WorldWideScience

Sample records for genetic engineering methodology

  1. Progressive design methodology for complex engineering systems based on multiobjective genetic algorithms and linguistic decision making

    NARCIS (Netherlands)

    Kumar, P.; Bauer, P.

    2008-01-01

    This work focuses on a design methodology that aids in design and development of complex engineering systems. This design methodology consists of simulation, optimization and decision making. Within this work a framework is presented in which modelling, multi-objective optimization and multi

  2. Progressive design methodology for complex engineering systems based on multiobjective genetic algorithms and linguistic decision making

    NARCIS (Netherlands)

    Kumar, P.; Bauer, P.

    2008-01-01

    This work focuses on a design methodology that aids in design and development of complex engineering systems. This design methodology consists of simulation, optimization and decision making. Within this work a framework is presented in which modelling, multi-objective optimization and multi criteri

  3. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  4. Over production of lignocellulosic enzymes of Coriolus versicolor by genetic engineering methodology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.L.

    1998-07-01

    The project seeks to understand the biological and chemical processes involved in the secretion of the enzyme polyphenol oxidase (PPO) by the hyphae, the basic unit of the filamentous fungus Coriolus versicolor. These studies are made to determine rational strategies for enhanced secretion of PPO, both with the use of recombinant DNA techniques and without. This effort focuses on recombinant DNA techniques to enhance enzyme production. The major thrust of this project was two-fold: to mass produce C. versicolor tyrosinase (polyphenol oxidase) by genetic engineering as well as cultural manipulations; and to utilize PPO as a biocatalyst in the processing of lignocellulose as a renewable energy resource. In this study, the assessment of genomic and cDNA recombinant clones with regards to the overproduction of PPO continued. Further, immunocytochemical techniques were employed to assess the mechanism(s) involved in the secretion of PPO by the hyphae. Also, factors influencing PPO secretion were examined.

  5. Engineering radioecology: Methodological considerations

    Energy Technology Data Exchange (ETDEWEB)

    Nechaev, A.F.; Projaev, V.V. [St. Petersburg State Inst. of Technology (Russian Federation); Sobolev, I.A.; Dmitriev, S.A. [United Ecologo-Technological and Research Center on Radioactive Waste Management and Environmental Remediation, Moscow (Russian Federation)

    1995-12-31

    The term ``radioecology`` has been widely recognized in scientific and technical societies. At the same time, this scientific school (radioecology) does not have a precise/generally acknowledged structure, unified methodical basis, fixed subjects of investigation, etc. In other words, radioecology is a vast, important but rather amorphous conglomerate of various ideas, amalgamated mostly by their involvement in biospheric effects of ionizing radiation and some conceptual stereotypes. This paradox was acceptable up to a certain time. However, with the termination of the Cold War and because of remarkable political changes in the world, it has become possible to convert the problem of environmental restoration from the scientific sphere in particularly practical terms. Already the first steps clearly showed an imperfection of existing technologies, managerial and regulatory schemes; lack of qualified specialists, relevant methods and techniques; uncertainties in methodology of decision-making, etc. Thus, building up (or maybe, structuring) of special scientific and technological basis, which the authors call ``engineering radioecology``, seems to be an important task. In this paper they endeavored to substantiate the last thesis and to suggest some preliminary ideas concerning the subject matter of engineering radioecology.

  6. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  7. Software engineering methodologies and tools

    Science.gov (United States)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  8. Genetically engineered foods

    Science.gov (United States)

    Bioengineered foods; GMOs; Genetically modified foods ... helps speed up the process of creating new foods with desired traits. The possible benefits of genetic engineering include: More nutritious food Tastier food Disease- and ...

  9. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  10. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  11. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  12. Problem formulation and option assessment (PFOA) linking governance and environmental risk assessment for technologies: a methodology for problem analysis of nanotechnologies and genetically engineered organisms.

    Science.gov (United States)

    Nelson, Kristen C; Andow, David A; Banker, Michael J

    2009-01-01

    Societal evaluation of new technologies, specifically nanotechnology and genetically engineered organisms (GEOs), challenges current practices of governance and science. Employing environmental risk assessment (ERA) for governance and oversight assumes we have a reasonable ability to understand consequences and predict adverse effects. However, traditional ERA has come under considerable criticism for its many shortcomings and current governance institutions have demonstrated limitations in transparency, public input, and capacity. Problem Formulation and Options Assessment (PFOA) is a methodology founded on three key concepts in risk assessment (science-based consideration, deliberation, and multi-criteria analysis) and three in governance (participation, transparency, and accountability). Developed through a series of international workshops, the PFOA process emphasizes engagement with stakeholders in iterative stages, from identification of the problem(s) through comparison of multiple technology solutions that could be used in the future with their relative benefits, harms, and risk. It provides "upstream public engagement" in a deliberation informed by science that identifies values for improved decision making.

  13. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Feminist methodologies and engineering education research

    Science.gov (United States)

    Beddoes, Kacey

    2013-03-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory. The paper begins with a literature review that covers a broad range of topics featured in the literature on feminist methodologies. Next, data from interviews with engineering educators and researchers who have engaged with feminist methodologies are presented. The ways in which feminist methodologies shape their research topics, questions, frameworks of analysis, methods, practices and reporting are each discussed. The challenges and barriers they have faced are then discussed. Finally, the benefits of further and broader engagement with feminist methodologies within the engineering education community are identified.

  15. Paper Genetic Engineering.

    Science.gov (United States)

    MacClintic, Scott D.; Nelson, Genevieve M.

    Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…

  16. Clustering Methodologies for Software Engineering

    Directory of Open Access Journals (Sweden)

    Mark Shtern

    2012-01-01

    Full Text Available The size and complexity of industrial strength software systems are constantly increasing. This means that the task of managing a large software project is becoming even more challenging, especially in light of high turnover of experienced personnel. Software clustering approaches can help with the task of understanding large, complex software systems by automatically decomposing them into smaller, easier-to-manage subsystems. The main objective of this paper is to identify important research directions in the area of software clustering that require further attention in order to develop more effective and efficient clustering methodologies for software engineering. To that end, we first present the state of the art in software clustering research. We discuss the clustering methods that have received the most attention from the research community and outline their strengths and weaknesses. Our paper describes each phase of a clustering algorithm separately. We also present the most important approaches for evaluating the effectiveness of software clustering.

  17. Selected Readings in Genetic Engineering

    Science.gov (United States)

    Mertens, Thomas R.; Robinson, Sandra K.

    1973-01-01

    Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)

  18. Safe genetically engineered plants

    Science.gov (United States)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  19. Genetic engineering of cyanobacteria

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand

    , including genetic tools that allow metabolic engineering. The cyanobacterial phylum represents a diverse group of aerobic photosynthetic bacteria that are widespread in nature. Cyanobacteria shaped our atmosphere by oxygen evolution through the splitting of water using energy from sunlight. The sole carbon...... and characterized for growth phenotype and glycogen content. While no difference in growth rate or glycogen content was detected between the phosphorylase double mutant and wild type strain, we found that both glycogen phophyrylases must be genetically inactivated to eliminate glycogen phosphorylase activity...

  20. Genetic engineering in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bedate, C.A.; Morales, J.C.; Lopez, E.H.

    1981-09-01

    The objective of this book is to encourage the use of genetic engineering for economic development. The report covers: (1) Precedents of genetic engineering; (2) a brief description of the technology, including the transfer of DNA in bacteria (vectors, E. coli and B. subtilis hosts, stages, and technical problems), practical examples of techniques used and their products (interferon; growth hormone; insulin; treatment of blood cells, Talasemia, and Lesch-Nyhan syndrome; and more nutritious soya), transfer to higher organisms, and cellular fusion; (3) biological risks and precautions; (4) possible applications (production of hydrogen, hydrocarbons, alcohol, chemicals, enzymes, peptides, viral antigens, monoclonal antibodies, genes, proteins, and insecticides; metal extraction; nitrogen fixation; biodegradation; and new varieties of plants and animals; and (5) international activities.

  1. Genetic engineering of cyanobacteria

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand

    , including genetic tools that allow metabolic engineering. The cyanobacterial phylum represents a diverse group of aerobic photosynthetic bacteria that are widespread in nature. Cyanobacteria shaped our atmosphere by oxygen evolution through the splitting of water using energy from sunlight. The sole carbon...... and its natural ability to take up and stably integrate heterologous DNA make Synechococcus sp. PCC 7002 a good candidate for metabolic engineering. For targeted gene inactivation, a suite of vectors were made by adaptation of a system previously used in plants and fungi. The vectors include a cassette...... and characterized for growth phenotype and glycogen content. While no difference in growth rate or glycogen content was detected between the phosphorylase double mutant and wild type strain, we found that both glycogen phophyrylases must be genetically inactivated to eliminate glycogen phosphorylase activity...

  2. A Paradigm for Spreadsheet Engineering Methodologies

    CERN Document Server

    Grossman, Thomas A

    2008-01-01

    Spreadsheet engineering methodologies are diverse and sometimes contradictory. It is difficult for spreadsheet developers to identify a spreadsheet engineering methodology that is appropriate for their class of spreadsheet, with its unique combination of goals, type of problem, and available time and resources. There is a lack of well-organized, proven methodologies with known costs and benefits for well-defined spreadsheet classes. It is difficult to compare and critically evaluate methodologies. We present a paradigm for organizing and interpreting spreadsheet engineering recommendations. It systematically addresses the myriad choices made when developing a spreadsheet, and explicitly considers resource constraints and other development parameters. This paradigm provides a framework for evaluation, comparison, and selection of methodologies, and a list of essential elements for developers or codifiers of new methodologies. This paradigm identifies gaps in our knowledge that merit further research.

  3. A genetic engineering approach to genetic algorithms.

    Science.gov (United States)

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  4. Moral Fantasy in Genetic Engineering.

    Science.gov (United States)

    Boone, C. Keith

    1984-01-01

    Discusses the main ethical issues generated by the new genetics and suggests ways to think about them. Concerns include "playing God," violation of the natural order of the universe, and abuse of genetic technology. Critical distinctions for making difficult decisions about genetic engineering issues are noted. (DH)

  5. Genetic engineering, medicine and medical genetics.

    Science.gov (United States)

    Motulsky, A G

    1984-01-01

    The impact of DNA technology in the near future will be on the manufacture of biologic agents and reagents that will lead to improved therapy and diagnosis. The use of DNA technology for prenatal and preclinical diagnosis in genetic diseases is likely to affect management of genetic diseases considerably. New and old questions regarding selective abortion and the psychosocial impact of early diagnosis of late appearing diseases and of genetic susceptibilities are being raised. Somatic therapy with isolated genes to treat disease has not been achieved. True germinal genetic engineering is far off for humans but may find applications in animal agriculture.

  6. SOFTWARE METRICS VALIDATION METHODOLOGIES IN SOFTWARE ENGINEERING

    Directory of Open Access Journals (Sweden)

    K.P. Srinivasan

    2014-12-01

    Full Text Available In the software measurement validations, assessing the validation of software metrics in software engineering is a very difficult task due to lack of theoretical methodology and empirical methodology [41, 44, 45]. During recent years, there have been a number of researchers addressing the issue of validating software metrics. At present, software metrics are validated theoretically using properties of measures. Further, software measurement plays an important role in understanding and controlling software development practices and products. The major requirement in software measurement is that the measures must represent accurately those attributes they purport to quantify and validation is critical to the success of software measurement. Normally, validation is a collection of analysis and testing activities across the full life cycle and complements the efforts of other quality engineering functions and validation is a critical task in any engineering project. Further, validation objective is to discover defects in a system and assess whether or not the system is useful and usable in operational situation. In the case of software engineering, validation is one of the software engineering disciplines that help build quality into software. The major objective of software validation process is to determine that the software performs its intended functions correctly and provides information about its quality and reliability. This paper discusses the validation methodology, techniques and different properties of measures that are used for software metrics validation. In most cases, theoretical and empirical validations are conducted for software metrics validations in software engineering [1-50].

  7. Approaches and methodologies for mobile software engineering

    Directory of Open Access Journals (Sweden)

    Serena Pastore

    2015-09-01

    Full Text Available The development of software for mobile devices takes place in a dynamic environment where constraints, technologies and user needs change very frequently requiring enhanced approaches and methodologies in software engineering essential to deal with the concept of bring your own device (BYOD. Mobile apps are developed for various purposes in different categories. This paper discusses about the challenges that affect mobile software engineering, specifically for a science educational and outreach aim as regards technologies, approaches and methodologies that could be applied to unlock the full potential of mobility. In particular, it analyzes the main challenges to development in this field, such as dealing with enhanced connectivity and networking protocols (e.g., from Bluetooth Low Energy, IEEE 802.15.4-based protocols and new Wi-Fi versions and the fragmented ecosystem of mobile platforms. Moreover, it addresses the possible application of specific development methodologies such as Agile software methods.

  8. Genetic and metabolic engineering

    OpenAIRE

    Yang,Yea-Tyng; Bennett, George N.; San, Ka-yiu

    1998-01-01

    Recent advances in molecular biology techniques, analytical methods and mathematical tools have led to a growing interest in using metabolic engineering to redirect metabolic fluxes for industrial and medical purposes. Metabolic engineering is referred to as the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology (Stephanopoulos, 1999). This multidisciplinary field dr...

  9. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...

  10. Autism genetics: Methodological issues and experimental design.

    Science.gov (United States)

    Sacco, Roberto; Lintas, Carla; Persico, Antonio M

    2015-10-01

    Autism is a complex neuropsychiatric disorder of developmental origin, where multiple genetic and environmental factors likely interact resulting in a clinical continuum between "affected" and "unaffected" individuals in the general population. During the last two decades, relevant progress has been made in identifying chromosomal regions and genes in linkage or association with autism, but no single gene has emerged as a major cause of disease in a large number of patients. The purpose of this paper is to discuss specific methodological issues and experimental strategies in autism genetic research, based on fourteen years of experience in patient recruitment and association studies of autism spectrum disorder in Italy.

  11. Genetic Engineering Workshop Report, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Slezak, T

    2010-11-03

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected and characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industries that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of

  12. Genetic engineering of Geobacillus spp.

    Science.gov (United States)

    Kananavičiūtė, Rūta; Čitavičius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus.

  13. "Genetically Engineered" Nanoelectronics

    Science.gov (United States)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  14. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  15. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  16. Overcoming Challenges in Engineering the Genetic Code.

    Science.gov (United States)

    Lajoie, M J; Söll, D; Church, G M

    2016-02-27

    Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code.

  17. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  18. Development of Engine Loads Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR seeks to improve the definition of design loads for rocket engine components such that higher performing, lighter weight engines can be developed more...

  19. A methodology for creating ontologies for engineering design

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Kim, Sanghee; Wallace, Ken

    2005-01-01

    This paper describes a methodology for developing ontologies for engineering design. The methodology combines a number of methods from social science and computer science, together with taxonomies developed in the field of engineering design. A case study is used throughout the paper focusing upon...... the use of an ontology for searching, indexing and retrieving of engineering knowledge. An ontology for indexing design knowledge can assist the users to formulate their queries when searching for engineering design knowledge. The root concepts of the ontology were elicited from engineering designers...

  20. Genetic engineering and coagulation factors.

    Science.gov (United States)

    Fass, D N; Toole, J J

    1985-06-01

    It is unfortunate that we cannot report, in the area of coagulation, advances that have been seen in related fields such as thrombolytic therapy. The reported progress (Gold et al, 1984; Van de Werf et al, 1984) with human recombinant tissue plasminogen activator (Pennica et al, 1983) augers well for the application of recombinant technology to the problems faced by patients with coagulation defects. While plasminogen activator is being assessed in an acute therapeutic setting, its use signals a beginning of the application of the technology to abnormalities of the haemostatic mechanism. Chronic administration of coagulation factors for prophylaxis and replacement therapy would appear to be just one more step down the pathway illuminated by the biochemists, microbiologists and cell biologists who have preceded the clinicians in this promising area. There is no record of the use of genetically engineered materials in the treatment of coagulation defects, primarily because the body of knowledge and refined techniques have only recently been acquired. For this reason we have had to project developments in other areas onto the problems that exist for the haemostatically compromised patient. In describing the potential usefulness of these technologies, it is difficult to ascertain where the logical projection, from a fully investigated model system, diverges from flights of imaginative fancy. Cloning projects considered overly ambitious and grandiose at the beginning of this decade are already accomplished feats. The feasibility of gene therapy in the mammalian system has been demonstrated, and trade publications now discuss governmental approval for investigative use of this procedure in 1985. Panels of physicians, scientists and even politicians now seriously contemplate and promulgate views and regulations pertaining to the efficacy and ethics of the use of genetic engineering in the treatment of human disease. The haemophilias will certainly be among the first

  1. A methodology for creating ontologies for engineering design

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Kim, S.; Wallace, K.M.

    2007-01-01

    This paper describes a six-stage methodology for developing ontologies for engineering design, together with the research methods and evaluation of each stage. The methodology focuses upon understanding a user's domain models through empirical research. A case study of an ontology for searching......, indexing, and retrieving engineering knowledge is described. The root concepts of the ontology were elicited from engineering designers. Relationships between concepts are extracted as the ontology is populated. The contribution of this research is a methodology to allow researchers. and industry to create...

  2. Green software engineering: the curse of methodology

    OpenAIRE

    Hindle, Abram

    2016-01-01

    Computer Science often seems distant from its natural science cousins, especially software engineering which feels closer to sociology and psychology than to physics. Physical measurements are often rare in software engineering, except in a few niches. One such important niche is that of software energy consumption, green mining, green IT, and sustainable computing, which all fall under the umbrella of green software engineering. With the physical measurement of energy consumption comes all o...

  3. Genetic Engineering of Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min

    2016-01-01

    Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.

  4. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  5. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  6. Methodologies of requirements engineering research and practice

    NARCIS (Netherlands)

    Wieringa, Roel J.; Gervasi, V.; Zowghi, D.; Easterbrook, S.; Sim, S.E.

    2003-01-01

    In this position paper I argue that RE practice is the problem analysis part of a design problem, and that this problem analysis part is a knowledge problem in which the requirements engineer tries to build a theory of a problem domain. RE research is a knowledge problem too, in which the researcher

  7. Recent Advances in Genetic Engineering - A Review

    OpenAIRE

    Sobiah Rauf; Zubair Anwar; Hussain Mustatab Wahedi; Jabar Zaman Khan Khattak; Talal Jamil

    2012-01-01

    Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial imp...

  8. Genetic elements of plant viruses as tools for genetic engineering.

    OpenAIRE

    Mushegian, A R; Shepherd, R J

    1995-01-01

    Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent a...

  9. Security Quality Requirements Engineering (SQUARE) Methodology

    Science.gov (United States)

    2005-11-01

    Oriented Do- main Analysis ( FODA ) [Kang 90], Critical Discourse Analysis (CDA) [Schiffrin 94], and the Accelerated Requirements Method (ARM) [Hubbard...99]. Table 12: Comparison of Elicitation Techniques Misuse Cases SSM QFD CORE IBIS JAD FODA CDA ARM Adaptability 3 1 3 2 2 3 2 1 2 CASE Tool 1...Feature- Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI- 90-TR-021, ADA235785). Pittsburgh, PA: Software Engineering Institute, Carnegie

  10. Natural genetic engineering: intelligence & design in evolution?

    DEFF Research Database (Denmark)

    Ussery, David

    2011-01-01

    function. Shapiro argues that what we see in genomes is 'Natural Genetic Engineering', or designed evolution: "Thinking about genomes from an informatics perspective, it is apparent that systems engineering is a better metaphor for the evolutionary process than the conventional view of evolution...

  11. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    Abstract. Human genetic in the area of Bio-ethics is a new, rapidly advancing. Science. ... Human genetic engineering, a recent one in medical science and practice, is one ..... The Church on Cloning and Stem Cell Research. The teaching of ...

  12. Genetic Engineering: The Modification of Man

    Science.gov (United States)

    Sinsheimer, Robert L.

    1970-01-01

    Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…

  13. Genetic engineering of microbial pesticides

    Science.gov (United States)

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  14. Commercialising genetically engineered animal biomedical products.

    Science.gov (United States)

    Sullivan, Eddie J; Pommer, Jerry; Robl, James M

    2008-01-01

    Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.

  15. Recent Advances in Genetic Engineering - A Review

    Directory of Open Access Journals (Sweden)

    Sobiah Rauf

    2012-01-01

    Full Text Available Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial importance and of transferring genetic material from one organism to another. In order to achieve potential benefits of genetic engineering the only need is to develop perfect tools and techniques. Once it has been perfected then all of the problems associated with food production can be solved, the world environment can be restored, and human health and lifestyle will improve beyond imagination. No doubt that there are almost no limits to what can be achieved through responsible genetic engineering. Classical field of genetic engineering and some of its advancements are discussed in this review.

  16. MEMS product engineering: methodology and tools

    Science.gov (United States)

    Ortloff, Dirk; Popp, Jens; Schmidt, Thilo; Hahn, Kai; Mielke, Matthias; Brück, Rainer

    2011-03-01

    The development of MEMS comprises the structural design as well as the definition of an appropriate manufacturing process. Technology constraints have a considerable impact on the device design and vice-versa. Product design and technology development are therefore concurrent tasks. Based on a comprehensive methodology the authors introduce a software environment that links commercial design tools from both area into a common design flow. In this paper emphasis is put on automatic low threshold data acquisition. The intention is to collect and categorize development data for further developments with minimum overhead and minimum disturbance of established business processes. As a first step software tools that automatically extract data from spreadsheets or file-systems and put them in context with existing information are presented. The developments are currently carried out in a European research project.

  17. Methodology of Neural Design: Applications in Microwave Engineering

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-06-01

    Full Text Available In the paper, an original methodology for the automatic creation of neural models of microwave structures is proposed and verified. Following the methodology, neural models of the prescribed accuracy are built within the minimum CPU time. Validity of the proposed methodology is verified by developing neural models of selected microwave structures. Functionality of neural models is verified in a design - a neural model is joined with a genetic algorithm to find a global minimum of a formulated objective function. The objective function is minimized using different versions of genetic algorithms, and their mutual combinations. The verified methodology of the automated creation of accurate neural models of microwave structures, and their association with global optimization routines are the most important original features of the paper.

  18. Advances in genetic engineering of domestic animals

    Directory of Open Access Journals (Sweden)

    Shaohua WANG,Kun ZHANG,Yunping DAI

    2016-03-01

    Full Text Available Global population will increase to over nine billion by 2050 with the doubling in demand for meat and milk. To overcome this challenge, it is necessary to breed highly efficient and productive livestock. Furthermore, livestock are also excellent models for human diseases and ideal bioreactors to produce pharmaceutical proteins. Thus, genetic engineering of domestic animals presents a critical and valuable tool to address these agricultural and biomedical applications. Overall, genetic engineering has evolved through three stages in history: transgenesis, gene targeting, and gene editing. Since the birth of the first transgenic pig, genetic engineering in livestock has been advancing slowly due to inherent technical limitations. A major breakthrough has been the advent of somatic cell nuclear transfer, which, for the first time, provided the technical ability to produce site-specific genome-modified domestic animals. However, the low efficiency of gene targeting events in somatic cells prohibits its wide use in agricultural and biomedical applications. Recently, rapid progress in tools and methods of genome engineering has been made, allowing genetic editing from mutation of a single base pair to the deletion of entire chromosomes. Here, we review the major advances of genetic engineering in domestic animals with emphasis placed on the introduction of latest designer nucleases.

  19. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  20. Analysis of Requirement Engineering Processes, Tools/Techniques and Methodologies

    Directory of Open Access Journals (Sweden)

    Tousif ur Rehman

    2013-02-01

    Full Text Available Requirement engineering is an integral part of the software development lifecycle since the basis for developing successful software depends on comprehending its requirements in the first place. Requirement engineering involves a number of processes for gathering requirements in accordance with the needs and demands of users and stakeholders of the software product. In this paper, we have reviewed the prominent processes, tools and technologies used in the requirement gathering phase. The study is useful to perceive the current state of the affairs pertaining to the requirement engineering research and to understand the strengths and limitations of the existing requirement engineering techniques. The study also summarizes the best practices and how to use a blend of the requirement engineering techniques as an effective methodology to successfully conduct the requirement engineering task. The study also highlights the importance of security requirements as though they are part of the non-functional requirement, yet are naturally considered fundamental to secure software development.

  1. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    Science.gov (United States)

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  2. Genetic Engineering: and the Law

    Science.gov (United States)

    Australian Journal of Mental Retardation, 1977

    1977-01-01

    In a transcript from a radio show, Nobel Prize Winner Sir Macfarlane Burnet stresses the critical need for scientists to regulate their own activities in genetic research and cites the potential danger of creating a new form of polio which might escape. (CL)

  3. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  4. Development of Management Methodology for Engineering Production Quality

    Science.gov (United States)

    Gorlenko, O.; Miroshnikov, V.; Borbatc, N.

    2016-04-01

    The authors of the paper propose four directions of the methodology developing the quality management of engineering products that implement the requirements of new international standard ISO 9001:2015: the analysis of arrangement context taking into account stakeholders, the use of risk management, management of in-house knowledge, assessment of the enterprise activity according to the criteria of effectiveness

  5. Advances in genetic engineering of domestic animals

    OpenAIRE

    Shaohua WANG,Kun ZHANG,Yunping DAI

    2016-01-01

    Global population will increase to over nine billion by 2050 with the doubling in demand for meat and milk. To overcome this challenge, it is necessary to breed highly efficient and productive livestock. Furthermore, livestock are also excellent models for human diseases and ideal bioreactors to produce pharmaceutical proteins. Thus, genetic engineering of domestic animals presents a critical and valuable tool to address these agricultural and biomedical applications. Overall, genetic enginee...

  6. Advances in genetic engineering of domestic animals

    OpenAIRE

    Shaohua WANG,Kun ZHANG,Yunping DAI

    2016-01-01

    Global population will increase to over nine billion by 2050 with the doubling in demand for meat and milk. To overcome this challenge, it is necessary to breed highly efficient and productive livestock. Furthermore, livestock are also excellent models for human diseases and ideal bioreactors to produce pharmaceutical proteins. Thus, genetic engineering of domestic animals presents a critical and valuable tool to address these agricultural and biomedical applications. Overall, genetic enginee...

  7. Genetic engineering of plant food with reduced allergenicity.

    Science.gov (United States)

    Scheurer, Stephan; Sonnewald, Sophia

    2009-01-01

    Food allergies are a major health concern in industrialized countries. Since a specific immunotherapy for food allergies is not available in clinical routine praxis till now, reduction of allergens in foods, either by food processing or genetic engineering are strategies to minimize the risk of adverse reactions for food allergic patients. This review summarizes biotechnological approaches, especially the RNA interference (RNAi) technology, for the reduction of selected allergens in plant foods. So far, only a limited number of reports showing proof-of-concept of this methodology are available. Using RNAi an impressive reduction of allergen accumulation was obtained which was stable in the next generations of plants. Since threshold doses for most food allergens are not known, the beneficial effect has to be evaluated by oral challenge tests in the future. The article critically addresses the potential and limitations of genetic engineering, as well as of alternative strategies to generate "low allergic" foods.

  8. Genetically Engineered Crops: Experiences and Prospects

    NARCIS (Netherlands)

    Giller, K.E.

    2016-01-01

    Since their introduction in the mid-1990s, genetically engineered (GE) crops have been the topic of much debate. This report reviews evidence accumulated from experiences on the most widely grown GE crops to date: herbicide-resistant and insect-resistant varieties of maize, soybean, and cotton. Whil

  9. Genetically Engineered Crops: Experiences and Prospects

    NARCIS (Netherlands)

    Giller, K.E.

    2016-01-01

    Since their introduction in the mid-1990s, genetically engineered (GE) crops have been the topic of much debate. This report reviews evidence accumulated from experiences on the most widely grown GE crops to date: herbicide-resistant and insect-resistant varieties of maize, soybean, and cotton.

  10. [The microencapsulated genetic engineering cells: a new platform on treatment of cancer instead of genetic engineering drugs].

    Science.gov (United States)

    Pan, Yuelong; Zheng, Shu

    2003-06-01

    The microencapsulated genetic cells may be a new platform instead of genetic engineering drugs, as they can overcome the genetic engineering drugs' shortages such as short half-life in vivo, low activity, and incomplete elimination of organic solvent. This article reviews and summarizes the advantages, possible problems and solution and the feasibility of using microencapsulated genetic engineering cells in the treatment of cancer.

  11. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    Science.gov (United States)

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  12. Insights on bovine genetic engineering and cloning

    Directory of Open Access Journals (Sweden)

    Fabiana F. Bressan

    2013-12-01

    Full Text Available Transgenic technology has become an essential tool for the development of animal biotechnologies, and animal cloning through somatic cell nuclear transfer (SCNT enabled the generation of genetically modified animals utilizing previously modified and selected cell lineages as nuclei donors, assuring therefore the generation of homogeneous herds expressing the desired modification. The present study aimed to discuss the use of SCNT as an important methodology for the production of transgenic herds, and also some recent insights on genetic modification of nuclei donors and possible effects of gene induction of pluripotency on SCNT.

  13. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  15. MS-based analytical methodologies to characterize genetically modified crops.

    Science.gov (United States)

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart.

  16. Active learning about research methodology in engineering education

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    and the sort of industrial economy that came with it. Whatever else the new era brings – the globalization of risks, environmental problems, new technologies, etc. – knowledge and the ability to seek, produce, apply and transform knowledge is of huge importance. However, research methodology and theory...... of science if often not favored subjects by engineering students, who tend to find the subjects abstract. Thus, the students are often very engaged in the subjects, nor are textbooks or teaching very engaging. This poster asks how we can promote active learning in research methodology and theory of science......? Based on a pragmatic reading of Batesons logical categories of learning, the poster suggests a conceptual framework for competence development in research methodology and theory of science, which identify different sets of competencies (instrumental, practical, analytical and critical) as well...

  17. Methodological fundamentals for studying engineering geology of USSR Artic shelves

    Energy Technology Data Exchange (ETDEWEB)

    Neizvestnov, Ya.V.

    1981-01-01

    Theoretical achievements of domestic engineering geology make it possible to substantiate a new approach to investigating regional engineering-geological conditions of the shelf zones. The feature of the methodology of this approach is advanced to the forefront of deductive methods of research, derivation from true premises. Aspects of geological history and logically necessary (engineering-geological) conclusions are adopted as these premises. The use of principles of system-structural approach in formulating a technique for forecasting evaluation makes it possible to separate the total problem into a number of subproblems consisting of forecasting engineering-geological evaluation of rocks, underground water, modern geological processes and phenomena for each spatial element of the natural object with subsequent synthesis of special forecasts. A technique is presented for forecasting engineering-geological conditions. Attention is drawn to the need to take into consideration the polar type of lithogenesis in the engineering-geological evaluation of Quaternary deposits. General method conclusions are examined for predicting the amount of bed pressure of artesian waters and parameters of the subaqual frozen ground zone.

  18. Genetic engineering and sustainable production of ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Clarke, Jihong Liu; Müller, Renate

    2012-01-01

    and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected....... This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed......Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources...

  19. Genetic engineering of cyanobacteria as biodiesel feedstock.

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne.; Trahan, Christine Alexandra; Jones, Howland D. T.

    2013-01-01

    Algal biofuels are a renewable energy source with the potential to replace conventional petroleum-based fuels, while simultaneously reducing greenhouse gas emissions. The economic feasibility of commercial algal fuel production, however, is limited by low productivity of the natural algal strains. The project described in this SAND report addresses this low algal productivity by genetically engineering cyanobacteria (i.e. blue-green algae) to produce free fatty acids as fuel precursors. The engineered strains were characterized using Sandias unique imaging capabilities along with cutting-edge RNA-seq technology. These tools are applied to identify additional genetic targets for improving fuel production in cyanobacteria. This proof-of-concept study demonstrates successful fuel production from engineered cyanobacteria, identifies potential limitations, and investigates several strategies to overcome these limitations. This project was funded from FY10-FY13 through the President Harry S. Truman Fellowship in National Security Science and Engineering, a program sponsored by the LDRD office at Sandia National Laboratories.

  20. Genetic Engineering and Competitiveness of Livestock Production

    Directory of Open Access Journals (Sweden)

    Carl A.Pinkert

    2003-06-01

    Full Text Available Our ability to modify whole animal genetics has grown considerably in the last two decades. We have seen concerns regarding food safety and protection of breeding rights of genetically modified animals compel redirection of genetic engineering experimentation toward biomedical applications. Indeed, it has been nearly twenty years since the first transgenic livestock appeared in the literature, yet at this time, there are no commercially viable agricultural species. In contrast to commercialization concerns, in a variety of existing transgenic animal models, basic research into the regulation and function of specific genes (including both gain-of-function and ablation of potentially deleterious gene products has persevered. Pioneering efforts in transgenic animal technology have markedly influenced our appreciation of the factors that govern gene regulation and expression, and have contributed significantly to our understanding of the biology of mammalian development.

  1. Applying systems engineering methodologies to the micro- and nanoscale realm

    Science.gov (United States)

    Garrison Darrin, M. Ann

    2012-06-01

    Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

  2. Environmental value engineering (EVE): a green building performance assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Roudebush, W. H. [Bowling Green Univ., College of Technology, OH (United States)

    1998-11-01

    Establishing criteria for assessing green building performance is discussed. Performance criteria identified include building energy consumption, building material reduction, pollution minimization, indoor air quality, waste reduction, and occupant performance/output maximization. This paper specifically focuses on the use of an assessment methodology called environmental value engineering to maximize building performance at the least cost to the environment, i.e. the least quantity of inputs required per unit of building function. The inputs are grouped into four categories of: environment, fuel energy, goods, and services. The assessment is conducted at various points in the building`s life cycle (natural resource formation, exploration and extraction, material production, construction, use, demolition, natural resource recycling and disposal), with the four categories of inputs accounted for during each of the life cycle phases. Environmental value engineering is based on the EMERGY Analysis methodology developed at the University of Florida, and the ASTM (1993) UNIFORMAT of building subsystem organization. Total EMERGY per unit of function is considered to be the measure of building performance. The methodology can be used to compare traditional building performance to green building performance towards sustainable development. 5 refs., 2 tabs.

  3. Development of genetic transformation methodologies for an industrially-promising microalga: Scenedesmus almeriensis.

    Science.gov (United States)

    Dautor, Yasmeen; Úbeda-Mínguez, Patricia; Chileh, Tarik; García-Maroto, Federico; Alonso, Diego López

    2014-12-01

    The development of the microalgal industry requires advances in every aspect of microalgal biotechnology. In this regard, the availability of genetic engineering tools for industrially-promising species is key. As Scenedesmus almeriensis has promise for industrial use, we describe here an Agrobacterium-based methodology that allows stable genetic transformation of it for the first time, thus opening the way to its genetic manipulation. Transformation was accomplished using two different antibiotic resistance genes [hygromicine phophotransferase (hpt) and Shble] and it is credited by PCR amplification of both hpt/Shble and GUS genes and by the β-glucuronidase activity of transformed cells. Nevertheless, the single 35S promoter seems unable to direct gene expression to a convenient level in S. almeriensis as suggested by the low GUS enzymatic activity. Temperature was critical for the transformation efficiency.

  4. Genetic engineering of microorganisms for biodiesel production.

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.

  5. Advances in genetic engineering of marine algae.

    Science.gov (United States)

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  7. Xenomicrobiology: a roadmap for genetic code engineering.

    Science.gov (United States)

    Acevedo-Rocha, Carlos G; Budisa, Nediljko

    2016-09-01

    Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non-natural building blocks in living cells. In this context, genetic code engineering respectively enables the re-design of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering

    Science.gov (United States)

    Ramsey, Paul

    1972-01-01

    Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)

  9. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.

  10. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  11. Structured system engineering methodologies used to develop a nuclear thermal propulsion engine

    Science.gov (United States)

    Corban, R.; Wagner, R.

    1993-01-01

    To facilitate the development of a space nuclear thermal propulsion engine for manned flights to Mars, requirements must be established early in the technology development cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system size, performance and safety goals be defined at the earliest possible time. These systems are highly complex and require a large multidisciplinary systems engineering team to develop and track requirements, and to ensure that the as-built system reflects the intent of the mission. A methodology has been devised which uses sophisticated computer tools to effectively develop and interpret functional requirements, and furnish these to the specification level for implementation.

  12. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  13. Life Cycle Engineering – from methodology to enterprise culture

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Poll, Christian

    2003-01-01

    of methodologies and tools for life cycle assessment and development of more eco-efficient products, from complex to simplified, catering to the needs of especially small and medium-sized enterprizes. The tools and data are in place, but dissemination lacks behind. Propagation of life cycle thinking and life cycle......As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number...... engineering to larger parts of industry is attempted by strengthening the market pull through integrated product policy measures, and at the same time pushing through information activities, training and dissemination of tools. Experience hitherto shows that these forces are insufficient and that stronger...

  14. Improved Quantum Genetic Algorithm in Application of Scheduling Engineering Personnel

    Directory of Open Access Journals (Sweden)

    Huaixiao Wang

    2014-01-01

    Full Text Available To verify the availability of the improved quantum genetic algorithm in solving the scheduling engineering personnel problem, the following work has been carried out: the characteristics of the scheduling engineering personnel problem are analyzed, the quantum encoding method is proposed, and an improved quantum genetic algorithm is applied to address the issue. Taking the low efficiency and the bad performance of the conventional quantum genetic algorithm into account, a universal improved quantum genetic algorithm is introduced to solve the scheduling engineering personnel problem. Finally, the examples are applied to verify the effectiveness and superiority of the improved quantum genetic algorithm and the rationality of the encoding method.

  15. Programmable genetic circuits for pathway engineering.

    Science.gov (United States)

    Hoynes-O'Connor, Allison; Moon, Tae Seok

    2015-12-01

    Synthetic biology has the potential to provide decisive advances in genetic control of metabolic pathways. However, there are several challenges that synthetic biologists must overcome before this vision becomes a reality. First, a library of diverse and well-characterized sensors, such as metabolite-sensing or condition-sensing promoters, must be constructed. Second, robust programmable circuits that link input conditions with a specific gene regulation response must be developed. Finally, multi-gene targeting strategies must be integrated with metabolically relevant sensors and complex, robust logic. Achievements in each of these areas, which employ the CRISPR/Cas system, in silico modeling, and dynamic sensor-regulators, among other tools, provide a strong basis for future research. Overall, the future for synthetic biology approaches in metabolic engineering holds immense promise.

  16. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering.

  17. PUBLIC PERCEPTION OF GENETIC ENGINEERING AND THE CHOICE TO PURCHASE GENETICALLY MODIFIED FOOD

    OpenAIRE

    2004-01-01

    This paper presents the results of a survey conducted on public perception of genetic engineering in Jamaica. Our findings suggest that the safety of genetically modified foods is a major concern for consumers and that the perception of the prospects for genetic engineering to improve the quality of life represents a major factor in a consumer's decision to purchase GM foods.

  18. Methodology discourses as boundary work in the construction of engineering education.

    Science.gov (United States)

    Beddoes, Kacey

    2014-04-01

    Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.

  19. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  20. Improved Quantum Genetic Algorithm in Application of Scheduling Engineering Personnel

    OpenAIRE

    Huaixiao Wang; Ling Li; Jianyong Liu; Yong Wang; Chengqun Fu

    2014-01-01

    To verify the availability of the improved quantum genetic algorithm in solving the scheduling engineering personnel problem, the following work has been carried out: the characteristics of the scheduling engineering personnel problem are analyzed, the quantum encoding method is proposed, and an improved quantum genetic algorithm is applied to address the issue. Taking the low efficiency and the bad performance of the conventional quantum genetic algorithm into account, a universal improved q...

  1. Engineered Plant Minichromosome and Its Application in Genomics and Genetic Engineering

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Engineered minichromosomes have been constructed as novel artificial chromosome platforms for future genetic engineering in maize.We demonstrated that minichromosomes could be created by telomere-mediated chromosomal truncation of both normal A chromosomes and the supernumerary B

  2. Efforts and Challenges in Engineering the Genetic Code.

    Science.gov (United States)

    Lin, Xiao; Yu, Allen Chi Shing; Chan, Ting Fung

    2017-03-14

    This year marks the 48th anniversary of Francis Crick's seminal work on the origin of the genetic code, in which he first proposed the "frozen accident" hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification.

  3. Efforts and Challenges in Engineering the Genetic Code

    Directory of Open Access Journals (Sweden)

    Xiao Lin

    2017-03-01

    Full Text Available This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification.

  4. Methodology for risk assessment and reliability applied for pipeline engineering design and industrial valves operation

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Dierci [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgia. Lab. de Sistemas de Producao e Petroleo e Gas], e-mail: dsilveira@metal.eeimvr.uff.br; Batista, Fabiano [CICERO, Rio das Ostras, RJ (Brazil)

    2009-07-01

    Two kinds of situations may be distinguished for estimating the operating reliability when maneuvering industrial valves and the probability of undesired events in pipelines and industrial plants: situations in which the risk is identified in repetitive cycles of operations and situations in which there is a permanent hazard due to project configurations introduced by decisions during the engineering design definition stage. The estimation of reliability based on the influence of design options requires the choice of a numerical index, which may include a composite of human operating parameters based on biomechanics and ergonomics data. We first consider the design conditions under which the plant or pipeline operator reliability concepts can be applied when operating industrial valves, and then describe in details the ergonomics and biomechanics risks that would lend itself to engineering design database development and human reliability modeling and assessment. This engineering design database development and reliability modeling is based on a group of engineering design and biomechanics parameters likely to lead to over-exertion forces and working postures, which are themselves associated with the functioning of a particular plant or pipeline. This approach to construct based on ergonomics and biomechanics for a more common industrial valve positioning in the plant layout is proposed through the development of a methodology to assess physical efforts and operator reach, combining various elementary operations situations. These procedures can be combined with the genetic algorithm modeling and four elements of the man-machine systems: the individual, the task, the machinery and the environment. The proposed methodology should be viewed not as competing to traditional reliability and risk assessment bur rather as complementary, since it provides parameters related to physical efforts values for valves operation and workspace design and usability. (author)

  5. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches.

    Science.gov (United States)

    Nishihara, Masahiro; Nakatsuka, Takashi

    2010-01-01

    Since the first successful genetic engineering of flower color in petunia, several new techniques have been developed and applied to modify flower color not only in model plants but also in floricultural plants. A typical example is the commercial violet-flowered carnation "Moondust series" developed by Suntry Ltd. and Florigene Ltd. More recently, blue-flowered roses have been successfully produced and are expected to be commercially available in the near future. In recent years, successful modification of flower color by sophisticated regulation of flower-pigment metabolic pathways has become possible. In this chapter, we review recent advances in flower color modification by genetic engineering, especially focusing on the methodology. We have included our own recent results on successful production of flower-color-modified transgenic plants in a model plant, tobacco and an ornamental plant, gentian. Based on these results, genetic engineering of flower color for improvement of floricultural plants is discussed.

  6. Scheduling in a Meta Search Engine by Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The meta search engines provide service to the users bydispensing the users' requests to the existing search engines. The existing search engines sele cted by meta search engine determine the searching quality. Because the performa nce of the existing search engines and the users' requests are changed dynamical ly, it is not favorable for the fixed search engines to optimize the holistic pe rformance of the meta search engine. This paper applies the genetic algorithm (G A) to realize the scheduling strategy of agent manager in our meta search engine , GSE(general search engine), which can simulate the evolution process of living things more lively and more efficiently. By using GA, the combination of search engines can be optimized and hence the holistic performance of GSE can be impro ved dramatically.

  7. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  8. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... publishing in the European Journal of Engineering Education, aiming to identify a shift in methods used for engineering education research....... engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering...

  9. NUTRITIONAL ENHANCEMENT OF ALFALFA THROUGH GENETIC ENGINEERING

    Directory of Open Access Journals (Sweden)

    J. Faragó

    2008-09-01

    Full Text Available Alfalfa (Medicago sativa L. is a pasture legume crop of primary importance to animal production throughout the world. The nutritional quality of alfalfa, as of other leguminous forage crops, is mainly determined by their content in selected essential amino acids (EAAs, such as methionine (Met and cysteine (Cys. In alfalfa, however, these S-containing amino acids constitute only about 1% or less of crude proteins (Frame et al., 1998. This is significantly less than the 3.5% Met+Cys content in the recommended FAO reference protein (FAO, 1973. Recent advances in genetic engineering allow to use the transgenic approach to increase the content of specific essential amino acids in target plant species. A number of different molecular approaches have been developed to address this issue, such as over-expression of a heterologous or homologous Met-rich protein, expression of a synthetic protein, modification of protein sequence, and metabolic engineering of the free amino acid pool and protein sink. To study the possibility of transgenic enhancement of nutritional quality of alfalfa, we used the approach of expression of a heterologous protein rich in Met+Cys in cells of alfalfa. The T-DNA introduced into the genome of alfalfa, using Agrobacterium tumefaciens-mediated genetic transformation, contained the selectable merker gene nptII for kanamycin (Kn resistance, and a cDNA of Ov gene from Japanese quail (Coturnix coturnix coding for a high Met+Cys containing ovalbumine (Mucha et al., 1991, both under constitutive promoters. After cocultivation of petiole segment- and leaf blade-explants of two highly embryogenic alfalfa genotypes Rg9/I-14-22 and Rg11/I-10-68 (Faragó et al., 1997 with cells of A. tumefaciens strain AGL1 carrying the nptII and Ov genes, and selection of transgenic cells on Kn containing selective media, more than one hundred putatively transgenic regenerants were obtained through somatic embryogenesis. Biological (Kn rooting assay

  10. Legal and regulatory aspects of genetically engineered animals.

    Science.gov (United States)

    Jones, D D

    1986-01-01

    The commercialization of genetically engineered food animals will pose a number of legal and regulatory questions. These may be grouped into questions of process and questions of products. The process of animal genetic engineering with artificially constructed vectors will probably be regulated in much the same manner as other veterinary procedures. There may be some discussion, however, as to whether animal drug or animal biologic regulations are more applicable. The products of animal genetic engineering, i.e., transgenic food animals and food products made from them, also raise important questions about product safety and identity. These include whether and how genetically engineered food animals will be subject to federal inspection for wholesomeness, whether artificial vectors, foreign genes, or gene products will adulterate recipient animal tissues, and how food products made from such animals will be labeled. Prior federal experience with the inspection of interspecific hybrids of cattle and buffalo provides a useful basis for further policy developments in the inspection and labeling of genetically engineered food animals. In particular, the inspection of cattle/buffalo hybrids has established a phenotypic (based on appearance) criterion for deciding how novel food animals should be inspected. As the genetic engineering of food animals on a production basis draws nearer, it may be necessary to supplement the phenotypic criterion with genetic (based on pedigree) criteria to assure that the essential characteristics of animals slaughtered under current food statutes are maintained.

  11. Development Cooperation as Methodology for Teaching Social Responsibility to Engineers

    Science.gov (United States)

    Lappalainen, Pia

    2011-01-01

    The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication,…

  12. Development Cooperation as Methodology for Teaching Social Responsibility to Engineers

    Science.gov (United States)

    Lappalainen, Pia

    2011-01-01

    The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication,…

  13. "Genetic Engineering" Gains Momentum (Science/Society Case Study).

    Science.gov (United States)

    Moore, John W.; Moore, Elizabeth A., Eds.

    1980-01-01

    Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)

  14. International Genetically Engineered Machine (iGEM) Competition

    CSIR Research Space (South Africa)

    Sparrow, RW

    2010-07-01

    Full Text Available iGEM, the International Genetically Engineered Machine competition, is an initiative from MIT and has become the premiere undergraduate synthetic biology competition. The competing teams consist of students who work on a synthetic biology project...

  15. Development cooperation as methodology for teaching social responsibility to engineers

    Science.gov (United States)

    Lappalainen, Pia

    2011-12-01

    The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication, teamwork, intercultural cooperation, sustainability, social and global responsibility represent the socio-cultural dimensions that are becoming increasingly important as globalisation intensifies the demands for socially and globally adept engineering communities. This article describes an experiment, the Development Cooperation Project, which was conducted at Aalto University in Finland to integrate social responsibility themes into higher engineering education.

  16. A methodology for noise prediction of turbofan engines.

    OpenAIRE

    Gustavo Di Fiore dos Santos

    2006-01-01

    A computional model is developed for prediction of noise emission from na existing or new turbofan engine. This model allows the simulation of noise generation from high bypass ratio turbofan engines, appropriate for use with computational programs for gas turbine performance developed at ITA. Analytical and empirical methods are used for spectrum shape, spectrum level, overall noise and free-field directivity noise. The most significant noise sources in turbofan engines are modeled: fan, com...

  17. Virus resistant plums through genetic engineering - from lab to market

    Science.gov (United States)

    Genetic engineering (GE) has the potential to revolutionize the genetic improvement of fruit trees and other specialty crops, to provide greater flexibility and speed in responding to changes in climate, production systems and market demands, and to maintain the competitiveness of American agricultu...

  18. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.

    Science.gov (United States)

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-05-01

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis

  19. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, Trajce; Pieters, Wolter; Hartel, Pieter

    2010-01-01

    Penetration tests on IT systems are sometimes coupled with physical penetration tests and social engineering. In physical penetration tests where social engineering is allowed, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not

  20. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering...... and science, they tend to aim for ‘rigorous research’ according to the natural sciences. Worldwide the engineering education community has recognized the need to blend both the social sciences research approach and rigorous research. This paper explores the variation in research methods used by researchers...

  1. Manipulating DNA repair for improved genetic engineering in Aspergillus

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur

    engineering strategies. Chapter 1 gives an introduction to the genus Aspergillus and some of the tools relevant to fungal genetic engineering. It also contains a short introduction to DNA repair and its interplay with gene targeting and finally an overview over the different genome editing technologies......Aspergillus is a genus of filamentous fungi, which members includes industrial producers of enzymes, organic acids and secondary metabolites, important pathogens and a model organism. As such no matter the specific area of interest there are many reasons to perform genetic engineering, whether...... it is metabolic engineering to create better performing cell factory, elucidating pathways to study secondary metabolism etc. In this thesis, the main focus is on different ways to manipulate DNA repair for optimizing gene targeting, ultimately improving the methods available for faster and better genetic...

  2. Genetic Engineering and Manufacturing of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiuyan Wang

    2017-06-01

    Full Text Available The marketing approval of genetically engineered hematopoietic stem cells (HSCs as the first-line therapy for the treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID is a tribute to the substantial progress that has been made regarding HSC engineering in the past decade. Reproducible manufacturing of high-quality, clinical-grade, genetically engineered HSCs is the foundation for broadening the application of this technology. Herein, the current state-of-the-art manufacturing platforms to genetically engineer HSCs as well as the challenges pertaining to production standardization and product characterization are addressed in the context of primary immunodeficiency diseases (PIDs and other monogenic disorders.

  3. Enhanced genetic tools for engineering multigene traits into green algae.

    Directory of Open Access Journals (Sweden)

    Beth A Rasala

    Full Text Available Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization.

  4. Teacher-to-Teacher: An Annotated Bibliography on DNA and Genetic Engineering.

    Science.gov (United States)

    Mertens, Thomas R., Comp.

    1984-01-01

    Presented is an annotated bibliography of 24 books on DNA and genetic engineering. Areas considered in these books include: basic biological concepts to help understand advances in genetic engineering; applications of genetic engineering; social, legal, and moral issues of genetic engineering; and historical aspects leading to advances in…

  5. Learning theories and assessment methodologies - an engineering educational perspective

    Science.gov (United States)

    Hassan, O. A. B.

    2011-08-01

    This paper attempts to critically review theories of learning from the perspective of engineering education in order to align relevant assessment methods with each respective learning theory, considering theoretical aspects and practical observations and reflections. The role of formative assessment, taxonomies, peer learning and educational policy as regards promoting the learning of engineering is discussed. It is suggested that an integrated learning method in which cognitive levels, social factors and teamwork and behaviouristic elements are integrated will optimise the learning process on an engineering course. Moreover, assessment of learning should not be isolated from views of teaching and the learning methods employed by the university teacher.

  6. Modelling methodology for engineering of complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2014-10-01

    Full Text Available Different systems engineering techniques and approaches are applied to design and develop complex sociotechnical systems for complex problems. In a complex sociotechnical system cognitive and social humans use information technology to make sense...

  7. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals.

    Science.gov (United States)

    Bosch, Pablo; Forcato, Diego O; Alustiza, Fabrisio E; Alessio, Ana P; Fili, Alejandro E; Olmos Nicotra, María F; Liaudat, Ana C; Rodríguez, Nancy; Talluri, Thirumala R; Kues, Wilfried A

    2015-05-01

    Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.

  8. Active Methodologies in a Queueing Systems Course for Telecommunication Engineering Studies

    Science.gov (United States)

    Garcia, J.; Hernandez, A.

    2010-01-01

    This paper presents the results of a one-year experiment in incorporating active methodologies in a Queueing Systems course as part of the Telecommunication Engineering degree at the University of Zaragoza, Spain, during the period of adaptation to the European Higher Education Area. A problem-based learning methodology has been introduced, and…

  9. Active Methodologies in a Queueing Systems Course for Telecommunication Engineering Studies

    Science.gov (United States)

    Garcia, J.; Hernandez, A.

    2010-01-01

    This paper presents the results of a one-year experiment in incorporating active methodologies in a Queueing Systems course as part of the Telecommunication Engineering degree at the University of Zaragoza, Spain, during the period of adaptation to the European Higher Education Area. A problem-based learning methodology has been introduced, and…

  10. Methodology of Computer-Aided Design of Variable Guide Vanes of Aircraft Engines

    Science.gov (United States)

    Falaleev, Sergei V.; Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2016-01-01

    The paper presents a methodology which helps to avoid a great amount of costly experimental research. This methodology includes thermo-gas dynamic design of an engine and its mounts, the profiling of compressor flow path and cascade design of guide vanes. Employing a method elaborated by Howell, we provide a theoretical solution to the task of…

  11. Situated learning methodologies and assessment in civil engineering structures education

    Science.gov (United States)

    Bertz, Michael Davis

    This thesis describes an overarching study of civil engineering undergraduate structural education through student performance in recalling and applying basic structural engineering knowledge, and the viability of alternative situated learning environments for more effectively supporting the learning of this knowledge. To properly ground this study, a thorough investigation of related work in assessment, cognitive science, educational technology, and design education was completed, with connections and applications to civil engineering education highlighted. The experimental work of the thesis is organized into three parts: an assessment of civil engineering undergraduates' fundamental structural engineering knowledge and abilities; the development and testing of a software support environment for situated learning, the Civil Engineering Learning Library (CELL); and, the implementation and evaluation of the design studio, a pedagogical model for situated learning in the classroom. The results of the assessment study indicate that civil engineering seniors (and also students earlier in the curriculum) have difficulty retaining and applying basic knowledge of structural behavior, especially doing so in a flexible fashion in design situations. The survey also suggests that visualization plays an important role in understanding structural behavior. Tests with the CELL system show that a cognitively-flexible multimedia environment can support structural learning, but were inconclusive about whether the computer-based system helped the students to learn better than conventional classroom lecture. Two trial implementations of the design studio indicate that the studio model can serve as a powerful situated learning environment, and that it can be scaled up to reasonable class sizes. Significant requirements are associated with this model, however, primarily in faculty involvement, but also in physical resources and student time. In addition to these conclusions about the

  12. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    Science.gov (United States)

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  13. Field performance of a genetically engineered strain of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Gregory S Simmons

    Full Text Available Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.

  14. Genetically Engineered Materials for Biofuels Production

    Science.gov (United States)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  15. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    Science.gov (United States)

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  16. Cost-Benefit Analysis Methodology: Install Commercially Compliant Engines on National Security Exempted Vessels?

    Science.gov (United States)

    2015-11-05

    technologies follow: 1. Selective catalytic reduction (SCR) 2. Diesel particulate filter (DPF) – electrically regenerated active (ERADPF...insurmountable obstacles such as vessel range, engine room space, SLM, additional electric power, etc. Recommendations are developed on the basis of both...Cost-Benefit Analysis Methodology: Install Commercially Compliant Engines on National Security Exempted Vessels? Jonathan DeHart 1 (M

  17. Engineered Plant Minichromosome and Its Application in Genomics and Genetic Engineering

    Institute of Scientific and Technical Information of China (English)

    YU Wei-chang

    2008-01-01

    @@ Engineered minichromosomes have been constructed as novel artificial chromosome platforms for future genetic engineering in maize.We demonstrated that minichromosomes could be created by telomere-mediated chromosomal truncation of both normal A chromosomes and the supernumerary B chromosomes of maize,the minichromosomes were stable during both mitosis and meiosis,transgenes were expressed from minichromosomes,and we also demonstrated the proof of concept that minichromosomes could accept new genetic elements by a site-specific recombination system.

  18. Methodologies of Knowledge Discovery from Data and Data Mining Methods in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Rogalewicz Michał

    2016-12-01

    Full Text Available The paper contains a review of methodologies of a process of knowledge discovery from data and methods of data exploration (Data Mining, which are the most frequently used in mechanical engineering. The methodologies contain various scenarios of data exploring, while DM methods are used in their scope. The paper shows premises for use of DM methods in industry, as well as their advantages and disadvantages. Development of methodologies of knowledge discovery from data is also presented, along with a classification of the most widespread Data Mining methods, divided by type of realized tasks. The paper is summarized by presentation of selected Data Mining applications in mechanical engineering.

  19. TMTI Task 1.6 Genetic Engineering Methods and Detection

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Lenhoff, R; Allen, J; Borucki, M; Vitalis, E; Gardner, S

    2009-12-04

    A large number of GE techniques can be adapted from other microorganisms to biothreat bacteria and viruses. Detection of GE in a microorganism increases in difficulty as the size of the genetic change decreases. In addition to the size of the engineered change, the consensus genomic sequence of the microorganism can impact the difficulty of detecting an engineered change in genomes that are highly variable from strain to strain. This problem will require comprehensive databases of whole genome sequences for more genetically variable biothreat bacteria and viruses. Preliminary work with microarrays for detecting synthetic elements or virulence genes and analytic bioinformatic approaches for whole genome sequence comparison to detect genetic engineering show promise for attacking this difficult problem but a large amount of future work remains.

  20. [Research progress of genetic engineering on medicinal plants].

    Science.gov (United States)

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  1. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    2008-01-01

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  2. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    Science.gov (United States)

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  3. Genetic engineering of sulfur-degrading Sulfolobus

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N.W.Y.

    1991-01-01

    The objectives of the proposed research is to first establish a plasmid-mediated genetic transformation system for the sulfur degrading Sulfolobus, and then to clone and overexpress the genes encoding the organic-sulfur-degrading enzymes from Sulfolobus- as well as from other microorganisms, to develop a Sulfolobus-based microbial process for the removal of both organic and inorganic sulfur from coal.

  4. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, Trajce; Pieters, Wolter; Hartel, Pieter

    2009-01-01

    During a penetration test on the physical security of an organization, if social engineering is used, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not done properly can upset the employees, violate their privacy or damage thei

  5. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  6. Genetic engineering of human pluripotent cells using TALE nucleases.

    Science.gov (United States)

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  7. Genetic program based data mining to reverse engineer digital logic

    Science.gov (United States)

    Smith, James F., III; Nguyen, Thanh Vu H.

    2006-04-01

    A data mining based procedure for automated reverse engineering and defect discovery has been developed. The data mining algorithm for reverse engineering uses a genetic program (GP) as a data mining function. A genetic program is an algorithm based on the theory of evolution that automatically evolves populations of computer programs or mathematical expressions, eventually selecting one that is optimal in the sense it maximizes a measure of effectiveness, referred to as a fitness function. The system to be reverse engineered is typically a sensor. Design documents for the sensor are not available and conditions prevent the sensor from being taken apart. The sensor is used to create a database of input signals and output measurements. Rules about the likely design properties of the sensor are collected from experts. The rules are used to create a fitness function for the genetic program. Genetic program based data mining is then conducted. This procedure incorporates not only the experts' rules into the fitness function, but also the information in the database. The information extracted through this process is the internal design specifications of the sensor. Uncertainty related to the input-output database and the expert based rule set can significantly alter the reverse engineering results. Significant experimental and theoretical results related to GP based data mining for reverse engineering will be provided. Methods of quantifying uncertainty and its effects will be presented. Finally methods for reducing the uncertainty will be examined.

  8. Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae

    OpenAIRE

    Rasala, Beth A; Syh-Shiuan Chao; Matthew Pier; Daniel J Barrera; Mayfield, Stephen P.

    2014-01-01

    Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes withi...

  9. Biosynthesis and Genetic Engineering of Polyketides

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiang-Cheng; WANG Qiao-Mei; SHEN Yue-Mao; DU Liang-Cheng; HUFFMAN Justin; GERBER Ryan; LOU Li-Li; XIE Yun-Xuan; LIN Ting; JORGENSON Joel; MARESCH Andrew; VOGELER Chad

    2008-01-01

    Polyketides are one of the largest groups of natural products produced by bacteria, fungi, and plants. Many of these metabolites have highly complex chemical structures and very important biological activities, including antibiotic, anticancer, immunosuppressant, and anti-cholesterol activities. In the past two decades, extensive investigations have been carried out to understand the molecular mechanisms for polyketide biosynthesis. These efforts have led to the development of various rational approaches toward engineered biosynthesis of new polyketides. More recently, the research efforts have shifted to the elucidation of the three-dimentional structure of the complex enzyme machineries for polyketide biosynthesis and to the exploitation of new sources for polyketide production, such as filamentous fungi and marine microorganisms. This review summarizes our general understanding of the biosynthetic mechanisms and the progress in engineered biosynthesis of polyketides.

  10. Spreadsheets Grow Up: Three Spreadsheet Engineering Methodologies for Large Financial Planning Models

    CERN Document Server

    Grossman, Thomas A

    2010-01-01

    Many large financial planning models are written in a spreadsheet programming language (usually Microsoft Excel) and deployed as a spreadsheet application. Three groups, FAST Alliance, Operis Group, and BPM Analytics (under the name "Spreadsheet Standards Review Board") have independently promulgated standardized processes for efficiently building such models. These spreadsheet engineering methodologies provide detailed guidance on design, construction process, and quality control. We summarize and compare these methodologies. They share many design practices, and standardized, mechanistic procedures to construct spreadsheets. We learned that a written book or standards document is by itself insufficient to understand a methodology. These methodologies represent a professionalization of spreadsheet programming, and can provide a means to debug a spreadsheet that contains errors. We find credible the assertion that these spreadsheet engineering methodologies provide enhanced productivity, accuracy and maintain...

  11. Life Cycle Engineering – from methodology to enterprise culture

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Poll, Christian

    2003-01-01

    As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number...... of methodologies and tools for life cycle assessment and development of more eco-efficient products, from complex to simplified, catering to the needs of especially small and medium-sized enterprizes. The tools and data are in place, but dissemination lacks behind. Propagation of life cycle thinking and life cycle...

  12. 基因工程食品%Genetic engineering food

    Institute of Scientific and Technical Information of China (English)

    汪秋安

    2003-01-01

    @@ 1 概述 近年来,生物技术在食品行业的应用迅速发展,食品生物技术包括基因工程(genetic engineering)、蛋白质工程(protein enginering)、酶工程(enzyme engineering)、发酵技术(fermentation technology)、组织与细胞培养(tissue and cell culture)、反义RNA(antisense RNA)技术等.

  13. A Methodology for Engineering Competencies Definition in the Aerospace Industry

    Directory of Open Access Journals (Sweden)

    Laura Fortunato

    2011-10-01

    Full Text Available The need to cut off lead times, to increase the products innovation, to respond to changing customer requirements and to integrate new technologies into business process pushes companies to increase the collaboration. In particular, collaboration, knowledge sharing and information exchange in the Aerospace Value Network, need to a clear definition and identification of competencies of several actors. Main contractors, stakeholders, customers, suppliers, partners, have different expertise and backgrounds and in this collaborative working environment are called to work together in projects, programs and process. To improve collaboration and support the knowledge sharing, a competencies definition methodology and the related dictionary result useful tools among actors within an extended supply chain. They can use the same terminology and be informed on the competencies available. It becomes easy to specify who knows to do required activities stimulating collaboration and improving communication. Based on an action research developed in the context of the iDesign Foundation project, the paper outlines a competency definition methodology and it presents examples from the implementation in Alenia Aeronautica company. A new definition of competency is suggested supporting by a new method to specify the structural relationship between competencies and activities of aeronautical processes.

  14. Genetic code expansion for multiprotein complex engineering.

    Science.gov (United States)

    Koehler, Christine; Sauter, Paul F; Wawryszyn, Mirella; Girona, Gemma Estrada; Gupta, Kapil; Landry, Jonathan J M; Fritz, Markus Hsi-Yang; Radic, Ksenija; Hoffmann, Jan-Erik; Chen, Zhuo A; Zou, Juan; Tan, Piau Siong; Galik, Bence; Junttila, Sini; Stolt-Bergner, Peggy; Pruneri, Giancarlo; Gyenesei, Attila; Schultz, Carsten; Biskup, Moritz Bosse; Besir, Hueseyin; Benes, Vladimir; Rappsilber, Juri; Jechlinger, Martin; Korbel, Jan O; Berger, Imre; Braese, Stefan; Lemke, Edward A

    2016-12-01

    We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.

  15. Successes and failures in modular genetic engineering.

    Science.gov (United States)

    Kittleson, Joshua T; Wu, Gabriel C; Anderson, J Christopher

    2012-08-01

    Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.

  16. Genetically engineered mouse models and human osteosarcoma

    Directory of Open Access Journals (Sweden)

    Ng Alvin JM

    2012-10-01

    Full Text Available Abstract Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics.

  17. Engineering Design Optimization Based on Intelligent Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    SONG Guo-hui; WU Yu; LI Cong-xin

    2008-01-01

    An intelligent response surface methodology (IRSM) was proposed to achieve the most competitivemetal forming products, in which artificial intelligence technologies are introduced into the optimization process.It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM,the optimal design space can be reduced greatly without any prior information about function distribution.Also, by identifying the approximation error region, new design points can be supplemented correspondingly toimprove the response surface model effectively. The procedure is iterated until the accuracy reaches the desiredthreshold value. Thus, the global optimization can be performed based on this substitute model. Finally, wepresent an optimization design example about roll forming of a "U" channel product.

  18. American chestnut: A test case for genetic engineering?

    Science.gov (United States)

    Leila. Pinchot

    2014-01-01

    The thought of genetically engineered (GE) trees might conjure images of mutant trees with unnatural and invasive tendencies, but there is much more to the story. GE trees are a new reality that, like it or not, will probably be part of the future of forestry. The basic inclination of most Forest Guild stewards is to reject GE trees as violating our principle to...

  19. Somatic structural rearrangements in genetically engineered mouse mammary tumors

    NARCIS (Netherlands)

    Varela, I.; Klijn, C.N.; Stephens, P.J.; Mudie, L.J.; Stebbings, L.; Galappaththige, D.; Van der Gulden, H.; Schut, E.; Klarenbeek, S.; Campbell, P.J.; Wessels, L.F.A.; Stratton, M.R.; Jonkers, J.; Futreal, P.A.; Adams, D.J.

    2010-01-01

    Background: Here we present the first paired-end sequencing of tumors from genetically engineered mouse models of cancer to determine how faithfully these models recapitulate the landscape of somatic rearrangements found in human tumors. These were models of Trp53-mutated breast cancer, Brca1- and B

  20. Intrinsic Value and the Genetic Engineering of Animals

    NARCIS (Netherlands)

    Vries, R.B.M. de

    2008-01-01

    The concept of intrinsic value is often invoked to articulate objections to the genetic engineering of animals, particularly those objections that are not directed at the negative effects the technique might have on the health and welfare of the modified animals. However, this concept was not develo

  1. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  2. Genetic Engineering--A Lesson on Bioethics for the Classroom.

    Science.gov (United States)

    Armstrong, Kerri; Weber, Kurt

    1991-01-01

    A unit designed to cover the topic of genetic engineering and its ethical considerations is presented. Students are expected to learn the material while using a debate format. A list of objectives for the unit, the debate format, and the results from an opinion questionnaire are described. (KR)

  3. University Students' Knowledge and Attitude about Genetic Engineering

    Science.gov (United States)

    Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun

    2007-01-01

    Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…

  4. Increased production of nutriments by genetically engineered crops

    NARCIS (Netherlands)

    Sevenier, R.E.; Meer, van der I.M.; Bino, R.J.; Koops, A.J.

    2002-01-01

    Plants are the basis of human nutrition and have been selected and improved to assure this purpose. Nowadays, new technologies such as genetic engineering and genomics approaches allow further improvement of plants. We describe here three examples for which these techniques have been employed. We in

  5. De-Problematizing 'GMOs': Suggestions for Communicating about Genetic Engineering.

    Science.gov (United States)

    Blancke, Stefaan; Grunewald, Wim; De Jaeger, Geert

    2017-03-01

    The public debates concerning genetic engineering (GE) involve many non-scientific issues. The ensuing complexity is one reason why biotechnologists are reluctant to become involved. By sharing our personal experiences in science communication and suggesting ways to de-problematize GE, we aim to inspire our colleagues to engage with the public. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  7. Intrinsic Value and the Genetic Engineering of Animals

    NARCIS (Netherlands)

    Vries, R.B.M. de

    2008-01-01

    The concept of intrinsic value is often invoked to articulate objections to the genetic engineering of animals, particularly those objections that are not directed at the negative effects the technique might have on the health and welfare of the modified animals. However, this concept was not

  8. Effects of genetic engineering on the pharmacokinetics of antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K. [University of Nebraska Medical Center, Omaha NE (United States). Dept. of Pathology and Microbiology and Molecular Biology

    1999-06-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment.

  9. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  10. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  11. Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts

    Directory of Open Access Journals (Sweden)

    Moser Michael M.

    2015-01-01

    Full Text Available Idling losses constitute a significant amount of the fuel consumption of internal combustion engines. Therefore, shutting down the engine during idling phases can improve its overall efficiency. For driver acceptance a fast restart of the engine must be guaranteed. A fast engine start can be performed using a powerful electric starter and an appropriate battery which are found in hybrid electric vehicles, for example. However, these devices involve additional cost and weight. An alternative method is to use a tank with pressurized air that can be injected directly into the cylinders to start the engine pneumatically. In this paper, pneumatic engine starts using camshaft driven charge valves are discussed. A general methodology for an air-optimal charge valve design is presented which can deal with various requirements. The proposed design methodology is based on a process model representing pneumatic engine operation. A design example for a two-cylinder engine is shown, and the resulting optimized pneumatic start is experimentally verified on a test bench engine. The engine’s idling speed of 1200 rpm can be reached within 350 ms for an initial pressure in the air tank of 10 bar. A detailed system analysis highlights the characteristics of the optimal design found.

  12. On engineering management methodology%工程管理方法论

    Institute of Scientific and Technical Information of China (English)

    何继善; 徐长山; 王青娥; 郭峰

    2014-01-01

    In this paper,the framework system of engineering management methodology has been constructed on the three levels:philosophical methodology,general methodology and spe-cific methodology. The main methods of philosophical methodology of engineering manage-ment include seeking truth from facts,contradiction analysis,unity of knowledge and practice, unity of truth and value and dialectical thinking. The general methodology of engineering man-agement is represented by system science,information science and mathematical methods. The main methods of the specific methodology of engineering management are composed of case study and other nine methods. This framework is not absolute as the methods of system engi-neering and project management are extended to all the three levels.%本文按三个层次构建工程管理方法论的框架体系:工程管理哲学方法论、工程管理一般方法论和工程管理具体方法论。将实事求是方法、矛盾分析方法、知行统一方法、真理尺度和价值尺度统一方法和辩证思维方法作为工程管理哲学方法论的主要方法。工程管理一般方法论以系统科学方法、信息科学方法和数学方法为代表。案例研究方法等九种方法则是工程管理具体方法论的主要方法。这种框架不是绝对的,如系统工程方法和项目管理方法都向三个层次延伸。

  13. A Methodology to Evaluate Agent Oriented Software Engineering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chia-En [University of North Texas; Kavi, Krishna M. [University of North Texas; Sheldon, Frederick T [ORNL; Daley, Kristopher M [ORNL; Abercrombie, Robert K [ORNL

    2007-01-01

    Systems using software agents (or multi-agent systems, MAS) are becoming more popular within the development mainstream because, as the name suggests, an agent aims to handle tasks autonomously with intelligence. To benefit from autonomous control and reduced running costs, system functions are performed automatically. Agent-oriented considerations are being steadily accepted into the various software design paradigms. Agents may work alone, but most commonly, they cooperate toward achieving some application goal(s). MAS's are components in systems that are viewed as many individuals living in a society working together. From a SE perspective, solving a problem should encompass problem realization, requirements analysis, architecture design and implementation. These steps should be implemented within a life-cycle process including testing, verification, and reengineering to proving the built system is sound. In this paper, we explore the various applications of agent-based systems categorized into different application domains. A baseline is developed herein to help us focus on the core of agent concepts throughout the comparative study and to investigate both the object-oriented and agent-oriented techniques that are available for constructing agent-based systems. In each respect, we address the conceptual background associated with these methodologies and how available tools can be applied within specific domains.

  14. Assessment of ISLOCA risk-methodology and application to a combustion engineering plant

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant.

  15. ORGANIZATION OF FUTURE ENGINEERS' PROJECT-BASED LEARNING WHEN STUDYING THE PROJECT MANAGEMENT METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Halyna V. Lutsenko

    2015-02-01

    Full Text Available The peculiarities of modern world experience of implementation of project-based learning in engineering education have been considered. The potential role and place of projects in learning activity have been analyzed. The methodology of organization of project-based activity of engineering students when studying the project management methodology and computer systems of project management has been proposed. The requirements to documentation and actual results of students' projects have been described in detail. The requirements to computer-aided systems of project management developed by using Microsoft Project in the scope of diary scheduling and resources planning have been formulated.

  16. Seeking for methodological proposals to motivate students in the learning of hydraulic engineering subjects

    Science.gov (United States)

    Rodriguez-Sinobas, L.; Sánchez Calvo, R.

    2012-04-01

    Hydraulic Engineering courses are one of the toughest among different degrees dealing with agricultural and environmental engineering schools in the Spanish universities. Nowadays, most of these courses are updating and changing to meet the Bologna guidelines set out in the Declaration of 1999. In fact, some universities such us the Technical University of Madrid, have developed an educational guide highlighting the priorities to meet the new standards on education. This guide set up a framework to be followed by all professors. This work presents different methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses in the Agriculture Engineering School of Madrid. During three years student progress and satisfaction have been assessed by continuous monitoring strategies and the use of "on-line" tools. Surveys made among the students show that not of the new methodological proposals were perceived as beneficial, even though some of the very new "on-line" tools were rejected.

  17. Genetic engineering of sulfur-degrading Sulfolobus

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N.W.Y. (Purdue Univ., Lafayette, IN (USA). Lab. of Renewable Resources Engineering)

    1991-01-01

    Recent studies have shown that some microorganisms can play a significant role in removing the sulfur compound from coal. Sulfolobus acidocaldarius and related species are such microorganisms. The objective of this project is to develop a genetic transformation system for Sulfolobus species so that they could become the ideal host to overproduce homologous and heterologous enzymes that are most effective for the removal of sulfur from coal, particularly organic sulfur. Last quarter, we have identified three chemicals that can inhibit the growth of S. Acidocaldarius. These chemicals can be part of the selection system for the development of a transformation system for S. acidocaldarius. Due to the fact that Sulfolobus shibatae B12 becomes increasingly more attractive as a host for housing genes encoding desulfurization enzymes, in this period we also studied the affect of these three chemicals to growth of S. shibatae B12. We found that S. shibatae B12 is also sensitive to these chemicals. This quarter we succeeded in the isolation and purification of the double-stranded DNA virus from S. shibatae B12. Furthermore, the individual EcoRI and BamH1 fragments of the virus have also been cloned into pUC19 plasmid. These plasmids will be used for the construction of the final E. coli-Sulfolobus shuttle vector. 5 Flurouracil (5FU) is one of the chemicals that inhibit growth of Sulfolobus. Resistance strain of S. acidocaldarius to 5FU has also been isolated. DNA from the 5FU resistance strain has also been isolated. 2 figs.

  18. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    Science.gov (United States)

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  19. Metabolic Engineering: Techniques for analysis of targets for genetic manipulations

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement......Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production...... of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves...

  20. A validated methodology for genetic identification of tuna species (genus Thunnus.

    Directory of Open Access Journals (Sweden)

    Jordi Viñas

    Full Text Available BACKGROUND: Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. METHODOLOGY: After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR, followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1. This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. CONCLUSIONS: Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.

  1. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  2. 76 FR 8707 - Syngenta Seeds, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered To...

    Science.gov (United States)

    2011-02-15

    ..., ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or... produced through genetic engineering that are plant pests or that there is reason to believe are...

  3. Methodologic model to scheduling on service systems: a software engineering approach

    Directory of Open Access Journals (Sweden)

    Eduyn Ramiro Lopez-Santana

    2016-06-01

    Full Text Available This paper presents an approach of software engineering to a research proposal to make an Expert System to scheduling on service systems using methodologies and processes of software development. We use the adaptive software development as methodology for the software architecture based on the description as a software metaprocess that characterizes the research process. We make UML’s diagrams (Unified Modeling Language to provide a visual modeling that describes the research methodology in order to identify the actors, elements and interactions in the research process.

  4. A reverse engineering methodology for nickel alloy turbine blades with internal features

    DEFF Research Database (Denmark)

    Gameros, A.; De Chiffre, Leonardo; Siller, H.R.

    2015-01-01

    The scope of this work is to present a reverse engineering (RE) methodology for freeform surfaces, based on a case study of a turbine blade made of Inconel, including the reconstruction of its internal cooling system. The methodology uses an optical scanner and X-ray computed tomography (CT......) equipment. Traceability of the measurements was obtained through the use of a Modular Freeform Gage (MFG). An uncertainty budget is presented for both measuring technologies and results show that the RE methodology presented is promising when comparing uncertainty values against common industrial tolerances....

  5. Genetic Engineering of Algae for Enhanced Biofuel Production ▿

    Science.gov (United States)

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  6. Genetic engineering of algae for enhanced biofuel production.

    Science.gov (United States)

    Radakovits, Randor; Jinkerson, Robert E; Darzins, Al; Posewitz, Matthew C

    2010-04-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H(2) yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H(2) production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

  7. Introduction to the application of genetic algorithms in engineering

    Directory of Open Access Journals (Sweden)

    I. S. Shaw

    1998-07-01

    Full Text Available Genetic algorithms constitute a new research area in the field of artificial intelligence. This work is aimed at their application in specific areas of engineering where good results have already been achieved. The purpose of this work is to provide a basic introduction for students as well as experienced engineers who wish to upgrade their knowledge. A distinctive feature of artificial intelligence is that instead of mathematical models, either direct human experience or certain functions of the human brain for the modelling of physical phenomena are used.

  8. Vocabulary of genetic engineering. Terminology Bulletin No. 200

    Energy Technology Data Exchange (ETDEWEB)

    Delvin, E.; Pham, G.

    1990-01-01

    For some years, research, teaching and health care have been seriously affected by the lack of official terminology in the health sciences field. This vocabulary presents terminology in the field of genetic engineering, defined as those procedures arising from molecular biology which are used to manipulate DNA, the main carrier of genetic information. The vocabulary is arranged in strict alphabetical order of English terms, with cross-references to the recommended English term. These terms are accompanied by a French equivalent, followed by a context or a definition.

  9. Enhanced energy transport in genetically engineered excitonic networks

    Science.gov (United States)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  10. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    Science.gov (United States)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  11. The KNOMAD Methodology for Integration of Multi-Disciplinary Engineering Knowledge within Aerospace Production

    NARCIS (Netherlands)

    Curran, R.; Verhagen, W.J.C.; Van Tooren, M.J.L.

    2010-01-01

    The paper is associated with the integration of multi-disciplinary knowledge within a Knowledge Based Engineering (KBE)-enabled design framework. To support this integration effort, the KNOMAD methodology has been devised. KNOMAD stands for Knowledge Optimized Manufacture And Design and is a methodo

  12. Mechanistic Methodology for Airport Pavement Design with Engineering Fabrics. Volume 1. Theoretical and Experimental Bases.

    Science.gov (United States)

    1984-08-01

    DOTIFAAIPM-8419,, Mechanistic Methodology for Program Engineering& Airport Pavement Design with Maintenance Service Engineerin Washington, D.C. 20591...Reflective cracks require labor intensive operations for crack sealing and patching, thus becoming a significant maintenance expense item. The problem of...models or prediciting allowable critical strains are not available. The problems are complicated further by the fact that since asphaltic concrete is a

  13. Performance Support Engineering: An Emerging Development Methodology for Enabling Organizational Learning.

    Science.gov (United States)

    Raybould, Barry

    1995-01-01

    Discussion of electronic performance support systems (EPSS) focuses on performance support engineering and its role in designing performance support systems. Highlights include the organizational performance/learning cycle model; a systems approach to EPSS; computer-based training and other EPSS methodologies; and future possibilities. (LRW)

  14. A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

    Directory of Open Access Journals (Sweden)

    Tugrul Talaslioglu

    2009-01-01

    Full Text Available A new genetic algorithm (GA methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS, is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA utilizing a single population, a multipopulation-based genetic algorithm (MPGA proposed for this study and other existing approaches presented in literature. This study has two goals: outlining BGAwEIS's fundamentals and evaluating the performances of BGAwEIS and MPGA. Consequently, it is demonstrated that MPGA shows a better performance than SGA taking advantage of multiple populations, but BGAwEIS explores promising solution regions more efficiently than MPGA by exploiting the feasible solutions. The performance of BGAwEIS is confirmed by better quality degree of its optimal designations compared to algorithms proposed here and described in literature.

  15. Targeted drug delivery using genetically engineered diatom biosilica.

    Science.gov (United States)

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  16. Cyber-Informed Engineering: The Need for a New Risk Informed and Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Price, Joseph Daniel [Idaho National Laboratory; Anderson, Robert Stephen [Idaho National Laboratory

    2015-06-01

    Current engineering and risk management methodologies do not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Current methodologies focus on equipment failures or human error as initiating events for a hazard, while cyber attacks use the functionality of a trusted system to perform operations outside of the intended design and without the operator’s knowledge. These threats can by-pass or manipulate traditionally engineered safety barriers and present false information, invalidating the fundamental basis of a safety analysis. Cyber threats must be fundamentally analyzed from a completely new perspective where neither equipment nor human operation can be fully trusted. A new risk analysis and design methodology needs to be developed to address this rapidly evolving threatscape.

  17. A KBE genetic-causal cost modelling methodology for manufacturing cost contingency management

    NARCIS (Netherlands)

    Curran, R.; Gilmour, M.; McAlleean, C.; Kelly, P.

    2009-01-01

    The paper provides validated evidence of a robust methodology for the management of lean manufacturing cost contingency, with a particular focus on contingency regarding recurring work content. A truly concurrent engineering process is established by capturing a range of knowledge from the design, m

  18. A KBE genetic-causal cost modelling methodology for manufacturing cost contingency management

    NARCIS (Netherlands)

    Curran, R.; Gilmour, M.; McAlleean, C.; Kelly, P.

    2009-01-01

    The paper provides validated evidence of a robust methodology for the management of lean manufacturing cost contingency, with a particular focus on contingency regarding recurring work content. A truly concurrent engineering process is established by capturing a range of knowledge from the design,

  19. Pertussis toxins, other antigens become likely targets for genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Marwick, C.

    1990-11-14

    Genetically engineered pertussis vaccines have yet to be fully tested clinically. But early human, animal, and in vitro studies indicate effectiveness in reducing toxic effects due to Bordetella pertussis. The licensed pertussis vaccines consists of inactivated whole cells of the organism. Although highly effective, they have been associated with neurologic complications. While the evidence continues to mount that these complications are extremely rare, if they occur at all, it has affected the public's acceptance of pertussis immunization.

  20. Implementation of a cooperative methodology to develop organic chemical engineering skills

    Science.gov (United States)

    Arteaga, J. F.; Díaz Blanco, M. J.; Toscano Fuentes, C.; Martín Alfonso, J. E.

    2013-08-01

    The objective of this work is to investigate how most of the competences required by engineering students may be developed through an active methodology based on cooperative learning/evaluation. Cooperative learning was employed by the University of Huelva's third-year engineering students. The teaching methodology pretends to create some of the most relevant engineering skills required nowadays such as the ability to cooperate finding appropriate information; the ability to solve problems through critical and creative thinking; and the ability to make decisions and to communicate effectively. The statistical study carried out supports the hypothesis that comprehensive and well-defined protocols in the development of the subject, the rubric and cooperative evaluation allow students to acquire a successful learning.

  1. Integrating the human element into the systems engineering process and MBSE methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, Michael Samir.

    2013-12-01

    In response to the challenges related to the increasing size and complexity of systems, organizations have recognized the need to integrate human considerations in the beginning stages of systems development. Human Systems Integration (HSI) seeks to accomplish this objective by incorporating human factors within systems engineering (SE) processes and methodologies, which is the focus of this paper. A representative set of HSI methods from multiple sources are organized, analyzed, and mapped to the systems engineering Vee-model. These methods are then consolidated and evaluated against the SE process and Models-Based Systems Engineering (MBSE) methodology to determine where and how they could integrate within systems development activities in the form of specific enhancements. Overall conclusions based on these evaluations are presented and future research areas are proposed.

  2. Genetically engineered rice. The source of β-carotene

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    Full Text Available β-carotene is a precursor of vitamin A. It is converted to vitamin A in the humans intestine by the β-carotene-15,15’-monooxygenase. Vitamin A is essential to support vision, as an antioxidant it protects the body from free radicals, it helps to integrate the immune system, as well as takes part in cellular differentiation and proliferation. Vitamin A deficiency is a major public health problem especially among developing countries. Nyctalopia, commonly known as „Night Blindness” is one of the major symptoms of Vitamin A deficiency (VAD. Plants such as apricots, broccoli, carrots, and sweet potatoes are rich in β-carotene. Some of the plants are characterized by a higher content of provitamin-A. Among vegetables rich sources of β-carotene are: carrots, pumpkin, spinach, lettuce, green peas, tomatoes, watercress, broccoli and parsley leaves. Amongst fruits the highest content of β-carotene is in apricot, cherry, sweet cherry, plum, orange and mango. The aim of the present study was to analyze available literature data of increasing the content of β-carotene in genetically engineered rice. The genetically modified cultivar contains additional genes: PSY and CRTI thanks to which rice seed endosperm contains β-carotene. Genetically engineered rice with β-carotene is an effective source of vitamin A, it contains approximately 30 μg β-carotene per 1 g. Fortunately some of the advantages of Genetically Modified Food give an opportunity to reduce VAD worldwide, by introducing the rice which has been genetically engineered to be rich in β-carotene. The popularity of this plant as an element of nutrition is simultaneously a source of vitamin A.

  3. Unraveling the neurobiology of nicotine dependence using genetically engineered mice.

    Science.gov (United States)

    Stoker, Astrid K; Markou, Athina

    2013-08-01

    This review article provides an overview of recent studies of nicotine dependence and withdrawal that used genetically engineered mice. Major progress has been made in recent years with mutant mice that have knockout and gain-of-function of specific neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to neuronal nAChRs that consist of five subunits. The different nAChR subunits that combine to compose a receptor determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent findings in genetically engineered mice have indicated that while α4-containing and β2-containing nAChRs are involved in the acquisition of nicotine self-administration and initial stages of nicotine dependence, α7 homomeric nAChRs appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-containing, α3-containing, and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence have only recently emerged. The use of genetically engineered mice continues to vastly improve our understanding of the neurobiology of nicotine dependence and withdrawal.

  4. Versatile RNA-sensing transcriptional regulators for engineering genetic networks.

    Science.gov (United States)

    Lucks, Julius B; Qi, Lei; Mutalik, Vivek K; Wang, Denise; Arkin, Adam P

    2011-05-24

    The widespread natural ability of RNA to sense small molecules and regulate genes has become an important tool for synthetic biology in applications as diverse as environmental sensing and metabolic engineering. Previous work in RNA synthetic biology has engineered RNA mechanisms that independently regulate multiple targets and integrate regulatory signals. However, intracellular regulatory networks built with these systems have required proteins to propagate regulatory signals. In this work, we remove this requirement and expand the RNA synthetic biology toolkit by engineering three unique features of the plasmid pT181 antisense-RNA-mediated transcription attenuation mechanism. First, because the antisense RNA mechanism relies on RNA-RNA interactions, we show how the specificity of the natural system can be engineered to create variants that independently regulate multiple targets in the same cell. Second, because the pT181 mechanism controls transcription, we show how independently acting variants can be configured in tandem to integrate regulatory signals and perform genetic logic. Finally, because both the input and output of the attenuator is RNA, we show how these variants can be configured to directly propagate RNA regulatory signals by constructing an RNA-meditated transcriptional cascade. The combination of these three features within a single RNA-based regulatory mechanism has the potential to simplify the design and construction of genetic networks by directly propagating signals as RNA molecules.

  5. A Case Study on Maximizing Aqua Feed Pellet Properties Using Response Surface Methodology and Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya

    2013-01-10

    Aims: The present case study is on maximizing the aqua feed properties using response surface methodology and genetic algorithm. Study Design: Effect of extrusion process variables like screw speed, L/D ratio, barrel temperature, and feed moisture content were analyzed to maximize the aqua feed properties like water stability, true density, and expansion ratio. Place and Duration of Study: This study was carried out in the Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India. Methodology: A variable length single screw extruder was used in the study. The process variables selected were screw speed (rpm), length-to-diameter (L/D) ratio, barrel temperature (degrees C), and feed moisture content (%). The pelletized aqua feed was analyzed for physical properties like water stability (WS), true density (TD), and expansion ratio (ER). Extrusion experimental data was collected by based on central composite design. The experimental data was further analyzed using response surface methodology (RSM) and genetic algorithm (GA) for maximizing feed properties. Results: Regression equations developed for the experimental data has adequately described the effect of process variables on the physical properties with coefficient of determination values (R2) of > 0.95. RSM analysis indicated WS, ER, and TD were maximized at L/D ratio of 12-13, screw speed of 60-80 rpm, feed moisture content of 30-40%, and barrel temperature of = 80 degrees C for ER and TD and > 90 degrees C for WS. Based on GA analysis, a maxium WS of 98.10% was predicted at a screw speed of 96.71 rpm, L/D radio of 13.67, barrel temperature of 96.26 degrees C, and feed moisture content of 33.55%. Maximum ER and TD of 0.99 and 1346.9 kg/m3 was also predicted at screw speed of 60.37 and 90.24 rpm, L/D ratio of 12.18 and 13.52, barrel temperature of 68.50 and 64.88 degrees C, and medium feed moisture content of 33.61 and 38.36%. Conclusion: The present data analysis indicated

  6. Optimization of a Reduced Chemical Kinetic Model for HCCI Engine Simulations by Micro-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310-375 K and initial pressure 0.1-0.3 MPa. The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.

  7. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Science.gov (United States)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  8. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  9. The delicate balance in genetically engineering live vaccines.

    Science.gov (United States)

    Galen, James E; Curtiss, Roy

    2014-07-31

    Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.

  10. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  11. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  12. Engineering aesthetics and aesthetic ergonomics: theoretical foundations and a dual-process research methodology.

    Science.gov (United States)

    Liu, Yili

    Although industrial and product designers are keenly aware of the importance of design aesthetics, they make aesthetic design decisions largely on the basis of their intuitive judgments and "educated guesses". Whilst ergonomics and human factors researchers have made great contributions to the safety, productivity, ease-of-use, and comfort of human-machine-environment systems, aesthetics is largely ignored as a topic of systematic scientific research in human factors and ergonomics. This article discusses the need for incorporating the aesthetics dimension in ergonomics and proposes the establishment of a new scientific and engineering discipline that we can call "engineering aesthetics". This discipline addresses two major questions: How do we use engineering and scientific methods to study aesthetics concepts in general and design aesthetics in particular? How do we incorporate engineering and scientific methods in the aesthetic design and evaluation process? This article identifies two special features that distinguish aesthetic appraisal of products and system designs from aesthetic appreciation of art, and lays out a theoretical foundation as well as a dual-process research methodology for "engineering aesthetics". Sample applications of this methodology are also described.

  13. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    Science.gov (United States)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  14. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia.

    Directory of Open Access Journals (Sweden)

    Renaud Lacroix

    Full Text Available BACKGROUND: Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. METHODOLOGY/PRINCIPAL FINDINGS: Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered 'genetically sterile' (OX513A and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m, but mean distance travelled of the OX513A strain was lower (52 vs. 100 m. Life expectancy was similar (2.0 vs. 2.2 days. Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. CONCLUSIONS/SIGNIFICANCE: After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.

  15. Genetic engineering of fibrous proteins: spider dragline silk and collagen.

    Science.gov (United States)

    Wong Po Foo, Cheryl; Kaplan, David L

    2002-10-18

    Various strategies have been employed to genetically engineer fibrous proteins. Two examples, the subject of this review, include spider dragline silk from Nephila clavipes and collagen. These proteins are highlighted because of their unique mechanical and biological properties related to controlled release, biomaterials and tissue engineering. Cloning and expression of native genes and synthetic artificial variants of the consensus sequence repeats from the native genes has been accomplished. Expression of recombinant silk and collagen proteins has been reported in a variety of host systems, including bacteria, yeast, insect cells, plants and mammalian cells. Future utility for these proteins for biomedical materials is expected to increase as needs expand for designer materials with tailored mechanical properties and biological interactions to elicit specific responses in vitro and in vivo.

  16. Strategies to genetically engineer T cells for cancer immunotherapy.

    Science.gov (United States)

    Spear, Timothy T; Nagato, Kaoru; Nishimura, Michael I

    2016-06-01

    Immunotherapy is one of the most promising and innovative approaches to treat cancer, viral infections, and other immune-modulated diseases. Adoptive immunotherapy using gene-modified T cells is an exciting and rapidly evolving field. Exploiting knowledge of basic T cell biology and immune cell receptor function has fostered innovative approaches to modify immune cell function. Highly translatable clinical technologies have been developed to redirect T cell specificity by introducing designed receptors. The ability to engineer T cells to manifest desired phenotypes and functions is now a thrilling reality. In this review, we focus on outlining different varieties of genetically engineered T cells, their respective advantages and disadvantages as tools for immunotherapy, and their promise and drawbacks in the clinic.

  17. Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes

    Science.gov (United States)

    Morgan, Richard A.; Dudley, Mark E.; Wunderlich, John R.; Hughes, Marybeth S.; Yang, James C.; Sherry, Richard M.; Royal, Richard E.; Topalian, Suzanne L.; Kammula, Udai S.; Restifo, Nicholas P.; Zheng, Zhili; Nahvi, Azam; de Vries, Christiaan R.; Rogers-Freezer, Linda J.; Mavroukakis, Sharon A.; Rosenberg, Steven A.

    2006-10-01

    Through the adoptive transfer of lymphocytes after host immunodepletion, it is possible to mediate objective cancer regression in human patients with metastatic melanoma. However, the generation of tumor-specific T cells in this mode of immunotherapy is often limiting. Here we report the ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor. Adoptive transfer of these transduced cells in 15 patients resulted in durable engraftment at levels exceeding 10% of peripheral blood lymphocytes for at least 2 months after the infusion. We observed high sustained levels of circulating, engineered cells at 1 year after infusion in two patients who both demonstrated objective regression of metastatic melanoma lesions. This study suggests the therapeutic potential of genetically engineered cells for the biologic therapy of cancer.

  18. Genetically modified cells in regenerative medicine and tissue engineering.

    Science.gov (United States)

    Sheyn, Dima; Mizrahi, Olga; Benjamin, Shimon; Gazit, Zulma; Pelled, Gadi; Gazit, Dan

    2010-06-15

    Regenerative medicine appears to take as its patron, the Titan Prometheus, whose liver was able to regenerate daily, as the field attempts to restore lost, damaged, or aging cells and tissues. The tremendous technological progress achieved during the last decade in gene transfer methods and imaging techniques, as well as recent increases in our knowledge of cell biology, have opened new horizons in the field of regenerative medicine. Genetically engineered cells are a tool for tissue engineering and regenerative medicine, albeit a tool whose development is fraught with difficulties. Gene-and-cell therapy offers solutions to severe problems faced by modern medicine, but several impediments obstruct the path of such treatments as they move from the laboratory toward the clinical setting. In this review we provide an overview of recent advances in the gene-and-cell therapy approach and discuss the main hurdles and bottlenecks of this approach on its path to clinical trials and prospective clinical practice.

  19. Advances in Research on Genetically Engineered Plants for Metal Resistance

    Institute of Scientific and Technical Information of China (English)

    Ri-Qing Zhang; Chun-Fang Tang; Shi-Zhi Wen; Yun-Guo Liu; Ke-Lin Li

    2006-01-01

    The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens-mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants.

  20. Hairy Root and Its Application in Plant Genetic Engineering

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Agrobacterium rhizogenes Conn. causes hairy root disease in plants. Hairy root-infected A. rhizogenes is characterized by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficient means of producing secondary metabolites that are normally biosynthesized in roots of differentiated plants.Furthermore, a transgenic root system offers tremendous potential for introducing additional genes along with the Ri plasmid, especially with modified genes, into medicinal plant cells with A. rhizogenes vector systems.The cultures have turned out to be a valuable tool with which to study the biochemical properties and the gene expression profile of metabolic pathways. Moreover, the cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites. The present article discusses various applications of hairy root cultures in plant genetic engineering and potential problems associated with them.

  1. Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution.

    Science.gov (United States)

    Liu, Xueliang; Lopez, Paola A; Giessen, Tobias W; Giles, Michael; Way, Jeffrey C; Silver, Pamela A

    2016-11-29

    Genetically encoding the synthesis of functional nanomaterials such as magnetic nanoparticles enables sensitive and non-invasive biological sensing and control. Via directed evolution of the natural iron-sequestering ferritin protein, we discovered key mutations that lead to significantly enhanced cellular magnetism, resulting in increased physical attraction of ferritin-expressing cells to magnets and increased contrast for cellular magnetic resonance imaging (MRI). The magnetic mutants further demonstrate increased iron biomineralization measured by a novel fluorescent genetic sensor for intracellular free iron. In addition, we engineered Escherichia coli cells with multiple genomic knockouts to increase cellular accumulation of various metals. Lastly to explore further protein candidates for biomagnetism, we characterized members of the DUF892 family using the iron sensor and magnetic columns, confirming their intracellular iron sequestration that results in increased cellular magnetization.

  2. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  3. Biodegradation of azo dyes by genetically engineered azoreductase

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; YAN Bin; ZHOU Ji-ti; BAO Yong-ming; LU Hong; YUAN Xiao-dong

    2005-01-01

    A azoreductase gene with 537 bp was obtained by PGR amplification from Rhodobacter sphaeroides AS1.1737. The enzyme,with a molecular weight of 18.7 kD, was efficiently expressed in Escherichia coli and its biodegradation characteristics for azo dyes were investigated. Furthermore, the reaction kinetics and mechanism of azo dyes catalyzed by the genetically engineered azoreductase were studied in detail. The presence of a hydrazo-intermediate was identified, which provided a convincing evidence for the assumption that azo dyes were degraded via an incomplete reduction stage.

  4. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  5. Implementation of the TRIZ innovation methodology: experience from a mechanical engineering company

    Directory of Open Access Journals (Sweden)

    Michal Jirásek

    2015-10-01

    Full Text Available In the rapidly changing world, an innovation process needs to become an efficient and consistent supply of innovative ideas – functioning despite growing the complexity of the products companies make and the shortening time frame between innovation and its deployment. Creativity and engineering solely are no longer able to handle the just-in-time stream of innovations required to keep the competitive advantage of a particular company, and for this reason, innovative methods structuring the process and bringing new ideas are needed. The TRIZ (the Theory of Inventive Problem Solving innovation methodology is proposed as a possible solution for the mechanical engineering company researched in this case study. The company manufactures products that have already been developed for decades and, therefore, struggle to bring a sufficient amount of innovations to keep up with the pace of its competitors. TRIZ provides engineers a structured approach to innovations and shows them possible principles used in the past to solve similar innovative problems. The case study follows the initial implementation of the methodology in the company and points out the difficulties faced during a two-day training of employees in using TRIZ. The selection of only some of the basic methods of TRIZ and an emphasis on their practical handling are proposed as a better way to begin the training of the methodology, rather than trying to give a participant a broad view of all the possibilities TRIZ offers.

  6. 76 FR 5780 - Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the...

    Science.gov (United States)

    2011-02-02

    ... Animal and Plant Health Inspection Service Determination of Regulated Status of Alfalfa Genetically... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on APHIS... decision and determination on the petition regarding the regulated status of alfalfa genetically engineered...

  7. Rhizobia species: A Boon for "Plant Genetic Engineering".

    Science.gov (United States)

    Patel, Urmi; Sinha, Sarika

    2011-10-01

    Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. "Rhizobia mediated transformation technology."

  8. Study on biofortification of rice by targeted genetic engineering

    Directory of Open Access Journals (Sweden)

    Sumon M. Hossain

    2012-12-01

    Full Text Available Micronutrient malnutrition is a major health problem in Bangladesh and also in many other developing countries, where a diversified diet is not affordable for the majority. In the present world- one, out of seven people suffers from hunger. Yet, there is a stealthier form of hunger than lack of food: micronutrient malnutrition or hidden hunger. While often providing enough calories, monotonous diets (of rural poor frequently fail to deliver sufficient quantities of essential minerals and vitamins. Due to micronutrient deficiencies different characteristic features have been observed to the victims. Various estimates indicate that over two-thirds of the world population, for the most part women and children specially, pre-school children are deficient in at least one micronutrient. This can have devastating consequences for the life, health and well being of the individuals concerned (like premature death, blindness, weakened immune systems etc. Genetic engineering approach is the upcoming strategy to solve this problem. Genetically engineered biofortified staple crops specially, rice that are high in essential micronutrients (Fe, Zn, vitamin A and adapted to local growing environments have the potential to significantly reduce the prevalence of micronutrient deficiencies specially to the rural poor.

  9. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  10. Prediction of jet engine parameters for control design using genetic programming

    OpenAIRE

    Martínez-Arellano, G; Cant, R; Nolle, L

    2014-01-01

    The simulation of a jet engine behavior is widely used in many different aspects of the engine development and maintenance. Achieving high quality jet engine control systems requires the iterative use of these simulations to virtually test the performance of the engine avoiding any possible damage on the real engine. Jet engine simulations involve the use of mathematical models which are complex and may not always be available. This paper introduces an approach based on Genetic Programming (G...

  11. The IMAGE project: methodological issues for the molecular genetic analysis of ADHD

    Directory of Open Access Journals (Sweden)

    Faraone Stephen V

    2006-08-01

    Full Text Available Abstract The genetic mechanisms involved in attention deficit hyperactivity disorder (ADHD are being studied with considerable success by several centres worldwide. These studies confirm prior hypotheses about the role of genetic variation within genes involved in the regulation of dopamine, norepinephrine and serotonin neurotransmission in susceptibility to ADHD. Despite the importance of these findings, uncertainties remain due to the very small effects sizes that are observed. We discuss possible reasons for why the true strength of the associations may have been underestimated in research to date, considering the effects of linkage disequilibrium, allelic heterogeneity, population differences and gene by environment interactions. With the identification of genes associated with ADHD, the goal of ADHD genetics is now shifting from gene discovery towards gene functionality – the study of intermediate phenotypes ('endophenotypes'. We discuss methodological issues relating to quantitative genetic data from twin and family studies on candidate endophenotypes and how such data can inform attempts to link molecular genetic data to cognitive, affective and motivational processes in ADHD. The International Multi-centre ADHD Gene (IMAGE project exemplifies current collaborative research efforts on the genetics of ADHD. This European multi-site project is well placed to take advantage of the resources that are emerging following the sequencing of the human genome and the development of international resources for whole genome association analysis. As a result of IMAGE and other molecular genetic investigations of ADHD, we envisage a rapid increase in the number of identified genetic variants and the promise of identifying novel gene systems that we are not currently investigating, opening further doors in the study of gene functionality.

  12. A Model-Based Systems Engineering Methodology for Employing Architecture In System Analysis: Developing Simulation Models Using Systems Modeling Language Products to Link Architecture and Analysis

    Science.gov (United States)

    2016-06-01

    ENGINEERING METHODOLOGY FOR EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE PRODUCTS TO LINK... ENGINEERING METHODOLOGY FOR EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE PRODUCTS TO LINK...to model-based systems engineering (MBSE) by formally defining an MBSE methodology for employing architecture in system analysis (MEASA) that presents

  13. High-level methodologies for grammar engineering, introduction to the special issue

    Directory of Open Access Journals (Sweden)

    Denys Duchier

    2015-06-01

    Full Text Available Grammar Engineering is the task of designing and implementing linguistically motivated electronic descriptions of natural language (so-called grammars. These grammars are expressed within well-defined theoretical frameworks, and offer a fine-grained description of natural language. While grammars were first used to describe syntax, that is to say, the relations between constituents in a sentence, they often go beyond syntax and include semantic information. Grammar engineering provides precise descriptions which can be used for natural language understanding and generation, making these valuable resources for various natural language applications, including textual entailment, dialogue systems, or machine translation. The first attempts at designing large-scale resource grammars were costly because of the complexity of the task (Erbach et al. 1990 and of the number of persons that were needed (see e.g. Doran et al. 1997. Advances in the field have led to the development of environments for semi-automatic grammar engineering, borrowing ideas from compilation (grammar engineering is compared with software development and machine learning. This special issue reports on new trends in the field, where grammar engineering benefits from elaborate high-level methodologies and techniques, dealing with various issues (both theoretical and practical.

  14. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.

    Directory of Open Access Journals (Sweden)

    Chung-Chien Hong

    Full Text Available BACKGROUND: Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. METHODOLOGY/PRINCIPAL FINDINGS: Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. SIGNIFICANCE: Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are

  15. Use of a risk communication model to evaluate dietetics professionals' viewpoints on genetically engineered foods and crops.

    Science.gov (United States)

    Roberts, Kathy S; Struble, Marie Boyle; McCullum-Gomez, Christine; Wilkins, Jennifer L

    2006-05-01

    The complex issues surrounding the application of genetic engineering to food and agriculture have generated a contentious debate among diverse interest groups. One pervasive dimension in the resultant discourse is the varying perceptions of the risks and benefits of genetically engineered foods and crops. In the risk communication model, technical information is evaluated within the context of an individual's values and perceptions. The purpose of this study was to explore how dietetics professionals respond to a complex set of interrelated issues associated with genetically engineered foods and crops and to identify what varying viewpoints may exist. Participants were asked to sort a total of 48 statements distributed across eight issue areas according to level of agreement and disagreement. Using Q methodology, a total of 256 sortings were analyzed using the centroid method and varimax rotation in factor analysis. Three distinct viewpoints emerged: Precautionary (R(2)=43%), Discerning Supporter (R(2)=11%), and Promoting (R(2)=5%). Across all viewpoints, respondents agreed that dietetics professionals should employ critical thinking skills to communicate the social, economic, environmental, ethical, and technical aspects of genetically engineered foods and crops. The findings have implications for how dietetics professionals can foster an open interchange of information among diverse groups.

  16. Biosynthetic Studies and Genetic Engineering of Pactamycin Analogs with Improved Selectivity toward Malarial Parasites

    National Research Council Canada - National Science Library

    Lu, Wanli; Roongsawang, Niran; Mahmud, Taifo

    2011-01-01

    .... However, through extensive biosynthetic studies and genetic engineering, we were able to produce analogs of pactamycin that show potent antimalarial activity, but lack significant antibacterial...

  17. Combination therapy with leflunomide and genetic engineering biological agents

    Directory of Open Access Journals (Sweden)

    Nataliya Vladimirovna Chichasova

    2011-06-01

    Full Text Available The paper gives data on the use of a combination of genetic engineering biological agents (GEBAs and leflunomide in patients with rheumatoid arthritis (RA. In accordance with the international guidelines, the majority of GEBAs should be given in a combination with methotrexate (MTX, which increases the efficacy of a number of GEBAs (tumor necrosis factor-α inhibitors, rituximab and affects tolerability (remikeid, humira. However, MTX cannot be always used in real practice. The data given in the paper on the efficiency and safety of the coadministration of leflunomide and a GEBA in patients with active RA, which are based on the results of randomized studies and national registers, including the Russian one, point to the compatibility of the results of treatment with this and GEBA-MTX combinations.

  18. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    Science.gov (United States)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  19. Surveys suck: Consumer preferences when purchasing genetically engineered foods.

    Science.gov (United States)

    Powell, Douglas A

    2013-01-01

    Many studies have attempted to gauge consumers' acceptance of genetically engineered or modified (GM) foods. Surveys, asking people about attitudes and intentions, are easy-to-collect proxies of consumer behavior. However, participants tend to respond as citizens of society, not discrete individuals, thereby inaccurately portraying their potential behavior. The Theory of Planned Behavior improved the accuracy of self-reported information, but its limited capacity to account for intention variance has been attributed to the hypothetical scenarios to which survey participants must respond. Valuation methods, asking how much consumers may be willing to pay or accept for GM foods, have revealed that consumers are usually willing to accept them at some price, or in some cases willing to pay a premium. Ultimately, it's consumers' actual--not intended--behavior that is of most interest to policy makers and business decision-makers. Real choice experiments offer the best avenue for revealing consumers' food choices in normal life.

  20. Establishing a Ballistic Test Methodology for Documenting the Containment Capability of Small Gas Turbine Engine Compressors

    Science.gov (United States)

    Heady, Joel; Pereira, J. Michael; Ruggeri, Charles R.; Bobula, George A.

    2009-01-01

    A test methodology currently employed for large engines was extended to quantify the ballistic containment capability of a small turboshaft engine compressor case. The approach involved impacting the inside of a compressor case with a compressor blade. A gas gun propelled the blade into the case at energy levels representative of failed compressor blades. The test target was a full compressor case. The aft flange was rigidly attached to a test stand and the forward flange was attached to a main frame to provide accurate boundary conditions. A window machined in the case allowed the projectile to pass through and impact the case wall from the inside with the orientation, direction and speed that would occur in a blade-out event. High-peed, digital-video cameras provided accurate velocity and orientation data. Calibrated cameras and digital image correlation software generated full field displacement and strain information at the back side of the impact point.

  1. Applying Software Engineering Methodology for Designing Biomedical Software Devoted To Electronic Instrumentation

    Directory of Open Access Journals (Sweden)

    Alderico Rodrigues de Paula Junior

    2012-01-01

    Full Text Available Problem statement: Significant effort goes into the development of biomedical software, which is integrated with computers/processors, sensors and electronic instrumentation devoted to a specific application. However, the scientific work on electronic instrumentation controlled by biomedical software has not emphasized software development, instead focusing mainly on electronics engineering. The development team is rarely composed of Software Engineering (SE experts. Usually, a commercial automated tools environment is not used due to its high cost and complexity for researchers from other areas to understand. Approach: This present study reports how the SE approach was applied to design and develop biomedical software, which is part of a Computerized Electronic Instrumentation (CEI. This CEI comprises software and an electronic instrumentation based on a force sensor and electrogoniometer to monitor the hand exertion of computer user during typing task. The aim is to serve as a guideline for academic researchers who are not expert in software engineering methodology but usually develop their own software to run with their CEI. The specification of the requirements, presented as use case, includes the context diagram, the data flow diagram, the entity relationship diagram and test procedure. The Unified Modelling Language from the Enterprise Architect tool was used. The developed software and the electronic instrumentation were tested together. Results: A sample of the interface screen shows how the outcomes could be plotted in an integrated manner. By comparing the values with other values obtained by manual calculations and with those provided by sensor manufacturer, the repeatability of test procedure validated the results. Reliable electronic instrumentation when working with unreliable software can become unreliable. Conclusion: Applying software engineering methodology principles provided a simple and clear documentation that was helpful

  2. Entomic Resistance Genes for Genetic Engineering in Agricultural Furtherance

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2015-02-01

    Full Text Available Genetic engineering for insect pest’s management in crop plants offers the potential of a user-friendly, environmentfriendly and consumer-friendly method of crop protection to meet the demands of sustainable agriculture. Food and energy insecurities are currently two foremost problems being faced worldwide. Losses due to pests and diseases have been estimated to be around 37% of the agricultural production worldwide, with 13% due to insects. Engineering insect resistance in transgenic plants has been achieved through the use of insect control protein genes of Bacillus thuringiensis. Till now, researchers have focused on the introduction of genes for expression of modified Bacillus thuringiensis (Bt toxins. Successful results on the control of Bt-susceptible pests have been achieved in the laboratory and finally in the field and now commercialized Bt transgenic crops are used worldwide. Other alternative methods exploit plant-derived insect control genes with promising results. Today insect-resistance transgenes, whether of plant, bacterial or other origin, can be introduced in to plants to increase the level of insect resistance so as to contribute to sustainable agricultural practices.

  3. Genetic engineering of platelets to neutralize circulating tumor cells.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; Wun, Brittany; Liesveld, Jane L; King, Michael R

    2016-04-28

    Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis.

  4. Genetic engineering and therapy for inherited and acquired cardiomyopathies.

    Science.gov (United States)

    Day, Sharlene; Davis, Jennifer; Westfall, Margaret; Metzger, Joseph

    2006-10-01

    The cardiac myofilaments consist of a highly ordered assembly of proteins that collectively generate force in a calcium-dependent manner. Defects in myofilament function and its regulation have been implicated in various forms of acquired and inherited human heart disease. For example, during cardiac ischemia, cardiac myocyte contractile performance is dramatically downregulated due in part to a reduced sensitivity of the myofilaments to calcium under acidic pH conditions. Over the last several years, the thin filament regulatory protein, troponin I, has been identified as an important mediator of this response. Mutations in troponin I and other sarcomere genes are also linked to several distinct inherited cardiomyopathic phenotypes, including hypertrophic, dilated, and restrictive cardiomyopathies. With the cardiac sarcomere emerging as a central player for such a diverse array of human heart diseases, genetic-based strategies that target the myofilament will likely have broad therapeutic potential. The development of safe vector systems for efficient gene delivery will be a critical hurdle to overcome before these types of therapies can be successfully applied. Nonetheless, studies focusing on the principles of acute genetic engineering of the sarcomere hold value as they lay the essential foundation on which to build potential gene-based therapies for heart disease.

  5. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    Science.gov (United States)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  6. Increased production of nutriments by genetically engineered crops.

    Science.gov (United States)

    Sévenier, Robert; van der Meer, Ingrid M; Bino, Raoul; Koops, Andries J

    2002-06-01

    Plants are the basis of human nutrition and have been selected and improved to assure this purpose. Nowadays, new technologies such as genetic engineering and genomics approaches allow further improvement of plants. We describe here three examples for which these techniques have been employed. We introduced the first enzyme involved in fructan synthesis, the sucrose sucrose fructosyltransferase (isolated from Jerusalem artichoke), into sugar beet. The transgenic sugar beet showed a dramatic change in the nature of the accumulated sugar, 90% of the sucrose being converted into fructan. The use of transgenic sugar beet for the production and isolation of fructans will result in a more efficient plant production system of fructans and should promote their use in human food. The second example shows how the over-expression of the key enzyme of flavonoid biosynthesis could increase anti-oxidant levels in tomato. Introduction of a highly expressed chalcone isomerase led to a seventyfold increase of the amount of quercetin glucoside, which is a strong anti-oxidant in tomato. We were also able to modify the essential amino acid content of potato in order to increase its nutritional value. The introduction of a feedback insensitive bacterial gene involved in biosynthesis of aspartate family amino acids led to a sixfold increase of the lysine content. Because the use of a bacterial gene could appear to be controversial, we also introduced a mutated form of the plant key enzyme of lysine biosynthesis (dihydrodipicolinate synthase) in potato. This modification led to a 15 times increase of the lysine content of potato. This increase of the essential amino acid lysine influences the nutritional value of potato, which normally has low levels of several essential amino acids. These three examples show how the metabolism of primary constituents of the plant cell such as sugar or amino acids, but also of secondary metabolites such as flavonoids, can be modified by genetic

  7. Genetic Engineering: A Matter that Requires Further Refinement in Spanish Secondary School Textbooks

    Science.gov (United States)

    Martinez-Gracia, M. V.; Gil-Quylez, M. J.; Osada, J.

    2003-01-01

    Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with…

  8. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Science.gov (United States)

    2013-02-27

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to... movement, or release into the environment) of organisms and products altered or produced through genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  9. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  10. Methodology for object-oriented real-time systems analysis and design: Software engineering

    Science.gov (United States)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  11. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  13. A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Science.gov (United States)

    Paul, Arthur S.; Gill, Tepper L.; Maclin, Arlene P.

    1989-01-01

    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action.

  14. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  15. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  16. Developing knowledge intensive ideas in engineering education: the application of camp methodology

    Science.gov (United States)

    Heidemann Lassen, Astrid; Løwe Nielsen, Suna

    2011-11-01

    Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in engineering education. However, so far the engineering education literature provides little attention to the important discussion of how to develop knowledge intensive ideas based on creativity methods and concepts. Purpose: The purpose of this article is to investigate how to design creative camps from which knowledge intensive ideas can unfold. Design/method/sample: A framework on integration of creativity and knowledge intensity is first developed, and then tested through the planning, execution and evaluation of a specialized creativity camp with focus on supply chain management. Detailed documentation of the learning processes of the participating 49 engineering and business students is developed through repeated interviews during the process as well as a survey. Results: The research illustrates the process of development of ideas, and how the participants through interdisciplinary collaboration, cognitive flexibility and joint ownership develop highly innovative and knowledge-intensive ideas, with direct relevance for the four companies whose problems they address. Conclusions: The article demonstrates how the creativity camp methodology holds the potential of combining advanced academic knowledge and creativity, to produce knowledge intensive ideas, when the design is based on ideas of experiential learning as well as creativity principles. This makes the method a highly relevant learning approach for engineering students in the search for skills to both develop and implement innovative ideas.

  17. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  18. Genetically engineered microorganisms for the detection of explosives' residues

    Directory of Open Access Journals (Sweden)

    Benjamin eShemer

    2015-10-01

    Full Text Available The manufacture and use of explosives throughout the past century has resulted in the extensive pollution of soils and groundwater, and the widespread interment of landmines imposes a major humanitarian risk and prevents civil development of large areas. As most current landmine detection technologies require actual presence at the surveyed areas, thus posing a significant risk to personnel, diverse research efforts are aimed at the development of remote detection solutions. One possible means proposed to fulfill this objective is the use of microbial bioreporters: genetically engineered microorganisms tailored to generate an optical signal in the presence of explosives’ vapors. The use of such sensor bacteria will allow to pinpoint the locations of explosive devices in a minefield. While no study has yet resulted in a commercially operational system, significant progress has been made in the design and construction of explosives-sensing bacterial strains. In this article we review the attempts to construct microbial bioreporters for the detection of explosives, and analyze the steps that need to be undertaken for this strategy to be applicable for landmine detection.

  19. Genetically engineered microorganisms for the detection of explosives’ residues

    Science.gov (United States)

    Shemer, Benjamin; Palevsky, Noa; Yagur-Kroll, Sharon; Belkin, Shimshon

    2015-01-01

    The manufacture and use of explosives throughout the past century has resulted in the extensive pollution of soils and groundwater, and the widespread interment of landmines imposes a major humanitarian risk and prevents civil development of large areas. As most current landmine detection technologies require actual presence at the surveyed areas, thus posing a significant risk to personnel, diverse research efforts are aimed at the development of remote detection solutions. One possible means proposed to fulfill this objective is the use of microbial bioreporters: genetically engineered microorganisms “tailored” to generate an optical signal in the presence of explosives’ vapors. The use of such sensor bacteria will allow to pinpoint the locations of explosive devices in a minefield. While no study has yet resulted in a commercially operational system, significant progress has been made in the design and construction of explosives-sensing bacterial strains. In this article we review the attempts to construct microbial bioreporters for the detection of explosives, and analyze the steps that need to be undertaken for this strategy to be applicable for landmine detection. PMID:26579085

  20. Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects.

    Science.gov (United States)

    Citadin, Cristiane T; Ibrahim, Abdulrazak B; Aragão, Francisco J L

    2011-01-01

    In the last three decades, a number of attempts have been made to develop reproducible protocols for generating transgenic cowpea that permit the expression of genes of agronomic importance. Pioneer works focused on the development of such systems vis-à-vis an in vitro culture system that would guarantee de novo regeneration of transgenic cowpea arising from cells amenable to one form of gene delivery system or another, but any such system has eluded researchers over the years. Despite this apparent failure, significant progress has been made in generating transgenic cowpea, bringing researchers much nearer to their goal than thirty years ago. Now, various researchers have successfully established transgenic procedures for cowpea with evidence of inherent transgenes of interest, effected by progenies in a Mendelian fashion. New opportunities have thus emerged to optimize existing protocols and devise new strategies to ensure the development of transgenic cowpea with desirable agronomic traits. This review chronicles the important milestones in the last thirty years that have marked the evolution of genetic engineering of cowpea. It also highlights the progress made and describes new strategies that have arisen, culminating in the current status of transgenic technologies for cowpea.

  1. Methodology of the evolutionary economics in application to the engineering problems

    Directory of Open Access Journals (Sweden)

    Kolbachev E.B.

    2017-01-01

    Full Text Available Authors present an idea that the consulting engineering services are a type of knowledge mediation institution. This institution decreases a possibility of the participants’ opportunistic behaviour during the purchase and sale deal making. It’s actual, first of all, for the knowledge products, such as innovation projects and R&D results, and other search goods. In the article authors present a set of measurement instruments to make a said kind of valuation. Concept of the set is based on one of the evolutionary economics’ methodologies: a technological structure method. As a criteria for attributing a project to one or another technological structure are used a level of the real technology’s compliance with the extremely efficient, information materialization level, dimension scale of the forming processes and dominant management concept. The approach gives a possibility to minimize the possibility of the existence of the innovation processes participants’ opportunistic behaviour, and to increase the efficiency of the innovation activities.

  2. Induction of Atherosclerosis in Mice and Hamsters Without Germline Genetic Engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne K; Hagensen, Mette K

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... are a rapid and versatile method to induce atherosclerosis in animals. This method should prove useful for experiments that are high-throughput or involve genetic techniques, strains, or species that do not combine well with current genetically engineered models....

  3. Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines

    Science.gov (United States)

    Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž

    2017-05-01

    This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was

  4. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  5. Engineering-Oriented Practical Training Methodology for Undergraduate and a Case Study

    Directory of Open Access Journals (Sweden)

    Jianyong Zuo

    2013-01-01

    Full Text Available In this study, the education method which is different from traditional Chinese education methods for its accentuation of practical training is proposed. Compared with traditional engineering education methods, engineering-oriented practical training methodology is student-centered, contains various educational activities, requires interdisciplinary skills, values teamwork and have more objective evaluation methods. Based on the educational case of anti-skid control of railway train, a semi-physical simulation platform is introduced with details in design philosophy, system structure, operator interface and training process. The intention of creating the platform is to provide the students who use it with more hands-on experience since one of the key factors in transfer of learning is the diversion of practice. Based on the knowledge transfer theory, we encourage our students to do their work more independently and freely and the corresponding scores of their performance prove that the students who are better-rounded tend to perform well in the training courses we offered while those only with straight a scores may not outperform their classmates. Thus, the results indicate that this mode is effective in education and instructive to the reform of technological college education.

  6. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    Science.gov (United States)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  7. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms.

    Science.gov (United States)

    Tinoco, Justine Monnerat; Buttaro, Bettina; Zhang, Hongming; Liss, Nadia; Sassone, Luciana; Stevens, Roy

    2016-11-01

    Enterococcus faecalis is a Gram-positive, facultative anaerobic bacterium that is associated with failed endodontic cases and nosocomial infections. E. faecalis can form biofilms, penetrate dentinal tubules and survive in root canals with scarce nutritional supplies. These properties can make E. faecalis resistant to conventional endodontic disinfection therapy. Furthermore, treatment may be complicated by the fact that many E. faecalis strains are resistant to antibiotics. A potential alternative to antibiotic therapy is phage therapy. ϕEf11 is a temperate phage that infects strains of E. faecalis. It was previously sequenced and genetically engineered to modify its properties in order to render it useful as a therapeutic agent in phage therapy. In the current study, we have further genetically modified the phage to create phage ϕEf11/ϕFL1C(Δ36)(PnisA). The aim of this study was to evaluate the efficacy of bacteriophage ϕEf11/ϕFL1C(Δ36)(PnisA), to disrupt biofilms of two Enterococcus faecalis strains: JH2-2 (vancomycin-sensitive) and V583 (vancomycin-resistant). 24h static biofilms of E. faecalis strains JH2-2(pMSP3535 nisR/K) and V583 (pMSP3535nisR/K), formed on cover slips, were inoculated with bacteriophage ϕEf11/ϕFL1C(Δ36)(PnisA). After 24 and 48h incubation, the bacterial biomass was imaged by confocal microscopy and viable cells were quantified by colony forming unit measurement. The results showed a 10-100-fold decrease in viable cells (CFU/biofilm) after phage treatment, which was consistent with comparisons of treated and untreated biofilm images visualized as max projections of the Z-series. The biomass of both vancomycin-sensitive and vancomycin-resistant E. faecalis biofilms is markedly reduced following infection by bacteriophage ϕEf11/ϕFL1C(Δ36)(PnisA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Transgenic dairy cattle: genetic engineering on a large scale.

    Science.gov (United States)

    Wall, R J; Kerr, D E; Bondioli, K R

    1997-09-01

    Amid the explosion of fundamental knowledge generated from transgenic animal models, a small group of scientists has been producing transgenic livestock with goals of improving animal production efficiency and generating new products. The ability to modify mammary-specific genes provides an opportunity to pursue several distinctly different avenues of research. The objective of the emerging gene "pharming" industry is to produce pharmaceuticals for treating human diseases. It is argued that mammary glands are an ideal site for producing complex bioactive proteins that can be cost effectively harvested and purified. Consequently, during the past decade, approximately a dozen companies have been created to capture the US market for pharmaceuticals produced from transgenic bioreactors estimated at $3 billion annually. Several products produced in this way are now in human clinical trials. Another research direction, which has been widely discussed but has received less attention in the laboratory, is genetic engineering of the bovine mammary gland to alter the composition of milk destined for human consumption. Proposals include increasing or altering endogenous proteins, decreasing fat, and altering milk composition to resemble that of human milk. Initial studies using transgenic mice to investigate the feasibility of enhancing manufacturing properties of milk have been encouraging. The potential profitability of gene "pharming" seems clear, as do the benefits of transgenic cows producing milk that has been optimized for food products. To take full advantage of enhanced milk, it may be desirable to restructure the method by which dairy producers are compensated. However, the cost of producing functional transgenic cattle will remain a severe limitation to realizing the potential of transgenic cattle until inefficiencies of transgenic technology are overcome. These inefficiencies include low rates of gene integration, poor embryo survival, and unpredictable transgene

  9. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants, international consensus was reached on the principles of food safety evaluation. The concept of substantial equivalence became...

  10. Gene flow in genetically engineered perennial grasses: Lessons for modification of dedicated bioenergy crops

    Science.gov (United States)

    The potential ecological consequences of the commercialization of genetically engineered (GD) crops have been the subject of intense debate, particularly when the GE crops are perennial and capable of outcrossing to wild relatives. The essential ecological impact issues for engi...

  11. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    Science.gov (United States)

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  12. Genetic engineering of human ES and iPS cells using TALE nucleases

    OpenAIRE

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S.; Gao, Qing; Cassady, John P.; Cost, Gregory J.; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M.; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J.

    2011-01-01

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that T...

  13. Implementing the Flipped Classroom Methodology to the Subject "Applied Computing" of Two Engineering Degrees at the University of Barcelona

    Science.gov (United States)

    Iborra Urios, Montserrat; Ramírez Rangel, Eliana; Badia Córcoles, Jordi Hug; Bringué Tomàs, Roger; Tejero Salvador, Javier

    2017-01-01

    This work is focused on the implementation, development, documentation, analysis, and assessment of the flipped classroom methodology, by means of the just-in-time teaching strategy, for a pilot group (1 out of 6) in the subject "Applied Computing" of both the Chemical and Materials Engineering Undergraduate Degrees of the University of…

  14. Genome-scale genetic engineering in Escherichia coli.

    Science.gov (United States)

    Jeong, Jaehwan; Cho, Namjin; Jung, Daehee; Bang, Duhee

    2013-11-01

    Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces recent advances in genome engineering technologies applied to Escherichia coli as well as multiplex automated genome engineering (MAGE), a recent technique proposed as a powerful toolkit due to its straightforward process, rapid experimental procedures, and highly efficient properties.

  15. Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms

    Science.gov (United States)

    Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick

    2009-01-01

    This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…

  16. Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms

    Science.gov (United States)

    Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick

    2009-01-01

    This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…

  17. Ray Wu, Cornell's acclaimed pioneer of genetic engineering and developer of insect-resistant rice

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ ITHACA, N.Y. - Ray J. Wu, Comell University professor of molecular biology and genetics, who was widely recognized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yielding rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10.

  18. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.

    Science.gov (United States)

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.

  19. The Significance of Content Knowledge for Informal Reasoning regarding Socioscientific Issues: Applying Genetics Knowledge to Genetic Engineering Issues

    Science.gov (United States)

    Sadler, Troy D.; Zeidler, Dana L.

    2005-01-01

    This study focused on informal reasoning regarding socioscientific issues. It sought to explore how content knowledge influenced the negotiation and resolution of contentious and complex scenarios based on genetic engineering. Two hundred and sixty-nine students drawn from undergraduate natural science and nonnatural science courses completed a…

  20. Biotechnology, Genetic Engineering and Society. Monograph Series: III.

    Science.gov (United States)

    Kieffer, George H.

    New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…

  1. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    Science.gov (United States)

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  2. Using genetically engineered animal models in the postgenomic era to understand gene function in alcoholism.

    Science.gov (United States)

    Reilly, Matthew T; Harris, R Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene's function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput "next-generation sequencing" technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism.

  3. Genetic Networks of Complex Disorders: from a Novel Search Engine for PubMed Article Database.

    Science.gov (United States)

    Jung, Jae-Yoon; Wall, Dennis Paul

    2013-01-01

    Finding genetic risk factors of complex disorders may involve reviewing hundreds of genes or thousands of research articles iteratively, but few tools have been available to facilitate this procedure. In this work, we built a novel publication search engine that can identify target-disorder specific, genetics-oriented research articles and extract the genes with significant results. Preliminary test results showed that the output of this engine has better coverage in terms of genes or publications, than other existing applications. We consider it as an essential tool for understanding genetic networks of complex disorders.

  4. WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Neeraj Sharma

    2015-06-01

    Full Text Available Wire electric discharge machining (WEDM is a thermo-electric spark erosion non-traditional type manufacturing process. The applications of WEDM have been found in aerospace and die manufacturing industries, where precise dimensions were the prime objective. This process is applied in case of processing difficult to machine material. Brass wire is used as an electrode and High strength low alloy (HSLA steel as a work-piece during experimentation. The present research deals with the effect of process parameters on the overcut while machining the HSLA steel on WEDM. The mathematical model has been developed with the help of Response Surface Methodology (RSM. Further this model is processed with help of Genetic Algorithm (GA to find out the optimum machining parameters. The percentage error between the predicted and experimental values lies in the range of ±10%, which indicates that the developed model can be utilized to predict the overcut values. The experimental plan was executed according to central composite design. The optimal setting of process parameters is pulse on-time-117 μs; pulse off-time-50 μs; spark gap voltage-49 V; peak current-180 A and wire tension-6 g; for minimum overcut, whereas at the optimal setting overcut is 9.9922 μm.

  5. Novel methodology for casting process optimization using Gaussian process regression and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Yao Weixiong; Yang Yi; Zeng Bin

    2009-01-01

    High pressure die casting (HPDC) is a versatile material processing method for mass-production of metal parts with complex geometries,and this method has been widely used in manufacturing various products of excellent dimensional accuracy and productivity. In order to ensure the quality of the components,a number of variables need to be properly set. A novel methodology for high pressure die casting process optimization was developed,validated and applied to selection of optimal parameters,which incorporate design of experiment (DOE),Gaussian process (GP) regression technique and genetic algorithms (GA). This new approach was applied to process optimization for cast magnesium alloy notebook shell. After being trained,using data generated by PROCAST (FEM-based simulation software),the GP model approximated well with the simulation by extracting useful information from the simulation results. With the help of MATLAB,the GP/GA based approach has achieved the optimum solution of die casting process condition settings.

  6. Tools for genetic engineering of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Saraya, Ruchi; Gidijala, Loknath; Veenhuis, Marten; van der Klei, Ida J; Mapelli, Valeria

    2014-01-01

    Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years

  7. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  8. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  9. Applying Costs, Risks and Values Evaluation (CRAVE) methodology to Engineering Support Request (ESR) prioritization

    Science.gov (United States)

    Joglekar, Prafulla N.

    1994-01-01

    Given limited budget, the problem of prioritization among Engineering Support Requests (ESR's) with varied sizes, shapes, and colors is a difficult one. At the Kennedy Space Center (KSC), the recently developed 4-Matrix (4-M) method represents a step in the right direction as it attempts to combine the traditional criteria of technical merits only with the new concern for cost-effectiveness. However, the 4-M method was not adequately successful in the actual prioritization of ESRs for the fiscal year 1995 (FY95). This research identifies a number of design issues that should help us to develop better methods. It emphasizes that given the variety and diversity of ESR's one should not expect that a single method could help in the assessment of all ESR's. One conclusion is that a methodology such as Costs, Risks, and Values Evaluation (CRAVE) should be adopted. It also is clear that the development of methods such as 4-M requires input not only from engineers with technical expertise in ESR's but also from personnel with adequate background in the theory and practice of cost-effectiveness analysis. At KSC, ESR prioritization is one part of the Ground Support Working Teams (GSWT) Integration Process. It was discovered that the more important barriers to the incorporation of cost-effectiveness considerations in ESR prioritization lie in this process. The culture of integration, and the corresponding structure of review by a committee of peers, is not conducive to the analysis and confrontation necessary in the assessment and prioritization of ESR's. Without assistance from appropriately trained analysts charged with the responsibility to analyze and be confrontational about each ESR, the GSWT steering committee will continue to make its decisions based on incomplete understanding, inconsistent numbers, and at times, colored facts. The current organizational separation of the prioritization and the funding processes is also identified as an important barrier to the

  10. DECOMPOSTION OF GENETICALLY ENGINEERED TOBACCO UNDER FIELD CONDITIONS: PERSISTENCE OF THE PROTEINASE INHIBITOR I PRODUCT AND EFFECTS OF SOIL MICROBIAL RESPIRATION AND PROTOZOA, NEMATODE AND MICROARTHR

    Science.gov (United States)

    1. To evaluate the potential effects of genetically engineered (transgenic) plants on soil ecosystems, litterbags containing leaves of non-engineered (parental) and transgenic tobacco plants were buried in field plots. The transgenic tobacco plants were genetically engineered to ...

  11. The use of genetically-engineered animals in science: perspectives of Canadian Animal Care Committee members.

    Science.gov (United States)

    Ormandy, Elisabeth H; Dale, Julie; Griffin, Gilly

    2013-05-01

    The genetic engineering of animals for their use in science challenges the implementation of refinement and reduction in several areas, including the invasiveness of the procedures involved, unanticipated welfare concerns, and the numbers of animals required. Additionally, the creation of genetically-engineered animals raises problems with the Canadian system of reporting animal numbers per Category of Invasiveness, as well as raising issues of whether ethical limits can, or should, be placed on genetic engineering. A workshop was held with the aim of bringing together Canadian animal care committee members to discuss these issues, to reflect on progress that has been made in addressing them, and to propose ways of overcoming any challenges. Although previous literature has made recommendations with regard to refinement and reduction when creating new genetically-engineered animals, the perception of the workshop participants was that some key opportunities are being missed. The participants identified the main roadblocks to the implementation of refinement and reduction alternatives as confidentiality, cost and competition. If the scientific community is to make progress concerning the implementation of refinement and reduction, particularly in the creation and use of genetically-engineered animals, addressing these roadblocks needs to be a priority.

  12. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene

    Institute of Scientific and Technical Information of China (English)

    CAI Pei-qiang; TANG Xun; LIN Yue-qiu; Oudega Martin; SUN Guang-yun; XU Lin; YANG Yun-kang; ZHOU Tian-hua

    2006-01-01

    Objective:To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs)mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI).Methods: Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3(NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot.Results: Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot.Conclusions: Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  13. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Science.gov (United States)

    Kim, Taekyung; Min, Cheongwan; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-12-01

    With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  14. An Ethical Study on the Uses of Enhancement Genetic Engineering

    Science.gov (United States)

    Kawakita, Koji

    A variety of biomedical technologies are being developed that can be used for purposes other than treating diseases. Such “enhancement technologies” can be used to improve our own and future generation's life-chances. While these technologies can help people in many ways, their use raises important ethical issues. Some arguments for anti-enhancement as well as pro-enhancement seem to rest, however, on shaky foundation. Both company engineers and the general public had better learn more from technological, economical and philosophical histories. For such subjects may provide engineers with less opportunities of technological misuses and more powers of self-esteem in addition to self-control.

  15. Genomic landscapes of endogenous retroviruses unveil intricate genetics of conventional and genetically-engineered laboratory mouse strains.

    Science.gov (United States)

    Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho

    2016-04-01

    Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans.

  16. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy.

  17. Implementing the flipped classroom methodology to the subject "Applied computing" of the chemical engineering degree at the University of Barcelona

    Directory of Open Access Journals (Sweden)

    Montserrat Iborra

    2017-06-01

    Full Text Available This work is focus on implementation, development, documentation, analysis and assessment of flipped classroom methodology, by means of just in time teaching strategy, in a pilot group (1 of 6 of the subject “Applied Computing” of Chemical Engineering Undergraduate Degree of the University of Barcelona. The results show that this technique promotes self-learning, autonomy, time management as well as an increase in the effectiveness of classroom hours.

  18. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  19. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  20. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  1. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  2. Genetic engineering of Pichia stipitis for fermentation of xylose

    Science.gov (United States)

    Thomas W. Jeffries; N. Q. Shi; J. Y. Cho; P. Lu; K. Dahn; J. Hendrick; H. K. Sreenath

    1998-01-01

    A useful genetic system has been developed for the transformation of Pichia stipitis. This includes two selectable markers (URA3 and LEU2), integrating and autonomous replication vectors, a pop-out cassette that enables multiple targeted disruptions, and a genomic X-library for rapid cloning. Using this system we have cloned two genes for alcohol dehydrogenase (PsADH1...

  3. Potato leafroll virus : molecular analysis and genetically engineered resistance

    NARCIS (Netherlands)

    Wilk, van der F.

    1995-01-01

    The nucleotide sequence of the genomic RNA of potato leafroll virus (PLRV) was elucidated and its genetic organization deduced (Chapter 2). Six open reading frames (ORFs) were shown to be present on the genome. Both the PLRV coat protein gene and the RNA- dependent RNA polymerase gene were

  4. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  5. Encouraging the pursuit of advanced degrees in science and engineering: Top-down and bottom-up methodologies

    Science.gov (United States)

    Maddox, Anthony B.; Smith-Maddox, Renee P.; Penick, Benson E.

    1989-01-01

    The MassPEP/NASA Graduate Research Development Program (GRDP) whose objective is to encourage Black Americans, Mexican Americans, American Indians, Puerto Ricans, and Pacific Islanders to pursue graduate degrees in science and engineering is described. The GRDP employs a top-down or goal driven methodology through five modules which focus on research, graduate school climate, technical writing, standardized examinations, and electronic networking. These modules are designed to develop and reinforce some of the skills necessary to seriously consider the goal of completing a graduate education. The GRDP is a community-based program which seeks to recruit twenty participants from a pool of Boston-area undergraduates enrolled in engineering and science curriculums and recent graduates with engineering and science degrees. The program emphasizes that with sufficient information, its participants can overcome most of the barriers perceived as preventing them from obtaining graduate science and engineering degrees. Experience has shown that the top-down modules may be complemented by a more bottom-up or event-driven methodology. This approach considers events in the academic and professional experiences of participants in order to develop the personal and leadership skills necessary for graduate school and similar endeavors.

  6. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.

    Science.gov (United States)

    Wang, Lei

    2017-10-06

    Expansion of the genetic code allows unnatural amino acids (Uaas) to be site-specifically incorporated into proteins in live biological systems, thus enabling novel properties selectively introduced into target proteins in vivo for basic biological studies and for engineering of novel biological functions. Orthogonal components including tRNA and aminoacyl-tRNA synthetase (aaRS) are expressed in live cells to decode a unique codon (often the amber stop codon UAG) as the desired Uaa. Initially developed in E. coli, this methodology has now been expanded in multiple eukaryotic cells and animals. In this Account, we focus on addressing various biological challenges for rewriting the genetic code, describing impacts of code expansion on cell physiology and discussing implications for fundamental studies of code evolution. Specifically, a general method using the type-3 polymerase III promoter was developed to efficiently express prokaryotic tRNAs as orthogonal tRNAs and a transfer strategy was devised to generate Uaa-specific aaRS for use in eukaryotic cells and animals. The aaRSs have been found to be highly amenable for engineering substrate specificity toward Uaas that are structurally far deviating from the native amino acid, dramatically increasing the stereochemical diversity of Uaas accessible. Preparation of the Uaa in ester or dipeptide format markedly increases the bioavailability of Uaas to cells and animals. Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism of eukaryotic cells, degrades mRNA containing a premature stop codon. Inhibition of NMD increases Uaa incorporation efficiency in yeast and Caenorhabditis elegans. In bacteria, release factor one (RF1) competes with the orthogonal tRNA for the amber stop codon to terminate protein translation, leading to low Uaa incorporation efficiency. Contradictory to the paradigm that RF1 is essential, it is discovered that RF1 is actually nonessential in E. coli. Knockout of RF1 dramatically

  7. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling

    Science.gov (United States)

    Tegnér, Jesper; Yeung, M. K. Stephen; Hasty, Jeff; Collins, James J.

    2003-01-01

    While the fundamental building blocks of biology are being tabulated by the various genome projects, microarray technology is setting the stage for the task of deducing the connectivity of large-scale gene networks. We show how the perturbation of carefully chosen genes in a microarray experiment can be used in conjunction with a reverse engineering algorithm to reveal the architecture of an underlying gene regulatory network. Our iterative scheme identifies the network topology by analyzing the steady-state changes in gene expression resulting from the systematic perturbation of a particular node in the network. We highlight the validity of our reverse engineering approach through the successful deduction of the topology of a linear in numero gene network and a recently reported model for the segmentation polarity network in Drosophila melanogaster. Our method may prove useful in identifying and validating specific drug targets and in deconvolving the effects of chemical compounds. PMID:12730377

  8. Biosensing Vibrio cholerae with Genetically Engineered Escherichia coli.

    Science.gov (United States)

    Holowko, Maciej B; Wang, Huijuan; Jayaraman, Premkumar; Poh, Chueh Loo

    2016-11-18

    Cholera is a potentially mortal, infectious disease caused by Vibrio cholerae bacterium. Current treatment methods of cholera still have limitations. Beneficial microbes that could sense and kill the V. cholerae could offer potential alternative to preventing and treating cholera. However, such V. cholerae targeting microbe is still not available. This microbe requires a sensing system to be able to detect the presence of V. cholera bacterium. To this end, we designed and created a synthetic genetic sensing system using nonpathogenic Escherichia coli as the host. To achieve the system, we have moved proteins used by V. cholerae for quorum sensing into E. coli. These sensor proteins have been further layered with a genetic inverter based on CRISPRi technology. Our design process was aided by computer models simulating in vivo behavior of the system. Our sensor shows high sensitivity to presence of V. cholerae supernatant with tight control of expression of output GFP protein.

  9. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy.

  10. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    Science.gov (United States)

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  11. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    Science.gov (United States)

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  12. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Recent advances in the molecular genetics of resin biosynthesis and genetic engineering strategies to improve defenses in conifers

    Institute of Scientific and Technical Information of China (English)

    TANGWei

    2003-01-01

    Since the first terpenoid synthase cDNA was obtained by the reverse genetic approach from grand fir, great pro-gress in the molecular genetics of terpenoid formation has been made with angiosperms and genes encoding a monoterpene synthase, a sesquiterpene synthase, and a diterpene synthase. Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects. Re-cent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest bio-technology. This review described enzymes of resin biosynthesis, structural feathers of genes genomic intron and exon or-ganization, pathway organization and evolution, resin production and accumulation, interactions between conifer and bark beetle, and engineering strategies to improve conifer defenses.

  14. On Natural Genetic Engineering: Structural Dynamism in Random Boolean Networks

    CERN Document Server

    Bull, Larry

    2012-01-01

    This short paper presents an abstract, tunable model of genomic structural change within the cell lifecycle and explores its use with simulated evolution. A well-known Boolean model of genetic regulatory networks is extended to include changes in node connectivity based upon the current cell state, e.g., via transposable elements. The underlying behaviour of the resulting dynamical networks is investigated before their evolvability is explored using a version of the NK model of fitness landscapes. Structural dynamism is found to be selected for in non-stationary environments and subsequently shown capable of providing a mechanism for evolutionary innovation when such reorganizations are inherited.

  15. Applying Software Engineering Methodology for Designing Biomedical Software Devoted To Electronic Instrumentation

    OpenAIRE

    2012-01-01

    Problem statement: Significant effort goes into the development of biomedical software, which is integrated with computers/processors, sensors and electronic instrumentation devoted to a specific application. However, the scientific work on electronic instrumentation controlled by biomedical software has not emphasized software development, instead focusing mainly on electronics engineering. The development team is rarely composed of Software Engineering (SE) experts. Usually, a commercial au...

  16. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Erwin V. Zaretsky

    2003-01-01

    Full Text Available The NASA Energy-Efficient Engine (E3-Engine is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The predicted engine lives L5 (95% probability of survival of approximately 17,000 and 32,000 hr do correlate with current engine-maintenance practices without and with refurbishment, respectively. The individual high-pressure turbine (HPT blade lives necessary to obtain a blade system life L0.1 (99.9% probability of survival of 9000 hr for Weibull slopes of 3, 6, and 9 are 47,391; 20,652; and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9%, the predicted disk system life L0.1 can vary from 9408 to 24,911 hr.

  17. A Probabilistic Design Methodology for a Turboshaft Engine Overall Performance Analysis

    Directory of Open Access Journals (Sweden)

    Min Chen

    2014-05-01

    Full Text Available In reality, the cumulative effect of the many uncertainties in engine component performance may stack up to affect the engine overall performance. This paper aims to quantify the impact of uncertainty in engine component performance on the overall performance of a turboshaft engine based on Monte-Carlo probabilistic design method. A novel probabilistic model of turboshaft engine, consisting of a Monte-Carlo simulation generator, a traditional nonlinear turboshaft engine model, and a probability statistical model, was implemented to predict this impact. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the engine overall performance prediction. This paper also shows that, taking into consideration the uncertainties in component performance, the turbine entry temperature and overall pressure ratio based on the probabilistic design method should increase by 0.76% and 8.33%, respectively, compared with the ones of deterministic design method. The comparison shows that the probabilistic approach provides a more credible and reliable way to assign the design space for a target engine overall performance.

  18. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA

    Directory of Open Access Journals (Sweden)

    Xue-Rong eZhou

    2014-09-01

    Full Text Available Metabolic engineering of omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA in oilseeds has been one of the key metabolic engineering targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA from endogenous -linolenic acid (ALA, we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS was used to characterize the triacylglycerol (TAG, diacylglycerol (DAG and phospholipid (PL lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC, DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified, and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provides insights into where DHA accumulated and composed with other fatty acids of neutral and phospholipids from the developing and mature seeds.

  19. Genetic engineering in film: the case of chimeras

    Directory of Open Access Journals (Sweden)

    Josep-E. BAÑOS

    2016-04-01

    Full Text Available The development of molecular genetics in the second half of XXth century has allowed considering situations, which were in the bioscience fiction field until then. Among them, the possibility of making chimeras using the combination of genetic material is now a real option. Movies have repeatedly shown this possibility by means of literary works o directly by screen plays. This article analyzes some films that may help to understand social beliefs on chimeras in the last century. We have considered Island of lost souls (1932, The island of doctor Moreau (1977, The fly (1958, 1986, Mimic (1997 and Splice (2009. The main conclusions of this analysis are the presence of a negative view to the possibility of making chimeras following the point of view that was used in Frankenstein. The movies also lack of a consideration of the potential benefits of using chimeras. Ethical misgivings and the vision of playing God scientists avoid a impartial view of a situation, which is already among us.

  20. The hermeneutic challenge of genetic engineering: Habermas and the transhumanists.

    Science.gov (United States)

    Edgar, Andrew

    2009-06-01

    The purpose of this paper is to explore the impact that developments in transhumanist technologies may have upon human cultures (and thus upon the lifeworld), and to do so by exploring a potential debate between Habermas and the transhumanists. Transhumanists, such as Nick Bostrom, typically see the potential in genetic and other technologies for positively expanding and transcending human nature. In contrast, Habermas is a representative of those who are fearful of this technology, suggesting that it will compound the deleterious effects of the colonisation of the lifeworld, further constraining human autonomy and undermining the meaningfulness of the lifeworld by expanding the technological control and manipulation of humanity. It will be argued that these opposed positions are grounded in fundamentally different understandings of the consequences of scientific and technological advance. On one level, the transhumanists remain confident that the lifeworld has within it the resources necessary to find meaning and purpose in a society deeply infused by genetic technology. Habermas disagrees. On another level, the difference is articulated by Horkheimer and Adorno in Dialectic of Enlightenment, primarily by challenging what may be understood as a Baconian faith in science as a project for the domination of nature (where nature is an infinitely malleable material, to be dominated and shaped, without adverse consequences, purely for the purposes of human survival). While the transhumanists broadly embrace this faith, Habermas returns to something akin to Horkheimer and Adorno's pessimistic scepticism.

  1. A methodology for the evaluation of the turbine jet engine fragment threat to generic air transportable containers

    Energy Technology Data Exchange (ETDEWEB)

    Harding, D.C.; Pierce, J.D.

    1993-06-01

    Uncontained, high-energy gas turbine engine fragments are a potential threat to air-transportable containers carried aboard jet aircraft. The threat to a generic example container is evaluated by probability analyses and penetration testing to demonstrate the methodology to be used in the evaluation of a specific container/aircraft/engine combination. Fragment/container impact probability is the product of the uncontained fragment release rate and the geometric probability that a container is in the path of this fragment. The probability of a high-energy rotor burst fragment from four generic aircraft engines striking one of the containment vessels aboard a transport aircraft is approximately 1.2 {times} 10{sup {minus}9} strikes/hour. Finite element penetration analyses and tests can be performed to identify specific fragments which have the potential to penetrate a generic or specific containment vessel. The relatively low probability of engine fragment/container impacts is primarily due to the low release rate of uncontained, hazardous jet engine fragments.

  2. Projecting potential adoption of genetically engineered freeze-tolerant Eucalyptus in the United States

    Science.gov (United States)

    David N. Wear; Ernest Dixon IV; Robert C. Abt; Navinder Singh

    2015-01-01

    Development of commercial Eucalyptus plantations has been limited in the United States because of the species’ sensitivity to freezing temperatures. Recently developed genetically engineered clones of a Eucalyptus hybrid, which confer freeze tolerance, could expand the range of commercial plantations. This study explores how...

  3. Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules.

    Science.gov (United States)

    Wang, Baojun; Buck, Martin

    2014-10-11

    We designed and constructed versatile modular genetic logic gates in bacterial cells. These function as digital logic 1-input Buffer gate, 2-input and 3-input AND gates with one inverted input and integrate multiple chemical input signals in customised logic manners. Such rapidly engineered devices serve to achieve increased sensing signal selectivity.

  4. 77 FR 41350 - Monsanto Co.; Determination of Nonregulated Status of Soybean Genetically Engineered To Produce...

    Science.gov (United States)

    2012-07-13

    ... article under our regulations governing the introduction of certain genetically engineered organisms. Our....aphis.usda.gov/biotechnology/not_reg.html and are posted with the previous notice and the comments we..., Biotechnology Regulatory Services, APHIS, 4700 River Road Unit 147, Riverdale, MD 20737-1236; (301) 851-3954...

  5. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Science.gov (United States)

    2011-12-16

    ... the introduction of certain genetically engineered organisms. Our determination is based on our.../biotechnology/not_reg.html and are posted with the previous notice and the comments we received on the... INFORMATION CONTACT: Mr. Evan Chestnut, Policy Analyst, Biotechnology Regulatory Services, APHIS, 4700 River...

  6. Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid

    NARCIS (Netherlands)

    Kos, M.; Houshyani, B.; Overeem, A.J.; Bouwmeester, H.J.; Weldegergis, B.T.; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2013-01-01

    BACKGROUND: Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be pursue

  7. History and future of genetically engineered food animal regulation: an open request.

    Science.gov (United States)

    Wells, Kevin D

    2016-06-01

    Modern biotechnology resulted from of a series of incremental improvements in the understanding of DNA and the enzymes that nature evolved to manipulate it. As the potential impact of genetic engineering became apparent, scientists began the process of trying to identify the potential unintended consequences. Restrictions to recombinant DNA experimentation were at first self-imposed. Collaborative efforts between scientists and lawyers formalized an initial set of guidelines. These guidelines have been used to promulgate regulations around world. However, the initial guidelines were only intended as a starting point and were motivated by a specific set of concerns. As new data became available, the guidelines and regulations should have been adapted to the new knowledge. Instead, other social drivers drove the development of regulations. For most species and most applications, the framework that was established has slowly allowed some products to reach the market. However, genetically engineered livestock that are intended for food have been left in a regulatory state of limbo. To date, no genetically engineered food animal is available in the marketplace. A short history and a U.S.-based genetic engineer's perspective are presented. In addition, a request to regulatory agencies is presented for consideration as regulation continues to evolve. Regulators appear to have shown preference for the slow, random progression of evolution over the efficiency of intentional design.

  8. 'HoneySweet' plum - a valuable genetically engineered fruit-tree cultivar and germplasm resource

    Science.gov (United States)

    ‘HoneySweet’ is a plum variety developed through genetic engineering to be highly resistant to plum pox potyvirus (PPV), the causal agent of sharka disease, that threatens stone-fruit industries world-wide and most specifically, in Europe. Field testing for over 15 years in Europe has demonstrated ...

  9. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  10. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  11. Between creation, evolution and genetic engineering: biology in need of a new bioethics?

    NARCIS (Netherlands)

    Gupta, J.A.

    2009-01-01

    Technological interventions into biological processes through genetic engineering in the twenty-fi rst century could speed up evolution at the velocity of light years in comparison with the millions of years it took for Homo sapiens to reach this stage of evolution until this new millennium. Will th

  12. Genetically engineered alfalfa and feral alfalfa plants: What should growers know?

    Science.gov (United States)

    Alfalfa (Medicago sativa subsp. sativa L) is the world’s most important forage crop. The western United States is the most important production area for both alfalfa forage and alfalfa seed. Alfalfa was the first major perennial genetically-engineered (GE)crop and a GE trait for resistance to glypho...

  13. Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

    DEFF Research Database (Denmark)

    Kalantari, Aida; Chen, Tao; Ji, Boyang

    2017-01-01

    of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from K. pneumoniae. Genetic engineering, driven by in silico optimization, and optimization of cultivation conditions resulted in a 3-HP titer...

  14. Meiotic nondisjunction in the mouse: methodology for genetic testing and comparison with other methods

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L. B.

    1978-01-01

    The following topics are discussed: genetic method for detecting sex-chromosome nondisjunction; events that can produce nondisjunction in mammals; biological parameters that may maximize induced meiotic ND; comparison with other measures of germline chromosomal damage in mammals; comparison with other methods for detecting meiotic nondisjunction in mammals; and application of the genetic method for detecting nondisjunction. (HLW)

  15. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Science.gov (United States)

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  16. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    Science.gov (United States)

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  17. Genetically engineered biological agents in therapy for systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Elena Aleksandrovna Aseeva

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype for chronic autoimmune disease. Its prevalence is 20 to 70 cases per 100,000 women and varies by race and ethnicity. Despite considerable progress in traditional therapy, many problems associated with the management of these patients need to be immediately solved: thus, 50-80% are found to have activity signs and/or frequent exacerbations and about 30% of the patients have to stop work; Class IV lupus nephritis increases the risk of terminalrenal failure. In the past 20 years great progress has been made in studying the pathogenesis of SLE: biological targets to affect drugs have been sought and fundamentally new therapeutic goals defined. Belimumab is the first genetically biological agent specially designed to treat SLE, which is rightly regarded as one of the most important achievements of rheumatology in the past 50 years.

  18. The effect of genetically engineered glucagon on glucose recovery after hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Jørgensen, S; Hilsted, J

    1992-01-01

    To compare the effect on glucose recovery after insulin-induced hypoglycaemia of intramuscular genetically engineered glucagon, intramuscular glucagon from pancreatic extraction and intravenous glucose, we examined 10 healthy subjects during blockage of glucose counterregulation with somatostatin...... appearance rate were far more protracted after i.m. glucagon than after i.v. glucose. These results suggest that genetically engineered glucagon and glucagon from pancreatic extraction have a similar effect on hepatic glucose production rate. Due to the protracted effect of intramuscular glucagon, a combined......, propranolol and phentolamine. Each subject was studied on three separate occasions. Thirty min after a bolus injection of 0.075 iu soluble insulin per kilogram body weight the subjects received one of the following treatments: 1 mg glucagon from pancreatic extraction intramuscularly; 1 mg genetically...

  19. Genetic engineering of mesenchymal stem cells and its application in human disease therapy.

    Science.gov (United States)

    Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J

    2010-11-01

    The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

  20. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families.

    Science.gov (United States)

    Vyas, Valmik K; Barrasa, M Inmaculada; Fink, Gerald R

    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.

  1. A Quantitative Volumetric Micro-Computed Tomography Method to Analyze Lung Tumors in Genetically Engineered Mouse Models

    Directory of Open Access Journals (Sweden)

    Brian B. Haines

    2009-01-01

    Full Text Available Two genetically engineered, conditional mouse models of lung tumor formation, K-rasLSL-G12D and K-rasLSL-G12D/p53LSL-R270H, are commonly used to model human lung cancer. Developed by Tyler Jacks and colleagues, these models have been invaluable to study in vivo lung cancer initiation and progression in a genetically and physiologically relevant context. However, heterogeneity, multiplicity and complexity of tumor formation in these models make it challenging to monitor tumor growth in vivo and have limited the application of these models in oncology drug discovery. Here, we describe a novel analytical method to quantitatively measure total lung tumor burden in live animals using micro-computed tomography imaging. Applying this methodology, we studied the kinetics of tumor development and response to targeted therapy in vivo in K-ras and K-ras/p53 mice. Consistent with previous reports, lung tumors in both models developed in a time- and dose (Cre recombinase-dependent manner. Furthermore, the compound K-rasLSL-G12D/p53LSL-R270H mice developed tumors faster and more robustly than mice harboring a single K-rasLSL-G12D oncogene, as expected. Erlotinib, a small molecule inhibitor of the epidermal growth factor receptor, significantly inhibited tumor growth in K-rasLSL-G12D/p53LSL-R270H mice. These results demonstrate that this novel imaging technique can be used to monitor both tumor progression and response to treatment and therefore supports a broader application of these genetically engineered mouse models in oncology drug discovery and development.

  2. A methodology for laser diagnostics in large-bore marine two-stroke diesel engines

    Science.gov (United States)

    Hult, J.; Mayer, S.

    2013-04-01

    Large two-stroke diesel engines for marine propulsion offer several challenges to successful implementation of the laser diagnostic techniques applied extensively in smaller automotive engines. For this purpose a fully operational large-bore engine has been modified to allow flexible optical access, through 24 optical ports with clear diameters of 40 mm. By mounting the entire optical set-up directly to the engine, effects of the vigorous vibrations and thermal drifts on alignment can be minimized. Wide-angle observation and illumination, as well as relatively large aperture detection, is made possible through mounting of optical modules and relays inside optical ports. This allows positioning of the last optical element within 10 mm from the cylinder wall. Finally, the implementation on a multi-cylinder engine allows for flexible and independent operation of the optically accessible cylinder for testing purposes. The performance of the integrated optical engine and imaging system developed is demonstrated through laser Mie scattering imaging of fuel jet structures, from which information on liquid penetration and spray angles can be deduced. Double pulse laser-sheet imaging of native in-cylinder structures is also demonstrated, for the purpose of velocimetry.

  3. Breaking the code: Statistical methods and methodological issues in psychiatric genetics

    NARCIS (Netherlands)

    Stringer, S.

    2015-01-01

    The genome-wide association (GWA) era has confirmed the heritability of many psychiatric disorders, most notably schizophrenia. Thousands of genetic variants with individually small effect sizes cumulatively constitute a large contribution to the heritability of psychiatric disorders. This thesis

  4. Pharmacokinetics of Genetically Engineered Antibody Forms Using Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steven M. Larson, M.D. Nai-Kong Cheung, M.D., Ph.D.

    2004-08-31

    In the last grant period we have focused on multi-step targeting methodologies (MST), as a method for delivery of high dose to the tumor, with low dose to the bone marrow. We have explored uptake in colorectal, pancreatic and prostate cancer, using an special preparation, developed in collaboration with NeoRex A high tumor/bone marrow ratio is clearly achieved with MST, but with a cost, namely the higher dose to normal kidney. For this reason, we have in particular, (a) looked dosimetry for both tumor and normal organ, and especially renal dosimetry, which appears to be the target organ, for Y-90. (b) In parallel with this we have explored the dosimetry of very high dose rate radionuclides, including Holmium-166. (c) In addition, with NaiKong Cheung, we have developed a new MST construct based on the anti-GD2 targeting 5F11; (d) we have successfully completed development of s-factor tables for mice. In summary, renal dosimetry is dominated by about 4-5% of the injected dose being held long-term in the renal cortex, probably in the proximal tubule, due to the universal uptake of small proteins. This appears to be a function of a biotynlated protein binding of the strept-avidin construct, to HSP70. This cortical uptake has caused us to reconsider renal dosimetry as a whole, with the smaller mass of the cortex, rather than the whole kidney, as the target organ. These insights into dosimetry will be of great importance as MST, becomes more common in clinical practice.

  5. Genetic engineering in agriculture and corporate engineering in public debate: risk, public relations, and public debate over genetically modified crops.

    Science.gov (United States)

    Patel, Rajeev; Torres, Robert J; Rosset, Peter

    2005-01-01

    Corporations have long influenced environmental and occupational health in agriculture, doing a great deal of damage, making substantial profits, and shaping public debate to make it appear that environmental misfortunes are accidents of an otherwise well-functioning system, rather than systemic. The debate over the genetically modified (GM) crops is an example. The largest producer of commercial GM seeds, Monsanto, exemplifies the industry's strategies: the invocation of poor people as beneficiaries, characterization of opposition as technophobic or anti-progress, and portrayal of their products as environmentally beneficial in the absence of or despite the evidence. This strategy is endemic to contemporary market capitalism, with its incentives to companies to externalize health and environmental costs to increase profits.

  6. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Surinder Batra, Ph D

    2006-02-27

    its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  7. A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting

    Directory of Open Access Journals (Sweden)

    KAMPOUROPOULOS, K.

    2014-02-01

    Full Text Available This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithms (GA. The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.

  8. The methodological soundness of requirements engineering papers: a conceptual framework and two case studies

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    This paper was triggered by concerns about the methodological soundness of many RE papers. We present a conceptual framework that distinguishes design papers from research papers, and show that in this framework, what is called a research paper in RE is often a design paper. We then present and

  9. Evaluation Methodology for Surface Engineering Techniques to Improve Powertrain Efficiency in Military Vehicles

    Science.gov (United States)

    2012-06-01

    efficiency within military vehicle drivetrains . This report details the experimental methodology developed by the U.S. Army Research Laboratory to...experiments are conducted on a subsystem component of a vehicle drivetrain . A parallel basic research thrust includes computational modeling of...of research efforts at the basic and applied research level to advance theoretical and practical understanding of drivetrain component efficiencies

  10. A Training Tool and Methodology to Allow Concurrent Multidisciplinary Experimental Projects in Engineering Education

    Science.gov (United States)

    Maseda, F. J.; Martija, I.; Martija, I.

    2012-01-01

    This paper describes a novel Electrical Machine and Power Electronic Training Tool (EM&PE[subscript TT]), a methodology for using it, and associated experimental educational activities. The training tool is implemented by recreating a whole power electronics system, divided into modular blocks. This process is similar to that applied when…

  11. ASPEN Plus in the Chemical Engineering Curriculum: Suitable Course Content and Teaching Methodology

    Science.gov (United States)

    Rockstraw, David A.

    2005-01-01

    An established methodology involving the sequential presentation of five skills on ASPEN Plus to undergraduate seniors majoring in ChE is presented in this document: (1) specifying unit operations; (2) manipulating physical properties; (3) accessing variables; (4) specifying nonstandard components; and (5) applying advanced features. This…

  12. Success story in software engineering using NIAM (Natural language Information Analysis Methodology)

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.M.; Eaton, D.S.

    1995-10-01

    To create an information system, we employ NIAM (Natural language Information Analysis Methodology). NIAM supports the goals of both the customer and the analyst completely understanding the information. We use the customer`s own unique vocabulary, collect real examples, and validate the information in natural language sentences. Examples are discussed from a successfully implemented information system.

  13. From Precaution to Peril: Public Relations Across Forty Years of Genetic Engineering.

    Science.gov (United States)

    Hogan, Andrew J

    2016-12-01

    The Asilomar conference on genetic engineering in 1975 has long been pointed to by scientists as a model for internal regulation and public engagement. In 2015, the organizers of the International Summit on Human Gene Editing in Washington, DC looked to Asilomar as they sought to address the implications of the new CRISPR gene editing technique. Like at Asilomar, the conveners chose to limit the discussion to a narrow set of potential CRISPR applications, involving inheritable human genome editing. The adoption by scientists in 2015 of an Asilomar-like script for discussing genetic engineering offers historians the opportunity to analyze the adjustments that have been made since 1975, and to identify the blind spots that remain in public engagement. Scientists did take important lessons from the fallout of their limited engagement with public concerns at Asilomar. Nonetheless, the scientific community has continued to overlook some of the longstanding public concerns about genetic engineering, in particular the broad and often covert genetic modification of food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Agent-oriented software engineering reflections on architectures, methodologies, languages, and frameworks

    CERN Document Server

    Shehory, Onn

    2014-01-01

    With this book, Onn Shehory and Arnon Sturm, together with further contributors, introduce the reader to various facets of agent-oriented software engineering (AOSE). They provide a selected collection of state-of-the-art findings, which combines research from information systems, artificial intelligence, distributed systems and software engineering and covers essential development aspects of agent-based systems. The book chapters are organized into five parts. The first part introduces the AOSE domain in general, including introduction to agents and the peculiarities of software engineerin

  15. Ethical Analysis of Genetic Engineering%基因工程的伦理分析

    Institute of Scientific and Technical Information of China (English)

    周青龙

    2013-01-01

    Since 1977, American scientists in the world since the first time genetically engineered to produce human growth hormone, genetic engineering continues to bear the fruit of fruitful gratifying. Now, genetic engineering has been widely applied in all aspects of society. However, the science and technology is a double-edged sword. With the rapid development of genetic engineering technology, it is also produced many negative effects, so that people have to produce all kinds of worries and anxieties. Genetic engineering without restriction left unchecked, will occur contrary to the laws of nature and ethical issues, it will bring disaster to human society, resulting in consequences? Genetic engineering services for the peace and progress of mankind, must step up to the norms, moral constraints, thereby establishing public international law, so that the great discovery and shocking change comes to the change of the legal system.%  自1977年美国科学家在世界上首次用基因工程生产人类生长激素以来,基因工程不断结出令人欣喜的丰硕之果。现如今,基因工程已广泛应用在社会的各个方面。然而,科学技术是把双刃剑。随着基因工程这一技术的迅猛发展,其也产生了许多负面影响,使人们不得不产生各种担心和忧虑。基因工程如不加限制地任其发展,会不会发生违背自然规律和伦理道德的问题,会不会给人类社会带来灾难,造成恶果?基因工程要为人类和平与进步服务,就必须加紧以规范,进行道德约束,进而建立国际公法,以便让伟大的发现、震撼的变革,走向更改化、法制化。

  16. Implementation of knowledge-based engineering methodology in hydraulic generator design

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-05-01

    Full Text Available Hydraulic generator design companies are always being exhorted to become more competitive by reducing the lead time and costs for their products for survival. Knowledge-based engineering technology is a rapidly developing technology with competitive advantage for design application to reduce time and cost in product development. This article addresses the structure of the hydraulic generator design system based on the knowledge-based engineering technology in detail. The system operates by creating a unified knowledge base to store the scattered knowledge among the whole life of the design process, which was contained in the expert’s brain and technical literature. It helps designers to make appropriate decisions by supplying necessary information at the right time through query and inference engine to represent the knowledge within the knowledge-based engineering application framework. It also integrates the analysis tools into one platform to help achieve global optimum solutions. Finally, an example of turbine-type selection was given to illustrate the operation process and prove its validity.

  17. Coal gasification systems engineering and analysis. Appendix E: Cost estimation and economic evaluation methodology

    Science.gov (United States)

    1980-01-01

    The cost estimation and economic evaluation methodologies presented are consistent with industry practice for assessing capital investment requirements and operating costs of coal conversion systems. All values stated are based on January, 1980 dollars with appropriate recognition of the time value of money. Evaluation of project economic feasibility can be considered a two step process (subject to considerable refinement). First, the costs of the project must be quantified and second, the price at which the product can be manufacturd must be determined. These two major categories are discussed. The summary of methodology is divided into five parts: (1) systems costs, (2)instant plant costs, (3) annual operating costs, (4) escalation and discounting process, and (5) product pricing.

  18. Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era.

    Science.gov (United States)

    Park, Ki-Eun; Telugu, Bhanu Prakash V L

    2013-01-01

    The establishment of embryonic stem cells (ESCs) and gene targeting technologies in mice has revolutionised the field of genetics. The relative ease with which genes can be knocked out, and exogenous sequences introduced, has allowed the mouse to become the prime model for deciphering the genetic code. Not surprisingly, the lack of authentic ESCs has hampered the livestock genetics field and has forced animal scientists into adapting alternative technologies for genetic engineering. The recent discovery of the creation of induced pluripotent stem cells (iPSCs) by upregulation of a handful of reprogramming genes has offered renewed enthusiasm to animal geneticists. However, much like ESCs, establishing authentic iPSCs from the domestic animals is still beset with problems, including (but not limited to) the persistent expression of reprogramming genes and the lack of proven potential for differentiation into target cell types both in vitro and in vivo. Site-specific nucleases comprised of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulated interspaced short palindromic repeats (CRISPRs) emerged as powerful genetic tools for precisely editing the genome, usurping the need for ESC-based genetic modifications even in the mouse. In this article, in the aftermath of these powerful genome editing technologies, the role of pluripotent stem cells in livestock genetics is discussed.

  19. How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake.

    Science.gov (United States)

    Fuller, Patrick M; Yamanaka, Akihiro; Lazarus, Michael

    2015-01-01

    The advent of genetically engineered systems, including transgenic animals and recombinant viral vectors, has facilitated a more detailed understanding of the molecular and cellular substrates regulating brain function. In this review we highlight some of the most recent molecular biology and genetic technologies in the experimental "systems neurosciences," many of which are rapidly becoming a methodological standard, and focus in particular on those tools and techniques that permit the reversible and cell-type specific manipulation of neurons in behaving animals. These newer techniques encompass a wide range of approaches including conditional deletion of genes based on Cre/loxP technology, gene silencing using RNA interference, cell-type specific mapping or ablation and reversible manipulation (silencing and activation) of neurons in vivo. Combining these approaches with viral vector delivery systems, in particular adeno-associated viruses (AAV), has extended, in some instances greatly, the utility of these tools. For example, the spatially- and/or temporally-restricted transduction of specific neuronal cell populations is now routinely achieved using the combination of Cre-driver mice and stereotaxic-based delivery of AAV expressing Cre-dependent cassettes. We predict that the experimental application of these tools, including creative combinatorial approaches and the development of even newer reagents, will prove necessary for a complete understanding of the neuronal circuits subserving most neurobiological functions, including the regulation of sleep and wake.

  20. Methodological Considerations in the Design of Large Scale Systems Engineering Processes.

    Science.gov (United States)

    1981-02-01

    Tversky, A., "Prospect Theory : An Analysis of Decision Under Risk", Econometrica, vol. 47, March 1979, pp. 263-291. Inhelder, B. and Piaget , J., The...concerned with the mathematical and behavioral theory of systems. This we will call systems science and operations research. Also, it says that we...will be con- cerned with a combination of these theories . We will denote the effort to obtain this combination systems methodology and design. Finally

  1. Modular projects and 'mean questions': best practices for advising an International Genetically Engineered Machines team.

    Science.gov (United States)

    Tsui, Jennifer; Meyer, Anne S

    2016-07-01

    In the yearly Internationally Genetically Engineered Machines (iGEM) competition, teams of Bachelor's and Master's students design and build an engineered biological system using DNA technologies. Advising an iGEM team poses unique challenges due to the inherent difficulties of mounting and completing a new biological project from scratch over the course of a single academic year; the challenges in obtaining financial and structural resources for a project that will likely not be fully realized; and conflicts between educational and competition-based goals. This article shares tips and best practices for iGEM team advisors, from two team advisors with very different experiences with the iGEM competition.

  2. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E. [Allison Engine Co., Indianapolis, IN (United States)

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  3. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism.

    Science.gov (United States)

    Chandra, Sheela

    2012-03-01

    Agrobacterium rhizogenes is a natural plant genetic engineer. It is a gram-negative soil bacterium that induces hairy root formation. Success has been obtained in exploring the molecular mechanisms of transferred DNA (T-DNA) transfer, interaction with host plant proteins, plant defense signaling and integration to plant genome for successful plant genetic transformation. T-DNA and corresponding expression of rol genes alter morphology and plant host secondary metabolism. During transformation, there is a differential loss of a few T-DNA genes. Loss of a few ORFs drastically affect the growth and morphological patterns of hairy roots, expression pattern of biosynthetic pathway genes and accumulation of specific secondary metabolites.

  4. An application of Six Sigma methodology to reduce the engine-overheating problem in an automotive company

    Energy Technology Data Exchange (ETDEWEB)

    Antony, J. [Glasgow Caledonian University (United Kingdom). Six Sigma and Process Improvement Research Centre; Kumar, M. [Glasgow Caledonian University (United Kingdom). Division of Management; Tiwari, M.K. [National Institute of Foundry and Forge Technology, Ranchi (India). Department of Manufacturing Engineering

    2005-08-15

    Six Sigma is a systematic methodology for continuous process quality improvement and for achieving operational excellence. The overstatement that often accompanies the presentation and adoption of Six Sigma in industry can lead to unrealistic expectations as to what Six Sigma is truly capable of achieving. This paper deals with the application of Six Sigma based methodology in eliminating an engine-overheating problem in an automotive company. The DMAIC (define-measure-analyse-improve-control) approach has been followed here to solve an underlying problem of reducing process variation and the associated high defect rate. This paper explores how a foundry can use a systematic and disciplined approach to move towards the goal of Six Sigma quality level. The application of the Six Sigma methodology resulted in a reduction in the jamming problem encountered in the cylinder head and increased the process capability from 0.49 to 1.28. The application of DMAIC has had a significant financial impact (saving over $US110 000 per annum) on the bottom-line of the company. (author)

  5. DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    DEFF Research Database (Denmark)

    Dang, Vinh Quang

    -time operations of production managers. Hence to deal with large-scale applications, each heuristic based on genetic algorithms is then developed to find near-optimal solutions within a reasonable computation time for each problem. The quality of these solutions is then compared and evaluated by using...

  6. Toward Evidence-Based Genetic Research on Lifelong Premature Ejaculation: A Critical Evaluation of Methodology

    Science.gov (United States)

    2011-01-01

    Recently, four premature ejaculation (PE) subtypes have been distinguished on the basis of the duration of the intravaginal ejaculation latency time (IELT). These four PE subtypes have different etiologies and pathogeneses. Genetic research on PE should consider the existence of these PE subtypes and the accurate measurement of the IELT with a stopwatch. Currently, three methods of genetic research on PE have been used. They differ in the investigated population, tool of measurement, study design, and variables of PE. From animal and human research, it is derived that the central serotonergic system "modulates" ejaculation, whereas the ejaculation (reflex) itself is probably not under direct influence of the serotonergic system, but rather under the influence of other neurotransmitter systems in the spinal cord. For genetic research on PE, it is important to take into account that the (serotonergic) modulation of the IELT is variable among men and may even be absent. This means that serotonergic genetic polymorphisms may only be found in men with PE who respond with an ejaculation delay treatment with a selective serotonin reuptake inhibitor. PMID:21344023

  7. The Discussions around Precision Genetic Engineering: Role of and Impact on Disabled People

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2016-09-01

    Full Text Available Genetic researchers are advancing in their abilities to extract precise genetic information from biological and human entities bringing genetic research steps closer to accurately modifying genes of biological entities, including that of humans. In this analytical essay, we focus on the discussions about precision genetic intervention that have taken place since March 2015 as they pertain to disabled people. We focus on two areas; one being the role of disabled people in the recent gene editing discussions and the second being the utility of existing legal instruments. Within our first focus we address the following questions: (a What is the visibility of disabled people in the gene-editing discussions that have taken place since March 2015? (b What has been the impact of those discussions on disabled people? (c Were social problems which disabled people face taken into account in those discussions; (d How does the reality of engagement with disabled people in these discussions fit with science, technology and innovation governance discourses that ask for more stakeholder, bottom up and anticipatory involvement? Within our second focus we address the following questions: (a What is the utility of the United Nations Convention on the Right of Persons with Disabilities (UNCRPD; and (b What is the utility of existing legal instruments covering genetic interventions: for preventing negative social consequences of genetic engineering developments for disabled people. We argue that (a the genetic engineering debates since March 2015 have portrayed disabled people dominantly through a medical lens; (b that the governance of science, technology and innovation of genetic engineering including anticipatory governance and responsible innovation discourses has not yet engaged with the social impact of gene editing on disabled people; (c that few scholars that focus on the social situation of disabled people are visible in the governance discussions of gene

  8. Design Novel Model Reference Artificial Intelligence Based Methodology to Optimized Fuel Ratio in IC Engine

    Directory of Open Access Journals (Sweden)

    FarzinPiltan

    2013-08-01

    Full Text Available In this research, model reference fuzzy based control is presented as robust controls for IC engine. The objective of the study is to design controls for IC engines without the knowledge of the boundary of uncertainties and dynamic information by using fuzzy model reference PD plus mass of air while improve the robustness of the PD plus mass of air control. A PD plus mass of air provides for eliminate the mass of air and ultimate accuracy in the presence of the bounded disturbance/uncertainties, although this methods also causes some oscillation. The fuzzy PD plus mass of air is proposed as a solution to the problems crated by unstability. This method has a good performance in presence of uncertainty.

  9. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants.

    Science.gov (United States)

    Nishihara, Masahiro; Nakatsuka, Takashi

    2011-03-01

    Recent advances in genetic transformation techniques enable the production of desirable and novel flower colors in some important floricultural plants. Genetic engineering of novel flower colors is now a practical technology as typified by commercialization of a transgenic blue rose and blue carnation. Many researchers exploit knowledge of flavonoid biosynthesis effectively to obtain unique flower colors. So far, the main pigments targeted for flower color modification are anthocyanins that contribute to a variety of colors such as red, pink and blue, but recent studies have also utilized colorless or faint-colored compounds. For example, chalcones and aurones have been successfully engineered to produce yellow flowers, and flavones and flavonols used to change flower color hues. In this review, we summarize examples of successful flower color modification in floricultural plants focusing on recent advances in techniques.

  10. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.

    Science.gov (United States)

    He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao

    2016-02-01

    The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.

  11. Genetic Algorithm and Fuzzy Tuning PID Controller Applied on Speed Control System for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Naeim Farouk

    2012-11-01

    Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. The main focus of this study is to apply and comparative between two specific soft-computing techniques. Fuzzy logic controller and genetic algorithm to design and tuning of PID controller for applied on speed control system of marine diesel engine to get an output with better dynamic and static performance. Simulation results show that the response of system when using genetic algorithm is better and faster than when using fuzzy tuning PID controller.

  12. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.

    Science.gov (United States)

    Meyers, Benjamin; Zaltsman, Adi; Lacroix, Benoît; Kozlovsky, Stanislav V; Krichevsky, Alexander

    2010-01-01

    Plant genetic engineering is one of the key technologies for crop improvement as well as an emerging approach for producing recombinant proteins in plants. Both plant nuclear and plastid genomes can be genetically modified, yet fundamental functional differences between the eukaryotic genome of the plant cell nucleus and the prokaryotic-like genome of the plastid will have an impact on key characteristics of the resulting transgenic organism. So, which genome, nuclear or plastid, to transform for the desired transgenic phenotype? In this review we compare the advantages and drawbacks of engineering plant nuclear and plastid genomes to generate transgenic plants with the traits of interest, and evaluate the pros and cons of their use for different biotechnology and basic research applications, ranging from generation of commercial crops with valuable new phenotypes to 'bioreactor' plants for large-scale production of recombinant proteins to research model plants expressing various reporter proteins.

  13. Engineering Predictions in Industrial and Power Flows Using the Retrograde Condensation Curve. Part I-Methodology

    CERN Document Server

    Labinov, Mark S

    2014-01-01

    Industrial and power systems rely on engineering predictions of the flow properties of working fluids. The paper proposes a way of the utilization of the vapor quality values along the new retrograde condensation curve in the generation of the void fraction design guidelines and reliable prediction of the saturated liquid specific volumes/densities. The new procedure eliminates the involvement of semi-empirical relationships like rectilinear diameter and other similar models.

  14. Integral transform methodology for convection-diffusion problems in petroleum reservoir engineering

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Cotta, R.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil)

    1995-12-01

    The convection-diffusion equation is present in the formulation of many petroleum reservoir engineering problems. A representative example, the tracer injection problem, is solved analytically here, through the generalised integral transform technique so as to illustrate the usefulness of this approach, for this class of problems. Classical assumptions, such as steady-state single phase flow and unit mobility ratio, are adopted. Comparisons with alternative analytical (when available) or numerical (finite difference) solutions are performed and benchmark results are established. (author)

  15. Digital Business Engineering: Methodological Foundations and First Experiences from the Field

    OpenAIRE

    OTTO, Boris; Bärenfänger, Rieke; Steinbuß, Sebastian

    2015-01-01

    Digitization is affecting almost all areas of business and society. It brings about opportunities for enterprises to design a digital business model. While a significant amount of research exist examining the conceptual foundation of business models in general, no comprehensive approach is available that helps enterprises in designing a digital business model. This paper addresses this gap and proposes Digital Business Engineering as a method for digital business model design. The activities ...

  16. Duct injection technology prototype development: Scale-up methodology and engineering design criteria

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The objective of the Duct Injection Technology Prototype Development project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2} emissions control method to existing, pre-NSPS, coal-fired power plants. This report is divided into five major topics: (1) design criteria; (2) engineering drawings; (3) equipment sizing and design; (4) plant and equipment arrangement considerations; and (5) equipment bid specification guidelines.

  17. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN--DREAMS III: Study design and research methodology

    Directory of Open Access Journals (Sweden)

    Sahu Chinmaya

    2011-03-01

    Full Text Available Abstract Background To describe the methodology of the Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III, an ongoing epidemiological study to estimate the prevalence of Diabetes and Diabetic Retinopathy in rural population of Kanchipuram and Thiravallur districts of Tamil Nadu, India and to elucidate the clinical, anthropometric, biochemical and genetic risk factors associated with diabetic retinopathy in this rural population. Methods Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III will be a mobile van based epidemiological study; 11,760 participants aged ≥ 40 years will be recruited from the study areas. Eligible subjects will undergo blood sugar estimation to diagnose Diabetes. Oral Glucose Tolerance Test will be done to conform diabetes. All subjects with diabetes will undergo complete information of knowledge, aptitude and practice of diabetes and diabetic retinopathy, Diet questionnaire, demographic data, socioeconomic status, physical activity, anthropometric measurements, and risk of sleep apnoea. A detailed medical and ocular history, a comprehensive eye examination including refraction, slit lamp biomicroscopy examination, indirect ophthalmoscopy, slit lamp biomicroscopy, digital stereo fundus photography and ultrasound of eye will be done in the mobile van. Blood will be collected for biochemical investigations including blood hemoglobin, glycosylated hemoglobin, lipid profile, urea and creatinine, genetic study. Urine will be collected for microalbuminuria. All fundus photographs will be graded at base hospital. Participants who need treatment will be sent to the base hospital. A computerized database is created for the records. Conclusion The study is expected to provide an estimate of the prevalence of Diabetes and Diabetic Retinopathy and also a better understanding of the genetic, anthropometric and socio-economic risk factors associated with Diabetic

  18. Genetic And Metabolic Engineering Of Microorganisms For The Development Of New Flavor Compounds From Terpenic Substrates

    OpenAIRE

    Bution; Murillo L.; Molina; Gustavo; Abrahao; Meissa R. E.; Pastore; Glaucia M.

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aro...

  19. Recent advances in plant biotechnology and genetic engineering for production of secondary metabolites.

    Science.gov (United States)

    Sheludko, Y V

    2010-01-01

    For a long time people are using plants not only as crop cultures but also for obtaining of various chemicals. Currently plants remain one of the most important and essential sources of biologically active compounds in spite of progress in chemical or microbial synthesis. In our review we compare potentials and perspectives of modern genetic engineering approaches for pharmaceutical biotechnology and give examples of actual biotechnological systems used for production of several promising natural compounds: artemisinin, paclitaxel and scopolamine.

  20. Overview of KRAS-Driven Genetically Engineered Mouse Models of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Sheridan, Clare; Downward, Julian

    2015-01-01

    KRAS, the most frequently mutated oncogene in non-small cell lung cancer, has been utilized extensively to model human lung adenocarcinomas. The results from such studies have enhanced considerably an understanding of the relationship between KRAS and the development of lung cancer. Detailed in this overview are the features of various KRAS-driven genetically engineered mouse models (GEMMs) of non-small cell lung cancer, their utilization, and the potential of these models for the study of lung cancer biology.

  1. [Genetic engineering technologies of stimulating angiogenesis as an innovation trend in angiology and vascular surgery].

    Science.gov (United States)

    Gavrilenko, A V; Voronov, D A

    2015-01-01

    Presented herein is a review of the principles, fundamental concepts, and possibilities of genetic engineering technologies of stimulating angiogenesis for treatment of patients with lower limb chronic ischaemia. This is followed by a detailed discussion of the structure and results of Russian and foreign studies on this direction, also considering the causes of differences of their results. Outlined is a circle of clinical situations in relation to which these technologies may be regarded as most promising.

  2. Growth of genetically engineered Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere.

    OpenAIRE

    Yeung, K H; Schell, M A; Hartel, P G

    1989-01-01

    The effect of the addition of a recombinant plasmid containing the pglA gene encoding an alpha-1,4-endopolygalacturonase from Pseudomonas solanacearum on the growth of Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere was determined. Despite a high level of polygalacturonase production by genetically engineered P. putida and P. aeruginosa, the results suggest that polygalacturonase production had little effect on the growth of these strains in soil or rhizosphere.

  3. [Genetic engineering and assisted reproduction techniques in man: a framework for sociologic analysis].

    Science.gov (United States)

    Sánchez Morales, M R

    1999-01-01

    The possibilities opened up by genetic engineering and assisted reproduction techniques require reflection by sociologists and extensive public debate. In view of their potential as factors of social change, evaluation and control are warranted. They can be viable only if transparent and through public co-responsibility, for which an exchange of views is needed between all those who play a part in the development of said techniques. This dialogue must be wholly interdisciplinary and democratic.

  4. An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization

    Science.gov (United States)

    Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.

    2014-10-01

    This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.

  5. In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes.

    Science.gov (United States)

    Lee, Hui-Young; Jeong, Kyeong-Hoon; Choi, Cheol Soo

    2014-10-01

    The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.

  6. Design of the subject of quality engineering and security of the product of the degree in engineering in industrial design and development of product based in the methodology of the case

    Science.gov (United States)

    González, M. R.; Lambán, M. P.

    2012-04-01

    This paper presents the result of designing the subject Quality Engineering and Security of the Product, belonging to the Degree of Engineering in Industrial Design and Product Development, on the basis of the case methodology. Practical sessions of this subject are organized using the whole documents of the Quality System Management of the virtual company BeaLuc S.A.

  7. Telos, conservation of welfare, and ethical issues in genetic engineering of animals.

    Science.gov (United States)

    Rollin, Bernard E

    2015-01-01

    The most long-lived metaphysics or view of reality in the history of Western thought is Aristotle's teleology, which reigned for almost 2,000 years. Biology was expressed in terms of function or telos, and accorded perfectly with common sense. The rise of mechanistic, Newtonian science vanquished teleological explanations. Understanding and accommodating animal telos was essential to success in animal husbandry, which involved respect for telos, and was presuppositional to our "ancient contract" with domestic animals. Telos was further abandoned with the rise of industrial agriculture, which utilized "technological fixes" to force animal into environments they were unsuited for, while continuing to be productive. Loss of husbandry and respect for telos created major issues for farm animal welfare, and forced the creation of a new ethic demanding respect for telos. As genetic engineering developed, the notion arose of modifying animals to fit their environment in order to avoid animal suffering, rather than fitting them into congenial environments. Most people do not favor changing the animals, rather than changing the conditions under which they are reared. Aesthetic appreciation of husbandry and virtue ethics militate in favor of restoring husbandry, rather than radically changing animal teloi. One, however, does not morally wrong teloi by changing them-one can only wrong individuals. In biomedical research, we do indeed inflict major pain, suffering and disease on animals. And genetic engineering seems to augment our ability to create animals to model diseases, particularly more than 3,000 known human genetic diseases. The disease, known as Lesch-Nyhan's syndrome or HPRT deficiency, which causes self-mutilation and mental retardation, provides us with a real possibility for genetically creating "animal models" of this disease, animals doomed to a life of great and unalleviable suffering. This of course creates a major moral dilemma. Perhaps one can use the very

  8. Preparation and properties of microencapsulated genetically engineered bacteria cells for oral therapy of uremia

    Institute of Scientific and Technical Information of China (English)

    GAO Hong; YU Yaoting; CAI Baoli; WANG Manyan

    2004-01-01

    Microencapsulated genetically engineered bacteria cells are a novel approach of oral therapy for uremia.Klebsiella aerogenes urease genes (UreaDABCEFG) are transformed into E. coli DH5α cells through plasmid pKAU17. The transformant can use urea or ammonia as its sole nitrogen source through strain training. The urease genetically engineered bacteria cells are entrapped in polyvinyl alcohol (PVA) microcapsules, which can be used to remove urea from uremia patients. The mechanical strength of PVA microcapsules is significantly higher than that of APA microcapsules. This suggests that the problem of friability of APA can be solved in this way. The optimal conditions for the preparation of PVA microencapsulated genetically engineered bacterial cells are: polyvinyl alcohol (PVA, 2450±50)used as the carrier at a concentration 6%, the pH value of boric acid as crosslinking reagent 6.5, crosslinking time 24 h,entrapment ratio of bacteria 8%, air flow rate of the encapsulate device 3 L/min and liquid flow rate at 1 mL/10 min.The average diameter of microcapsules prepared under these optimal conditions is 20-40 mesh. Experiments in vitro showed that one hundred milligrams of wet bacterial cells in PVA microcapsules could remove 18.4 mg of urea in 4 h.

  9. Genetic engineering of mice to test the oxidative damage theory of aging.

    Science.gov (United States)

    Martin, George M

    2005-12-01

    The laboratory mouse Mus musculus domesticus provides the best current mammalian models for the genetic analysis of aging. We give a brief overview of the use of transgenic manipulations to test the oxidative damage theory of aging. These manipulations are of two types: The first approach engineers mice that exhibit increased sensitivities to oxidative damage and thus produces mice that are likely to be short-lived. The second approach engineers mice to be more resistant to such injuries, and thus may produce mice that exhibit enhanced longevities, something that is much harder to engineer. The latter result is thus more meaningful, with the caveat that it may result from some special vulnerability of a particular lab strain or lab strains in general. The first approach, most elegantly carried out by Arlan Richardson's laboratory, provides evidence against the oxidative damage theory. My colleagues and I have been engaged in the second approach and have accumulated evidence supporting the theory. These conventional transgenic experiments, however, should be supplemented by alternative genetic approaches. One that is surprisingly neglected takes advantage of the pleuripotency of embryonic stem cells and the power of somatic cell genetics. A cautionary note is that interventions that minimize oxidative stress may be complicated by unwanted compromises of physiologically adaptive actions such as superoxide signaling and the possible protective effects of certain oxidatively modified proteins.

  10. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  11. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi.

    Science.gov (United States)

    Nødvig, Christina S; Nielsen, Jakob B; Kogle, Martin E; Mortensen, Uffe H

    2015-01-01

    The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting.

  12. Reproductive cloning, genetic engineering and the autonomy of the child: the moral agent and the open future.

    Science.gov (United States)

    Mameli, M

    2007-02-01

    Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans.

  13. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    Science.gov (United States)

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  14. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    Science.gov (United States)

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  15. Research Survey of Genetic Engineering Drugs%基因工程药物研究概况

    Institute of Scientific and Technical Information of China (English)

    郭俊清; 徐进; 李建正

    2011-01-01

    对新发展起来的产业基因工程药物的研究作了简要的概述,通过对其发展历史及当前的几种药物的叙述,预测其发展前景。%The new genetically engineered drug industry research was summarized briefly. The prospect of genetically engineered drug industry research was predicted by describing its developing history and several current drugs.

  16. Testing Current and Developing Novel Therapies for NF1-Mutant Sarcomas in a Genetically Engineered Mouse Model

    Science.gov (United States)

    2015-04-01

    1   AWARD NUMBER: W81XWH-14-1-0067 TITLE: Testing Current and Developing Novel Therapies for NF1 -Mutant Sarcomas in a Genetically Engineered...Mar 2014 - 14 Mar 2015 4. TITLE AND SUBTITLE Testing Current and Developing Novel Therapies for NF1 - Mutant Sarcomas in a Genetically Engineered...Patients with Neurofibromatosis type 1 ( NF1 ) are at increased risk for developing malignant tumors of the connective tissue called soft-tissue sarcomas

  17. Methodology to improve design of accelerated life tests in civil engineering projects.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available For reliability testing an Energy Expansion Tree (EET and a companion Energy Function Model (EFM are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  18. Methodology to improve design of accelerated life tests in civil engineering projects.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  19. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil

    Directory of Open Access Journals (Sweden)

    Mardani Gashtasb

    2016-01-01

    Full Text Available Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p0.05 but it was few impact on this process (more than 2%. Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.

  20. Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae.

    Science.gov (United States)

    Singh, Digar; Kaur, Gurvinder

    2013-09-01

    Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation.

  1. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas

    DEFF Research Database (Denmark)

    Specht, Elizabeth A; Nour-Eldin, Hussam Hassan; Hoang, Kevin T D

    2015-01-01

    The model alga Chlamydomonas reinhardtii has been used to pioneer genetic engineering techniques for high-value protein and biofuel production from algae. To date, most studies of transgenic Chlamydomonas have utilized the chloroplast genome due to its ease of engineering, with a sizeable suite...

  2. Ray Wu,Cornell’s acclaimed pioneer of genetic engineering and developer of insect-resistant rice

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yield-ing rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10.

  3. Effect of synthetic auxin herbicides on seed development and viability in genetically-engineered glyphosate-resistant alfalfa

    Science.gov (United States)

    Feral populations of cultivated crops have the potential to function as bridges and reservoirs that contribute to the unwanted movement of novel genetically engineered (GE) traits. Recognizing that feral alfalfa has the potential to lower genetic purity in alfalfa seed production fields when it is g...

  4. Methodological considerations for using umu assay to assess photo-genotoxicity of engineered nanoparticles

    DEFF Research Database (Denmark)

    Cupi, Denisa; Baun, Anders

    2016-01-01

    In this study we investigated the feasibility of high-throughput (96-well plate) umu assay to test the genotoxic effect of TiO2 engineered nanoparticles (ENPs) under UV light (full spectrum) and visible light (455nm). Exposure of TiO2 ENPs to up to 60min of UV light induced a photocatalytic...... production of ROS. However, UV light itself caused cytotoxic damage to Salmonella typhimurium at exposures >15min and a genotoxic effect at exposures >0.5min; and use of UV filters did not lower this effect. No genotoxicity of TiO2 ENPs was observed under visible light conditions at concentrations up to 100......μgmL(-1); or under dark conditions at concentrations up to 667μgmL(-1), though cytotoxicity was seen at the higher concentrations. Additionally, the growth factor calculation was influenced by a shading effect due to ENPs, and was corrected by considering the pre-incubation OD readings of Plate B...

  5. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    Science.gov (United States)

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  6. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    Science.gov (United States)

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.

  7. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases.

    Science.gov (United States)

    Redel, Bethany K; Prather, Randall S

    2016-04-01

    Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases.

  8. Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making

    Directory of Open Access Journals (Sweden)

    Paul Vincelli

    2016-05-01

    Full Text Available Genetic engineering (GE offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals.

  9. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U. [Univ. of Tennessee, Knoxville, TN (United States); Burlage, R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  10. Genetic engineering of crops: a ray of hope for enhanced food security.

    Science.gov (United States)

    Gill, Sarvajeet Singh; Gill, Ritu; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    Crop improvement has been a basic and essential chase since organized cultivation of crops began thousands of years ago. Abiotic stresses as a whole are regarded as the crucial factors restricting the plant species to reach their full genetic potential to deliver desired productivity. The changing global climatic conditions are making them worse and pointing toward food insecurity. Agriculture biotechnology or genetic engineering has allowed us to look into and understand the complex nature of abiotic stresses and measures to improve the crop productivity under adverse conditions. Various candidate genes have been identified and transformed in model plants as well as agriculturally important crop plants to develop abiotic stress-tolerant plants for crop improvement. The views presented here are an attempt toward realizing the potential of genetic engineering for improving crops to better tolerate abiotic stresses in the era of climate change, which is now essential for global food security. There is great urgency in speeding up crop improvement programs that can use modern biotechnological tools in addition to current breeding practices for providing enhanced food security.

  11. Genetically engineered K cells provide sufficient insulin to correct hyperglycemia in a nude murine model

    Institute of Scientific and Technical Information of China (English)

    Yiqun Zhang; Liqing Yao; Kuntang Shen; Meidong Xu; Pinghong Zhou; Weige Yang; Xinyuan Liu; Xinyu Qin

    2008-01-01

    A gene therapy-based treatment of type 1 diabetes mellitus requires the development of a surrogate β cell that can synthesize and secrete functionally active insulin in response to physiologically relevant changes in ambient glucose levels. In this study, the murine enteroendocrine cell line STC-1 was genetically modified by stable transfection. Two clone cells were selected (STC-1-2 and STC-1-14) that secreted the highest levels of insulin among the 22 clones expressing insulin from 0 to 157.2 μIU/ml/106 cells/d. After glucose concentration in the culture medium was increased from 1 mM to 10 mM, secreted insulin rose from 40.3±0.8 to 56.3±3.2 μIU/ml (STC-1-2), and from 10.8±0.8 to 23.6±2.3 μIU/ml (STC-1-14). After STC-1-14 cells were implanted into diabetic nude mice, their blood glucose levels were reduced to normal. Body weight loss was also ameliorated. Our data suggested that genetically engineered K cells secrete active insulin in a glucose-regulated manner, and in vivo study showed that hyperglycemia could be reversed by implantation of the cells, suggesting that the use of genetically engineered K cells to express human insulin might provide a glucose-regulated approach to treat diabetic hyperglycemia.

  12. Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage.

    Science.gov (United States)

    Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo

    2016-11-15

    Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Harnessing Systems Engineering Methodology in Using Earth Science Research Data for Real Applications

    Science.gov (United States)

    Habib, Shahid; Policelli, Fritz S.; Zanoni, Vicki M.

    2004-01-01

    For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne

  14. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    Science.gov (United States)

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  15. Construction and Expression of β-galactosidase Genetically Engineered Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    吕晓英; 张朝武; 裴晓方; 刘祥; 余倩; 刘衡川

    2004-01-01

    Our objective is to solve the lactose malabsorption and intolerance of human beings by combining mlcro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L.delbrueckii bulgaricus strain 1. 1480 in the Lactococcus lactis subsp, cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and 1L1403 by electroporation. The protein expression was studied. (1) The bifidobacterium culture medium (BBL) was suitable for the growth of the strain 1. 1480. (2) With 13 amino acids at the N-terminus from the vector, β-galactosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac-tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E.coli JM109 is a useful tool to produce this enzyme in vitro. The signal peptide of the usp45 protein from the Lactococcus lactis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis. The potential application of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose intolerance in both health food and medicine is promising。

  16. Construction and characterization of VL-VH tail-parallel genetically engineered antibodies against staphylococcal enterotoxins.

    Science.gov (United States)

    He, Xianzhi; Zhang, Lei; Liu, Pengchong; Liu, Li; Deng, Hui; Huang, Jinhai

    2015-03-01

    Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus have increasingly given rise to human health and food safety. Genetically engineered small molecular antibody is a useful tool in immuno-detection and treatment for clinical illness caused by SEs. In this study, we constructed the V(L)-V(H) tail-parallel genetically engineered antibody against SEs by using the repertoire of rearranged germ-line immunoglobulin variable region genes. Total RNA were extracted from six hybridoma cell lines that stably express anti-SEs antibodies. The variable region genes of light chain (V(L)) and heavy chain (V(H)) were cloned by reverse transcription PCR, and their classical murine antibody structure and functional V(D)J gene rearrangement were analyzed. To construct the eukaryotic V(H)-V(L) tail-parallel co-expression vectors based on the "5'-V(H)-ivs-IRES-V(L)-3'" mode, the ivs-IRES fragment and V(L) genes were spliced by two-step overlap extension PCR, and then, the recombined gene fragment and V(H) genes were inserted into the pcDNA3.1(+) expression vector sequentially. And then the constructed eukaryotic expression clones termed as p2C2HILO and p5C12HILO were transfected into baby hamster kidney 21 cell line, respectively. Two clonal cell lines stably expressing V(L)-V(H) tail-parallel antibodies against SEs were obtained, and the antibodies that expressed intracytoplasma were evaluated by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry. SEs can stimulate the expression of some chemokines and chemokine receptors in porcine IPEC-J2 cells; mRNA transcription level of four chemokines and chemokine receptors can be blocked by the recombinant SE antibody prepared in this study. Our results showed that it is possible to get functional V(L)-V(H) tail-parallel genetically engineered antibodies in same vector using eukaryotic expression system.

  17. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.

    Science.gov (United States)

    Hong, Chung-Chien; Song, Mingzhou

    2010-02-24

    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial

  18. Field cage studies and progressive evaluation of genetically-engineered mosquitoes.

    Directory of Open Access Journals (Sweden)

    Luca Facchinelli

    Full Text Available A genetically-engineered strain of the dengue mosquito vector Aedes aegypti, designated OX3604C, was evaluated in large outdoor cage trials for its potential to improve dengue prevention efforts by inducing population suppression. OX3604C is engineered with a repressible genetic construct that causes a female-specific flightless phenotype. Wild-type females that mate with homozygous OX3604C males will not produce reproductive female offspring. Weekly introductions of OX3604C males eliminated all three targeted Ae. aegypti populations after 10-20 weeks in a previous laboratory cage experiment. As part of the phased, progressive evaluation of this technology, we carried out an assessment in large outdoor field enclosures in dengue endemic southern Mexico.OX3604C males were introduced weekly into field cages containing stable target populations, initially at 10:1 ratios. Statistically significant target population decreases were detected in 4 of 5 treatment cages after 17 weeks, but none of the treatment populations were eliminated. Mating competitiveness experiments, carried out to explore the discrepancy between lab and field cage results revealed a maximum mating disadvantage of up 59.1% for OX3604C males, which accounted for a significant part of the 97% fitness cost predicted by a mathematical model to be necessary to produce the field cage results.Our results indicate that OX3604C may not be effective in large-scale releases. A strain with the same transgene that is not encumbered by a large mating disadvantage, however, could have improved prospects for dengue prevention. Insights from large outdoor cage experiments may provide an important part of the progressive, stepwise evaluation of genetically-engineered mosquitoes.

  19. Conflicts of interest among committee members in the National Academies’ genetically engineered crop study

    Science.gov (United States)

    2017-01-01

    The National Academies of Sciences, Engineering and Medicine (NASEM) publishes numerous reports each year that are received with high esteem by the scientific community and public policy makers. The NASEM has internal standards for selecting committee members that author its reports, mostly from academia, and vetting conflicts of interest. This study examines whether there were any financial conflicts of interest (COIs) among the twenty invited committee members who wrote the 2016 report on genetically engineered (GE) crops. Our results showed that six panel members had one or more reportable financial COIs, none of which were disclosed in the report. We also report on institutional COIs held by the NASEM related to the report. The difference between our findings and the NASEM reporting standards are discussed. PMID:28245228

  20. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  1. Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids

    Directory of Open Access Journals (Sweden)

    Schmidt M.

    1997-01-01

    Full Text Available Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use

  2. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A.

    2010-07-15

    Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel greenhouse gas (GHG) emissions and sequestering C in the soil through extensive root systems. Carbon captured in plant biomass can also contribute to C sequestration through the deliberate addition of biochar to soil, wood burial, or the use of durable plant products. Increasing our understanding of plant, microbial, and soil biology, and harnessing the benefits of traditional genetics and genetic engineering, will help us fully realize the GHG mitigation potential of phytosequestration.

  3. The genetics of murine Hox loci: TAMERE, STRING, and PANTHERE to engineer chromosome variants.

    Science.gov (United States)

    Tschopp, Patrick; Duboule, Denis

    2014-01-01

    Following their duplications at the base of the vertebrate clade, Hox gene clusters underwent remarkable sub- and neo-functionalization events. Many of these evolutionary innovations can be associated with changes in the transcriptional regulation of their genes, where an intricate relationship between the structure of the gene cluster and the architecture of the surrounding genomic landscape is at play. Here, we report on a portfolio of in vivo genome engineering strategies in mice, which have been used to probe and decipher the genetic and molecular underpinnings of the complex regulatory mechanisms implemented at these loci.

  4. Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo.

    Science.gov (United States)

    Kocher, Brandon; Piwnica-Worms, David

    2013-06-01

    Bioluminescent imaging (BLI) is a powerful noninvasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMM) of cancer, which permit investigation of cellular and molecular events associated with oncogenic transcription, posttranslational processing, protein-protein interactions, transformation, and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a noninvasive, repetitive, longitudinal, and physiologic means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal.

  5. Osmoregulation Mechanism of Drought Stress and Genetic Engineering Strategies for Improving Drought Resistance in Plants

    Institute of Scientific and Technical Information of China (English)

    Du Jinyou; Chen Xiaoyang; Li Wei; Gao Qiong

    2004-01-01

    Drought, one of the main adverse environmental factors, obviously affected plant growth and development. Many adaptive strategies have been developed in plants for coping with drought or water stress, among which osmoregulation is one of the important factors of plant drought tolerance. Many substances play important roles in plant osmoregulation for drought resistance, including proline, glycine betaine, Lea proteins and soluble sugars such as levan, trehalose, sucrose, etc. The osmoregulation mechanism and the genetic engineering of plant drought-tolerance are reviewed in this paper.

  6. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  7. Illuminating p53 function in cancer with genetically engineered mouse models

    OpenAIRE

    2014-01-01

    The key role of the p53 protein in tumor suppression is highlighted by its frequent mutation in human cancers and by the completely penetrant cancer predisposition of p53 null mice. Beyond providing definitive evidence for the critical function of p53 in tumor suppression, genetically engineered mouse models have offered numerous additional insights into p53 function. p53 knock-in mice expressing tumor-derived p53 mutants have revealed that these mutants display gain-of-function activities th...

  8. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?

    Science.gov (United States)

    Bonawitz, Nicholas D; Chapple, Clint

    2013-04-01

    The secondary cell wall polymer lignin impedes the extraction of fermentable sugars from biomass, and has been one of the major impediments in the development of cost-effective biofuel technologies. Unfortunately, attempts to genetically engineer lignin biosynthesis frequently result in dwarfing or developmental abnormalities of unknown cause, thus limiting the benefits of increased fermentable sugar yield. In this brief review, we explore some of the possible mechanisms that could underlie this poorly understood phenomenon, with the expectation that an understanding of the cause of dwarfing in lignin biosynthetic mutants and transgenic plants could lead to new strategies for the development of improved bioenergy feedstocks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Analysis and design of a genetic circuit for dynamic metabolic engineering.

    Science.gov (United States)

    Anesiadis, Nikolaos; Kobayashi, Hideki; Cluett, William R; Mahadevan, Radhakrishnan

    2013-08-16

    Recent advances in synthetic biology have equipped us with new tools for bioprocess optimization at the genetic level. Previously, we have presented an integrated in silico design for the dynamic control of gene expression based on a density-sensing unit and a genetic toggle switch. In the present paper, analysis of a serine-producing Escherichia coli mutant shows that an instantaneous ON-OFF switch leads to a maximum theoretical productivity improvement of 29.6% compared to the mutant. To further the design, global sensitivity analysis is applied here to a mathematical model of serine production in E. coli coupled with a genetic circuit. The model of the quorum sensing and the toggle switch involves 13 parameters of which 3 are identified as having a significant effect on serine concentration. Simulations conducted in this reduced parameter space further identified the optimal ranges for these 3 key parameters to achieve productivity values close to the maximum theoretical values. This analysis can now be used to guide the experimental implementation of a dynamic metabolic engineering strategy and reduce the time required to design the genetic circuit components.

  10. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts.

    Science.gov (United States)

    Rowntree, Jennifer K; Cameron, Duncan D; Preziosi, Richard F

    2011-05-12

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.

  11. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Ravasi Pablo

    2012-11-01

    Full Text Available Abstract Background Synthetic biology approaches can make a significant contribution to the advance of metabolic engineering by reducing the development time of recombinant organisms. However, most of synthetic biology tools have been developed for Escherichia coli. Here we provide a platform for rapid engineering of C. glutamicum, a microorganism of great industrial interest. This bacteria, used for decades for the fermentative production of amino acids, has recently been developed as a host for the production of several economically important compounds including metabolites and recombinant proteins because of its higher capacity of secretion compared to traditional bacterial hosts like E. coli. Thus, the development of modern molecular platforms may significantly contribute to establish C. glutamicum as a robust and versatile microbial factory. Results A plasmid based platform named pTGR was created where all the genetic components are flanked by unique restriction sites to both facilitate the evaluation of regulatory sequences and the assembly of constructs for the expression of multiple genes. The approach was validated by using reporter genes to test promoters, ribosome binding sites, and for the assembly of dual gene operons and gene clusters containing two transcriptional units. Combinatorial assembly of promoter (tac, cspB and sod and RBS (lacZ, cspB and sod elements with different strengths conferred clear differential gene expression of two reporter genes, eGFP and mCherry, thus allowing transcriptional “fine-tuning”of multiple genes. In addition, the platform allowed the rapid assembly of operons and genes clusters for co-expression of heterologous genes, a feature that may assist metabolic pathway engineering. Conclusions We anticipate that the pTGR platform will contribute to explore the potential of novel parts to regulate gene expression, and to facilitate the assembly of genetic circuits for metabolic engineering of C

  12. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    Science.gov (United States)

    Wang, Zeng-Yu; Brummer, E Charles

    2012-11-01

    Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.

  13. Adding Value to the Learning Process by Online Peer Review Activities: Towards the Elaboration of a Methodology to Promote Critical Thinking in Future Engineers

    Science.gov (United States)

    Dominguez, Caroline; Nascimento, Maria M.; Payan-Carreira, Rita; Cruz, Gonçalo; Silva, Helena; Lopes, José; Morais, Maria da Felicidade A.; Morais, Eva

    2015-01-01

    Considering the results of research on the benefits and difficulties of peer review, this paper describes how teaching faculty, interested in endorsing the acquisition of communication and critical thinking (CT) skills among engineering students, has been implementing a learning methodology throughout online peer review activities. While…

  14. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    Energy Technology Data Exchange (ETDEWEB)

    Jahedi, G. [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Ardehali, M.M., E-mail: ardehali@aut.ac.i [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2011-01-15

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  15. Progress in genetic engineering of peanut (Arachis hypogaea L.)--a review.

    Science.gov (United States)

    Krishna, Gaurav; Singh, Birendra K; Kim, Eun-Ki; Morya, Vivek K; Ramteke, Pramod W

    2015-02-01

    Peanut (Arachis hypogaea L.) is a major species of the family, Leguminosae, and economically important not only for vegetable oil but as a source of proteins, minerals and vitamins. It is widely grown in the semi-arid tropics and plays a role in the world agricultural economy. Peanut production and productivity is constrained by several biotic (insect pests and diseases) and abiotic (drought, salinity, water logging and temperature aberrations) stresses, as a result of which crop experiences serious economic losses. Genetic engineering techniques such as Agrobacterium tumefaciens and DNA-bombardment-mediated transformation are used as powerful tools to complement conventional breeding and expedite peanut improvement by the introduction of agronomically useful traits in high-yield background. Resistance to several fungal, virus and insect pest have been achieved through variety of approaches ranging from gene coding for cell wall component, pathogenesis-related proteins, oxalate oxidase, bacterial chloroperoxidase, coat proteins, RNA interference, crystal proteins etc. To develop transgenic plants withstanding major abiotic stresses, genes coding transcription factors for drought and salinity, cytokinin biosynthesis, nucleic acid processing, ion antiporter and human antiapoptotic have been used. Moreover, peanut has also been used in vaccine production for the control of several animal diseases. In addition to above, this study also presents a comprehensive account on the influence of some important factors on peanut genetic engineering. Future research thrusts not only suggest the use of different approaches for higher expression of transgene(s) but also provide a way forward for the improvement of crops.

  16. Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity.

    Directory of Open Access Journals (Sweden)

    John W Lamppa

    Full Text Available Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.

  17. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  18. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism

    Institute of Scientific and Technical Information of China (English)

    Chun LIU; Xia HUANG

    2008-01-01

    Bioaugmentation with genetically engineered microorganisms (GEMs) in a membrane bioreactor (MBR) for enhanced removal of recalcitrant pollutants was explored. An atrazine-degrading genetically engi-neered microorganism (GEM) with green fluorescent pro-tein was inoculated into an MBR and the effects of such a bioaugmentation strategy on atrazine removal were inves-tigated. The results show that atrazine removal was improved greatly in the bioaugmented MBR compared with a control system. After a start-up period of 6 days, average 94.7% of atrazine was removed in bioaugmented MBR when atrazine concentration of influent was 14.5 mg/L. The volu-metric removal rates increased linearly followed by atrazine loading increase and the maximum was 65.5 mg/(L·d). No negative effects were found on COD removal although carbon oxidation activity of bioaugmented sludge was lower than that of common sludge. After inoculation, adsorption to sludge flocs was favorable for GEM sur-vival. The GEM population size initially decreased shortly and then was kept constant at about 104-105 CFU/mL. Predation of micro-organisms played an important role in the decay of the GEM population. GEM leakage from MBR was less than 102 CFU/mL initially and was then undetectable. In contrast, in a conventionally activated sludge bioreactor (CAS), sludge bulking occurred possibly due to atrazine exposure, resulting in bioaugmentation failure and serious GEM leakage. So MBR was superior to CAS in atrazine bioaugmentation treatment using GEM.

  19. Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology.

    Science.gov (United States)

    Zheng, Jin; Tashiro, Yukihiro; Wang, Qunhui; Sonomoto, Kenji

    2015-01-01

    Butanol has recently attracted attention as an alternative biofuel because of its various advantages over other biofuels. Many researchers have focused on butanol fermentation with renewable and sustainable resources, especially lignocellulosic materials, which has provided significant progress in butanol fermentation. However, there are still some drawbacks in butanol fermentation in terms of low butanol concentration and productivity, high cost of feedstock and product inhibition, which makes butanol fermentation less competitive than the production of other biofuels. These hurdles are being resolved in several ways. Genetic engineering is now available for improving butanol yield and butanol ratio through overexpression, knock out/down, and insertion of genes encoding key enzymes in the metabolic pathway of butanol fermentation. In addition, there are also many strategies to improve fermentation technology, such as multi-stage continuous fermentation, continuous fermentation integrated with immobilization and cell recycling, and the inclusion of additional organic acids or electron carriers to change metabolic flux. This review focuses on the most recent advances in butanol fermentation especially from the perspectives of genetic engineering and fermentation technology.

  20. Crop Resources Ethic in Plant Genetic Engineering and Fortune Transfer Between Generations

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; LIANG Xueqing

    2006-01-01

    The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable development, furthermore, to choose and form the production structure that is favorable to saving crop resources and protecting the ecology of crops. Plant genetic engineering is the technology of molecule breeding of rearrangement of inheritance materials at the level of molecule directionally, of improving plant properties and of breeding high quality and yield varieties of crops. The prominent effects of the technology on the crop ecological system are human subjective factors increasing as well as violating the nature and intensifying the conflict between human being and nature.Therefore, in plant genetic engineering, crop resources exploitation should follow certain ethic principles. Under the theory of ethics of natural resources, by the means of biologioal statistics, the author systematically analyzed the possible model of crop resources transfer between generations as well as the transfer mode of magnitude of real materials and magnitude of value.

  1. Deconjugation of Bile Acids with Immobilized Genetically Engineered Lactobacillus plantarum 80(pCBH1

    Directory of Open Access Journals (Sweden)

    M. L. Jones

    2005-01-01

    Full Text Available Bile acids are important to normal human physiology. However, bile acids can be toxic when produced in pathologically high concentrations in hepatobileary and other diseases. This study shows that immobilized genetically engineered Lactobacillus plantarum 80 (pCBH1 (LP80 (pCBH1 can efficiently hydrolyze bile acids and establishes a basis for their use. Results show that immobilized LP80 (pCBH1 is able to effectively break down the conjugated bile acids into glycodeoxycholic acid (GDCA and taurodeoxycholic acid (TDCA with bile salt hydrolase (BSH activities of 0.17 and 0.07 μmol DCA/mg CDW/h, respectively. The deconjugation product, deoxycholic acid (DCA, was diminished by LP80 (pCBH1 within 4 h of initial BSH activity. This in-vitro study suggests that immobilized genetically engineered bacterial cells have important potential for deconjugation of bile acids for lowering of high levels of bile acids for therapy.

  2. Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways.

    Science.gov (United States)

    Stevens, Jason T; Carothers, James M

    2015-02-20

    Engineered metabolic pathways can be augmented with dynamic regulatory controllers to increase production titers by minimizing toxicity and helping cells maintain homeostasis. We investigated the potential for dynamic RNA-based genetic control systems to increase production through simulation analysis of an engineered p-aminostyrene (p-AS) pathway in E. coli. To map the entire design space, we formulated 729 unique mechanistic models corresponding to all of the possible control topologies and mechanistic implementations in the system under study. Two thousand sampled simulations were performed for each of the 729 system designs to relate the potential effects of dynamic control to increases in p-AS production (total of 3 × 10(6) simulations). Our analysis indicates that dynamic control strategies employing aptazyme-regulated expression devices (aREDs) can yield >10-fold improvements over static control. We uncovered generalizable trends in successful control architectures and found that highly performing RNA-based control systems are experimentally tractable. Analyzing the metabolic control state space to predict optimal genetic control strategies promises to enhance the design of metabolic pathways.

  3. Stakeholder views on the creation and use of genetically-engineered animals in research.

    Science.gov (United States)

    Ormandy, Elisabeth H

    2016-05-01

    This interview-based study examined the diversity of views relating to the creation and use of genetically-engineered (GE) animals in biomedical science. Twenty Canadian participants (eight researchers, five research technicians and seven members of the public) took part in the interviews, in which four main themes were discussed: a) how participants felt about the genetic engineering of animals as a practice; b) governance of the creation and use of GE animals in research, and whether current guidelines are sufficient; c) the Three Rs (Replacement, Reduction, Refinement) and how they are applied during the creation and use of GE animals in research; and d) whether public opinion should play a greater role in the creation and use of GE animals. Most of the participants felt that the creation and use of GE animals for biomedical research purposes (as opposed to food purposes) is acceptable, provided that tangible human health benefits are gained. However, obstacles to Three Rs implementation were identified, and the participants agreed that more effort should be placed on engaging the public on the use of GE animals in research.

  4. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  5. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae.

    Science.gov (United States)

    Guihéneuf, Freddy; Khan, Asif; Tran, Lam-Son P

    2016-01-01

    As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric carbon dioxide (CO2) into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60-65% of dry weight), carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors such as nitrogen starvation, salinity, heat shock, etc., can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  6. The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas

    Science.gov (United States)

    Sadler, Troy D.; Zeidler, Dana L.

    2004-01-01

    The ability to negotiate and resolve socioscientific issues has been posited as integral components of scientific literacy. Although philosophers and science educators have argued that socioscientific issues inherently involve moral and ethical considerations, the ultimate arbiters of morality are individual decision-makers. This study explored the extent to which college students construe genetic engineering issues as moral problems. Twenty college students participated in interviews designed to elicit their ideas, reactions, and feelings regarding a series of gene therapy and cloning scenarios. Qualitative analyses revealed that moral considerations were significant influences on decision-making, indicating a tendency for students to construe genetic engineering issues as moral problems. Students engaged in moral reasoning based on utilitarian analyses of consequences as well as the application of principles. Issue construal was also influenced by affective features such as emotion and intuition. In addition to moral considerations, a series of other factors emerged as important dimensions of socioscientific decision-making. These factors included personal experiences, family biases, background knowledge, and the impact of popular culture. The implications for classroom science instruction and future research are discussed.

  7. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production.

    Science.gov (United States)

    Doğan, Ayşegül; Demirci, Selami; Aytekin, Ali Özhan; Şahin, Fikrettin

    2014-09-01

    Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.

  8. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.

    Science.gov (United States)

    Srirangan, Kajan; Liu, Xuejia; Westbrook, Adam; Akawi, Lamees; Pyne, Michael E; Moo-Young, Murray; Chou, C Perry

    2014-11-01

    We recently reported the heterologous production of 1-propanol in Escherichia coli via extended dissimilation of succinate under anaerobic conditions through expression of the endogenous sleeping beauty mutase (Sbm) operon. In the present work, we demonstrate high-level coproduction of 1-propanol and ethanol by developing novel engineered E. coli strains with effective cultivation strategies. Various biochemical, genetic, metabolic, and physiological factors affecting relative levels of acidogenesis and solventogenesis during anaerobic fermentation were investigated. In particular, CPC-PrOH3, a plasmid-free propanogenic E. coli strain derived by activating the Sbm operon on the genome, showed high levels of solventogenesis accounting for up to 85 % of dissimilated carbon. Anaerobic fed-batch cultivation of CPC-PrOH3 with glycerol as the major carbon source produced high titers of nearly 7 g/L 1-propanol and 31 g/L ethanol, implying its potential industrial applicability. The activated Sbm pathway served as an ancillary channel for consuming reducing equivalents upon anaerobic dissimilation of glycerol, resulting in an enhanced glycerol dissimilation and a major metabolic shift from acidogenesis to solventogenesis.

  9. Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model

    Science.gov (United States)

    Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya

    2015-10-01

    The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.

  10. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches.

    Science.gov (United States)

    Courchesne, Noémie Manuelle Dorval; Parisien, Albert; Wang, Bei; Lan, Christopher Q

    2009-04-20

    This paper compares three possible strategies for enhanced lipid overproduction in microalgae: the biochemical engineering (BE) approaches, the genetic engineering (GE) approaches, and the transcription factor engineering (TFE) approaches. The BE strategy relies on creating a physiological stress such as nutrient-starvation or high salinity to channel metabolic fluxes to lipid accumulation. The GE strategy exploits our understanding to the lipid metabolic pathway, especially the rate-limiting enzymes, to create a channelling of metabolites to lipid biosynthesis by overexpressing one or more key enzymes in recombinant microalgal strains. The TFE strategy is an emerging technology aiming at enhancing the production of a particular metabolite by means of overexpressing TFs regulating the metabolic pathways involved in the accumulation of target metabolites. Currently, BE approaches are the most established in microalgal lipid production. The TFE is a very promising strategy because it may avoid the inhibitive effects of the BE approaches and the limitation of "secondary bottlenecks" as commonly observed in the GE approaches. However, it is still a novel concept to be investigated systematically.

  11. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

    Science.gov (United States)

    Samin, Ghufrana; Pavlova, Martina; Arif, M Irfan; Postema, Christiaan P; Damborsky, Jiri; Janssen, Dick B

    2014-09-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    Science.gov (United States)

    2015-06-01

    Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...TITLE AND SUBTITLE Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely...1.20 calendar Testing the Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely

  13. Genetic engineering represents a safe approach for innovations improving nutritional contents of major food crops

    Directory of Open Access Journals (Sweden)

    Werner Arber

    2017-05-01

    Full Text Available About 70 years ago early microbial genetic research revealed that inherited phenotypic traits become determined by DNA filaments composed of 4 different nucleotides that are linearly arranged. In the meantime we know that genes, the determinants of specific life functions, are genomic segments of an average size of about 1000 nucleotides, i.e. a very small part of a genome. Fundamental insights into the structures and functions of selected genes can be reached by sorting out the relevant short DNA segment, splicing this fragment into a natural gene vector such as a viral genome or a fertility plasmid. This allows the researchers to transfer the genetic hybrid into an appropriate host cell in order to produce many copies that can then serve for functional and structural analysis. This research approach became efficient in the 1970s. On the request of involved researchers, safety guidelines became proposed 1975 at the Asilomar Conference on Recombinant DNA (Berg, Baltimore, Brenner, Roblin, & Singer, 1975, then generally introduced and still largely followed nowadays. Carefully carried out genetic engineering by horizontally transferring a selected and functionally well known DNA segment into the genome of another organism has in many published biosafety investigations never shown any unexpected harmful effect. We will present below selected examples of research contributions enabling innovations for the benefit of human life conditions.

  14. Hybridization of Response Surface Methodology and Genetic Algorithm optimization for CO2 laser cutting parameter on AA6061 material

    Directory of Open Access Journals (Sweden)

    A.Parthiban

    2014-03-01

    Full Text Available Investigation of laser cutting parameters on aluminium alloy (AA6061 is important due to its high reflectivity and thermal conductivity. Generally Aluminium alloy is a widely used material in aeronautical and automation industries for its inherent properties. Although the main problem during laser cutting is occurrence of recasting layer and laser beam incidence that affecting the cutting quality is known as kerf dimensions. In a sense the relationship between the laser cutting parameters such as laser power, cutting speed, gas pressure and focal position with kerf dimensions are having important role in laser cutting operation. So this work considers the response surface methodology (RSM, for making empirical relationship between dependent and independent variables. Simultaneously, this work reveals that laser power, cutting speed, gas pressure and focal position have significant effects on kerf dimension. Thus the development of empirical model and the selection of best parameters are important for manufacturing industries. Hence this work develops the statistical model with RSM and optimizes the cutting parameters with genetic algorithm (GA.

  15. Optimization of microwave-assisted drying of Jerusalem artichokes (Helianthus tuberosus L. by response surface methodology and genetic algorithm

    Directory of Open Access Journals (Sweden)

    E. KARACABEY

    2016-03-01

    Full Text Available The objective of the present study was to investigate microwave-assisted drying of Jerusalem artichoke tubers to determine the effects of the processing conditions. Drying time (DT and effectivemoisture diffusivity (EMD were determined to evaluate the drying process in terms of dehydration performance, whereas the rehydration ratio (RhR was considered as a significant quality index. A pretreatment of soaking in a NaCl solution was applied before all trials. The output power of the microwave oven, slice thickness and NaCl concentration of the pretreatment solution werethe three investigated parameters. The drying process was accelerated by altering the conditions while obtaining a higher quality product. For optimization of the drying process, response surface methodology (RSM and genetic algorithms (GA were used. Model adequacy was evaluated for each corresponding mathematical expression developed for interested responses by RSM. The residual of the model obtained by GA was compared to that of the RSM model. The GA was successful in high-performance prediction and produced results similar to those of RSM. The analysis and results of the present study show that both RSM and GA models can be used in cohesion to gain insight into the bioprocessing system.

  16. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    Science.gov (United States)

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis.

  17. Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Hong-Ye Li

    2014-01-01

    Full Text Available The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs. However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.

  18. Heritable multiplex genetic engineering in rats using CRISPR/Cas9.

    Directory of Open Access Journals (Sweden)

    Yuanwu Ma

    Full Text Available The CRISPR/Cas9 system has been proven to be an efficient gene-editing tool for genome modification of cells and organisms. Multiplex genetic engineering in rat holds a bright future for the study of complex disease. Here, we show that this system enables the simultaneous disruption of four genes (ApoE, B2m, Prf1, and Prkdc in rats in one-step, by co-injection of Cas9 mRNA and sgRNAs into fertilized eggs. We further observed the gene modifications are germline transmittable, and confirmed the off-target mutagenesis and mosaicism are rarely detected by comprehensive analysis. Thus, the CRISPR/Cas9 system makes it possible to efficiently and reliably generate gene knock-out rats.

  19. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines.

    Science.gov (United States)

    Schleiss, Mark R

    2010-12-01

    The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that was rapidly cleared by NK cells. The virus functioned as a safe and highly effective vaccine. Demonstration of the ability to engineer a safe and highly effective live virus vaccine in a relevant rodent model of CMV infection may open the door to clinical trials of safer and more immunogenic HCMV vaccines.

  20. Overview of Genetically Engineered Mouse Models of Breast Cancer Used in Translational Biology and Drug Development.

    Science.gov (United States)

    Greenow, Kirsty R; Smalley, Matthew J

    2015-01-01

    Breast cancer is a heterogeneous condition with no single standard of treatment and no definitive method for determining whether a tumor will respond to therapy. The development of murine models that faithfully mimic specific human breast cancer subtypes is critical for the development of patient-specific treatments. While the artificial nature of traditional in vivo xenograft models used to characterize novel anticancer treatments has limited clinical predictive value, the development of genetically engineered mouse models (GEMMs) makes it possible to study the therapeutic responses in an intact microenvironment. GEMMs have proven to be an experimentally tractable platform for evaluating the efficacy of novel therapeutic combinations and for defining the mechanisms of acquired resistance. Described in this overview are several of the more popular breast cancer GEMMs, including details on their value in elucidating the molecular mechanisms of this disorder.

  1. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria.

    Science.gov (United States)

    Srirangan, Kajan; Pyne, Michael E; Perry Chou, C

    2011-09-01

    As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Genetically engineered mouse models to evaluate the role of Wnt secretion in bone development and homeostasis.

    Science.gov (United States)

    Williams, Bart O

    2016-03-01

    Alterations in components of the Wnt signaling pathway are associated with altered bone development and homeostasis in several human diseases. We created genetically engineered mouse models (GEMMs) that mimic the cellular defect associated with the Porcupine mutations in patients with Goltz Syndrome/Focal Dermal Hypoplasia. These GEMMs were established by utilizing mice containing a conditionally inactivatable allele of Wntless/GPR177 (a gene encoding a protein required for the transport of Porcupine-modified ligand to the plasma membrane for secretion). We crossed this strain to another which drives cre-mediated gene deletion in mature osteoblasts (Osteocalcin-cre) resulted in mice lacking the ability to secrete Wnt ligands in this cell type. These mice displayed severely reduced bone mass and provide a model to understand the effects of disrupting the ability to secrete Wnt ligands on the skeletal system.

  3. Analysis of mouse model pathology: a primer for studying the anatomic pathology of genetically engineered mice.

    Science.gov (United States)

    Cardiff, Robert D; Miller, Claramae H; Munn, Robert J

    2014-06-02

    This primer of pathology is intended to introduce investigators to the structure (morphology) of cancer with an emphasis on genetically engineered mouse (GEM) models (GEMMs). We emphasize the necessity of using the entire biological context for the interpretation of anatomic pathology. Because the primary investigator is responsible for almost all of the information and procedures leading up to microscopic examination, they should also be responsible for documentation of experiments so that the microscopic interpretation can be rendered in context of the biology. The steps involved in this process are outlined, discussed, and illustrated. Because GEMMs are unique experimental subjects, some of the more common pitfalls are discussed. Many of these errors can be avoided with attention to detail and continuous quality assurance.

  4. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis.

    Science.gov (United States)

    Li, Hong-Ye; Lu, Yang; Zheng, Jian-Wei; Yang, Wei-Dong; Liu, Jie-Sheng

    2014-01-07

    The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs). However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium) and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.

  5. Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus.

    Science.gov (United States)

    Kim, Tae-Yeon; Lee, Sang-Woo; Oh, Min-Kyu

    2014-01-01

    2-Phenylethanol (2-PE) is an aromatic alcohol with a rose scent, which is used in the cosmetics, fragrance and food industries. 2-PE is produced in a few yeast strains by Ehrlich pathway. In this study, Kluyveromyces marxianus was genetically engineered for overproduction of 2-PE from glucose. About 1.0g/L of 2-PE was produced by overexpressing phenylpyruvate decarboxylase (ARO10) and alcohol dehydrogenase (ADH2) genes of Saccharomyces cerevisiae. A similar level of 2-PE was also produced from evolved K. marxianus, which was resistant to the phenylalanine analog, p-fluorophenylalanine. aroG(fbr) from Klebsiella pneumoniae encoding a feedback resistant mutant of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DHAP) synthase was overexpressed in the evolved K. marxianus. Finally, 1.3g/L of 2-PE was produced from 20g/L glucose without addition of phenylalanine in the medium.

  6. The establishment of genetically engineered canola populations in the U.S.

    Directory of Open Access Journals (Sweden)

    Meredith G Schafer

    Full Text Available Concerns regarding the commercial release of genetically engineered (GE crops include naturalization, introgression to sexually compatible relatives and the transfer of beneficial traits to native and weedy species through hybridization. To date there have been few documented reports of escape leading some researchers to question the environmental risks of biotech products. In this study we conducted a systematic roadside survey of canola (Brassica napus populations growing outside of cultivation in North Dakota, USA, the dominant canola growing region in the U.S. We document the presence of two escaped, transgenic genotypes, as well as non-GE canola, and provide evidence of novel combinations of transgenic forms in the wild. Our results demonstrate that feral populations are large and widespread. Moreover, flowering times of escaped populations, as well as the fertile condition of the majority of collections suggest that these populations are established and persistent outside of cultivation.

  7. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology.

    Science.gov (United States)

    Weissman, Kira J

    2016-02-01

    Multienzyme polyketide synthases (PKSs) are molecular-scale assembly lines which construct complex natural products in bacteria. The underlying modular architecture of these gigantic catalysts inspired, from the moment of their discovery, attempts to modify them by genetic engineering to produce analogues of predictable structure. These efforts have resulted in hundreds of metabolites new to nature, as detailed in this review. However, in the face of many failures, the heady days of imagining the possibilities for a truly 'combinatorial biosynthesis' of polyketides have faded. It is now more appropriate to talk about 'PKS synthetic biology' with its more modest goals of delivering specific derivatives of known structure in combination with and as a complement to synthetic chemistry approaches. The reasons for these failures will be discussed in terms of our growing understanding of the three-dimensional architectures and mechanisms of these systems. Finally, some thoughts on the future of the field will be presented.

  8. Genetic Engineering of Cyanobacteria to Enhance Biohydrogen Production from Sunlight and Water

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Hajime (Research Inst. for Photobiological Hydrogen Production, Kanagawa Univ., Hiratsuka, Kanagawa (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama (Japan)), E-mail: wtk-0488gg@kanagawa-u.ac.jp; Kitashima, Masaharu (Research Inst. for Integrated Science, Kanagawa Univ., Hiratsuka, Kanagawa (Japan)); Inoue, Kazuhito (Dept. of Biological Sciences, Kanagawa Univ., Hiratsuka, Kanagawa (Japan)); Sakurai, Hidehiro (Research Inst. for Photobiological Hydrogen Production, Kanagawa Univ., Hiratsuka, Kanagawa (Japan)); Hausinger, Robert P. (Dept. of Microbiology and Molecular Genetics, 2215 Biomedical Physical Sciences, Michigan State Univ., East Lansing (United States))

    2012-03-15

    To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are propoi large-scale photobiological H{sub 2} production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H{sub 2} production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H{sub 2} for extended periods even in the presence of evolved O{sub 2}. This review summarizes our efforts to improve the rate of photobiological H{sub 2} production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H{sub 2} also are discussed

  9. Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Broatch, A.; Ruiz, S.; Margot, X.; Gil, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

    2010-05-15

    Cold startability of automotive direct injection (DI) Diesel engines is frequently one of the negative features when these are compared to their closest competitor, the gasoline engine. This situation worsens with the current design trends (engine downsizing) and the emerging new Diesel combustion concepts, such as HCCI, PCCI, etc., which require low compression ratio engines. To mitigate this difficulty, pre-heating systems (glow plugs, air heating, etc.) are frequently used and their technologies have been continuously developed. For the optimum design of these systems, the determination of the threshold temperature that the gas should have in the cylinder in order to provoke the self-ignition of the fuel injected during cold starting is crucial. In this paper, a novel methodology for estimating the threshold temperature is presented. In this methodology, experimental and computational procedures are adequately combined to get a good compromise between accuracy and effort. The measurements have been used as input data and boundary conditions in 3D and 0D calculations in order to obtain the thermodynamic conditions of the gas in the cylinder during cold starting. The results obtained from the study of two engine configurations -low and high compression ratio- indicate that the threshold in-cylinder temperature is a single temperature of about 415 C. (author)

  10. Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic beta-cells to correct diabetes in allogeneic mice.

    Science.gov (United States)

    Kojaoghlanian, T; Joseph, A; Follenzi, A; Zheng, J H; Leiser, M; Fleischer, N; Horwitz, M S; DiLorenzo, T P; Goldstein, H

    2009-03-01

    The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with beta-cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted beta-cells from an alloimmune attack. The insulin-producing beta-cell line beta TC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RID alpha/beta. The efficiency of lentiviral transduction of beta TC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I major histocompatibility complex expression by over 90%, whereas RID alpha/beta expression inhibited cytokine-induced Fas upregulation by over 75%. beta TC-tet cells transduced with gp19K and RID alpha/beta lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c severe combined immunodeficient mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of beta-cells using gp19K- and RID alpha/beta-expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents necessary at present for prolonged engraftment with transplanted islets.

  11. Development of New Modular Genetic Tools for Engineering the Halophilic Archaeon Halobacterium salinarum.

    Directory of Open Access Journals (Sweden)

    Rafael Silva-Rocha

    Full Text Available Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i the E. coli's specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii the resistance marker and (iii the replication origin, which are specific to H. salinarum and (iv the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.

  12. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering

    Directory of Open Access Journals (Sweden)

    Lucille ePourcel

    2013-05-01

    Full Text Available Thiamin (vitamin B1 is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP. Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants.

  13. Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

    Directory of Open Access Journals (Sweden)

    Kim YS

    2013-11-01

    Full Text Available Yeon Seong Kim,1,* Young-Il Jeong,2,* Shu-Guang Jin,2 Jian Pei,2 Min Wen,2 In-Young Kim,1 Kyung-Sub Moon,1 Tae-Young Jung,1 Hyang-Hwa Ryu2, Shin Jung1–3 1Department of Neurosurgery, 2Brain Tumor Research Laboratory, 3Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Jeollanam-do, Korea *These authors contributed equally to this work Background: In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2 and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods: The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results: Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v. Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion: Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. Keywords: 293T cells, tissue inhibitor of metalloproteinase-2, alginate microcapsule, therapeutic protein

  14. A methodology for exploiting the tolerance for imprecision in genetic fuzzy systems and its application to characterization of rotor blade leading edge materials

    Science.gov (United States)

    Sánchez, Luciano; Couso, Inés; Palacios, Ana M.; Palacios, José L.

    2013-05-01

    A methodology for obtaining fuzzy rule-based models from uncertain data is proposed. The granularity of the linguistic discretization is decided with the help of a new estimation of the mutual information between ill-known random variables, and a combination of boosting and genetic algorithms is used for discovering new rules. This methodology has been applied to predict whether the coating of an helicopter rotor blade is adequate, considering the shear adhesion strength of ice to different materials. The discovered knowledge is intended to increase the level of post-processing interpretation accuracy of experimental data obtained during the evaluation of ice-phobic materials for rotorcraft applications.

  15. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian.

    Science.gov (United States)

    Nakatsuka, Takashi; Mishiba, Kei-ichiro; Kubota, Akiko; Abe, Yoshiko; Yamamura, Saburo; Nakamura, Noriko; Tanaka, Yoshikazu; Nishihara, Masahiro

    2010-02-15

    Ornamental gentian plants have vivid-blue flowers. The main factor contributing to the flower colour is the accumulation of a polyacylated delphinidin 'gentiodelphin' in their petals. Although in vitro studies proposed that acylation plays an important role in the stability and development of gentian blue colour, the in vivo stability of the polyacylated anthocyanin was not clearly demonstrated. Thus, to reveal the importance of anthocyanin modification, especially acylation, and to engineer new colours of gentian flowers, we used chimeric RNAi technology to produce transgenic gentian plants with downregulated anthocyanin 5,3'-aromatic acyltransferase (5/3'AT) and flavonoid 3',5'-hydroxylase (F3'5'H) activities, which are both essential enzymes for gentiodelphin biosynthesis. Two lines of flower colour-modified plants were obtained from fifteen transgenic gentian plants. Clone no. 1 exhibited a lilac flower colour and clone no. 15 exhibited pale-blue flowers. RNA gel blot analysis confirmed that both transgenic lines had markedly suppressed 5/3'AT transcripts, whereas clone no. 15 had fewer F3'5'H transcripts than clone no. 1 and untransformed control plants. HPLC analysis of anthocyanin compositions showed that downregulation of the 5/3'AT gene led to increased accumulation of non-acylated anthocyanins, as expected. These results demonstrated that genetic engineering to reduce the accumulation of polyacylated anthocyanins could cause modulations of flower colour.

  16. A prototype stable RNA identification cassette for monitoring plasmids of genetically engineered microorganisms

    Science.gov (United States)

    Hedenstierna, K. O.; Lee, Y. H.; Yang, Y.; Fox, G. E.

    1993-01-01

    A prototype stable RNA identification cassette for monitoring genetically engineered plasmids carried by strains of Escherichia coli has been developed. The cassette consists of a Vibrio proteolyticus 5S ribosomal RNA (rRNA) gene surrounded by promoters and terminators from the rrnB operon of Escherischia coli. The identifier RNA is expressed and successfully processed so that approximately 30% of the 5S rRNA isolated from either whole cells or 70S ribosomes is of the V. proteolyticus type. Cells carrying the identifier are readily detectable by hybridization. Accurate measurements show that the identification cassette has little effect on fitness compared to a strain containing an analogous plasmid carrying wild type E. coli 5S rRNA, and the V. proteolyticus 5S rRNA gene is not inactivated after prolonged growth. These results demonstrate the feasibility of developing small standardized identification cassettes that can utilize already existing highly sensitive rRNA detection methods. Cassettes of this type could in principle be incorporated into either the engineered regions of recombinant plasmids or their hosts.

  17. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria.

    Science.gov (United States)

    Hondo, Sayaka; Takahashi, Masatoshi; Osanai, Takashi; Matsuda, Mami; Hasunuma, Tomohisa; Tazuke, Akio; Nakahira, Yoichi; Chohnan, Shigeru; Hasegawa, Morifumi; Asayama, Munehiko

    2015-11-01

    Genetic engineering and metabolite profiling for the overproduction of polyhydroxybutyrate (PHB), which is a carbon material in biodegradable plastics, were examined in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Transconjugants harboring cyanobacterial expression vectors that carried the pha genes for PHB biosynthesis were constructed. The overproduction of PHB by the engineering cells was confirmed through microscopic observations using Nile red, transmission electron microscopy (TEM), or nuclear magnetic resonance (NMR). We successfully recovered PHB from transconjugants prepared from nitrogen-depleted medium without sugar supplementation in which PHB reached approximately 7% (w/w) of the dry cell weight, showing a value of 12-fold higher productivity in the transconjugant than that in the control strain. We also measured the intracellular levels of acetyl-CoA, acetoacetyl-CoA, and 3-hydroxybutyryl-CoA (3HB-CoA), which are intermediate products for PHB. The results obtained indicated that these products were absent or at markedly low levels when cells were subjected to the steady-state growth phase of cultivation under nitrogen depletion for the overproduction of bioplastics. Based on these results, efficient factors were discussed for the overproduction of PHB in recombinant cyanobacteria.

  18. Genetically engineered virus-resistant plants in developing countries: current status and future prospects.

    Science.gov (United States)

    Reddy, D V R; Sudarshana, M R; Fuchs, M; Rao, N C; Thottappilly, G

    2009-01-01

    Plant viruses cause severe crop losses worldwide. Conventional control strategies, such as cultural methods and biocide applications against arthropod, nematode, and plasmodiophorid vectors, have limited success at mitigating the impact of plant viruses. Planting resistant cultivars is the most effective and economical way to control plant virus diseases. Natural sources of resistance have been exploited extensively to develop virus-resistant plants by conventional breeding. Non-conventional methods have also been used successfully to confer virus resistance by transferring primarily virus-derived genes, including viral coat protein, replicase, movement protein, defective interfering RNA, non-coding RNA sequences, and protease, into susceptible plants. Non-viral genes (R genes, microRNAs, ribosome-inactivating proteins, protease inhibitors, dsRNAse, RNA modifying enzymes, and scFvs) have also been used successfully to engineer resistance to viruses in plants. Very few genetically engineered (GE) virus resistant (VR) crops have been released for cultivation and none is available yet in developing countries. However, a number of economically important GEVR crops, transformed with viral genes are of great interest in developing countries. The major issues confronting the production and deregulation of GEVR crops in developing countries are primarily socio-economic and related to intellectual property rights, biosafety regulatory frameworks, expenditure to generate GE crops and opposition by non-governmental activists. Suggestions for satisfactory resolution of these factors, presumably leading to field tests and deregulation of GEVR crops in developing countries, are given.

  19. A genetic replacement system for selection-based engineering of essential proteins

    Directory of Open Access Journals (Sweden)

    Billerbeck Sonja

    2012-08-01

    Full Text Available Abstract Background Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. Results We established a simple strategy for genetic replacement of an essential gene by a (library of variant(s during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. Conclusions We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies.

  20. Site-specific genetic engineering of the Anopheles gambiae Y chromosome.

    Science.gov (United States)

    Bernardini, Federica; Galizi, Roberto; Menichelli, Miriam; Papathanos, Philippos-Aris; Dritsou, Vicky; Marois, Eric; Crisanti, Andrea; Windbichler, Nikolai

    2014-05-27

    Despite its function in sex determination and its role in driving genome evolution, the Y chromosome remains poorly understood in most species. Y chromosomes are gene-poor, repeat-rich and largely heterochromatic and therefore represent a difficult target for genetic engineering. The Y chromosome of the human malaria vector Anopheles gambiae appears to be involved in sex determination although very little is known about both its structure and function. Here, we characterize a transgenic strain of this mosquito species, obtained by transposon-mediated integration of a transgene construct onto the Y chromosome. Using meganuclease-induced homologous repair we introduce a site-specific recombination signal onto the Y chromosome and show that the resulting docking line can be used for secondary integration. To demonstrate its utility, we study the activity of a germ-line-specific promoter when located on the Y chromosome. We also show that Y-linked fluorescent transgenes allow automated sex separation of this important vector species, providing the means to generate large single-sex populations. Our findings will aid studies of sex chromosome function and enable the development of male-exclusive genetic traits for vector control.

  1. On recent advances in human engineering Provocative trends in embryology, genetics, and regenerative medicine.

    Science.gov (United States)

    Anton, Roman

    2016-01-01

    Advances in embryology, genetics, and regenerative medicine regularly attract attention from scientists, scholars, journalists, and policymakers, yet implications of these advances may be broader than commonly supposed. Laboratories culturing human embryos, editing human genes, and creating human-animal chimeras have been working along lines that are now becoming intertwined. Embryogenic methods are weaving traditional in vivo and in vitro distinctions into a new "in vivitro" (in life in glass) fabric. These and other methods known to be in use or thought to be in development promise soon to bring society to startling choices and discomfiting predicaments, all in a global effort to supply reliably rejuvenating stem cells, to grow immunologically non-provocative replacement organs, and to prevent, treat, cure, or even someday eradicate diseases having genetic or epigenetic mechanisms. With humanity's human-engineering era now begun, procedural prohibitions, funding restrictions, institutional controls, and transparency rules are proving ineffective, and business incentives are migrating into the most basic life-sciences inquiries, wherein lie huge biomedical potentials and bioethical risks. Rights, health, and heritage are coming into play with bioethical presumptions and formal protections urgently needing reassessment.

  2. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering.

    Science.gov (United States)

    Alifano, Pietro; Palumbo, Carla; Pasanisi, Daniela; Talà, Adelfia

    2015-05-20

    Following its introduction in 1967, rifampicin has become a mainstay of therapy in the treatment of tuberculosis, leprosy and many other widespread diseases. Its potent antibacterial activity is due to specific inhibition of bacterial RNA polymerase. However, resistance to rifampicin was reported shortly after its introduction in the medical practice. Studies in the model organism Escherichia coli helped to define the molecular mechanism of rifampicin-resistance demonstrating that resistance is mostly due to chromosomal mutations in rpoB gene encoding the RNA polymerase β chain. These studies also revealed the amazing potential of the molecular genetics to elucidate the structure-function relationships in bacterial RNA polymerase. The scope of this paper is to illustrate how rifampicin-resistance has been recently exploited to better understand the regulatory mechanisms that control bacterial cell physiology and virulence, and how this information has been used to maneuver, on a global scale, gene expression in bacteria of industrial interest. In particular, we reviewed recent literature regarding: (i) the effects of rpoB mutations conferring rifampicin-resistance on transcription dynamics, bacterial fitness, physiology, metabolism and virulence; (ii) the occurrence in nature of "mutant-type" or duplicated rifampicin-resistant RNA polymerases; and (iii) the RNA polymerase genetic engineering method for strain improvement and drug discovery.

  3. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering.

    Science.gov (United States)

    Nishihara, Masahiro; Shimoda, Takeshi; Nakatsuka, Takashi; Arimura, Gen-Ichiro

    2013-06-26

    Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods.

  4. Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation.

    Science.gov (United States)

    Zhang, Yuan; Yan, Ya-Ping; Wu, Yu-Cui; Hua, Wen-Ping; Chen, Chen; Ge, Qian; Wang, Zhe-Zhi

    2014-01-01

    To produce beneficial phenolic acids for medical and commercial purposes, researchers are interested in improving the normally low levels of salvianolic acid B (Sal B) produced by Salvia miltiorrhiza. Here, we present a strategy of combinational genetic manipulation to enrich the precursors available for Sal B biosynthesis. This approach, involving the lignin pathway, requires simultaneous, ectopic expression of an Arabidopsis Production of Anthocyanin Pigment 1 transcription factor (AtPAP1) plus co-suppression of two endogenous, key enzyme genes: cinnamoyl-CoA reductase (SmCCR) and caffeic acid O-methyltransferase (SmCOMT). Compared with the untransformed control, we achieved a greater accumulation of Sal B (up to 3-fold higher) along with a reduced lignin concentration. This high-Sal B phenotype was stable in roots during vegetative growth and was closely correlated with increased antioxidant capacity for the corresponding plant extracts. Although no outward change in phenotype was apparent, we characterized the molecular phenotype through integrated analysis of transcriptome and metabolome profiling. Our results demonstrated the far-reaching consequences of phenolic pathway perturbations on carbohydrate metabolism, respiration, photo-respiration, and stress responses. This report is the first to describe the production of valuable end products through combinational genetic manipulation in S. miltiorrhiza plants. Our strategy will be effective in efforts to metabolically engineer multi-branch pathway(s), such as the phenylpropanoid pathway, in economically significant medicinal plants.

  5. Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes.

    Science.gov (United States)

    Lang, Claus; Schüler, Dirk; Faivre, Damien

    2007-02-12

    Magnetotactic bacteria (MTB) have the ability to navigate along the Earth's magnetic field. This so-called magnetotaxis is a result of the presence of magnetosomes, organelles which comprise nanometer-sized intracellular crystals of magnetite (Fe(3)O(4)) enveloped by a membrane. Because of their unique characteristics, magnetosomes have a high potential for nano- and biotechnological applications, which require a specifically designed particle surface. The functionalization of magnetosomes is possible either by chemical modification of purified particles or by genetic engineering of magnetosome membrane proteins. The second approach is potentially superior to chemical approaches as a large variety of biological functions such as protein tags, fluorophores, and enzymes may be directly incorporated in a site-specific manner during magnetosome biomineralization. An alternative to the bacterial production of magnetosomes are biomimetic approaches, which aim to mimic the bacterial biomineralization pathway in vitro. In MTB a number of magnetosome proteins with putative functions in the biomineralization of the nanoparticles have been identified by genetic and biochemical approaches. The initial results obtained by several groups indicate that some of these proteins have an impact on nanomagnetite properties in vitro. In this article the key features of magnetosomes are discussed, an overview of their potential applications are given, and different strategies are proposed for the functionalization of magnetosome particles and for the biomimetism of their biomineralization pathway.

  6. Genetically Engineered Corn Rootworm Resistance: Potential for Reduction of Human Health Effects From Pesticides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective and Methods Insecticide use, grower preferences regarding genetically engineered (GE) corn resistant to corn rootworm (CRW), and the health effects of using various CRW insecticides (organophosphates, pyrethroids, fipronil and carbamates) are reviewed for current and future farm practices. Results Pest damage to corn has been reduced only one-third by insecticide applications. Health costs from insecticide use appear significant, but costs attributable to CRW control are not quantifiable from available data. Methods reducing health-related costs of insecticide-based CRW control should be evaluated. As a first step, organophosphate insecticide use has been reduced as they have high acute toxicity and risk of long-term neurological consequences. A second step is to use agents which more specifically target the CRW. Conclusion Whereas current insecticides may be poisonous to many species of insects, birds, mammals and humans, a protein derived from Bacillus thurigiensis and produced in plants via genetic modification can target the specific insect of CRW (Coleoptra), sparing other insect and non-insect species from injury.

  7. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion model

    Institute of Scientific and Technical Information of China (English)

    Haozhong HUANG; Wanhua SU

    2008-01-01

    The micro-genetic algorithm (μGA) as a highly effective optimization method, is applied to calibrate to a newly developed reduced chemical kinetic model (40 species and 62 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane to improve its autoignition predictions for different engine operating conditions. The seven kinetic parameters of the calibrated model are determined using a combination of the Micro-Genetic Algorithm and the SENKIN program of CHEMKIN chemical kinetics software package. Simulation results show that the autoignition predictions of the calibrated model agree better with those of the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model over the range of equivalence ratios from 0.1-1.3 and temperature from 300-3 000 K. The results of this study have demonstrated that the μGA is an effective tool to facilitate the calibration of a large number of kinetic parameters in a reduced kinetic model.

  9. Mutational breeding and genetic engineering in the development of high grain protein content.

    Science.gov (United States)

    Wenefrida, Ida; Utomo, Herry S; Linscombe, Steve D

    2013-12-04

    Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important

  10. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals.

    Science.gov (United States)

    Ng, I-Son; Tan, Shi-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-08-08

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. Microalgae can help mitigate greenhouse effect. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments and other valuable compounds. However, there are still some obstacles in developing microalgae-based biofuels and chemicals in industry Due to the relatively slow growth rate and high cultivation cost of microalgae, Therefore, screening of to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. For a powerful genetic screening, the resistance gene used should be efficient. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN and ZFN) used in editing the genomes of nuclear, mitochondria and chloroplast of microalgae are thoroughly surveyed. In the current scenario, insufficient genomic data will challenge the applications of such genome editing tools in microalgae. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. This article is protected by copyright. All rights reserved.

  11. 78 FR 51706 - Bayer CropScience LP; Determination of Nonregulated Status of Soybean Genetically Engineered for...

    Science.gov (United States)

    2013-08-21

    ... regulated article under our regulations governing the introduction of certain genetically engineered....aphis.usda.gov/biotechnology/not_reg.html under APHIS Petition Number 09-328-01p and are posted with the..., Biotechnology Environmental Analysis Branch, Environmental Risk Analysis Programs, Biotechnology Regulatory...

  12. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44 ▿

    Science.gov (United States)

    Chauhan, Archana; Layton, Alice C.; Williams, Daniel E.; Smartt, Abby E.; Ripp, Steven; Karpinets, Tatiana V.; Brown, Steven D.; Sayler, Gary S.

    2011-01-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids. PMID:21742869

  13. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Archana [ORNL; Layton, Alice [University of Tennessee, Knoxville (UTK); Williams, Daniel W [ORNL; Smart, Abby E. [University of Tennessee, Knoxville (UTK); Ripp, Steven Anthony [ORNL; Karpinets, Tatiana V [ORNL; Brown, Steven D [ORNL; Sayler, Gary Steven [ORNL

    2011-01-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of {approx}6.1 Mb sequence indicates that 30% of the traits are unique and distributed over 5 genomic islands, a prophage and two plasmids.

  14. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44 ▿

    OpenAIRE

    Chauhan, Archana; Layton, Alice C.; Williams, Daniel E.; Smartt, Abby E.; Ripp, Steven; Karpinets, Tatiana V.; Brown, Steven D.; Sayler, Gary S.

    2011-01-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.

  15. 'HoneySweet' (C5), the first genetically engineered Plum pox virus-resistant plum (Prunus domestica L.) cultivar

    Science.gov (United States)

    ‘HoneySweet’ plum was released by the U.S. Department of Agriculture, Agricultural Research Service, to provide U.S. growers and P. domestica plum breeders with a high fruit quality plum cultivar resistant to Plum pox virus (PPV). ‘HoneySweet’ was developed through genetic engineering utilizing the...

  16. Procedures and best management practices for genetically engineered traits in USDA/ARS germplasm and breeding lines

    Science.gov (United States)

    Two decades have passed since the commercialization in the U. S. of crops with genetically engineered (GE) traits. Today more than 80% of corn, soybean, canola, sugar beet and cotton acreage in the United States is planted to transgenic cultivars, but concerns exist regarding how best to manage the ...

  17. Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44.

    Science.gov (United States)

    Chauhan, Archana; Layton, Alice C; Williams, Daniel E; Smartt, Abby E; Ripp, Steven; Karpinets, Tatiana V; Brown, Steven D; Sayler, Gary S

    2011-09-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.

  18. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    Science.gov (United States)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  19. The Rock Engineering System (RES) applied to landslide susceptibility zonation of the northeastern flank of Etna: methodological approach and results

    Science.gov (United States)

    Apuani, Tiziana; Corazzato, Claudia

    2015-04-01

    Ground deformations in the northeastern flank of Etna are well known. Despite only a few landslide events have been documented, these have significantly involved and damaged lifelines and buildings. These events are mainly related to the activity of the volcano-tectonic structures and associated seismicity, as in the case of the 2002 reactivation of the Presa landslide during an increased activity of the Pernicana fault system. In order to highlight the areal distribution of potentially unstable slopes based on a detailed, site-specific study of the factors responsible for landslide, and to ultimately contribute to risk management, a landslide susceptibility analysis of the northeastern flank of Etna in the Pernicana area was carried out, and a susceptibility map at 1:10.000 scale was produced, extending over an area of 168 km2. Different methods are proposed in the literature to obtain the regional distribution of potentially unstable slopes, depending on the problem scale, the slope dynamic evolution in the geological context, and the availability of data. Among semi-quantitative approaches, the present research combines the Rock Engineering System (RES) methodology with parameter zonation mapping in a GIS environment. The RES method represents a structured approach to manage a high number of interacting factors involved in the instability problem. A numerically coded, site-specific interaction matrix (IM) analyzes the cause-effect relationship in these factors, and calculates the degree of interactivity of each parameter, normalized by the overall interactivity of the system (weight factor). In the specific Etna case, the considered parameters are: slope attitude, lithotechnical properties (lithology, structural complexity, soil and rock mass quality), land use, tectonic structures, seismic activity (horizontal acceleration) and hydrogeological conditions (groundwater and drainage). Thematic maps are prepared at 1:10.000 scale for each of these parameters, and

  20. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.