iranian buffaloes (Bubalus bubalis).

    Science.gov (United States)

    Safari, Abbas; Ghavi Hossein-Zadeh, Navid; Shadparvar, Abdol Ahad; Abdollahi Arpanahi, Rostam

    2018-04-01

    The aim of current study was to review breeding progress and update information on genetic strategies in Iranian buffaloes. Iranian buffalo is one of the vital domestic animals throughout north, north-west, south and south-west of Iran with measurable characteristics both in milk and meat production. The species plays an important role in rural economy of the country due to its unique characteristics such as resistance to diseases and parasites, having long productive lifespan and showing higher capability of consuming low-quality forage. In Iran, total production of milk and meat devoted to buffaloes are 293,000 and 24,700 tons, respectively. Selection activities and milk yield recording are carrying out by the central government through the Animal Breeding Centre of Iran. The main breeding activities of Iranian buffaloes included the estimation of genetic parameters and genetic trends for performance traits using different models and methods, estimation of economic values and selection criteria and analysis of population structure. Incorporating different aspects of dairy buffalo management together with improved housing, nutrition, breeding and milking, is known to produce significant improvements in buffalo production. Therefore, identifying genetic potential of Iranian buffaloes, selection of superior breeds, improving nutritional management and reproduction and developing the education and increasing the skills of practical breeders can be useful in order to enhance the performance and profitability of Iranian buffaloes.

  18. Simple screening strategy with only water bath needed for the identification of insect-resistant genetically modified rice.

    Science.gov (United States)

    Zhang, Fang; Wang, Liu; Wang, Rui; Ying, Yibin; Wu, Jian

    2015-02-03

    An informative, with simple instrument needed, rapid and easily updated strategy for the identification of insect-resistant genetically modified (GM) rice has been described. Such strategy is based on a parallel series of loop-mediated isothermal amplification (LAMP) reactions targeting the rice endogenous gene sucrose phosphate synthase (Sps), the top two most frequently used genetic elements (Agrobacterium tumefaciens nopaline synthase terminator (Nos) and Cauliflower mosaic virus 35S promoter (CaMV35S)), and an insect-resistant specific gene (Cry1Ac) and detected visually by phosphate ion (Pi)-induced coloration reaction. After a logical judgment of visible readouts has been obtained, three popular insect-resistant GM rice events in China can be successfully identified within 35 min, using either microwell strips or paper bases.

  19. Genetic networks and soft computing.

    Science.gov (United States)

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  20. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations

    Directory of Open Access Journals (Sweden)

    Christopher M. Mahoney

    2018-05-01

    Full Text Available Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  1. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations.

    Science.gov (United States)

    Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G

    2018-01-01

    Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  2. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    Science.gov (United States)

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  3. Genetic programming in microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, D A

    1981-11-01

    Formerly, when microbiologists had only existing organisms at their disposal whose characteristics could only be changed randomly by genetic experiments, they used to dream of programmed genetic changes. This dream has come true with modern genetic engineering.

  4. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

    Science.gov (United States)

    Samin, Ghufrana; Pavlova, Martina; Arif, M Irfan; Postema, Christiaan P; Damborsky, Jiri; Janssen, Dick B

    2014-09-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease.

    Directory of Open Access Journals (Sweden)

    Tobias Eisenberger

    Full Text Available Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs. Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.

  6. An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease.

    Science.gov (United States)

    Eisenberger, Tobias; Decker, Christian; Hiersche, Milan; Hamann, Ruben C; Decker, Eva; Neuber, Steffen; Frank, Valeska; Bolz, Hanno J; Fehrenbach, Henry; Pape, Lars; Toenshoff, Burkhard; Mache, Christoph; Latta, Kay; Bergmann, Carsten

    2015-01-01

    Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs). Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.

  7. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  8. Self-Regulated Learning Strategies of Engineering College Students While Learning Electric Circuit Concepts with Enhanced Guided Notes

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry

    2013-01-01

    The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…

  9. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review

    International Nuclear Information System (INIS)

    Ghosh, Ashmita; Khanra, Saumyakanti; Mondal, Madhumanti; Halder, Gopinath; Tiwari, O.N.; Saini, Supreet; Bhowmick, Tridib Kumar; Gayen, Kalyan

    2016-01-01

    Highlights: • Sample collection, isolation and identification to obtain a pure microalgal species. • Isolation of microalgal strains worldwide based on continent and habitat. • Genetic engineering tools for enhanced production of biodiesel and value added chemicals. • Cultivation systems for genetically modified strain. - Abstract: Microalgae and cyanobacteria are promising sources of biodiesel because of their high oil content (∼10 fold higher) and shorter cultivation time (∼4 fold lesser) than conventional oil producing territorial plants (e.g., soybean, corn and jatropha). These organisms also provide source of several valuable natural chemicals including pigments, food supplements like eicosapentanoic acid [EPA], decosahexaenoic acid [DHA] and vitamins. In addition, many cellular components of these organisms are associated with therapeutic properties like antioxidant, anti-inflammatory, immunostimulating, and antiviral. Isolation and identification of high-yielding strains with the faster growth rate is the key for successful implementation of algal biodiesel (or other products) at a commercial level. A number of research groups in Europe, America, and Australia are thus extensively involved in exploration of novel microalgal strain. Further, genetic engineering provides a tool to engineer the native strain resulting in transgenic strain with higher yields. Despite these efforts, no consensus has yet been reached so far in zeroing on the best microalgal strain for sustainable production of biofuel at reasonable cost. The search for novel microalgal strain and transgenesis of microalgae, are continuing side by side with the hope of commercial scale production of microalgae biofuel in near future. However, no consolidated review report exists which guides to isolate and identify a uncontaminated microalgal strain along with their transgenesis. The present review is focused on: (i) key factors for sample collection, isolation, and identification to

  10. Abstracts of the 48. Brazilian congress on genetics. Genetics in social inclusion

    International Nuclear Information System (INIS)

    2002-01-01

    Use of radioisotopes and ionizing radiations in genetics is presented. Several aspects related to men, animals, plants and microorganisms are reported highlighting biological radiation effects, evolution, mutagenesis and genetic engineering. Genetic mapping, polymerase chain reaction, gene mutations, genetic diversity, DNA hybridization, DNA sequencing, plant cultivation and plant grow are studied as well

  11. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    Directory of Open Access Journals (Sweden)

    Alejandra Hernández-Terán

    2017-12-01

    Full Text Available Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE. Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE, and domesticated without genetic engineering (domNGE]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance, the phenotypic differences between domGE and domNGE would be either less (or inexistent than between the wild and domesticated relatives (either domGE or domNGE. We conclude that (1 genetic modification (either by selective breeding or GE can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE and (2 the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop

  12. Strategies for MCMC computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez, N.; Sorensen, Daniel

    2006-01-01

    Given observations of a trait and a pedigree for a group of animals, the basic model in quantitative genetics is a linear mixed model with genetic random effects. The correlation matrix of the genetic random effects is determined by the pedigree and is typically very highdimensional but with a sp...

  13. Strategies in megasynthase engineering – fatty acid synthases (FAS as model proteins

    Directory of Open Access Journals (Sweden)

    Manuel Fischer

    2017-06-01

    Full Text Available Megasynthases are large multienzyme proteins that produce a plethora of important natural compounds by catalyzing the successive condensation and modification of precursor units. Within the class of megasynthases, polyketide synthases (PKS are responsible for the production of a large spectrum of bioactive polyketides (PK, which have frequently found their way into therapeutic applications. Rational engineering approaches have been performed during the last 25 years that seek to employ the “assembly-line synthetic concept” of megasynthases in order to deliver new bioactive compounds. Here, we highlight PKS engineering strategies in the light of the newly emerging structural information on megasynthases, and argue that fatty acid synthases (FAS are and will be valuable objects for further developing this field.

  14. [Effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering].

    Science.gov (United States)

    Ding, Jun-Ying; Meng, Qing-Ling; Guo, Min-Zhuo; Yi, Yao; Su, Qiu-Dong; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li

    2012-10-01

    To study the effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering. Based on the colon preference of E. coli, the HDV small antigen original gene from GenBank was optimized. Both the original gene and the optimized gene expressed in prokaryotic cells, SDS-PAGE was made to analyze the protein expression yield and to decide which protein expression style was more proportion than the other. Furthermore, two antigens were purified by chromatography in order to compare the purity by SDS-PAGE and Image Lab software. SDS-PAGE indicated that the molecular weight of target proteins from two groups were the same as we expected. Gene optimization resulted in the higher yield and it could make the product more soluble. After chromatography, the purity of target protein from optimized gene was up to 96.3%, obviously purer than that from original gene. Gene optimization could increase the protein expression yield and solubility of genetic engineering HDV small antigen. In addition, the product from the optimized gene group was easier to be purified for diagnosis usage.

  15. Control of bovine spongiform encephalopathy by genetic engineering: possible approaches and regulatory considerations

    International Nuclear Information System (INIS)

    Gavora, J.S.; Kochhar, H.P.S.; Gifford, G.A.

    2005-01-01

    Transmissible spongiform encephalopathies (TSE) include bovine spongiform encephalopathy (BSE), scrapie in sheep and Creutzfeldt-Jakob disease (CJD) in humans. A new CJD variant (nvCJD) is believed to be related to consumption of meat from BSE cattle. In TSE individuals, prion proteins (PrP) with approximately 250 amino acids convert to the pathogenic prion PrP Sc , leading to a dysfunction of the central neural system. Research elsewhere with mice has indicated a possible genetic engineering approach to the introduction of BSE resistance: individuals with amino acid substitutions at positions 167 or 218, inoculated with a pathogenic prion protein, did not support PrP Sc replication. This raises the possibility of producing prion-resistant cattle with a single PrP amino acid substitution. Since prion-resistant animals might still harbour acquired prion infectivity, regulatory assessment of the engineered animals would need to ascertain that such possible 'carriers' do not result in a threat to animal and human health. (author)

  16. Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films.

    Science.gov (United States)

    Machado, Raul; da Costa, André; Sencadas, Vitor; Pereira, Ana Margarida; Collins, Tony; Rodríguez-Cabello, José Carlos; Lanceros-Méndez, Senentxu; Casal, Margarida

    2015-12-01

    Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    Science.gov (United States)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  18. Cell Factory Engineering

    DEFF Research Database (Denmark)

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies......-review provides general strategy guides for the broad range of applications of rational engineering of cell factories....

  19. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy

    OpenAIRE

    Costa, M.; Cerqueira, Mariana Teixeira; Santos, T. C.; Marques, Belém Sampaio; Ludovico, Paula; Marques, A. P.; Pirraco, Rogério P.; Reis, R. L.

    2017-01-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditi...

  20. The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus

    Science.gov (United States)

    Salleh, Tuan Salwani; Zakaria, Effandi

    2016-01-01

    The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…

  1. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    Science.gov (United States)

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  3. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review

    International Nuclear Information System (INIS)

    Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Rizwanul Fattah, I.M.

    2014-01-01

    Highlights: • Various low-temperature combustion strategies have been discussed briefly. • Effect on emissions has been discussed under low temperature combustion strategies. • Low-temperature combustion reduces NO x and PM simultaneously. • Higher CO, HC emissions with lower performance are the demerits of these strategies. • Biodiesels are also potential to attain low temperature combustion conditions. - Abstract: Simultaneous reduction of particulate matter (PM) and nitrogen oxides (NO x ) emissions from diesel exhaust is the key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction techniques of PM and NO x like low temperature combustion (LTC) will continue to be an important field in research and development of modern diesel engines. Furthermore, increasing prices and question over the availability of diesel fuel derived from crude oil have introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. Being a significant technology to reduce emissions, LTC deserves a critical analysis of emission characteristics for both diesel and biodiesel. This paper critically investigates both petroleum diesel and biodiesel emissions from the view point of LTC attaining strategies. Due to a number of differences of physical and chemical properties, petroleum diesel and biodiesel emission characteristics differ a bit under LTC strategies. LTC strategies decrease NO x and PM simultaneously but increase HC and CO emissions. Recent attempts to attain LTC by biodiesel have created a hope for reduced HC and CO emissions. Decreased performance issue during LTC is also being taken care of by latest ideas. However, this paper highlights the emissions separately and analyzes the effects of significant factors thoroughly under LTC regime

  4. Genetically modified crops: detection strategies and biosafety issues.

    Science.gov (United States)

    Kamle, Suchitra; Ali, Sher

    2013-06-15

    Genetically modified (GM) crops are increasingly gaining acceptance but concurrently consumers' concerns are also increasing. The introduction of Bacillus thuringiensis (Bt) genes into the plants has raised issues related to its risk assessment and biosafety. The International Regulations and the Codex guidelines regulate the biosafety requirements of the GM crops. In addition, these bodies synergize and harmonize the ethical issues related to the release and use of GM products. The labeling of GM crops and their products are mandatory if the genetically modified organism (GMO) content exceeds the levels of a recommended threshold. The new and upcoming GM crops carrying multiple stacked traits likely to be commercialized soon warrant sensitive detection methods both at the DNA and protein levels. Therefore, traceability of the transgene and its protein expression in GM crops is an important issue that needs to be addressed on a priority basis. The advancement in the area of molecular biology has made available several bioanalytical options for the detection of GM crops based on DNA and protein markers. Since the insertion of a gene into the host genome may even cause copy number variation, this may be uncovered using real time PCR. Besides, assessing the exact number of mRNA transcripts of a gene, correlation between the template activity and expressed protein may be established. Here, we present an overview on the production of GM crops, their acceptabilities, detection strategies, biosafety issues and potential impact on society. Further, overall future prospects are also highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Slippery Slope Argument in the Ethical Debate on Genetic Engineering of Humans.

    Science.gov (United States)

    Walton, Douglas

    2017-12-01

    This article applies tools from argumentation theory to slippery slope arguments used in current ethical debates on genetic engineering. Among the tools used are argumentation schemes, value-based argumentation, critical questions, and burden of proof. It is argued that so-called drivers such as social acceptance and rapid technological development are also important factors that need to be taken into account alongside the argumentation scheme. It is shown that the slippery slope argument is basically a reasonable (but defeasible) form of argument, but is often flawed when used in ethical debates because of failures to meet the requirements of its scheme.

  6. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.

    Science.gov (United States)

    Liu, Han; Fang, Guochen; Wu, Hui; Li, Zhimin; Ye, Qin

    2018-05-01

    L-cysteine is an amino acid with important physiological functions and has a wide range of applications in medicine, food, animal feed, and cosmetics industry. In this study, the L-cysteine synthesis in Escherichia coliEscherichia coli is divided into four modules: the transport module, sulfur module, precursor module, and degradation module. The engineered strain LH03 (overexpression of the feedback-insensitive cysE and the exporter ydeD in JM109) accumulated 45.8 mg L -1 of L-cysteine in 48 hr with yield of 0.4% g/g glucose. Further modifications of strains and culture conditions which based on the rational metabolic engineering and modular strategy improved the L-cysteine biosynthesis significantly. The engineered strain LH06 (with additional overexpression of serA, serC, and serB and double mutant of tnaA and sdaA in LH03) produced 620.9 mg L -1 of L-cysteine with yield of 6.0% g/g glucose, which increased the production by 12 times and the yield by 14 times more than those of LH03 in the original condition. In fed-batch fermentation performed in a 5-L reactor, the concentration of L-cysteine achieved 5.1 g L -1 in 32 hr. This work demonstrates that the combination of rational metabolic engineering and module strategy is a promising approach for increasing the L-cysteine production in E. coli. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design and Evaluation for Target Indicated Torque Based Engine Starting Control Strategy in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Xuedong Lin

    2016-01-01

    Full Text Available The diesel engine power demand of the start condition can be separated into two parts including resistance overcoming and acceleration realization for the reason that there is no power output during the starting process. The present paper mainly focuses on the fuel injection quantity control based on the engine power demand especially the acceleration demand for the resistance force is fixed for a specific engine, and the starting acceleration velocity is set as a target curve so that the acceleration process can also be fixed. The feasibility of the start control strategy proposed in this paper was verified by a comparison of the traditional starting control with a constant fuel quantity, and starting performance of the target acceleration based control shows predominance to the constant quantity control. And then the comparison between various starting acceleration processes, which was realized by the settings of acceleration curve slope factor, was conducted and results showed that the acceleration processes with higher slope factors perform better.

  8. Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms

    International Nuclear Information System (INIS)

    Neves, Diana; Silva, Carlos A.

    2015-01-01

    The present study uses the DHW (domestic hot water) electric backup from solar thermal systems to optimize the total electricity dispatch of an isolated mini-grid. The proposed approach estimates the hourly DHW load, and proposes and simulates different DR (demand response) strategies, from the supply side, to minimize the dispatch costs of an energy system. The case study consists on optimizing the electricity load, in a representative day with low solar radiation, in Corvo Island, Azores. The DHW backup is induced by three different demand patterns. The study compares different DR strategies: backup at demand (no strategy), pre-scheduled backup using two different imposed schedules, a strategy based on linear programming, and finally two strategies using genetic algorithms, with different formulations for DHW backup – one that assigns number of systems and another that assigns energy demand. It is concluded that pre-determined DR strategies may increase the generation costs, but DR strategies based on optimization algorithms are able to decrease generation costs. In particular, linear programming is the strategy that presents the lowest increase on dispatch costs, but the strategy based on genetic algorithms is the one that best minimizes both daily operation costs and total energy demand, of the system. - Highlights: • Integrated hourly model of DHW electric impact and electricity dispatch of isolated grid. • Proposal and comparison of different DR (demand response) strategies for DHW backup. • LP strategy presents 12% increase on total electric load, plus 5% on dispatch costs. • GA strategy presents 7% increase on total electric load, plus 8% on dispatch costs

  9. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    , and to develop appropriate strategies to obtain, through genetic engineering or Marker Assisted Breeding (MAS water stress tolerant plants. In the present review we reported the most recent results obtained, in both model and crop species, in the field of the plant genetics of water stress tolerance with special attention to new insights into the complex gene networks activated in response to water deficit (ABA-dependent and -indipendent pathways, the innovative genetic approaches to determine key gene functions (forward-reverse genetics, and the application of new genetic strategies to obtain tolerant genotypes (genetic engineering, QTL-based MAS.

  10. Gene therapy for carcinoma of the breast: Therapeutic genetic correction strategies

    International Nuclear Information System (INIS)

    Obermiller, Patrice S; Tait, David L; Holt, Jeffrey T

    2000-01-01

    Gene therapy is a therapeutic approach that is designed to correct specific molecular defects that contribute to the cause or progression of cancer. Genes that are mutated or deleted in cancers include the cancer susceptibility genes p53 and BRCA1. Because mutational inactivation of gene function is specific to tumor cells in these settings, cancer gene correction strategies may provide an opportunity for selective targeting without significant toxicity for normal nontumor cells. Both p53 and BRCA1 appear to inhibit cancer cells that lack mutations in these genes, suggesting that the so-called gene correction strategies may have broader potential than initially believed. Increasing knowledge of cancer genetics has identified these and other genes as potential targets for gene replacement therapy. Initial patient trials of p53 and BRCA1 gene therapy have provided some indications of potential efficacy, but have also identified areas of basic and clinical research that are needed before these approaches may be widely used in patient care

  11. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.

    Science.gov (United States)

    Raeisdasteh Hokmabad, Vahideh; Davaran, Soodabeh; Ramazani, Ali; Salehi, Roya

    2017-11-01

    Current strategies of tissue engineering are focused on the reconstruction and regeneration of damaged or deformed tissues by grafting of cells with scaffolds and biomolecules. Recently, much interest is given to scaffolds which are based on mimic the extracellular matrix that have induced the formation of new tissues. To return functionality of the organ, the presence of a scaffold is essential as a matrix for cell colonization, migration, growth, differentiation and extracellular matrix deposition, until the tissues are totally restored or regenerated. A wide variety of approaches has been developed either in scaffold materials and production procedures or cell sources and cultivation techniques to regenerate the tissues/organs in tissue engineering applications. This study has been conducted to present an overview of the different scaffold fabrication techniques such as solvent casting and particulate leaching, electrospinning, emulsion freeze-drying, thermally induced phase separation, melt molding and rapid prototyping with their properties, limitations, theoretical principles and their prospective in tailoring appropriate micro-nanostructures for tissue regeneration applications. This review also includes discussion on recent works done in the field of tissue engineering.

  12. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...... of reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...

  13. Genetika Populasi dan Strategi Konservasi Badak Jawa (Rhinoceros sondaicus Desmarest 1822 (Population Genetics of Javan Rhino (Rhinoceros sondaicus Desmarest 1822 and It’s Conservation Strategy

    Directory of Open Access Journals (Sweden)

    U Mamat Rahmat

    2011-05-01

    Full Text Available Javan rhino (Rhinoceros sondaicus Desmarest 1822 of which spread is limited in Indonesia and Vietnam is the rarest species among 5 species of rhino in the world. Without appropriate and long-term well organized management action, the population of javan rhino will be in extinction. This research studies about the usage potential of  javan rhino population genetics data in designing  javan rhino conservation program. The application of genetics study in conservation problem is based on the population genetics theory. The population genetics is one of population biology branch which studies about the factors determining genetic composition of population and how they play role in evolution process. The genetic characteristic identification can help to give the characteristic genetic information which has function as genetic marker or gen in javan rhino management. It can also help to do translocation the javan rhino especially for breeding management effort to avoid inbreeding and to improve the heterozygosis. The analyzing result shows that the management of conservation strategy which can make javan rhino population reaches the population viable minimum number is needed urgently. Furthermore, it also shows that translocation and reintroduction to build the second population of  javan rhino is also important to do.    Keywords: javan rhino, population genetics, translocation, second population

  14. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  15. Strategy fortify the engineering activities in the downstream sector; Estrategia para o fortalecimento das atividades de engenharia no refino

    Energy Technology Data Exchange (ETDEWEB)

    Lafraia, Joao Ricardo Barusso; Meniconi, Vitor Marcio de Marco; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Almeida, Antonio Humberto Pereira de [Federacao das Industria do Estado de Minas Gerais (FIEMG), Belo Horizonte, MG (Brazil); Burman, Michel Jaques; Freire, Luiz Gustavo de Melo [Accenture, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The strategy to fortify the engineering activities in the downstream sector consists in the creation of the Center of Excellence in Engineering. The main objectives of the Center are the following: promote the knowledge transfer between experienced and junior professionals and retain the knowledge generated in specific engineering project. Hence the union of all those factors above will result in a valuable asset which is the development of engineering capabilities among the project team ('learn by doing methodology'). (author)

  16. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  17. Development of a construct-based risk assessment framework for genetic engineered crops.

    Science.gov (United States)

    Beker, M P; Boari, P; Burachik, M; Cuadrado, V; Junco, M; Lede, S; Lema, M A; Lewi, D; Maggi, A; Meoniz, I; Noé, G; Roca, C; Robredo, C; Rubinstein, C; Vicien, C; Whelan, A

    2016-10-01

    Experience gained in the risk assessment (RA) of genetically engineered (GE) crops since their first experimental introductions in the early nineties, has increased the level of familiarity with these breeding methodologies and has motivated several agencies and expert groups worldwide to revisit the scientific criteria underlying the RA process. Along these lines, the need to engage in a scientific discussion for the case of GE crops transformed with similar constructs was recently identified in Argentina. In response to this need, the Argentine branch of the International Life Sciences Institute (ILSI Argentina) convened a tripartite working group to discuss a science-based evaluation approach for transformation events developed with genetic constructs which are identical or similar to those used in previously evaluated or approved GE crops. This discussion considered new transformation events within the same or different species and covered both environmental and food safety aspects. A construct similarity concept was defined, considering the biological function of the introduced genes. Factors like environmental and dietary exposure, familiarity with both the crop and the trait as well as the crop biology, were identified as key to inform a construct-based RA process.

  18. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems

    OpenAIRE

    Chen, Yvonne Y.; Jensen, Michael C.; Smolke, Christina D.

    2010-01-01

    RNA molecules perform diverse regulatory functions in natural biological systems, and numerous synthetic RNA-based control devices that integrate sensing and gene-regulatory functions have been demonstrated, predominantly in bacteria and yeast. Despite potential advantages of RNA-based genetic control strategies in clinical applications, there has been limited success in extending engineered RNA devices to mammalian gene-expression control and no example of their application to functional res...

  19. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    Science.gov (United States)

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  20. Hierarchical Control Strategy for Active Hydropneumatic Suspension Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Jinzhi Feng

    2015-02-01

    Full Text Available A new hierarchical control strategy for active hydropneumatic suspension systems is proposed. This strategy considers the dynamic characteristics of the actuator. The top hierarchy controller uses a combined control scheme: a genetic algorithm- (GA- based self-tuning proportional-integral-derivative controller and a fuzzy logic controller. For practical implementations of the proposed control scheme, a GA-based self-learning process is initiated only when the defined performance index of vehicle dynamics exceeds a certain debounce time threshold. The designed control algorithm is implemented on a virtual prototype and cosimulations are performed with different road disturbance inputs. Cosimulation results show that the active hydropneumatic suspension system designed in this study significantly improves riding comfort characteristics of vehicles. The robustness and adaptability of the proposed controller are also examined when the control system is subjected to extremely rough road conditions.

  1. Tree genetic engineering and applications to sustainable forestry and biomass production.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2011-01-01

    Forest trees provide raw materials, help to maintain biodiversity and mitigate the effects of climate change. Certain tree species can also be used as feedstocks for bioenergy production. Achieving these goals may require the introduction or modified expression of genes to enhance biomass production in a sustainable and environmentally responsible manner. Tree genetic engineering has advanced to the point at which genes for desirable traits can now be introduced and expressed efficiently; examples include biotic and abiotic stress tolerance, improved wood properties, root formation and phytoremediation. Transgene confinement, including flowering control, may be needed to avoid ecological risks and satisfy regulatory requirements. This and stable expression are key issues that need to be resolved before transgenic trees can be used commercially. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Genetically Engineered Virulent Phage Banks in the Detection and Control of Emergent Pathogenic Bacteria

    Science.gov (United States)

    Blois, Hélène; Iris, François

    2010-01-01

    Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host. PMID:20569057

  3. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists...... maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization...... of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation...

  4. Engineering support strategies in the competitive environment

    International Nuclear Information System (INIS)

    Casella, L.R.; Hall, T.E.; Stark, D.R.

    1996-01-01

    This paper focuses on the innovative use of support personnel during plant outages and other maintenance/upkeep periods. At the South Texas Project the authors have formed an engineering support group specifically tailored to provide real time solutions to maintenance and operation problems. The core group consists of a cross section from the engineering disciplines and systems engineers. The group is housed in the Maintenance and Operations Facility adjacent to the power block. Close proximity and maintenance and operations personnel improves communications and response to emergent technical issues. During outages the group is augmented with additional personnel from the Design and Systems Engineering Departments. This allows for around the clock support that directly complements plant operations activities and maintenance tasks. The Thirty Minute Rule highlights urgent issues requiring engineering management attention. Dedicated twenty-four (24) hour engineering management oversight completes the engineering outage support package. Revised procedures, networks, and software enhancements, streamline the interface between engineering and work control processes. Good communications across the engineering disciplines and departments provide for enhanced teamwork and timely resolution of emergent technical issues for customers. The techniques to be described in the paper contributed directly to the South Texas Project recently establishing a new world record for a Westinghouse 3 and 4 loop pressurized water reactor refueling outage

  5. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  6. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  7. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  8. Strategies for replacement of obsolete equipment - including reverse engineering

    International Nuclear Information System (INIS)

    Irish, C.S.

    2000-01-01

    The presentation shall detail the challenges facing nuclear power plants with the replacement of obsolete equipment and the strategies used to overcome those challenges. The presentation will outline the common equipment types which are either obsolete or are becoming obsolete, with a focus on safety related components. The four options of the obsolete equipment replacement philosophy will be presented with replacement examples from each of the options shown for discussion purposes. Detailed examples from each of the four obsolete equipment replacement options of: commercially available equivalent component; modification of a commercial available component; reverse engineering of the original component; and finally, design changes using a new component, shall be presented to evaluate the advantages and disadvantages of each option. The presentation will include the technical challenges, cost and schedule concerns for each of the four options. Emphasis will be placed on the technological challenges associated with replacing old and obsolete equipment. The following is a bullet list of the challenges which will be discussed: Missing, misleading or no information on the original component; Acquiring information from the original equipment manufacturer and the plant; Using a sample component for the replacement evaluation and or reverse engineering; and Reverse engineering old equipment with newly available discrete components. The presentation will include the equivalency documentation using the EPRI guidelines when replacing an original component with a different yet form, fit and functional equivalent component. The presentation will conclude with a discussion of the advantages and disadvantages of the replacement of the obsolete component with a form, fit and functional equivalent component vs. the replacement of the original component with a new component with today's technology. (author)

  9. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    Science.gov (United States)

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    Science.gov (United States)

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  11. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  12. Application of evolution strategy algorithm for optimization of a single-layer sound absorber

    Directory of Open Access Journals (Sweden)

    Morteza Gholamipoor

    2014-12-01

    Full Text Available Depending on different design parameters and limitations, optimization of sound absorbers has always been a challenge in the field of acoustic engineering. Various methods of optimization have evolved in the past decades with innovative method of evolution strategy gaining more attention in the recent years. Based on their simplicity and straightforward mathematical representations, single-layer absorbers have been widely used in both engineering and industrial applications and an optimized design for these absorbers has become vital. In the present study, the method of evolution strategy algorithm is used for optimization of a single-layer absorber at both a particular frequency and an arbitrary frequency band. Results of the optimization have been compared against different methods of genetic algorithm and penalty functions which are proved to be favorable in both effectiveness and accuracy. Finally, a single-layer absorber is optimized in a desired range of frequencies that is the main goal of an industrial and engineering optimization process.

  13. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair

    Science.gov (United States)

    Agarwal, Rachit; García, Andrés J.

    2015-01-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  14. Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy.

    Science.gov (United States)

    Dasgupta, Anindya; Shields, Jordan E; Spencer, H Trent

    2012-07-01

    Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches.

  15. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  16. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  17. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.

    Science.gov (United States)

    Huang, Brian J; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-08-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Science.gov (United States)

    Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218

  19. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    Science.gov (United States)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  20. Genetically Modified Food: Knowledge and Attitude of Teachers and Students

    Science.gov (United States)

    Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara

    2010-10-01

    The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.

  1. The novel Hsp90 inhibitor NXD30001 induces tumor regression in a genetically engineered mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Zhu, Haihao; Woolfenden, Steve; Bronson, Roderick T; Jaffer, Zahara M; Barluenga, Sofia; Winssinger, Nicolas; Rubenstein, Allan E; Chen, Ruihong; Charest, Al

    2010-09-01

    Glioblastoma multiforme (GBM) has an abysmal prognosis. We now know that the epidermal growth factor receptor (EGFR) signaling pathway and the loss of function of the tumor suppressor genes p16Ink4a/p19ARF and PTEN play a crucial role in GBM pathogenesis: initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. We have recently shown that this genetic combination is sufficient to promote the development of GBM in adult mice. Therapeutic agents raised against single targets of the EGFR signaling pathway have proven rather inefficient in GBM therapy, showing the need for combinatorial therapeutic approaches. An effective strategy for concurrent disruption of multiple signaling pathways is via the inhibition of the molecular chaperone heat shock protein 90 (Hsp90). Hsp90 inhibition leads to the degradation of so-called client proteins, many of which are key effectors of GBM pathogenesis. NXD30001 is a novel second generation Hsp90 inhibitor that shows improved pharmacokinetic parameters. Here we show that NXD30001 is a potent inhibitor of GBM cell growth in vitro consistent with its capacity to inhibit several key targets and regulators of GBM biology. We also show the efficacy of NXD30001 in vivo in an EGFR-driven genetically engineered mouse model of GBM. Our findings establish that the Hsp90 inhibitor NXD30001 is a therapeutically multivalent molecule, whose actions strike GBM at the core of its drivers of tumorigenesis and represent a compelling rationale for its use in GBM treatment.

  2. Application of memetic engineering to the struggle for public acceptance

    International Nuclear Information System (INIS)

    Whitlock, J.

    2000-01-01

    This paper summarizes the events that created this meme, and the reasons for its robust and contagious nature. A method is proposed for increasing nuclear power's public acceptance, not by attacking the 'nuclear-phobia' meme directly, but by employing its own ability to survive and replicate in an indirect campaign against itself. An analogy is made to genetic engineering ('memetic engineering'), from which strategies may be borrowed. One example is 'meme-splicing' - the insertion of a foreign, but compatible, pro-nuclear meme amongst existing memes known to possess favourable replication characteristics. In this context Global Climate Change is discussed, and in particular the international effort to raise awareness of nuclear power's potential contribution to this cause. (authors)

  3. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.

    Science.gov (United States)

    Bhunia, Rupam Kumar; Chakraborty, Anirban; Kaur, Ranjeet; Gayatri, T; Bhattacharyya, Jagannath; Basu, Asitava; Maiti, Mrinal K; Sen, Soumitra Kumar

    2014-11-01

    The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.

  4. The influence of life-history strategy on genetic differentiation and lineage divergence in darters (Percidae: Etheostomatinae).

    Science.gov (United States)

    Fluker, Brook L; Kuhajda, Bernard R; Harris, Phillip M

    2014-11-01

    Recent studies determined that darters with specialized breeding strategies can exhibit deep lineage divergence over fine geographic scales without apparent physical barriers to gene flow. However, the extent to which intrinsic characteristics interact with extrinsic factors to influence population divergence and lineage diversification in darters is not well understood. This study employed comparative phylogeographic and population genetic methods to investigate the influence of life history on gene flow, dispersal ability, and lineage divergence in two sympatric sister darters with differing breeding strategies. Our results revealed highly disparate phylogeographic histories, patterns of genetic structure, and dispersal abilities between the two species suggesting that life history may contribute to lineage diversification in darters, especially by limiting dispersal among large river courses. Both species also showed striking differences in demographic history, indicating that extrinsic factors differentially affected each species during the Pleistocene. Collectively, our results indicate that intrinsic and extrinsic factors have influenced levels of gene flow among populations within both species examined. However, we suggest that life-history strategy may play a more important role in lineage diversification in darters than previously appreciated, a finding that has potentially important implications for understanding diversification of the rich North American freshwater fish fauna. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Current Immunotherapeutic Strategies to Enhance Oncolytic Virotherapy

    Directory of Open Access Journals (Sweden)

    Daniel E. Meyers

    2017-06-01

    Full Text Available Oncolytic viruses (OV represent a promising strategy to augment the spectrum of cancer therapeutics. For efficacy, they rely on two general mechanisms: tumor-specific infection/cell-killing, followed by subsequent activation of the host’s adaptive immune response. Numerous OV genera have been utilized in clinical trials, ultimately culminating in the 2015 Food and Drug Administration approval of a genetically engineered herpes virus, Talminogene laherparepvec (T-VEC. It is generally accepted that OV as monotherapy have only modest clinical efficacy. However, due to their ability to elicit specific antitumor immune responses, they are prime candidates to be paired with other immune-modulating strategies in order to optimize therapeutic efficacy. Synergistic strategies to enhance the efficacy of OV include augmenting the host antitumor response through the insertion of therapeutic transgenes such as GM-CSF, utilization of the prime-boost strategy, and combining OV with immune-modulatory drugs such as cyclophosphamide, sunitinib, and immune checkpoint inhibitors. This review provides an overview of these immune-based strategies to improve the clinical efficacy of oncolytic virotherapy.

  6. Portraits of PBL: Course Objectives and Students' Study Strategies in Computer Engineering, Psychology and Physiotherapy.

    Science.gov (United States)

    Dahlgren, Madeleine Abrandt

    2000-01-01

    Compares the role of course objectives in relation to students' study strategies in problem-based learning (PBL). Results comprise data from three PBL programs at Linkopings University (Sweden), in physiotherapy, psychology, and computer engineering. Faculty provided course objectives to function as supportive structures and guides for students'…

  7. A Study of Chinese Engineering Students' Communication Strategies in a Mobile-Assisted Professional Development Course

    Science.gov (United States)

    Cheng, Li

    2016-01-01

    The development of students' professional skills is an important issue in higher education in China. This research reports a 3-month study investigating engineering students' communication strategies (CSs) while they were interacting to do a 12-week mobile-assisted learning project, i.e., "Organizing and Attending a Model International…

  8. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar 263 145, India; Department of Molecular Biology and Genetic Engineering, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar 263 145, India ...

  9. The Role of Alternative Testing Strategies in Environmental Risk Assessment of Engineered Nanomaterials

    OpenAIRE

    Hjorth, Rune; Holden, Patricia; Hansen, Steffen Foss; Colman, Ben; Grieger, Khara; Hendren, Christine

    2017-01-01

    Within toxicology there is a pressure to find new test systems and organisms to replace, reduce and refine animal testing. In nanoecotoxicology the need for alternative testing strategies (ATS) is further emphasized as the validity of tests and risk assessment practices developed for dissolved chemicals are challenged. Nonetheless, standardized whole organism animal testing is still considered the gold standard for environmental risk assessment. Advancing risk analysis of engineered nanomater...

  10. Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control

    OpenAIRE

    Aris Triwiyatno; Sumardi

    2012-01-01

    In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...

  11. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  12. Strategies for replacement of obsolete equipment, including reverse engineering

    International Nuclear Information System (INIS)

    Irish, C.S.

    2003-01-01

    The presentation shall detail the challenges facing nuclear power plants with the replacement of obsolete equipment and the strategies used to overcome those challenges. The presentation will outline the common equipment types which are either obsolete or are becoming obsolete, with a focus on safety related components. The four options of the obsolete equipment replacement philosophy will be presented with replacement examples from each of the options shown for discussion purposes. Detailed examples from each of the four obsolete equipment replacement options of, (1) commercially available equivalent component, (2) modification of a commercial available component, (3) reverse engineering of the original component and finally (4) design changes using a new component, shall be presented to evaluate the advantages and disadvantages of each option. The presentation will include the technical challenges, cost and schedule concerns for each of the four options. Emphasis will be placed on the technological challenges associated with replacing old and obsolete equipment. The following is a bullet list of the challenges which will be discussed: 1) Missing, misleading or no information on the original component. 2) Acquiring information from the original equipment manufacturer and the plant. 3) Using a sample component for the replacement evaluation and or reverse engineering. 4) Reverse engineering old equipment with newly available discrete components. The presentation will include the equivalency documentation using the EPRI guidelines when replacing an original component with a different yet form, fit and functional equivalent component. The presentation will conclude with a discussion of the advantages and disadvantages of the replacement of the obsolete component with a form, fit and functional equivalent component vs. the replacement of the original component with a new component with today's technology. (author)

  13. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. In Search of Search Engine Marketing Strategy Amongst SME's in Ireland

    Science.gov (United States)

    Barry, Chris; Charleton, Debbie

    Researchers have identified the Web as a searchers first port of call for locating information. Search Engine Marketing (SEM) strategies have been noted as a key consideration when developing, maintaining and managing Websites. A study presented here of SEM practices of Irish small to medium enterprises (SMEs) reveals they plan to spend more resources on SEM in the future. Most firms utilize an informal SEM strategy, where Website optimization is perceived most effective in attracting traffic. Respondents cite the use of ‘keywords in title and description tags’ as the most used SEM technique, followed by the use of ‘keywords throughout the whole Website’; while ‘Pay for Placement’ was most widely used Paid Search technique. In concurrence with the literature, measuring SEM performance remains a significant challenge with many firms unsure if they measure it effectively. An encouraging finding is that Irish SMEs adopt a positive ethical posture when undertaking SEM.

  15. Production of L-valine from metabolically engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J

    2018-05-01

    L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

  16. Improved Wood Properties Through Genetic Manipulation: Engineering of Syringyl Lignin in Softwood Species Through Xylem-Specific Expression of Hardwood Syringyl Monolignol Pathway Genes

    Energy Technology Data Exchange (ETDEWEB)

    Chandrashekhar P. Joshi; Vincent L. Chiang

    2009-01-29

    Project Objective: Our long-term goal is to genetically engineer higher value raw materials with desirable wood properties to promote energy efficiency, international competitiveness, and environmental responsiveness of the U.S. forest products industry. The immediate goal of this project was to produce the first higher value softwood raw materials engineered with a wide range of syringyl lignin quantities. Summary: The most important wood property affecting directly the levels of energy, chemical and bleaching requirements for kraft pulp production is lignin. Softwoods contain almost exclusively chemically resistant guaiacyl (G) lignin, whereas hardwoods have more reactive or easily degradable lignins of the guaiacyl (G)-syringyl (S) type. It is also well established that the reactive S lignin component is the key factor that permits much lower effective alkali and temperature, shorter pulping time and less bleaching stages for processing hardwoods than for softwoods. Furthermore, our pulping kinetic study explicitly demonstrated that every increase in one unit of the lignin S/G ratio would roughly double the rate of lignin removal. These are clear evidence that softwoods genetically engineered with S lignin are keys to revolutionizing the energy efficiency and enhancing the environmental performance of this industry. Softwoods and hardwoods share the same genetic mechanisms for the biosynthesis of G lignin. However, in hardwoods, three additional genes branch out from the G-lignin pathway and become specifically engaged in regulating S lignin biosynthesis. In this research, we simultaneously transferred aspen S-specific genes into a model softwood, black spruce, to engineer S lignin.

  17. Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i

    Science.gov (United States)

    Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.

    2007-01-01

    Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.

  18. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    Science.gov (United States)

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  19. Dispersal of Engineered Male Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Winskill, Peter; Carvalho, Danilo O; Capurro, Margareth L; Alphey, Luke; Donnelly, Christl A; McKemey, Andrew R

    2015-11-01

    Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed. The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m). Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti.

  20. Genetic transformation of forest trees

    African Journals Online (AJOL)

    Admin

    In this review, the recent progress on genetic transformation of forest trees were discussed. Its described also, different applications of genetic engineering for improving forest trees or understanding the mechanisms governing genes expression in woody plants. Key words: Genetic transformation, transgenic forest trees, ...

  1. Towards an optimal sampling strategy for assessing genetic variation within and among white clover (Trifolium repens L. cultivars using AFLP

    Directory of Open Access Journals (Sweden)

    Khosro Mehdi Khanlou

    2011-01-01

    Full Text Available Cost reduction in plant breeding and conservation programs depends largely on correctly defining the minimal sample size required for the trustworthy assessment of intra- and inter-cultivar genetic variation. White clover, an important pasture legume, was chosen for studying this aspect. In clonal plants, such as the aforementioned, an appropriate sampling scheme eliminates the redundant analysis of identical genotypes. The aim was to define an optimal sampling strategy, i.e., the minimum sample size and appropriate sampling scheme for white clover cultivars, by using AFLP data (283 loci from three popular types. A grid-based sampling scheme, with an interplant distance of at least 40 cm, was sufficient to avoid any excess in replicates. Simulations revealed that the number of samples substantially influenced genetic diversity parameters. When using less than 15 per cultivar, the expected heterozygosity (He and Shannon diversity index (I were greatly underestimated, whereas with 20, more than 95% of total intra-cultivar genetic variation was covered. Based on AMOVA, a 20-cultivar sample was apparently sufficient to accurately quantify individual genetic structuring. The recommended sampling strategy facilitates the efficient characterization of diversity in white clover, for both conservation and exploitation.

  2. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    Science.gov (United States)

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

  3. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    Becker, Y.

    1998-01-01

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  4. Tissue-engineering-based Strategies for Regenerative Endodontics

    Science.gov (United States)

    Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.

    2014-01-01

    Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on

  5. Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water.

    Science.gov (United States)

    Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito; Sakurai, Hidehiro; Hausinger, Robert P

    2012-01-01

    To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H(2) production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H(2) for extended periods even in the presence of evolved O(2). This review summarizes our efforts to improve the rate of photobiological H(2) production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H(2) also are discussed.

  6. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    Science.gov (United States)

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  7. Construction of genetically engineered bacteria that degrades organophosphorus pesticide residues and can be easily detected by the fluorescence.

    Science.gov (United States)

    Li, Qin; Wang, Pan; Chen, Rui; Li, Wei; Wu, Yi-Jun

    2014-01-01

    Organophosphorus compounds (OPs) are widely used in agriculture and industry and there is increased concern about their toxicological effects in the environment. Bioremediation can offer an efficient and cost-effective option for the removal of OPs. Herein, we describe the construction of a genetically engineered microorganism (GEM) that can degrade OPs and be directly detected and monitored in the environment using an enhanced green fluorescent protein (EGFP) fusion strategy. The coding regions of EGFP, a reporter protein that can fluoresce by itself, and organophosphorus hydrolase (OPH), which has a broad substrate specificity and is able to hydrolyse a number of organophosphorus pesticides, were cloned into the expression vector pET-28b. The fusion protein of EGFP-OPH was expressed in E. coli BL21 (DE3) and the protein expression reached the highest level at 11 h after isopropyl beta-D-thiogalactopyranoside induction. The fluorescence of the GEM was detected by fluorescence spectrophotometry and microscopy, and its ability to degrade OPs was determined by OPH activity assay. Those GEM that express the fusion protein (EGFP and OPH) exhibited strong fluorescence intensity and also potent hydrolase activity, which could be used to degrade organophosphorus pesticide residues in the environment and can also be directly monitored by fluorescence.

  8. Towards systems metabolic engineering in Pichia pastoris.

    Science.gov (United States)

    Schwarzhans, Jan-Philipp; Luttermann, Tobias; Geier, Martina; Kalinowski, Jörn; Friehs, Karl

    2017-11-01

    The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published

  9. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review.

    Science.gov (United States)

    Yousefi, Azizeh-Mitra; Hoque, Md Enamul; Prasad, Rangabhatala G S V; Uth, Nicholas

    2015-07-01

    The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article. © 2014 Wiley Periodicals, Inc.

  10. Powerful tools for genetic modification: Advances in gene editing.

    Science.gov (United States)

    Roesch, Erica A; Drumm, Mitchell L

    2017-11-01

    Recent discoveries and technical advances in genetic engineering, methods called gene or genome editing, provide hope for repairing genes that cause diseases like cystic fibrosis (CF) or otherwise altering a gene for therapeutic benefit. There are both hopes and hurdles with these technologies, with new ideas emerging almost daily. Initial studies using intestinal organoid cultures carrying the common, F508del mutation have shown that gene editing by CRISPR/Cas9 can convert cells lacking CFTR function to cells with normal channel function, providing a precedent that this technology can be harnessed for CF. While this is an important precedent, the challenges that remain are not trivial. A logistical issue for this and many other genetic diseases is genetic heterogeneity. Approximately, 2000 mutations associated with CF have been found in CFTR, the gene responsible for CF, and thus a feasible strategy that would encompass all individuals affected by the disease is particularly difficult to envision. However, single strategies that would be applicable to all subjects affected by CF have been conceived and are being investigated. With all of these approaches, efficiency (the proportion of cells edited), accuracy (how often other sites in the genome are affected), and delivery of the gene editing components to the desired cells are perhaps the most significant, impending hurdles. Our understanding of each of these areas is increasing rapidly, and while it is impossible to predict when a successful strategy will reach the clinic, there is every reason to believe it is a question of "when" and not "if." © 2017 Wiley Periodicals, Inc.

  11. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    Science.gov (United States)

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  12. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    Science.gov (United States)

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  13. Overexpression of a homogeneous oligosaccharide with {sup 13}C labeling by genetically engineered yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yukiko; Yamamoto, Sayoko [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan); Chiba, Yasunori; Jigami, Yoshifumi [National Institute of Advanced Industrial Science and Technology, Research Center for Medical Glycoscience (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan)

    2011-08-15

    This report describes a novel method for overexpression of {sup 13}C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly {sup 13}C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man{sub 8}GlcNAc{sub 2} oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, {sup 13}C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific {sup 13}C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The {sup 13}C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  14. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  15. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  16. Abstracts of the 47. Brazilian congress on genetics. Genetics in the 21st century: challenges

    International Nuclear Information System (INIS)

    2001-01-01

    Use of radioisotopes and ionizing radiations in genetics is presented. Several aspects related to men, animals,plants and microorganisms are reported highlighting evolution, mutagenesis and genetic engineering. Genetic mapping, polymerase chain reaction, gene mutations, genetic diversity, DNA hybridization, DNA sequencing, use of radioisotopes in diagnosis, plant cultivation, plant improvement and effects of ionizing radiations on plant grow are studied as well

  17. Communicating the risks and benefits of genetically engineered food products to the public: The view of experts from four European countries

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Balderjahn, Ingo; Will, Simone

    Executive summary 1. Previous research on the risks and benefits of genetically engineered food products has not accounted for risk communication issues. The introductory part of this paper develops a more comprehensive model. Risks and benefits enter the model as the input of a risk communication...

  18. A feasible strategy of preimplantation genetic diagnosis for carriers with chromosomal translocation: Using blastocyst biopsy and array comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Chu-Chun Huang

    2013-09-01

    Conclusion: Our study demonstrates an effective PGD strategy with promising outcomes. Blastocyst biopsy can retrieve more genetic material and may provide more reliable results, and aCGH offers not only detection of chromosomal translocation but also more comprehensive analysis of 24 chromosomes than traditional FISH. More cases are needed to verify our results and this strategy might be considered in general clinical practice.

  19. Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling

    International Nuclear Information System (INIS)

    Mobasheri, Raouf; Peng, Zhijun; Mirsalim, Seyed Mostafa

    2012-01-01

    Highlights: ► Explore the effects of advanced multiple injection strategies in a DI-diesel engine. ► Achieving good agreement between the predicted results and experimental values. ► Analyzing three factors for optimization including pilot, main and post-injection. ► Injecting adequate fuel in each pulse accompanied with an appropriate EGR rate. ► Beneficial effects for significant soot reduction without a NOx penalty rate. - Abstract: An Advanced CFD simulation has been carried out in order to explore the combined effects of pilot-, post- and multiple-fuel injection strategies and EGR on engine performance and emission formation in a heavy duty DI-diesel engine. An improved version of the ECFM-3Z combustion model has been applied coupled with advanced models for NOx and soot formation. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and good agreement between predicted and measured in-cylinder pressure, heat release rate, NOx and soot emissions was obtained. The optimizations were conducted separately for different split injection cases without pilot injection and then, for various multiple injection cases. Totally, three factors were considered for the injection optimization, which included EGR rate, the separation between main injection and post-injection and the amount of injected fuel in each pulse. For the multiple injection cases, two more factors (including double and triple injections during main injection) were also added. Results show that using pilot injection accompanied with an optimized main injection has a significant beneficial effect on combustion process so that it could form a separate 2nd stage of heat release which could reduce the maximum combustion temperature, which leads to the reduction of the NOx formation. In addition, it has found that injecting adequate fuel in post-injection at an appropriate EGR allows significant soot reduction without a NOx penalty rate.

  20. Population Genetics as a Tool to Select Tsetse Control Strategies: Suppression or Eradication of Glossina palpalis gambiensis in the Niayes of Senegal

    International Nuclear Information System (INIS)

    Solano, Philippe; Kaba, Dramane; Ravel, Sophie; Sall, Baba; Mathu Ndung'u, Joseph

    2010-01-01

    The Government of Senegal has initiated the ''Projet de lutte contre les glossines dans les Niayes'' to remove the trypanosomosis problem from this area in a sustainable way. Due to past failures to sustainably eradicate Glossina palpalis gambiensis from the Niayes area, controversies remain as to the best strategy implement, i.e. ''eradication'' versus ''supression''.To inform this debate, we used population genetics to measure genetic differentiation between G. palpalis gambiensis from the Niayes and those from the southern tsetse belt (Missira).Three different markers (microsatellite DNA, mitochondrial CO1 DNA, and geometric morphometrics of the wings) were used on 153 individuals and revealed that the G. p. gambiensis populations of the Niayes were genetically isolated from the nearest proximate known population of Missira. The genetic differentiation measured between these two areas (h=0.12 using microsatellites) was equivalent to a between-taxa differentiation. We also demonstrated that within the Niayes, the population from Dakar Hann was isolated from the others and had probably experienced a bottleneck.The information presented in this paper leads to the recommendation that an eradication strategy for the Niayes populations is advisable. This kind of study may be repeated in other habitats and for other tsetse species to help decision on appropriate tsetse control strategies and find other possible discontinuities in tsetse distribution.

  1. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code.

    Science.gov (United States)

    Hauf, Matthias; Richter, Florian; Schneider, Tobias; Faidt, Thomas; Martins, Berta M; Baumann, Tobias; Durkin, Patrick; Dobbek, Holger; Jacobs, Karin; Möglich, Andreas; Budisa, Nediljko

    2017-09-19

    Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genetic engineering strategies for enhancing phytoremediation of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... manipulation and analysis of biochemical processes and ... characters molecular techniques such as the analysis of molecular .... tVramp-1/3/4 and LCT1 on the plasma membrane-cytosol interface; ZAT, ABC type, AtMRP,HMT1, CAX2 seen in vacuoles; and RAN1 seen in Golgi bodies. Manipulations.

  3. A Comparative Study of Vocabulary Learning Strategies Used by Marine Engineering Students and Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Davood Mashhadi Heidar

    2017-11-01

    Full Text Available The present study explored the vocabulary learning strategies used by Iranian EFL learners and Marine Engineering (ME students by using the categorization of vocabulary learning strategies proposed by Schmitt (1997. A vocabulary learning strategies questionnaire was administered to 30 EFL learners and 43 ME students. Then, the strategies used by each group were determined and the two groups were compared with each other. It was found that both groups used determination strategies more frequently than social strategies for discovering a new word’s meaning. The most frequently used discovery strategy by both groups was found to be “bilingual dictionary”. The second and third most frequently used strategy for discovery by EFL learners and ME students was found to be “monolingual dictionary” and “guess from textual context”, respectively. It was also revealed that EFL learners used memory strategies more frequently than other strategies for consolidating the meaning of new words and ME students used cognitive strategies the most frequently. Both groups were found to use “verbal repetition” more frequently than all other consolidation strategies. The second most frequently used strategy by EFL learners was “use Englishlanguage media” whilst for ME students they were “written repetition” and “word lists”. The comparison of the strategy use by the participants in the two groups showed no significant difference.

  4. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    Science.gov (United States)

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  5. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  6. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Soo-Yong Park

    2015-10-01

    Full Text Available Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  7. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    International Nuclear Information System (INIS)

    Park, Soo Yong; Ahn, Kwang Il

    2015-01-01

    Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO

  8. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  9. From stem to roots: Tissue engineering in endodontics

    Science.gov (United States)

    Kala, M.; Banthia, Priyank; Banthia, Ruchi

    2012-01-01

    The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528

  10. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    Science.gov (United States)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  11. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    Science.gov (United States)

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  12. Genetic modification of T cells improves the effectiveness of adoptive tumor immunotherapy.

    Science.gov (United States)

    Jakóbisiak, Marek; Gołab, Jakub

    2010-10-01

    Appropriate combinations of immunotherapy and gene therapy promise to be more effective in the treatment of cancer patients than either of these therapeutic approaches alone. One such treatment is based on the application of patients' cytotoxic T cells, which can be activated, expanded, and genetically engineered to recognize particular tumor-associated antigens (TAAs). Because T cells recognizing TAAs might become unresponsive in the process of tumor development as a result of tumor evasion strategies, immunogenic viral antigens or alloantigens could be used for the expansion of cytotoxic T cells and then redirected through genetic engineering. This therapeutic approach has already demonstrated promising results in melanoma patients and could be used in the treatment of many other tumors. The graft-versus-leukemia, or more generally graft-versus-tumor, reaction based on the application of a donor lymphocyte infusion can also be ameliorated through the incorporation of suicide genes into donor lymphocytes. Such lymphocytes could be safely and more extensively used in tumor patients because they could be eliminated should a severe graft-versus-host reaction develop.

  13. Strategies for MCMC computation inquantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánēz-Escriche, Noelia; Sorensen, Daniel

    another extension of the linear mixed model introducing genetic random effects influencing the log residual variances of the observations thereby producing a genetically structured variance heterogeneity. Considerable computational problems arise when abandoning the standard linear mixed model. Maximum...... the various algorithms in the context of the heterogeneous variance model. Apart from being a model of great interest in its own right, this model has proven to be a hard test for MCMC methods. We compare the performances of the different algorithms when applied to three real datasets which differ markedly...... results of applying two MCMC schemes to data sets with pig litter sizes, rabbit litter sizes, and snail weights. Some concluding remarks are given in Section 5....

  14. Genetic structure in the Amazonian catfish Brachyplatystoma rousseauxii: influence of life history strategies.

    Science.gov (United States)

    Carvajal-Vallejos, F M; Duponchelle, F; Desmarais, E; Cerqueira, F; Querouil, S; Nuñez, J; García, C; Renno, J-F

    2014-08-01

    The Dorado or Plateado (Gilded catfish) Brachyplatystoma rousseauxii (Pimelodidae, Siluriformes) is a commercially valuable migratory catfish performing the largest migration in freshwaters: from the Amazonian headwaters in the Andean foothills (breeding area) to the Amazon estuary (nursery area). In spite of its importance to inform management and conservation efforts, the genetic variability of this species has only recently begun to be studied. The aim of the present work was to determine the population genetic structure of B. rousseauxii in two regions: the Upper Madera Basin (five locations in the Bolivian Amazon) and the Western Amazon Basin (one regional sample from the Uyucalí-Napo-Marañon-Amazon basin, Peru). Length polymorphism at nine microsatellite loci (284 individuals) was used to determine genetic variability and to identify the most probable panmictic units (using a Bayesian approach), after a significant departure from Hardy-Weinberg equilibrium was observed in the overall dataset (Western Amazon + Upper Madera). Bayesian analyses revealed at least three clusters in admixture in the five locations sampled in the Bolivian Amazon, whereas only two of these clusters were observed in the Western Amazon. Considering the migratory behaviour of B. rousseauxii, different life history strategies, including homing, are proposed to explain the cluster distribution. Our results are discussed in the light of the numerous threats to the species survival in the Madera basin, in particular dam and reservoir construction.

  15. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  16. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    Science.gov (United States)

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Strategy for assessing the technical, environmental, and engineering feasibility of subseabed disposal

    International Nuclear Information System (INIS)

    Anderson, D.R.; Boyer, D.G.; Herrmann, H.; Kelly, J.; Talbert, D.M.

    1980-01-01

    This paper presents the strategy and management techniques used in the development of the US Subseabed Disposal Program (SDP) for possible disposal of both high-level waste and spent fuel. These have been developed through joint efforts of the Department of Energy (DOE), Division of Waste Isolation, the Sandia Technical Program Manager, the Technical Program Coordinators, the Advisory Group, and the Principal Investigators. Three subsections of this paper address the various components which make up the SDP strategy and management techniques. The first section will summarize the US DOE high-level waste and spent fuel disposal program and the position that the SDP occupies within that program. The second section, the Subseabed Program Plan, addresses the technical and administrative tools which are employed to facilitate the day-to-day operation of the SDP. The third section addresses the current studies and future plans for addressing the legal, political, and international uncertainties that must be resolved prior to the time the SDP reaches the final engineering phases

  18. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.

    Science.gov (United States)

    Sikirzhytski, Vitali; Topilina, Natalya I; Higashiya, Seiichiro; Welch, John T; Lednev, Igor K

    2008-05-07

    Elucidating the structure of the cross-beta core in large amyloid fibrils is a challenging problem in modern structural biology. For the first time, a set of de novo polypeptides was genetically engineered to form amyloid-like fibrils with similar morphology and yet different strand length. Differential ultraviolet Raman spectroscopy allowed for separation of the spectroscopic signatures of the highly ordered beta-sheet strands and turns of the fibril core. The relationship between Raman frequencies and Ramachandran dihedral angles of the polypeptide backbone indicates the nature of the beta-sheet and turn structural elements.

  19. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.

    Science.gov (United States)

    Radakovits, Randor; Jinkerson, Robert E; Fuerstenberg, Susan I; Tae, Hongseok; Settlage, Robert E; Boore, Jeffrey L; Posewitz, Matthew C

    2012-02-21

    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.

  20. Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-06-01

    Full Text Available In order to solve the problem related to adaptive energy management strategies based on driving condition identification being difficult to be applied to a real hybrid electric vehicle (HEV controller, this paper proposes an energy management strategy by combining the driving condition identification algorithm based on genetic optimized K-means clustering algorithm (KGA-means, and the equivalent consumption minimization strategy (ECMS. The simulation results show that compared with ECMS, the energy management strategy proposed in this article drives the engine working point closer to the best efficiency curve, and smooths out the state of charge (SOC change and better maintains the SOC in a highly efficient area. As a result, the vehicle fuel consumption reduces by 6.84%.