WorldWideScience

Sample records for genetic diversity pattern

  1. Original Paper Patterns of genetic structure and phenotypic diversity ...

    African Journals Online (AJOL)

    Patterns of genetic structure and phenotypic diversity in sorghum landraces in relation to farmers' management in Burkina Faso ... the role of farmer practices in phenotypic and genetic evolution of sorghum. ... varieties to marginal environments such as ...... Supporting the Convention on Biological ... A new method to.

  2. Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.

    Science.gov (United States)

    Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

    2011-01-01

    The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

  3. Assessment of the genetic diversity and pattern of relationship of ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... the hierarchical partitioning of genetic variation by AMOVA demonstrated ... sorghum using both phenotypic and molecular markers ... tained population breeding and hybrid development in ... countries and diverse geographic origins in West Africa and their ...... Evolution and the genetics of populations Vol.

  4. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antartica Desv.)

    NARCIS (Netherlands)

    van de Wouw, M.J.; Van Dijk, P.J.; Huiskes, A.H.L.

    2008-01-01

    Aim To determine patterns in diversity of a major Antarctic plant species, including relationships of Antarctic populations with those outside the Antarctic zone. Location Antarctic Peninsula, Maritime Antarctica, sub-Antarctic islands, Falkland Islands and South America. Methods Amplified fragment

  5. Genetic diversity for gliadin patterns of durum wheat landraces in the Northwest of Iran and Azerbaijan

    Directory of Open Access Journals (Sweden)

    Mohammad Zaefizadeh

    2010-12-01

    Full Text Available The objective of this study was to identify gliadin band patterns and the extent of genetic diversity in durum wheat genotypes from Northwestern Iran and the Republic of Azerbaijan. Gliadins from 46 landraces and four cultivars were evaluated through acid PAGE analyses. Sixty-six polymorphic bands and 81 patterns were identified. Twenty-four different motility bands and 22 patterns were found in the ω gliadin region with 14 polymorph bands and 20 patterns for α and γ gliadins, and 14 bands and 19 different patterns for β gliadins. The combination of these patterns generated 38 and 39 combinations for Gli-1 and Gli-2 loci, respectively. The genetic diversity index (H was higher for α gliadins (0.924, followed by ω and γ gliadins (0.899 and 0.878, respectively, and for β gliadin patterns (0.866. Extensive polymorphism (H = 0.875 was observed in four gliadin pattern regions, with higher genetic diversity in the Iranian landraces than in the Azerbaijani ones. Each genotype had special identifying patterns in the gliadin acid PAGE analysis, and cluster analysis based on Jaccard's similarity coefficients formed six groups. Gliadin has a simple, repeatable and economic analysis, and can be used in genetic studies

  6. Maize Leaf Epiphytic Bacteria Diversity Patterns Are Genetically Correlated with Resistance to Fungal Pathogen Infection

    Science.gov (United States)

    Plant leaves host a specific set of microbial epiphytes. These phyllosphere organisms form a large community, with annual crops alone covering millions of hectares each year. Host plant genetic factors and abiotic stresses such as UV-B are key in shaping patterns of epiphyte diversity; we analyzed...

  7. Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in eastern Kenya.

    Directory of Open Access Journals (Sweden)

    Vanesse Labeyrie

    Full Text Available Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the

  8. Periodic Pattern of Genetic and Fitness Diversity during Evolution of an Artificial Cell-Like System.

    Science.gov (United States)

    Ichihashi, Norikazu; Aita, Takuyo; Motooka, Daisuke; Nakamura, Shota; Yomo, Tetsuya

    2015-12-01

    Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution.

  9. Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations

    Science.gov (United States)

    2009-01-01

    Habitat fragmentation and a decrease in population size may lead to a loss in population genetic diversity. For the first time, the reduction in genetic diversity in the northernmost limit of natural occurence (southeastern Brazil) of Araucaria angustifolia in comparison with populations in the main area of the species continuous natural distribution (southern Brazil), was tested. The 673 AFLPs markers revealed a high level of genetic diversity for the species (Ht = 0.27), despite anthropogenic influence throughout the last century, and a decrease of H in isolated populations of southeastern Brazil (H = 0.16), thereby indicating the tendency for higher genetic diversity in remnant populations of continuous forests in southern Brazil, when compared to natural isolated populations in the southeastern region. A strong differentiation among southern and southeastern populations was detected (AMOVA variance ranged from 10%-15%). From Bayesian analysis, it is suggested that the nine populations tested form five “genetic clusters” (K = 5). Five of these populations, located in the northernmost limit of distribution of the species, represent three “genetic clusters”. These results are in agreement with the pattern of geographic distribution of the studied populations. PMID:21637518

  10. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    Science.gov (United States)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  11. Natural Allelic Diversity, Genetic Structure and Linkage Disequilibrium Pattern in Wild Chickpea

    Science.gov (United States)

    Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2014-01-01

    Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11–94%) along with a broader genetic base (13–78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding. PMID:25222488

  12. Patterns of genetic diversity of local pig populations in the State of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Elizabete Cristina da Silva

    2011-08-01

    Full Text Available This study estimated the genetic diversity and structure of 12 genetic groups (GG of locally adapted and specialized pigs in the state of Pernambuco using 22 microsatellite markers. Nine locally adapted breeds (Baé, Caruncho, Canastra, Canastrão, Mamelado, Moura, Nilo, Piau and UDB (Undefined Breed and 3 specialized breeds (Duroc, Landrace and Large White, totaling 190 animals, were analyzed. The Analysis of Molecular Variance (AMOVA showed that 3.2% of the total variation was due to differences between genetic groups, and 3.6% to differences between local and commercial pigs. One hundred and ninety eight alleles were identified and apart from the Large White breed, all GG presented Hardy-Weinberg Equilibrium deviations for some loci. The total and effective allele means were lower for Duroc (3.65 and 3.01 and higher for UDB (8.89 and 4.53 and Canastra (8.61 and 4.58. Using Nei's standard genetic distance and the UPGMA method, it was possible to observe that the Landrace breed was grouped with the local genetic groups Canastra, Moura, Canastrão, Baé and Caruncho. Due to the complex admixture pattern, the genetic variability of the 12 genetic groups can be analyzed by distributing the individuals into two populations as demonstrated by a Bayesian analysis, corroborating the results from AMOVA, which revealed a low level of genetic differentiation between the inferred populations.

  13. Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid.

    Science.gov (United States)

    Pandey, Madhav; Richards, Matt; Sharma, Jyotsna

    2015-12-01

    We investigated the patterns of genetic diversity and structure in seven disjunct populations of a rare North American orchid, Cypripedium kentuckiense by including populations that represented the periphery and the center of the its range. Eight nuclear and two chloroplast microsatellites were used. Genetic diversity was low across the sampled populations of C. kentuckiense based on both nuclear (average An = 4.0, Ho = 0.436, He = 0.448) and cpDNA microsatellites (average An = 1.57, Nh = 1.57 and H = 0.133). The number of private alleles ranged from one to four per population with a total of 17 private alleles detected at five nuclear microsatellites. One private allele at one cpDNA microsatellite was also observed. Although the absolute values for nuclear microsatellite based population differentiation were low (Fst = 0.075; ϕPT = 0.24), they were statistically significant. Pairwise Fst values ranged from 0.038 to 0.123 and each comparison was significant. We also detected isolation by distance with nDNA microsatellites based on the Mantel test (r(2) = 0.209, P = 0.05). STRUCTURE analysis and the neighbor joining trees grouped the populations similarly whereby the geographically proximal populations were genetically similar. Our data indicate that the species is genetically depauperate but the diversity is distributed more or less equally across its range. Population differentiation and isolation by distance were detectable, which indicates that genetic isolation is beginning to manifest itself across the range in this rare species.

  14. Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens

    Science.gov (United States)

    Parobek, Christian M.; Bailey, Jeffrey A.; Hathaway, Nicholas J.; Socheat, Duong; Rogers, William O.; Juliano, Jonathan J.

    2014-01-01

    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens – Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines. PMID:24743266

  15. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  16. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    Science.gov (United States)

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  17. Levels and Patterns of Genetic Diversity and Population Structure in Domestic Rabbits.

    Directory of Open Access Journals (Sweden)

    Joel M Alves

    Full Text Available Over thousands of years humans changed the genetic and phenotypic composition of several organisms and in the process transformed wild species into domesticated forms. From this close association, domestic animals emerged as important models in biomedical and fundamental research, in addition to their intrinsic economical and cultural value. The domestic rabbit is no exception but few studies have investigated the impact of domestication on its genetic variability. In order to study patterns of genetic structure in domestic rabbits and to quantify the genetic diversity lost with the domestication process, we genotyped 45 microsatellites for 471 individuals belonging to 16 breeds and 13 wild localities. We found that both the initial domestication and the subsequent process of breed formation, when averaged across breeds, culminated in losses of ~20% of genetic diversity present in the ancestral wild population and domestic rabbits as a whole, respectively. Despite the short time elapsed since breed diversification we uncovered a well-defined structure in domestic rabbits where the FST between breeds was 22%. However, we failed to detect deeper levels of structure, probably consequence of a recent and single geographic origin of domestication together with a non-bifurcating process of breed formation, which were often derived from crosses between two or more breeds. Finally, we found evidence for intrabreed stratification that is associated with demographic and selective causes such as formation of strains, colour morphs within the same breed, or country/breeder of origin. These additional layers of population structure within breeds should be taken into account in future mapping studies.

  18. Patterns and dynamics of genetic diversity in Plasmodium falciparum: what past human migrations tell us about malaria.

    Science.gov (United States)

    Mita, Toshihiro; Jombart, Thibaut

    2015-06-01

    Plasmodium falciparum is the main agent of malaria, one of the major human infectious diseases affecting millions of people worldwide. The genetic diversity of P. falciparum populations is an essential factor in the parasite's ability to adapt to changes in its environment, enabling the development of drug resistance and the evasion from the host immune system through antigenic variation. Therefore, characterizing these patterns and understanding the main drivers of the pathogen's genetic diversity can provide useful inputs for informing control strategies. In this paper, we review the pioneering work led by Professor Kazuyuki Tanabe on the genetic diversity of P. falciparum populations. In a first part, we recall basic results from population genetics for quantifying within-population genetic diversity, and discuss the main mechanisms driving this diversity. Then, we show how these approaches have been used for reconstructing the historical spread of malaria worldwide, and how current patterns of genetic diversity suggest that the pathogen followed our ancestors in their journey out of Africa. Because these results are robust to different types of genetic markers, they provide a baseline for predicting the pathogen's diversity in unsampled populations, and some useful elements for predicting vaccine efficacy and informing malaria control strategies.

  19. Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France.

    Science.gov (United States)

    Robuchon, Marine; Le Gall, Line; Mauger, Stéphane; Valero, Myriam

    2014-06-01

    We investigated patterns of genetic structure in two sister kelp species to explore how distribution width along the shore, zonation, latitudinal distribution and historical factors contribute to contrasting patterns of genetic diversity. We implemented a hierarchical sampling scheme to compare patterns of genetic diversity and structure in these two kelp species co-distributed along the coasts of Brittany (France) using a total of 12 microsatellites, nine for Laminaria hyperborea and 11 for Laminaria digitata, of which eight amplified in both species. The genetic diversity and connectivity of L. hyperborea populations were greater than those of L. digitata populations in accordance with the larger cross-shore distribution width along the coast and the greater depth occupied by L. hyperborea populations in contrast to L. digitata populations. In addition, marginal populations showed reduced genetic diversity and connectivity, which erased isolation-by-distance patterns in both species. As L. digitata encounters its southern range limit in southern Brittany (SBr) while L. hyperborea extends down to mid-Portugal, it was possible to distinguish the effect of habitat continuity from range edge effects. We found that L. digitata did not harbour high regional diversity at its southern edge, as expected in a typical rear edge, suggesting that refuges from the last glacial maximum for L. digitata were probably not located in SBr, but most likely further north. For both species, the highest levels of genetic diversity were found in the Iroise Sea and Morlaix Bay, the two regions in which they are being currently harvested. Preserving genetic diversity of these two foundation species in these areas should, thus, be a priority for the management of this resource in Brittany.

  20. Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia.

    Science.gov (United States)

    Alves, Isabel; Arenas, Miguel; Currat, Mathias; Sramkova Hanulova, Anna; Sousa, Vitor C; Ray, Nicolas; Excoffier, Laurent

    2016-04-01

    Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Interspecific patterns of genetic diversity in birds: correlations with extinction risk.

    Science.gov (United States)

    Evans, Simon R; Sheldon, Ben C

    2008-08-01

    Birds are frequently used as indicators of ecosystem health and are the most comprehensively studied class in the animal kingdom. Nevertheless, a comprehensive, interspecific assessment of the correlates of avian genetic diversity is lacking, even though indices of genetic diversity are of considerable interest in the conservation of threatened species. We used published data on variation at microsatellite loci from 194 bird species to examine correlates of diversity, particularly with respect to conservation status and population size. We found a significant decline in mean heterozygosity with increasing extinction risk, and showed, by excluding species whose heterozygosity values were calculated with heterospecific primers, that this relationship was not dependent on ascertainment bias. Results of subsequent regression analyses suggested that smaller population sizes of threatened species were largely responsible for this relationship. Thus, bird species at risk of extinction are relatively depauperate in terms of neutral genetic diversity, which is expected to make population recovery more difficult if it reflects adaptive genetic variation. Conservation policy will need to minimize further loss of diversity if the chances of saving threatened species are to be maximized.

  2. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species

    Science.gov (United States)

    Yan, Yu-Bin; Duke, Norm C.; Sun, Mei

    2016-01-01

    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata, and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  3. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species

    Directory of Open Access Journals (Sweden)

    Yu-Bin Yan

    2016-09-01

    Full Text Available Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, R. mucronata, and R. stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  4. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper.

    Science.gov (United States)

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-07-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes.

  5. Spatial pattern and genetic diversity estimates are linked in stochastic models of population differentiation

    Directory of Open Access Journals (Sweden)

    Diniz-Filho José Alexandre Felizola

    2000-01-01

    Full Text Available In the present study, we used both simulations and real data set analyses to show that, under stochastic processes of population differentiation, the concepts of spatial heterogeneity and spatial pattern overlap. In these processes, the proportion of variation among and within a population (measured by G ST and 1 - G ST, respectively is correlated with the slope and intercept of a Mantel's test relating genetic and geographic distances. Beyond the conceptual interest, the inspection of the relationship between population heterogeneity and spatial pattern can be used to test departures from stochasticity in the study of population differentiation.

  6. Genetic diversity and species pattern of Trichoderma and Hypocrea in Manipur using in silico analysis.

    Science.gov (United States)

    Kamala, Thongram; Devi, Sarangthem Indira; Thingnam, Gourshyam; Somkuwar, Bharat Gopalrao

    2013-01-01

    We investigated the occurrence and genetic diversity of Trichoderma and Hypocrea in Manipur which lies in the Indo-Burma biodiversity hot spot region. 65 Trichoderma isolates were identified at species level by morphological as well as sequence based analysis of the internal transcribed spacer region 1 and 4. Altogether 22 different species of Trichoderma and Hypocrea were found, of which Trichoderma harzianum represent the dominant species. Phylogenetic analysis reveals a clear cut distinction of strains isolated from various collection sites which further hints the need for detail study of Trichoderma on molecular level.

  7. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern.

    Directory of Open Access Journals (Sweden)

    Fatou Diouf

    Full Text Available Acacia senegal (L Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60% clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4. We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T, one in MSP1 (STM8789, MSP2 (ORS3359 and MSP3 (ORS3324. The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.

  8. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern.

    Science.gov (United States)

    Diouf, Fatou; Diouf, Diegane; Klonowska, Agnieszka; Le Queré, Antoine; Bakhoum, Niokhor; Fall, Dioumacor; Neyra, Marc; Parrinello, Hugues; Diouf, Mayecor; Ndoye, Ibrahima; Moulin, Lionel

    2015-01-01

    Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.

  9. Patterns of genetic diversity at the nine forensically approved STR loci in the Indian populations.

    Science.gov (United States)

    Dutta, Ranjan; Reddy, B Mohan; Chattopadhyay, P; Kashyap, V K; Sun, Guangyun; Deka, Ranjan

    2002-02-01

    Genetic diversity at the nine short tandem repeat (STR) loci, which are universally approved and widely used for forensic investigations, has been studied among nine Indian populations with diverse ethnic, linguistic, and geographic backgrounds. The nine STR loci were profiled on 902 individuals using fluorescent detection methods on an ABI377 System, with the aid of an Amp-F1 Profiler Plus Kit. The studied populations include two upper castes, Brahmin and Kayastha; a tribe, Garo, from West Bengal; a Hindu caste, Meitei, with historical links to Bengal Brahmins; a migrant group of Muslims; three tribal groups, Naga, Kuki and Hmar, from Manipur in northeast India; and a middle-ranking caste, Golla, who are seminomadic herders from Andhra Pradesh. Gene diversity analysis suggests that the average heterozygosity is uniformly high (>0.8) in the studied populations, with the coefficient of gene differentiation at 0.050 +/- 0.0054. Both neighbor-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA) trees based on DA distances bring out distinct clusters that are consistent with ethnic, linguistic, and/or geographic backgrounds of the populations. The fit of the Harpending and Ward model of regression of average heterozygosity on the gene frequency centroid is found to be good, and the observed outliers are consistent with the population structure and history of the studied populations. Our study suggests that the nine STR loci, used so far mostly for forensic investigations, can be used fruitfully for microevolutionary studies as well, and for reconstructing the phylogenetic history of human populations, at least at the local level.

  10. A First Assessment of Mycobacterium tuberculosis Genetic Diversity and Drug-Resistance Patterns in Twelve Caribbean Territories

    Directory of Open Access Journals (Sweden)

    Julie Millet

    2014-01-01

    Full Text Available With the exception of some French-speaking islands, data on tuberculosis (TB in the Caribbean are scarce. In this study, we report a first assessment of genetic diversity of a convenience sample of Mycobacterium tuberculosis strains received from twelve Caribbean territories by spoligotyping and describe their drug-resistance patterns. Of the 480 isolates, 40 (8.3% isolates showed resistance to at least one anti-TB drug. The proportion of drug-resistant strains was significantly higher in The Bahamas (21.4%; P=0.02, and Guyana (27.5%; P<0.0001, while it was significantly lower in Jamaica (2.4%; P=0.03 than in other countries of the present study. Regarding genetic diversity, 104 distinct spoligotype patterns were observed: 49 corresponded to clustered strains (2 to 93 strains per cluster, while 55 remained unclustered among which 16 patterns were not reported previously. Combining the study results with regional data retrieved from the international SITVIT2 database underlined a connection between frequency of certain M. tuberculosis phylogenetic lineages and the language spoken, suggesting historical (colonial and ongoing links (trade, tourism, and migratory flows with European countries with which they shared a common past.

  11. Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone

    KAUST Repository

    Varela-Álvarez, Elena

    2015-01-11

    Knowledge of spatial patterns of genetic differentiation between populations is key to understanding processes in evolutionary history of biological species. Caulerpa is a genus of marine green algae, which has attracted much public attention, mainly because of the impacts of invasive species in the Mediterranean. However, very little is known about the ecological and evolutionary history of the Mediterranean native Caulerpa prolifera, a species which is currently found at sites distributed worldwide. C. prolifera provides a good model to explore the patterns of genetic diversity at different scales across the Mediterranean and Atlantic area. This study aims to investigate the biogeographical patterns of diversity and differentiation of C. prolifera in the Mediterranean, with special focus on the Mediterranean/Atlantic transition zone. We used two nuclear (ITS rDNA and the hypervariable microsatellite locus CaPr_J2) and one chloroplast (tufA) DNA markers on samples of C. prolifera from its entire range. Analyses of 51 sequences of the cpDNA tufA of C. prolifera, 87 ITS2 sequences and genotypes of 788 ramets of C. prolifera for the locus CaPr_J2 revealed three different biogeographical areas: West Atlantic, East Atlantic and a larger area representing the Mediterranean, the Mediterranean/Atlantic transition zone and a Pacific site (Bali). It was found out that the Mediterranean/Atlantic transition zone is a biogeographical boundary for C. prolifera. A lack of connectivity was revealed between Atlantic and Mediterranean types, and identical sequences found in the Mediterranean and Indo-Pacific suggest either recent gene flow along the Red Sea connection or a possible ancient Indo-Pacific origin.

  12. Salmonella Indiana as a cause of abortion in ewes: Genetic diversity and resistance patterns.

    Science.gov (United States)

    Luque, I; Echeita, A; León, J; Herrera-León, S; Tarradas, C; González-Sanz, R; Huerta, B; Astorga, R J

    2009-03-02

    Salmonella enterica subspecies enterica Indiana, a food-borne serovar uncommon in most countries, was responsible for an outbreak of abortion in a flock of Lacaune dairy ewes in southern Spain. Drinking water and feedstuff samples were analysed in an attempt to determine the source of the infection. Pigeons (Columba livia) and turtledoves (Streptopelia turtur) in close contact with the ewes were captured and examined for the bacterium. Seventeen S. Indiana strains were isolated from the ewes and wild birds and the genetic similarity among them analysed by Pulsed Field Gel Electrophoresis (PFGE) after the digestion of their genomic DNA with the restriction enzyme XbaI. The results suggest the wild birds might be responsible for the outbreak in the ewes. The strains recovered were fully susceptible to 15 out of the 16 antimicrobial agents tested: ampicillin, amoxycillin clavulanate, cephalothin, ceftriaxone, gentamicin, neomycin, streptomycin, tetracycline, ciprofloxacin, enrofloxacin, sulphonamides, trimethoprim-sulphamethoxazole, apramycin, colistin and chloramphenicol. Differences in the resistance pattern to nalidixic acid were observed; 11 strains (64.7%) were nalidixic acid resistant (R-Nx) and 6 (35.3%) sensitive (S-Nx). Among the R-Nx strains, a substitution of Gly to Cys at position 81 (Gly81àCys) of the gyrA gene in 10 strains isolated from wild birds and ovine foetuses, and of Asp to Tyr at position 87 (Asp87àTyr) in one strain isolated from ewe faeces, were revealed by sequencing the gene. To control the outbreak, enrofloxacin treatment was administered for 5 days. The same therapy was used to prevent infection during following gestation cycles, administering the antimicrobial agent at presentation and over 4 weeks before birth. Anti-bird meshes and closed drinking and feeding troughs were also installed to prevent further contact of the ewes with wild birds.

  13. Patterns of genetic and morphometric diversity in the marbled crab (Pachygrapsus marmoratus, Brachyura, Grapsidae) populations across the Tunisian coast

    Institute of Scientific and Technical Information of China (English)

    Temim Deli; Hiba Bahles; Khaled Said; Noureddine Chatti

    2015-01-01

    The present study reports on population structure analysis of the marbled crabPachygrapsus marmoratus (Fabricius, 1787) from the Tunisian coast, an appropriate location to study biogeographical processes because of the presence of a well-known discontinuous biogeographic area (the Siculo-Tunisian Strait). Patterns of morphological and genetic variation of this highly dispersive and continuously distributed decapod species were assessed among its geographically close populations which cover almost the entire Tunisian coastline. A total of 386 specimens from nine sites were collected and examined for morphometric variability at 14 morphometric traits. The results of multivariate analyses of linear morphometric traits showed the existence of sexual dimorphism in this species by PERMANOVA (Permutational multivariate analysis of variance). In addition, both CDA (Canonical discriminant analysis) and NPMANOVA (Non parametric MANOVA test) analyses revealed statistically significant differences among the studied locations for both sexes. Overall, the outcome of CDA analysis showed that over 87% of individuals could be assigned correctly to three regional groups in both sexes (North, Center and South). Specifically, SIMPER (Similarity Percentages) analysis showed that carapace length, carapace width and merus length were major contributors to the morphometric separation between populations. The pattern of phenotypic variation suggested by morphometric analyses was found to be highly discordant with that suggested by the analysis of a mitochondrial marker (cytochrome oxidase I, COI). Indeed, the results inferred from restriction fragment analysis of the COI in 180 crabs, suggested high genetic homogeneity. Very low levels of haplotype diversity (h) were found in almost all the studied populations, associated with non significant genetic distances for nearly all population comparisons. Explanations to these morphometric and mtDNA patterns as well as the discrepancy between

  14. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping

    Science.gov (United States)

    In recent years, an extensive collection of Toxoplasma gondii samples have been typed by the multilocus PCR-RFLP method using a standardized set of 10 genetic markers. Here we summarize the data reported until the end of 2012. A total of 1457 samples were typed into 189 genotypes. Overall, only a fe...

  15. Regionally and climatically restricted patterns of distribution of genetic diversity in a migratory bat species, Miniopterus schreibersii (Chiroptera: Vespertilionidae

    Directory of Open Access Journals (Sweden)

    Çoraman Emrah

    2008-07-01

    Full Text Available Abstract Background Various mechanisms such as geographic barriers and glacial episodes have been proposed as determinants of intra-specific and inter-specific differentiation of populations, and the distribution of their genetic diversity. More recently, habitat and climate differences, and corresponding adaptations have been shown to be forces influencing the phylogeographic evolution of some vertebrates. In this study, we examined the contribution of these various factors on the genetic differentiation of the bent-winged bat, Miniopterus schreibersii, in southeastern Europe and Anatolia. Results and conclusion Our results showed differentiation in mitochondrial DNA coupled with weaker nuclear differentiation. We found evidence for restriction of lineages to geographical areas for hundreds of generations. The results showed that the most likely ancestral haplotype was restricted to the same geographic area (the Balkans for at least 6,000 years. We were able to delineate the migration routes during the population expansion process, which followed the coasts and the inland for different nested mitochondrial clades. Hence, we were able to describe a scenario showing how multiple biotic and abiotic events including glacial periods, climate and historical dispersal patterns complemented each other in causing regional and local differentiation within a species.

  16. The use of protein patterns in genetic diversity analysis in some Brassica napus cultivars

    Directory of Open Access Journals (Sweden)

    Roya Razavizadeh

    2013-11-01

    Full Text Available In this study, protein variations of seeds and five-day old cotyledonal leaves of four selected Brassica napus cultivars including Elite, Ocapy, Tasilo and Zarfam were analyzed by SDS-PAGE to identify protein markers. The amount of total soluble protein of seed storage proteins did not show significant differences in all cultivars whereas it was different in cotyledonal leaves. Protein patterns of seeds and cotyledonal leaves showed significant differences using SDS-PAGE and consequence analysis of bands by ImageJ program. Relative expression of six protein bands in seeds and five-day old cotyledonal leaves were significantly different. Three protein markers were identified by protein patterns of seed and cotyledonal leaves. The results of relationship analysis based on presence and absence of the specific protein bands in protein pattern of seed storage proteins showed that Tasilo and Elite cultivars had the highest similarities.

  17. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity.

    Science.gov (United States)

    Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms.

  18. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal.

    Directory of Open Access Journals (Sweden)

    Evert Thomas

    Full Text Available Cacao (Theobroma cacao L. is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ

  19. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal.

    Science.gov (United States)

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.

  20. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez-Pérez

    Full Text Available The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA of four core housekeeping genes (rrs, gyrB, rpoB and rpoD. A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1; P. fluorescens, P. lutea and P. syringae (NG 2; and P. rhizosphaerae (NG 3. Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.

  1. Patterns of genetic diversity in Hepatozoon spp. infecting snakes from North Africa and the Mediterranean Basin.

    Science.gov (United States)

    Tomé, Beatriz; Maia, João P; Salvi, Daniele; Brito, José C; Carretero, Miguel A; Perera, Ana; Meimberg, Harald; Harris, David James

    2014-03-01

    Species of Hepatozoon Miller, 1908 are blood parasites most commonly found in snakes but some have been described from all tetrapod groups and a wide variety of hematophagous invertebrates. Previous studies have suggested possible associations between Hepatozoon spp. found in predators and prey. Particularly, some saurophagous snakes from North Africa and the Mediterranean region have been found to be infected with Hepatozoon spp. similar to those of various sympatric lizard hosts. In this study, we have screened tissue samples of 111 North African and Mediterranean snakes, using specific primers for the 18S rRNA gene. In the phylogenetic analysis, the newly-generated Hepatozoon spp. sequences grouped separately into five main clusters. Three of these clusters were composed by Hepatozoon spp. also found in snakes and other reptiles from the Mediterranean Basin and North Africa. In the other two clusters, the new sequences were not closely related to geographically proximate known sequences. The phylogeny of Hepatozoon spp. inferred here was not associated with intermediate host taxonomy or geographical distribution. From the other factors that could explain these evolutionary patterns, the most likely seems series of intermediate hosts providing similar ribotypes of Hepatozoon and a high prevalence of host shifts for Hepatozoon spp. This is indicated by ribotypes of high similarity found in different reptile families, as well as by divergent ribotypes found in the same host species. This potentially low host specificity has profound implications for the systematics of Hepatozoon spp.

  2. Genetic diversity and disease susceptibility.

    OpenAIRE

    Bodmer, W F

    1997-01-01

    The range of genetic diversity within human populations is enormous. Genetic susceptibility to common chronic disease is a significant part of this genetic diversity, which also includes a variety of rare clear-cut inherited diseases. Modern DNA-based genomic analysis can now routinely lead to the identification of genes involved in disease susceptibility, provides the basis for genetic counselling in affected families, and more widely for a genetically targeted approach to disease prevention...

  3. Multi-locus analysis reveals a different pattern of genetic diversity for mitochondrial and nuclear DNA between wild and domestic pigs in East Asia.

    Directory of Open Access Journals (Sweden)

    Yin-Qiu Ji

    Full Text Available BACKGROUND: A major reduction of genetic diversity in mtDNA occurred during the domestication of East Asian pigs. However, the extent to which genetic diversity has been lost in the nuclear genome is uncertain. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationships and demographic history of domestic pigs and their ancestors, wild boars, we investigated 14 nuclear markers (including 8 functional genes, 2 pseudogenes and 4 intergenic regions from 11 different chromosomes in East Asia-wide samples and pooled them with previously obtained mtDNA data for a combined analysis. PRINCIPAL FINDINGS: The results indicated that domestic pigs and wild boars possess comparable levels of nucleotide diversity across the nuclear genome, which is inconsistent with patterns that have been found in mitochondrial genome. CONCLUSIONS: This incongruence between the mtDNA and nuclear genomes is suggestive of a large-scale backcross between male wild boars and female domestic pigs in East Asia. Our data reveal the impacts of founder effects and backcross on the pig genome and help us better understand the complex demographic histories of East Asian pigs, which will be useful for future work on artificial selection.

  4. Patterns of genetic diversity resulting from bottlenecks in European black pine, with implications on local genetic conservation and management practices in Bulgaria

    NARCIS (Netherlands)

    Naydenov, Krassimir D.; Mladenov, Ivica; Alexandrov, Alexander; Naydenov, Michel K.; Gyuleva, Veselka; Goudiaby, Venceslas; Nikolić, Biljana; Kamary, Salim

    2015-01-01

    In the present study, we investigated the genetic structure and diversity of P.nigra populations in Bulgaria, using simple sequence nuclear repeats. Among-population structure was studied with distance and Bayesian frequency methods, assuming geometric distance and a “non-admixture” model. The “N

  5. Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons.

    Science.gov (United States)

    Curto, M; Puppo, P; Kratschmer, S; Meimberg, H

    2017-08-22

    Especially on islands closer to the mainland, such as the Canary Islands, different lineages that originated by multiple colonization events could have merged by hybridization, which then could have promoted radiation events (Herben et al., J Ecol 93: 572-575, 2005; Saunders and Gibson, J Ecol 93: 649-652, 2005; Caujapé-Castells, Jesters, red queens, boomerangs and surfers: a molecular outlook on the diversity of the Canarian endemic flora, 2011). This is an alternative to the scenario where evolution is mostly driven by drift (Silvertown, J Ecol 92: 168-173, 2004; Silvertown et al., J Ecol 93: 653-657, 2005). In the former case hybridization should be reflected in the genetic structure and diversity patterns of island species. In the present work we investigate Micromeria from the Canary Islands by extensively studying their phylogeographic pattern based on 15 microsatellite loci and 945 samples. These results are interpreted according to the hypotheses outlined above. Genetic structure assessment allowed us to genetically differentiate most Micromeria species and supported their current classification. We found that populations on younger islands were significantly more genetically diverse and less differentiated than those on older islands. Moreover, we found that genetic distance on younger islands was in accordance with an isolation-by-distance pattern, while on the older islands this was not the case. We also found evidence of introgression among species and islands. These results are congruent with a scenario of multiple colonizations during the expansion onto new islands. Hybridization contributes to the grouping of multiple lineages into highly diverse populations. Thus, in our case, islands receive several colonization events from different sources, which are combined into sink populations. This mechanism is in accordance with the surfing syngameon hypothesis. Contrary to the surfing syngameon current form, our results may reflect a slightly different

  6. Patterns of chloroplast DNA polymorphism in the endangered polyploid Centaurea borjae (Asteraceae): Implications for preserving genetic diversity

    Institute of Scientific and Technical Information of China (English)

    Lua LOPEZ; Rodolfo BARREIRO

    2013-01-01

    A previous study with amplified fragment length polymorphism (AFLP) fingerprints found no evidence of genetic impoverishment in the endangered Centaurea borjae and recommended that four management units (MUs) should be designated.Nevertheless,the high ploidy (6x) of this narrow endemic plant suggested that these conclusions should be validated by independent evidence derived from non-nuclear markers.Here,the variable trnT-F region of the plastid genome was sequenced to obtain this new evidence and to provide an historical background for the current genetic structure.Plastid sequences revealed little genetic variation; calling into question the previous conclusion that C.borjae does not undergo genetic impoverishment.By contrast,the conclusion that gene flow must be low was reinforced by the strong genetic differentiation detected among populations using plastid sequences (global FST =0.419).The spatial arrangement of haplotypes and diversity indicate that the populations currently located at the center of the species range are probable sites of long-persistence whereas the remaining sites may have derived from a latter colonization.From a conservation perspective,four populations contributed most to the allelic richness of the plastid genome of the species and should be given priority.Combined with previous AFLP results,these new data recommended that five,instead of four,MUs should be established.Altogether,our study highlights the benefits of combining markers with different modes of inheritance to design accurate conservation guidelines and to obtain clues on the evolutionary processes behind the present-day genetic structures.

  7. Genetic diversity and spatial correlation patterns unravel the biogeographical history of the European sweet vernal grasses (Anthoxanthum L., Poaceae).

    Science.gov (United States)

    Pimentel, Manuel; Sahuquillo, Elvira; Catalán, Pilar

    2007-08-01

    Different processes have contributed to shaping the present distribution of the European biotas. Up to three different tertiary- to quaternary-time-scale evolutionary scenarios have been proposed to interpret the divergence and genetic structuring of plant species in Europe. In the present study, the Amplified Fragment Length Polymorphisms technique has been used to unravel the species and regional phylogeography of the European sweet vernal grasses (Anthoxanthum L. Poaceae). Forty-six populations belonging to all seven European species of Anthoxanthum and covering a broad geographical and ecological range were selected. Different phylogeography and population genetics diversity and structure estimates indicated a clear divergence of old Messinian Mediterranean lineages, followed by a pre-Pliocene split between Mediterranean annuals and Eurosiberian perennials and a more recent Pleistocene differentiation of Arctic-Alpine, Atlantic and Submediterranean diploid to polyploid landraces. Regional and population correlation tests between geographical and genetic distances allowed to postulate distinct pre- and post-glacial colonization pathways across Europe for the taxa of this widespread genus.

  8. Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations.

    Science.gov (United States)

    Geoffroy, Alexandre; Destombe, Christophe; Kim, Byeongseok; Mauger, Stéphane; Raffo, María Paula; Kim, Myung Sook; Le Gall, Line

    2016-08-01

    The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so-called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species.

  9. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent

    Science.gov (United States)

    Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094

  10. Variation and inheritance pattern in cone and seed characteristics of Scots pine (Pinus sylvestris L.) for evaluation of genetic diversity.

    Science.gov (United States)

    Sevik, Hakan; Topaçoğlu, Osman

    2015-09-01

    Scots pine (Pinus sylvestris L.) is one of the most common and important forest tree species in Turkey due to usefulness of its wood to many commercial uses. This species is classified as one of the economically important tree species for Turkish Forestry in the "National Tree Breeding and Seed Production Program". The objective of the present study was to investigate variation and inheritance pattern in cone and seed characteristics of Scots pine and to evaluate variation in cone and seed characters within and among clones and grafts. The results showed that maximum CV among the clones was found for SWe (21.95), FS (16.99) and CWe (16.88). According to the results of SAS, variation between the clones is averaged at 19.2% and variation within the clones is averaged at 24.4 %. Variation between the clones ranged from 3.6% (SW) to 34.5% (TC) and variation within the clones ranged from 12.3% (SW) to 38.1% (WL). For CW, AL, AW, WW and TC, genetic variation among clones was higher than within clones. When the results of study like compared with results obtained from natural populations, it was seen that genetic variability in seed orchard which was subjected to study was quite low. This case may have dangerous results for the future of forests.

  11. Genetic diversity in aspen and its relation to arthropod abundance.

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  12. Genetic diversity in Entamoeba histolytica

    Indian Academy of Sciences (India)

    C Graham Clark; Mehreen Zaki; Ibne Karim Md Ali

    2002-11-01

    Genetic diversity within Entamoeba histolytica led to the re-description of the species 10 years ago. However, more recent investigation has revealed significant diversity within the re-defined species. Both protein-coding and non-coding sequences show variability, but the common feature in all cases is the presence of short tandem repeats of varying length and sequence. The ability to identify strains of E. histolytica may lead to insights into the population structure and epidemiology of the organism.

  13. On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004.

    Directory of Open Access Journals (Sweden)

    Marc W Allard

    Full Text Available Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis. Understanding the evolution and diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S. Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE pattern JEGX01.0004 and close relatives, and determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin, S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n = 366. Twenty-one of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid changes changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid pSEEE3072_19 (similar to pSENV, plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and pSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (∼4.9 mbp and S. Gallinarum smaller (4.55 mbp when compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be useful markers for the development of rapid surveillance

  14. Genetic diversity in Trichomonas vaginalis.

    Science.gov (United States)

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations.

  15. Patterns of Genetic and Morphometric Diversity in Baobab (Adansonia digitata) Populations Across Different Climatic Zones of Benin (West Africa)

    OpenAIRE

    Assogbadjo, A. E. (A. E.); Kyndt, T.; Sinsin, B.; Gheysen, G.; P.Van Damme

    2006-01-01

    • Background and Aims Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin.

  16. Divergent ecological histories of two sister Antarctic krill species led to contrasted patterns of genetic diversity in their heat-shock protein (hsp70) arsenal.

    Science.gov (United States)

    Papot, Claire; Cascella, Kévin; Toullec, Jean-Yves; Jollivet, Didier

    2016-03-01

    The Arctic and the Antarctic Peninsula are currently experiencing some of the most rapid rates of ocean warming on the planet. This raises the question of how the initial adaptation to extreme cold temperatures was put in place and whether or not directional selection has led to the loss of genetic variation at key adaptive systems, and thus polar species' (re)adaptability to higher temperatures. In the Southern Ocean, krill represents the most abundant fauna and is a critical member at the base of the Antarctic food web. To better understand the role of selection in shaping current patterns of polymorphisms, we examined genetic diversity of the cox-1 and hsp70 genes by comparing two closely related species of Euphausiid that differ in ecology. Results on mtcox-1 agreed with previous studies, indicating high and similar effective population sizes. However, a coalescent-based approach on hsp70 genes highlighted the role of positive selection and past demographic changes in their recent evolution. Firstly, some form of balancing selection was acting on the inducible isoform C, which reflected the maintenance of an ancestral adaptive polymorphism in both species. Secondly, E. crystallorophias seems to have lost most of its hsp70 diversity because of a population crash and/or directional selection to cold. Nonsynonymous diversities were always greater in E. superba, suggesting that it might have evolved under more heterogeneous conditions. This can be linked to species' ecology with E. superba living in more variable pelagic conditions, while E. crystallorophias is strictly associated with continental shelves and sea ice.

  17. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity

    Directory of Open Access Journals (Sweden)

    Carla Sousa-Santos

    2016-02-01

    Full Text Available Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary

  18. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity.

    Science.gov (United States)

    Sousa-Santos, Carla; Robalo, Joana I; Pereira, Ana M; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  19. A molecular analysis of the patterns of genetic diversity in local chickens from western Algeria in comparison with commercial lines and wild jungle fowls.

    Science.gov (United States)

    Mahammi, F Z; Gaouar, S B S; Laloë, D; Faugeras, R; Tabet-Aoul, N; Rognon, X; Tixier-Boichard, M; Saidi-Mehtar, N

    2016-02-01

    The objectives of this study were to characterize the genetic variability of village chickens from three agro-ecological regions of western Algeria: coastal (CT), inland plains (IP) and highlands (HL), to reveal any underlying population structure, and to evaluate potential genetic introgression from commercial lines into local populations. A set of 233 chickens was genotyped with a panel of 23 microsatellite markers. Geographical coordinates were individually recorded. Eight reference populations were included in the study to investigate potential gene flow: four highly selected commercial pure lines and four lines of French slow-growing chickens. Two populations of wild red jungle fowls were also genotyped to compare the range of diversity between domestic and wild fowls. A genetic diversity analysis was conducted both within and between populations. Multivariate redundancy analyses were performed to assess the relative influence of geographical location among Algerian ecotypes. The results showed a high genetic variability within the Algerian population, with 184 alleles and a mean number of 8.09 alleles per locus. The values of heterozygosity (He and Ho) ranged from 0.55 to 0.62 in Algerian ecotypes and were smaller than values found in Jungle fowl populations and higher than values found in commercial populations. Although the structuring analysis of genotypes did not reveal clear subpopulations within Algerian ecotypes, the supervised approach using geographical data showed a significant (p Algeria are characterized by a high genetic diversity and must be safeguarded as an important reservoir of genetic diversity.

  20. Diversity of Individual Mobility Patterns

    CERN Document Server

    Yan, Xiao-Yong; Wang, Bing-Hong; Zhou, Tao

    2013-01-01

    Uncovering human mobility patterns is of fundamental importance to the understanding of epidemic spreading, urban transportation and other socioeconomic dynamics embodying spatiality and human travel. The observed scaling laws for aggregated data require a theoretical explanation of their underlying mechanism. According to the direct travel diaries of volunteers, we show the absence of scaling properties in the displacement distribution at the individual level, which unfortunately provides a complete contrast to most inferences and assumptions in the literature. The aggregated displacement distribution follows a power law with an exponential cutoff, which is analytically explained by the mixture nature of human travel under Maxwell-Boltzmann statistics. Our analysis provides an alternative way to bridge diverse patterns at the individual level and scaling laws at the population level.

  1. Global genetic diversity of Aedes aegypti.

    Science.gov (United States)

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  2. Understanding crop genetic diversity under modern plant breeding.

    Science.gov (United States)

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  3. Phylogenetic and genetic diversity analysis in Leptospira species based on the sequence homology pattern of 16S rRNA gene

    Directory of Open Access Journals (Sweden)

    Pasupuleti Sreenivasa Rao

    2013-08-01

    Full Text Available Leptospirosis is a bacterial zoonosis, caused by pathogenic spirochete which belongs to the genus Leptospira. It exists in diverse ecological habitats and affects almost all the mammals including humans. Several online databases like NCBI etc will provide the complete genomic sequence data of various Leptospira species. However, the Phylogenetic and genetic diversity Analysis in Leptospira species based on 16S rRNA gene has not studied in detail. Therefore the present study was conducted. Sequences of various species related to genus Leptospira obtained from the NCBI database etc and aligned (CLUSTAL_X. Two Phylogenetic trees were constructed (MEGA-5 in which the first one is related to various serovars of L. interrogans and the other is related to various species of Leptospira. The Phylogenetic trees revealed the relationship and genetic diversity of various serovars of L. interrogans and the other Leptospira species, with their nearest phylogenetic relatives. In the first tree, two major clades were observed which were named as A and B, whereas in the second tree, three major clades were observed and named as A, B and C respectively. Aquifex pyrophilus strain has been used for out grouping in both the trees. The genetic distance between the species in the phylogenetic tree is presented by a bar which represents 0.5 nucleotide substitutions per alignment position in the 16S rRNA gene sequence among the various serovars of L. interrogans while 0.05 nucleotide substitutions in case of various species related to the genus Leptospira. Thus, the findings from the above study confirm that the genus Leptospira exhibits genetic diversity in the 16S rRNA gene. [Int J Res Med Sci 2013; 1(4.000: 369-377

  4. Microbial diversity - insights from population genetics

    NARCIS (Netherlands)

    Mes, T.H.M.

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, Ne, is one of the parameters that determines population genetic

  5. Extreme genetic diversity in asexual grass thrips populations.

    Science.gov (United States)

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.

  6. Spatial patterns of species diversity in Kenya

    NARCIS (Netherlands)

    Oindo, B.O.

    2001-01-01

    The most striking feature of Earth is the existence of life and the most striking feature of life is its diversity. Explaining patterns of species diversity is one of the most complex problems in ecology. This is because diversity is usually the outcome of many contributing factors whose relative im

  7. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    Science.gov (United States)

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  8. Global patterns of amphibian phylogenetic diversity

    DEFF Research Database (Denmark)

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index...... successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages...

  9. Genetic diversity and population structure in Meconopsis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... including the populations distributed in same location together in every group. ... Key words: Meconopsis quintuplinervia Regel, genetic diversity, random amplified ..... in its original center, and Banma population located in ...

  10. Molecular genetics of human pigmentation diversity

    National Research Council Canada - National Science Library

    Sturm, Richard A

    2009-01-01

    The genetic basis underlying normal variation in the pigmentary traits of skin, hair and eye colour has been the subject of intense research directed at understanding the diversity seen both between...

  11. Genetic diversity patterns and functional traits of Bradyrhizobium strains associated with Pterocarpus officinalis Jacq. in Caribbean islands and Amazonian forest (French Guiana).

    Science.gov (United States)

    Le Roux, Christine; Muller, Félix; Bouvet, Jean-Marc; Dreyfus, Bernard; Béna, Gilles; Galiana, Antoine; Bâ, Amadou M

    2014-08-01

    Pterocarpus officinalis Jacq. is a legume tree native to the Caribbean islands and South America growing as a dominant species in swamp forests. To analyze (i) the genetic diversity and (ii) the symbiotic properties of its associated nitrogen-fixing soil bacteria, root nodules were collected from P. officinalis distributed in 16 forest sites of the Caribbean islands and French Guiana. The sequencing of the 16S-23S ribosomal RNA intergenic spacer region (ITS) showed that all bacteria belonged to the Bradyrhizobium genus. Bacteria isolated from insular zones showed very close sequence homologies with Bradyrhizobium genospecies V belonging to the Bradyrhizobium japonicum super-clade. By contrast, bacteria isolated from continental region displayed a larger genetic diversity and belonged to B. elkanii super-clade. Two strains from Puerto Rico and one from French Guiana were not related to any known sequence and could be defined as a new genospecies. Inoculation experiments did not show any host specificity of the Bradyrhizobium strains tested in terms of infectivity. However, homologous Bradyrhizobium sp. strain-P. officinalis provenance associations were more efficient in terms of nodule production, N acquisition, and growth than heterologous ones. The dominant status of P. officinalis in the islands may explain the lower bacterial diversity compared to that found in the continent where P. officinalis is associated with other leguminous tree species. The specificity in efficiency found between Bradyrhizobium strains and host tree provenances could be due to a coevolution process between both partners and needs to be taken in consideration in the framework of rehabilitation plantation programs.

  12. Evolution and genetic diversity of Theileria.

    Science.gov (United States)

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development.

  13. Genetic diversity of 11 European pig breeds

    NARCIS (Netherlands)

    Lavall, G.; Iannuccelli, N.; Legault, C.; Milan, D.; Groenen, M.A.M.; Andersson, L.; Fredholm, M.; Geldermann, H.; Foulley, J.L.; Chevalet, C.; Ollivier, L.

    2000-01-01

    A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosi

  14. COMPARITIVE GENETIC DIVERSITY ANALYSIS OF OAT (Avena ...

    African Journals Online (AJOL)

    knsccf

    Equivalence was appraised between phenotypic and molecular markers (ISSR) to analyze the genetic diversity of 20 ... Country of origin. Pedigree ... explain between and within geographical variation and granting ..... JM (2008). Development of PCR-based SCAR and ... Genetic. Resources and Crop Evolution, 56:465–480.

  15. Genetic diversity in diploid vs. tetraploid Rorippa amphibia (Brassicaceae)

    NARCIS (Netherlands)

    Luttikhuizen, P.C.; Stift, M.; Kuperus, P.; van Tienderen, P.H.

    2007-01-01

    The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin

  16. Structural and genetic diversity in antibody repertoires from diverse species.

    Science.gov (United States)

    de los Rios, Miguel; Criscitiello, Michael F; Smider, Vaughn V

    2015-08-01

    The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.

  17. Microbial diversity--insights from population genetics.

    Science.gov (United States)

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  18. Population Structure, Genetic Diversity, Effective Population Size, Demographic History and Regional Connectivity Patterns of the Endangered Dusky Grouper, Epinephelus marginatus (Teleostei: Serranidae), within Malta's Fisheries Management Zone.

    Science.gov (United States)

    Buchholz-Sørensen, Molly; Vella, Adriana

    2016-01-01

    The objective of this study is to describe the genetic population structure and demographic history of the endangered marine fish, Epinephelus marginatus, within Malta's Fisheries Management Zone for the purpose of localised conservation planning. Epinephelus marginatus is a long-lived, sedentary, reef-associated protogynous hermaphrodite with high commercial and recreational value that is at risk of extinction throughout its global distribution. Based on global trends, population substructuring and gaps in local knowledge this has led to an increased interest in evaluation of local stock. Assessment of Maltese demography was based on historical and contemporary catch landings data whilst genetic population structure and regional connectivity patterns were evaluated by examining 175 individuals collected within the central Mediterranean region between 2002 and 2009 using 14 nuclear microsatellite loci. Demographic stock assessment of Maltese E. marginatus' revealed a 99% decline in catch landings between 1947 and 2009 within the Fisheries Management Zone. A contemporary modest mean size was observed, 3 ± 3 kg, where approximately 17% of the population was juvenile, 68% female/sex-changing and 15% were male with a male-to-female sex ratio of 1:5. Genetic analysis describes the overall population of E. marginatus' within the Fisheries Management Zone as decreasing in size (ƟH = 2.2), which has gone through a significant size reduction in the past (M = 0.41) and consequently shows signs of moderate inbreeding (FIS = 0.10, p < 0.001) with an estimated effective population size of 130 individuals. Results of spatially explicit Bayesian genetic cluster analysis detected two geographically distinct subpopulations within Malta's Fisheries Management Zone and that they are connected to a larger network of E. marginatus' within the Sicily Channel. Results suggest conservation management should be designed to reflect E. marginatus' within Malta's Fisheries Management Zone

  19. Population Structure, Genetic Diversity, Effective Population Size, Demographic History and Regional Connectivity Patterns of the Endangered Dusky Grouper, Epinephelus marginatus (Teleostei: Serranidae, within Malta's Fisheries Management Zone.

    Directory of Open Access Journals (Sweden)

    Molly Buchholz-Sørensen

    Full Text Available The objective of this study is to describe the genetic population structure and demographic history of the endangered marine fish, Epinephelus marginatus, within Malta's Fisheries Management Zone for the purpose of localised conservation planning. Epinephelus marginatus is a long-lived, sedentary, reef-associated protogynous hermaphrodite with high commercial and recreational value that is at risk of extinction throughout its global distribution. Based on global trends, population substructuring and gaps in local knowledge this has led to an increased interest in evaluation of local stock. Assessment of Maltese demography was based on historical and contemporary catch landings data whilst genetic population structure and regional connectivity patterns were evaluated by examining 175 individuals collected within the central Mediterranean region between 2002 and 2009 using 14 nuclear microsatellite loci. Demographic stock assessment of Maltese E. marginatus' revealed a 99% decline in catch landings between 1947 and 2009 within the Fisheries Management Zone. A contemporary modest mean size was observed, 3 ± 3 kg, where approximately 17% of the population was juvenile, 68% female/sex-changing and 15% were male with a male-to-female sex ratio of 1:5. Genetic analysis describes the overall population of E. marginatus' within the Fisheries Management Zone as decreasing in size (ƟH = 2.2, which has gone through a significant size reduction in the past (M = 0.41 and consequently shows signs of moderate inbreeding (FIS = 0.10, p < 0.001 with an estimated effective population size of 130 individuals. Results of spatially explicit Bayesian genetic cluster analysis detected two geographically distinct subpopulations within Malta's Fisheries Management Zone and that they are connected to a larger network of E. marginatus' within the Sicily Channel. Results suggest conservation management should be designed to reflect E. marginatus' within Malta's Fisheries

  20. Biodiversity assessment in forests - from genetic diversity to landscape diversity

    Directory of Open Access Journals (Sweden)

    Granke O

    2009-01-01

    Full Text Available Assessing biodiversity in forests requires a reliable and sustainable monitoring concept, which must include all levels of diversity, the genetic, the species and the landscape level. Diversity studies should not be reduced to quantitative analysis, but qualitative interpretations are an important part for the understanding of the results. Also, the linkage of terrestrial data and remote sensing data as well the implementation of abiotic and biotic data collected on existing monitoring systems are useful sources to analyse cause-effect relationships and interactions between the different aspects of diversity.

  1. Nephronophthisis: A Genetically Diverse Ciliopathy

    Directory of Open Access Journals (Sweden)

    Roslyn J. Simms

    2011-01-01

    Full Text Available Nephronophthisis (NPHP is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10–15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.

  2. Eco-geographic Distribution and Microcenters of Genetic Diversity in ...

    African Journals Online (AJOL)

    Eco-geographic Distribution and Microcenters of Genetic Diversity in Faba Bean ... Ethiopia is considered an important center of secondary diversity for both ... the microcenter of genetic diversity for both crops may be located in the southern ...

  3. Continuous within-plant variation as a source of intraspecific functional diversity: Patterns, magnitude, and genetic correlates of leaf variability in Helleborus foetidus (Ranunculaceae).

    Science.gov (United States)

    Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar

    2015-02-01

    Continuous within-plant variation in quantitative traits of reiterated, homologous structures is a component of intraspecific variation, but its contribution to functional diversity remains largely unexplored. For the perennial Helleborus foetidus, we measured functional leaf traits to quantify the contribution of within-plant variation to intraspecific functional variance and evaluate whether within-plant variability itself deserves separate consideration. Within-individual variation in eight leaf traits was quantified for 138 plants sampled from 10 widely spaced locations in the Sierra de Cazorla, southeastern Spain. An amplified fragment length polymorphism (AFLP) technique was used to look for associations between within-plant variability and specific AFLP markers. Leaflets from basal positions in ramets were longer, heavier, had greater surface area and larger stomata, and lower specific area, stomatal index, and stomatal density than those from distal positions. Continuous variation between leaves from the same ramet was the main source of population-wide variance for most traits. Within-plant variability differed among populations. Individuals differed in within-plant variability, which was largely independent of trait means and associated with genetic characteristics. Up to four AFLP markers were associated with the within-plant variability level of a given leaf trait. Subindividual variability in continuous leaf traits was independent of plant means and related to genetic features. The within-individual component generally exceeded the between-individual component of intraspecific variance. Within-plant variation may broaden the ecological breadth and enhance stability and persistence of plant populations and communities and may provide novel insights when incorporated in trait-based community ecology models. © 2015 Botanical Society of America, Inc.

  4. Spatio-temporal patterns of an anthrax outbreak in white-tailed deer, Odocoileus virginanus, and associated genetic diversity of Bacillus anthracis.

    Science.gov (United States)

    Mullins, Jocelyn C; Van Ert, Matthew; Hadfield, Ted; Nikolich, Mikeljon P; Hugh-Jones, Martin E; Blackburn, Jason K

    2015-12-15

    Anthrax, a soil-borne zoonosis caused by the bacterium Bacillus anthracis, is enzootic in areas of North America with frequent outbreaks in west Texas. Despite a long history of study, pathogen transmission during natural outbreaks remains poorly understood. Here we combined case-level spatio-temporal analysis and high resolution genotyping to investigate anthrax transmission dynamics. Carcass locations from a single white-tailed deer, Odocoileus virginanus, outbreak were analyzed for spatial clustering using K-function analysis and directionality with trend surface analysis and the direction test. The directionalities were compared to results of high resolution genotyping. The results of the spatial clustering analyses, combined with deer movement data, suggest anthrax transmission events occur within limited spatial areas, with carcass locations occurring within the activity space of adjacent cases. The directionality of the outbreak paralleled adjacent dry river beds. Isolates from the outbreak were represented by a single genotype based on multiple locus variable number tandem repeat analysis (MLVA); four sub-genotypes were identified using single nucleotide repeat (SNR) analysis. Areas of high transmission agreed spatially with areas of higher SNR genetic diversity; however, SNRs did not provide clear evidence of linear transmission. Overlap of case home ranges provides spatial and temporal support for localized transmission, which may include the role of necrophagous or hematophagous flies in outbreaks in this region. These results emphasize the need for active surveillance and prompt cleanup of anthrax carcasses to control anthrax both during outbreaks and between seasons.

  5. Mapping global diversity patterns for migratory birds.

    Directory of Open Access Journals (Sweden)

    Marius Somveille

    Full Text Available Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world's birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective.

  6. Mapping global diversity patterns for migratory birds.

    Science.gov (United States)

    Somveille, Marius; Manica, Andrea; Butchart, Stuart H M; Rodrigues, Ana S L

    2013-01-01

    Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world's birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes) where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective.

  7. Chemical analyses, antibacterial activity and genetic diversity ...

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... Key words: Citrus, genetic diversity, ISSR markers, chemical analyses, antibacterial. ... ment of DNA based marker systems has advanced our ... Total acidity of the juices was determined by titration method as ... Greek compressed C. sinensis. 37 163 ..... flavonoids have a large spectrum of biological activity.

  8. Genetic diversity among sorghum landraces and polymorphism ...

    African Journals Online (AJOL)

    1 Institute of Environment and Agricultural Research (INERA), BP 910 Bobo Dioulasso, ... This investigation was undertaken to study the genetic diversity among local ... resources could develop new and durable production systems. The biological basis of world food security .... Two control panel DNA samples were used in.

  9. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  10. Genetic diversity and molecular genealogy of local silkworm varieties

    Directory of Open Access Journals (Sweden)

    Zhouhe Du

    2013-03-01

    Full Text Available In order to explore the genetic diversity and systematic differentiation pattern among silkworm varieties, aiming to guide hybridization breeding, we sequenced a total of 72 Bmamy2 gene fragments from local silkworm varieties. The analysis of nucleotide sequence diversity and systematic differentiation indicated that there was rich genovariation in the sequencing region of Bmamy2 gene, and the base mutation rate is 5.6–8.2%, the haplotype diversity is 0.8294, and the nucleotide diversity is 0.0236±0.00122, suggesting Bmamy2 being a better marking gene with rich nucleotide sequence diversity, based on which the genetic diversity among different local silkworm varieties can be identified. The same heredity population structure is proclaimed by several analysis methods that every clade consisting of varieties from different geosystems and ecological types, while the varieties from the same geosystem and ecotype belong to different clades in the phylogeny. There is no population structure pattern that different varieties claded together according to geosystem or ecotype. It can be speculated that the silkworm origins from mixture of kinds of several voltinism mulberry silkworm, Bombyx mandarina, while the domestication events took place in several regions, from which the domesticated mulberry silkworms are all devoting to the domesticated silkworm population of today.

  11. Genetic diversity of eleven European pig breeds

    Directory of Open Access Journals (Sweden)

    Foulley Jean-Louis

    2000-03-01

    Full Text Available Abstract A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27, and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity.

  12. Vietnamese chickens: a gate towards Asian genetic diversity

    Directory of Open Access Journals (Sweden)

    Bed'Hom B

    2010-06-01

    Full Text Available Abstract Background Chickens represent an important animal genetic resource and the conservation of local breeds is an issue for the preservation of this resource. The genetic diversity of a breed is mainly evaluated through its nuclear diversity. However, nuclear genetic diversity does not provide the same information as mitochondrial genetic diversity. For the species Gallus gallus, at least 8 maternal lineages have been identified. While breeds distributed westward from the Indian subcontinent usually share haplotypes from 1 to 2 haplogroups, Southeast Asian breeds exhibit all the haplogroups. The Vietnamese Ha Giang (HG chicken has been shown to exhibit a very high nuclear diversity but also important rates of admixture with wild relatives. Its geographical position, within one of the chicken domestication centres ranging from Thailand to the Chinese Yunnan province, increases the probability of observing a very high genetic diversity for maternal lineages, and in a way, improving our understanding of the chicken domestication process. Results A total of 106 sequences from Vietnamese HG chickens were first compared to the sequences of published Chinese breeds. The 25 haplotypes observed in the Vietnamese HG population belonged to six previously published haplogroups which are: A, B, C, D, F and G. On average, breeds from the Chinese Yunnan province carried haplotypes from 4.3 haplogroups. For the HG population, haplogroup diversity is found at both the province and the village level (0.69. The AMOVA results show that genetic diversity occurred within the breeds rather than between breeds or provinces. Regarding the global structure of the mtDNA diversity per population, a characteristic of the HG population was the occurrence of similar pattern distribution as compared to G. gallus spadiceus. However, there was no geographical evidence of gene flow between wild and domestic populations as observed when microsatellites were used. Conclusions

  13. Polyphenols in whole rice grain: genetic diversity and health benefits.

    Science.gov (United States)

    Shao, Yafang; Bao, Jinsong

    2015-08-01

    Polyphenols, such as phenolic acid, anthocyanin and proanthocyanidins, have both nutraceutical properties and functional significance for human health. Identification of polyphenolic compounds and investigation of their genetic basis among diverse rice genotypes provides the basis for the improvement of the nutraceutical properties of whole rice grain. This review focuses on current information on the identification, genetic diversity, formation and distribution patterns of the phenolic acid, anthocyanin, and proanthocyanidins in whole rice grain. The genetic analysis of polyphenol content and antioxidant capacity allows the identification of several candidate genes or quantitative trait loci (QTL) responsible for polyphenol variation, which may be useful in improvement of these phytochemicals by breeding. Future challenges such as how to mitigate the effects of climate change while improving nutraceutical properties in whole grain, and how to use new technology to develop new rice high in nutraceutical properties are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Application of genetic diversity in the researches on rodents].

    Science.gov (United States)

    Liu, Zhu; Yang, Chun-Wen; Xu, Yan-Chun; Jin, Zhi-Min; Ma, Jian-Zhang

    2014-02-01

    Genetic diversity is the base of the species diversity and ecosystem diversity, and also the foundation for biological evolution and species differentiation. Furthermore, genetic diversity is important evidence for evaluation of biological resources of nature. The genetic diversity data from a wide variety of rodents have many complex applications. We summarized the application of rodent prevention, the origin and differentiation including evolutionary history of rodents, the potential adaptation of rodents, the dynamics of population and regulatory mechanisms, and the conservation biology of rodents. Researches in the future should focus on the systematic study on the relationships between population dynamics and genetic diversity, and long-term monitoring of genetic diversity of rodents.

  15. Genetic diversity in two introduced biofouling amphipods (Amphipods valida and Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversity

    Science.gov (United States)

    We investigated patterns of genetic diversity among invasive populations of A. valida and J. marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute...

  16. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    Science.gov (United States)

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.

  17. Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe

    Science.gov (United States)

    Jeremy C. Andersen; Nathan P. Havill; Adalgisa Caccone; Joseph S. Elkinton

    2017-01-01

    Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages...

  18. Managing genetic diversity and society needs

    Directory of Open Access Journals (Sweden)

    Arthur da Silva Mariante

    2008-07-01

    Full Text Available Most livestock are not indigenous to Brazil. Several animal species were considered domesticated in the pre-colonial period, since the indigenous people manage them as would be typical of European livestock production. For over 500 years there have been periodic introductions resulting in the wide range of genetic diversity that for centuries supported domestic animal production in the country. Even though these naturalized breeds have acquired adaptive traits after centuries of natural selection, they have been gradually replaced by exotic breeds, to such an extent, that today they are in danger of extinction To avoid further loss of this important genetic material, in 1983 Embrapa Genetic Resources and Biotechnology decided to include conservation of animal genetic resources among its priorities. In this paper we describe the effort to genetically characterize these populations, as a tool to ensure their genetic variability. To effectively save the threatened local breeds of livestock it is important to find a niche market for each one, reinserting them in production systems. They have to be utilized in order to be conserved. And there is no doubt that due to their adaptive traits, the Brazilian local breeds of livestock can play an important role in animal production, to meet society needs.

  19. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H; Kidd, Jeffrey M

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...... species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central....../eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost...

  20. Genetic diversity in Tunisian horse breeds

    Directory of Open Access Journals (Sweden)

    B. Jemmali

    2017-06-01

    Full Text Available This study aimed at screening genetic diversity and differentiation in four horse breeds raised in Tunisia, the Barb, Arab-Barb, Arabian, and English Thoroughbred breeds. A total of 200 blood samples (50 for each breed were collected from the jugular veins of animals, and genomic DNA was extracted. The analysis of the genetic structure was carried out using a panel of 16 microsatellite loci. Results showed that all studied microsatellite markers were highly polymorphic in all breeds. Overall, a total of 147 alleles were detected using the 16 microsatellite loci. The average number of alleles per locus was 7.52 (0.49, 7.35 (0.54, 6.3 (0.44, and 6 (0.38 for the Arab-Barb, Barb, Arabian, and English Thoroughbred breeds, respectively. The observed heterozygosities ranged from 0.63 (0.03 in the English Thoroughbred to 0.72 in the Arab-Barb breeds, whereas the expected heterozygosities were between 0.68 (0.02 in the English Thoroughbred and 0.73 in the Barb breeds. All FST values calculated by pairwise breed combinations were significantly different from zero (p  <  0.05 and an important genetic differentiation among breeds was revealed. Genetic distances, the factorial correspondence, and principal coordinate analyses showed that the important amount of genetic variation was within population. These results may facilitate conservation programs for the studied breeds and enhance preserve their genetic diversity.

  1. Morphological and genetic diversity of symbiotic cyanobacteria from cycads.

    Science.gov (United States)

    Thajuddin, Nooruddin; Muralitharan, Gangatharan; Sundaramoorthy, Mariappan; Ramamoorthy, Rengasamy; Ramachandran, Srinivasan; Akbarsha, Mohamed Abdulkadar; Gunasekaran, Muthukumaran

    2010-06-01

    The morphological and genetic diversity of cyanobacteria associated with cycads was examined using PCR amplification techniques and 16S rRNA gene sequence analysis. Eighteen symbiotic cyanobacteria were isolated from different cycad species. One of the symbiotic isolates was a species of Calothrix, a genus not previously reported to form symbioses with Cycadaceae family, and the remainder were Nostoc spp. Axenic cyanobacterial strains were compared by DNA amplification using PCR with either short arbitrary primers or primers specific for the repetitive sequences. Based on fingerprint patterns and phenograms, it was revealed that cyanobacterial symbionts exhibit important genetic diversity among host plants, both within and between cycad populations. A phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that most of the symbiotic cyanobacterial isolates fell into well-separated clades.

  2. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  3. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations.

  4. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions

    Institute of Scientific and Technical Information of China (English)

    Yan-Wen Cai; Xin-Yue Cheng; Ru-Mei Xu; Dong-Hong Duan; Lawrence R. Kirkendall

    2008-01-01

    Sequences of 479 bp region of the mitochondrial COI gene were applied to detect population genetic diversity and structure of Dendroctonus valens populations. By comparing the genetic diversity between native and invasive populations, it was shown that the genetic diversity of Chinese populations was obviously lower than that of native populations with both indices of haplotype diversity and Nei's genetic diversity, suggesting genetic bottleneck occurred in the invasive process of D. valens, and was then followed by a relatively quick population buildup. According to phylogenetic analyses of haplotypes, we suggested that the origin of the Chinese population was from California, USA. Phylogenetic and network analysis of native populations of D. valens revealed strong genetic structure at two distinct spatial and temporal scales in North America. The main cause resulting in current biogeographic pattern was supposedly due to recycled glacial events. Meanwhile, a cryptic species might exist in the Mexican and Guatemalan populations.

  5. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  6. Genetic Diversity of Koala Retroviral Envelopes

    Science.gov (United States)

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V.

    2015-01-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. PMID:25789509

  7. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    Science.gov (United States)

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources.

  8. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    Science.gov (United States)

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations.

  9. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong; ZHAO Ru; GU Senchang; YAN Wen; CHENG Zhou; CHEN Muhong; LU Weifeng; WANG Shuhong; LU Baorong; LU Jun; ZHANG Fan; XIANG Rong; XIAO Shangbin; YAN Pin

    2006-01-01

    Genetic diversity is the basic and most important component of biodiversity. It is essential for the effective conservation and utilization of genetic resources to accurately estimate genetic diversity of the targeted species and populations. This paper reports analyses of genetic diversity of a wild soybean population using three molecular marker technologies (AFLP, ISSR and SSR), and computer simulation studies of randomly selected subsets with different sample size (5-90 individuals) drawn 50 times from a total of 100 wild soybean individuals. The variation patterns of genetic diversity indices, including expected heterozygosity (He), Shannon diversity index (/), and percentage of polymorphic loci (P), were analyzed to evaluate changes of genetic diversity associated with the increase of individuals in each subset. The results demonstrated that (1) values of genetic diversity indices of the same wild soybean population were considerably different when estimated by different molecular marker techniques; (2) genetic diversity indices obtained from subsets with different sample sizes also diverged considerably; (3) P values were relatively more reliable for comparing genetic diversity detected by different molecular marker techniques; and (4) different diversity indices reached 90% of the total genetic diversity of the soybean population quite differently in terms of the sample size (number of individuals) analyzed.When using the P value as a determinator, 30-40individuals could capture over 90% of the total genetic diversity of the wild soybean population. Results from this study provide a strong scientific basis for estimating genetic diversity and for strategic conservation of plant species.

  10. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation.

    Science.gov (United States)

    Holmes, Christopher J; Pantel, Jelena H; Schulz, Kimberly L; Cáceres, Carla E

    2016-07-01

    When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large-scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination ('high' clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher-quality and lower-quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with 'high' clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.

  11. Genetic Diversity in the Interference Selection Limit

    Science.gov (United States)

    Good, Benjamin H.; Walczak, Aleksandra M.; Neher, Richard A.; Desai, Michael M.

    2014-01-01

    Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a “linkage block”). We exploit this insensitivity in a new “coarse-grained” coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability. PMID:24675740

  12. Genetic diversity of Ehrlichia canis in Brazil.

    Science.gov (United States)

    Aguiar, D M; Zhang, X; Melo, A L T; Pacheco, T A; Meneses, A M C; Zanutto, M S; Horta, M C; Santarém, V A; Camargo, L M A; McBride, J W; Labruna, M B

    2013-06-28

    Canine monocytic ehrlichiosis is a highly prevalent disease in Brazil, where the genetic diversity of Ehrlichia canis remains undefined. In this study, we used the TRP36 gene to examine the genetic diversity of E. canis strains from naturally infected dogs residing in five distinct geographic regions in Brazil. E. canis DNA was detected in 82/126 (65%) dogs by dsb-specific PCR and E. canis was isolated in cell culture from 13 dogs. Sequences obtained from dsb genes amplified from the isolates were identical to the US E. canis strain. An extended molecular characterization based on the TRP36 gene identified two major genogroups based on differences among eight isolates. Isolates with tandem repeat amino acid sequence (TEDSVSAPA) identical to the previously reported TRP36 sequence were found in the midwest, northeast and southeast regions of Brazil, and classified into the US genogroup. A novel Brazilian genotype with a different tandem repeat sequence (ASVVPEAE) was also identified in midwest, northern and southern regions. Similarity in the N-terminal sequence of a US genogroup member with the Brazilian genogroup suggested that genomic recombination between the two genogroups may have occurred. Other subtypes within the Brazilian genogroup were also identified using C-terminal amino acid divergence. We identified two distinct major Brazilian genogroups and several subtypes based on analysis of TRP36, and such information will be useful for further genotyping and possible associations with disease severity, understanding of the genetic and antigenic variability of E. canis, and for developing strain-specific vaccines and diagnostic methods based on TRP36.

  13. Conservation of Genetic Diversity in Culture Plants

    Directory of Open Access Journals (Sweden)

    MAXIM A.

    2010-08-01

    Full Text Available The most important international document relating to the conservation of biodiversity is one adopted by theUN in Rio de Janeiro (1992 that "Convention on Biodiversity". Based on this agreement, the EU has taken a series ofmeasures to reduce genetic erosion in agriculture, which grew with the expansion of industrialized agriculture.Throughout its existence, mankind has used some 10,000 growing plant species. According to FAO statistics, today,90% of food production is ensured by some 120 growing plant species. In addition to drastic reduction in specificdiversity, the advent of industrialized agriculture has generated a process of strong genetic erosion. Old varieties andlocal varieties of crops have mostly been affected, in favour of "modern" varieties. Landraces are characterized by highheterogenity. They have the advantage of being much better adapted to biotic and abiotic stress conditions (diseases,pests, drought, low in nutrients, etc. and have excellent taste qualities, which can justify a higher price recovery thancommercial varieties. Thanks to these features, these crops need small inputs, which correspond to the concept ofsustainable development. Landraces are an invaluable genetic potential for obtaining new varieties of plants and are bestsuited for crop cultivation in ecological systems, becoming more common. Also, for long term food security in thecontext of global warming, rich genetic diversity will be require. “In situ” and “ex situ” conservation are the two majorstrategies used in the conservation of plant genetic resources. There is a fundamental difference between these twostrategies: “ex situ” conservation involves sampling, transfer and storage of a particular species population away fromthe original location, while “in situ” conservation (in their natural habitat implies that the varieties of interest,management and monitoring their place of origin takes place in the community to which they belong. These

  14. Arenavirus genetic diversity and its biological implications.

    Science.gov (United States)

    Emonet, Sebastien F; de la Torre, Juan C; Domingo, Esteban; Sevilla, Noemí

    2009-07-01

    The Arenaviridae family currently comprises 22 viral species, each of them associated with a rodent species. This viral family is important both as tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens. Arenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. The interaction with the cellular receptor and subsequent entry into the host cell differs between Old World and New World arenavirus that use alpha-dystoglycan or human transferring receptor 1, respectively, as main receptors. The recent development of reverse genetic systems for several arenaviruses has facilitated progress in understanding the molecular biology and cell biology of this viral family, as well as opening new approaches for the development of novel strategies to combat human pathogenic arenaviruses. On the other hand, increased availability of genetic data has allowed more detailed studies on the phylogeny and evolution of arenaviruses. As with other riboviruses, arenaviruses exist as viral quasispecies, which allow virus adaptation to rapidly changing environments. The large number of different arenavirus host reservoirs and great genetic diversity among virus species provide the bases for the emergence of new arenaviruses potentially pathogenic for humans.

  15. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    E. SANTOS; M. MATOS; P. SILVA; A. M. FIGUEIRAS; C. BENITO; O. PINTO-CARNIDE

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale cerealeusing RAPDs, ISSRs and sequence analysis of six exons ofScMATE1gene.Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDsand 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primersgenerated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further,69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of theScMATE1gene also demonstrated a high genetic variability that subsists inSecalegenus. One difference observed in exon 1 sequencesfromS. vaviloviiseems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs,ISSRs and exons ofScMATE1gene were similar.S. ancestrale ,S. kuprijanoviiandS. cerealewere grouped in the same clusterandS. segetalewas in another cluster.S. vaviloviishowed evidences of not being clearly an isolate species and having greatintraspecific difference

  16. The silent threat of low genetic diversity

    Science.gov (United States)

    Hunter, Margaret E.

    2013-01-01

    Across the Caribbean, protected coastal waters have served as primary feeding and breeding grounds for the endangered Antillean manatee. Unfortunately, these same coastal waters are also a popular “habitat” for humans. In the past, the overlap between human and manatee habitat allowed for manatee hunting and threatened the survival of these gentle marine mammals. Today, however, threats are much more inadvertent and are often related to coastal development, degraded habitats and boat strikes. In the state of Florida, decades of research on the species’ biological needs have helped conservationists address threats to its survival. For example, low wake zones and boater education have protected manatees from boat strikes, and many of their critical winter refuges are now protected. The Florida population has grown steadily, thus increasing from approximately 1,200 in 1991 to more than 5,000 in 2010. It is conceivable that in Florida manatees may one day be reclassified as “threatened” rather than “endangered.” Yet, in other parts of the Caribbean, threats still loom. This includes small, isolated manatee populations found on islands that can be more susceptible to extinction and lack of genetic diversity. To ensure the species’ long-term viability, scientists have turned their sights to the overall population dynamics of manatees throughout the Caribbean. Molecular genetics has provided new insights into long-term threats the species faces. Fortunately, the emerging field of conservation genetics provides managers with tools and strategies for protecting the species’ long-term viability.

  17. Patterns of fungal diversity and composition along a salinity gradient

    Science.gov (United States)

    Mohamed, Devon J; Martiny, Jennifer BH

    2011-01-01

    Estuarine salinity gradients are known to influence plant, bacterial and archaeal community structure. We sequenced 18S rRNA genes to investigate patterns in sediment fungal diversity (richness and evenness of taxa) and composition (taxonomic and phylogenetic) along an estuarine salinity gradient. We sampled three marshes—a salt, brackish and freshwater marsh—in Rhode Island. To compare the relative effect of the salinity gradient with that of plants, we sampled fungi in plots with Spartina patens and in plots from which plants were removed 2 years prior to sampling. The fungal sediment community was unique compared with previously sampled fungal communities; we detected more Ascomycota (78%), fewer Basidiomycota (6%) and more fungi from basal lineages (16%) (Chytridiomycota, Glomeromycota and four additional groups) than typically found in soil. Across marshes, fungal composition changed substantially, whereas fungal diversity differed only at the finest level of genetic resolution, and was highest in the intermediate, brackish marsh. In contrast, the presence of plants had a highly significant effect on fungal diversity at all levels of genetic resolution, but less of an effect on fungal composition. These results suggest that salinity (or other covarying parameters) selects for a distinctive fungal composition, and plants provide additional niches upon which taxa within these communities can specialize and coexist. Given the number of sequences from basal fungal lineages, the study also suggests that further sampling of estuarine sediments may help in understanding early fungal evolution. PMID:20882058

  18. Assessment of Genetic diversity in mutant cowpea lines using ...

    African Journals Online (AJOL)

    FKOLADE

    2016-11-09

    Nov 9, 2016 ... option of NTSYS, a rooted tree was also generated from the .... Dellarporta SF, Wood J, Hicks JB (1983). ... genetic diversity in Pigeon Pea (Cajanus sp). ... diversity in somatic mutants of grape (Vitis vinifera) cultivar Italia.

  19. Analysis of genetic diversity and estimation of inbreeding coefficient ...

    African Journals Online (AJOL)

    Analysis of genetic diversity and estimation of inbreeding coefficient within ... The present work is a contribution to the knowledge of population structure and to the ... diversity that may be helpful to horse breeders in designing and managing ...

  20. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications

    Science.gov (United States)

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide. PMID:28107530

  1. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications.

    Science.gov (United States)

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide.

  2. Pyrosequencing and genetic diversity of microeukaryotes

    DEFF Research Database (Denmark)

    Harder, Christoffer Bugge

    Free-living, heterotrophic protozoa have an important ecological role in most terrestrial ecosystems by their grazing of bacteria as one of the first links in food chains and webs. Furthermore, some of them serve as reservoirs for disease-causing bacteria and /or as occasional opportunistic...... pathogens themselves. Protozoa is a morphological group which occurs in many different eukaryotic phyla, and many apparently morphologically similar types are very different from each others genetically. This complicates the development of good primers for analysis of their diversity with modern DNA based...... methods. Compared to other microorganisms such as fungi, algae and bacteria, much less is known about protozoa. It has been an essential element of this thesis to to advance our knowledge of protozoa by developing new primers for DNA-based studies of protozoa impact on ecosystems or as indicators...

  3. Genetic diversity and molecular epidemiology of Anaplasma.

    Science.gov (United States)

    Battilani, Mara; De Arcangeli, Stefano; Balboni, Andrea; Dondi, Francesco

    2017-04-01

    Anaplasma are obligate intracellular bacteria of cells of haematopoietic origin and are aetiological agents of tick-borne diseases of both veterinary and medical interest common in both tropical and temperate regions. The recent disclosure of their zoonotic potential has greatly increased interest in the study of these bacteria, leading to the recent reorganisation of Rickettsia taxonomy and to the possible discovery of new species belonging to the genus Anaplasma. This review is particularly focused on the common and unique characteristics of Anaplasma marginale and Anaplasma phagocytophilum, with an emphasis on genetic diversity and evolution, and the main distinguishing features of the diseases caused by the different Anaplasma spp. are described as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pyrosequencing and genetic diversity of microeukaryotes

    DEFF Research Database (Denmark)

    Harder, Christoffer Bugge

    Free-living, heterotrophic protozoa have an important ecological role in most terrestrial ecosystems by their grazing of bacteria as one of the first links in food chains and webs. Furthermore, some of them serve as reservoirs for disease-causing bacteria and /or as occasional opportunistic...... pathogens themselves. Protozoa is a morphological group which occurs in many different eukaryotic phyla, and many apparently morphologically similar types are very different from each others genetically. This complicates the development of good primers for analysis of their diversity with modern DNA based...... methods. Compared to other microorganisms such as fungi, algae and bacteria, much less is known about protozoa. It has been an essential element of this thesis to to advance our knowledge of protozoa by developing new primers for DNA-based studies of protozoa impact on ecosystems or as indicators...

  5. Evaluation of genetic diversity in barley (Hordeum vulgare L.) from ...

    African Journals Online (AJOL)

    User

    2015-06-03

    Jun 3, 2015 ... traits, genotypes in cluster III deserve consideration for directly developing high yielding barely varieties. The result of ... Criteria for the estimation of genetic diversity can be ...... Plant Genetic Resources Institute, Rome, Italy.

  6. Assessment of genetic diversity in Isabgol (Plantago ovata Forsk ...

    African Journals Online (AJOL)

    sandeep kaswan

    using random amplified polymorphic DNA ... RAPD markers appeared more informative than ISSR in determining the genetic ... Key words: Plantago ovata, molecular marker, RAPD, ISSR, genetic diversity, medicinal plant. .... monomorphic.

  7. Inbreeding and genetic diversity in dogs: results from DNA analysis.

    Science.gov (United States)

    Wade, Claire M

    2011-08-01

    This review assesses evidence from DNA analysis to determine whether there is sufficient genetic diversity within breeds to ensure that populations are sustainable in the absence of cross breeding and to determine whether genetic diversity is declining. On average, dog breeds currently retain approximately 87% of the available domestic canine genetic diversity. Requirements that breeding stock must be 'clear' for all genetic disorders may firstly place undue genetic pressure on animals tested as being 'clear' of known genetic disorders, secondly may contribute to loss of diversity and thirdly may result in the dissemination of new recessive disorders for which no genetic tests are available. Global exchange of genetic material may hasten the loss of alleles and this practice should be discussed in relation to the current effective population size of a breed and its expected future popularity. Genomic data do not always support the results from pedigree analysis and possible reasons for this are discussed.

  8. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    Science.gov (United States)

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

  9. Loss of genetic diversity in Maculinea populations over 10 years

    DEFF Research Database (Denmark)

    Nash, David Richard; Lomborg, Andreas Eg

    I will present the results of research on the population genetics of Maculinea alcon and M. arion in Southern scandinavia, which shows a strong decrease in genetic diversity in most populations, even if those populations are apparently otherwise healthy.......I will present the results of research on the population genetics of Maculinea alcon and M. arion in Southern scandinavia, which shows a strong decrease in genetic diversity in most populations, even if those populations are apparently otherwise healthy....

  10. [Research Progress on Genetic Diversity in Animal Parasitic Nematodes].

    Science.gov (United States)

    YIN, Fang-yuan; LI, Fa-cai; ZHAO, Jun-long; HU, Min

    2015-10-01

    The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes.

  11. Genetic diversity in the Yangtze finless porpoise by RAPD analysis

    Institute of Scientific and Technical Information of China (English)

    He Shunping; Wang Ding; Wang Wei; Chen Daoquan; Zhao Qingzhong; Gong Weiming

    2005-01-01

    To estimate the genetic diversity in the Yangtze finless porpoise (Neophocaenaphocaenoides asiaeorientalis), the randomly amplified polymorphic DNA techniquewas applied to examine ten animals captured from the Yangtze River. Out of 20 arbitrary primers used in the experiment, seventeen produced clearly reproducible bged from 0.0986 to 0.5634. Compared with other cetacean populations, this genetic distance is quite low. Such a low genetic diversity suggests that this population may be suffering from reduced genetic variation, and be very fragile. More studiesare needed for understanding the basis for this apparent low genetic diversity and to help protect this endangered, unique population.

  12. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2014-06-01

    Full Text Available The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

  13. Genetic diversity in the SIR model of pathogen evolution.

    Science.gov (United States)

    Gordo, Isabel; Gomes, M Gabriela M; Reis, Daniel G; Campos, Paulo R A

    2009-01-01

    We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR). We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts), where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R(0)(1+s)) is higher than the fitness of the resident strain (R(0)). We show that this invasion probability is given by the relative increment in R(0) of the new pathogen (s). By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.

  14. Genetic diversity in the SIR model of pathogen evolution.

    Directory of Open Access Journals (Sweden)

    Isabel Gordo

    Full Text Available We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR. We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts, where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R(0(1+s is higher than the fitness of the resident strain (R(0. We show that this invasion probability is given by the relative increment in R(0 of the new pathogen (s. By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.

  15. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  16. Modelling the effects of litter decomposition on tree diversity patterns

    NARCIS (Netherlands)

    Mazzoleni, S.; Bonanomi, G.; Giannino, F.; Incerti, G.; Dekker, S.C.; Rietkerk, M.G.

    2010-01-01

    Current theoriesmaynot fully explainwhylatitudinal patterns of plant diversity differ between terrestrial and flooded ecosystems. Moreover, the co-occurrence of hyper diverse stands in lowland tierra firma (not inundated) forests and almost monospecific stands in mangroves and gallery riparian veget

  17. Genetic Diversity of RAPD Mark for Natural Davidia involucrata Populations

    Institute of Scientific and Technical Information of China (English)

    Congwen Song; Manzhu Bao

    2006-01-01

    The genetic diversity and genetic variation within and among populations of five natural Davidia involucrata populations were studied from 13 primers based on random amplified polymorphic DNA (RAPD) analysis.The results show that natural D.involucrata population has a rich genetic diversity,and the differences among populations are significant.Twenty-six percent of genetic variation exists among D.involucrata populations,which is similar to that of the endangered tree species Liriodendron chinense and Cathaya argyrophylla in China,but different from more widely distributed tree species.The analysis of the impacts of sampling method on genetic diversity parameters shows that the number of sampled individuals has little effect on the effective number of alleles and genetic diversity,but has a marked effect on the genetic differentiation among populations and gene flows.This study divides the provenances of D.involucrata into two parts,namely,a southeast and a northwest provenance.

  18. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Institute of Scientific and Technical Information of China (English)

    Jiandong YANG; Zhihe ZHANG; Fujun SHEN; Xuyu YANG; Liang ZHANG; Limin CHEN; Wenping ZHANG; Qing ZHU; Rong HOU

    2011-01-01

    Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species.Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China.Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation.Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population.The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve.Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations.All individuals from the same subpopulation were assigned to one cluster.This indicates high gene flow between subpopulations.F statistic analyses revealed a low Fls-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR.Additionally,our data show a high level of genetic diversity for the Tangjiahe population.Mean allele number (A),Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangiiahe population was 5.9,5.173 and 0.703,respectively.This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6):717-724,2011].

  19. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Directory of Open Access Journals (Sweden)

    Jiandong YANG, Zhihe ZHANG, Fujun SHEN, Xuyu YANG, Liang ZHANG, Limin CHEN, Wenping ZHANG, Qing ZHU, Rong HOU

    2011-12-01

    Full Text Available Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A, Allelic richness (AR and mean expected heterozygosity (HE for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6: 717–724, 2011].

  20. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    Science.gov (United States)

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures.

  1. Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-11-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.

  2. Deterministic Pattern Classifier Based on Genetic Programming

    Institute of Scientific and Technical Information of China (English)

    LI Jian-wu; LI Min-qiang; KOU Ji-song

    2001-01-01

    This paper proposes a supervised training-test method with Genetic Programming (GP) for pattern classification. Compared and contrasted with traditional methods with regard to deterministic pattern classifiers, this method is true for both linear separable problems and linear non-separable problems. For specific training samples, it can formulate the expression of discriminate function well without any prior knowledge. At last, an experiment is conducted, and the result reveals that this system is effective and practical.

  3. Genetic diversity of human RNase 8

    Directory of Open Access Journals (Sweden)

    Chan Calvin C

    2012-01-01

    Full Text Available Abstract Background Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity in non-human primate genomes. Results RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (π = 0.00122 ± 0.00009 per site was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. Conclusions These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family.

  4. Genetic diversity of microsatellite loci in hierarchically structured populations.

    Science.gov (United States)

    Song, Seongho; Dey, Dipak K; Holsinger, Kent E

    2011-08-01

    Microsatellite loci are widely used for investigating patterns of genetic variation within and among populations. Those patterns are in turn determined by population sizes, migration rates, and mutation rates. We provide exact expressions for the first two moments of the allele frequency distribution in a stochastic model appropriate for studying microsatellite evolution with migration, mutation, and drift under the assumption that the range of allele sizes is bounded. Using these results, we study the behavior of several measures related to Wright's F(ST), including Slatkin's R(ST). Our analytical approximations for F(ST) and R(ST) show that familiar relationships between N(e)m and F(ST) or R(ST) hold when the migration and mutation rates are small. Using the exact expressions for F(ST) and R(ST), our numerical results show that, when the migration and mutation rates are large, these relationships no longer hold. Our numerical results also show that the diversity measures most closely related to F(ST) depend on mutation rates, mutational models (stepwise versus two-phase), migration rates, and population sizes. Surprisingly, R(ST) is relatively insensitive to the mutation rates and mutational models. The differing behaviors of R(ST) and F(ST) suggest that properties of the among-population distribution of allele frequencies may allow the roles of mutation and migration in producing patterns of diversity to be distinguished, a topic of continuing investigation.

  5. Legume Diversity Patterns in West Central Africa

    NARCIS (Netherlands)

    Estrella, de la M.; Mateo, M.A.; Wieringa, J.J.; Mackinder, B.; Munoz, J.

    2012-01-01

    Objectives - Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity withi

  6. Endemic insular and coastal Tunisian date palm genetic diversity.

    Science.gov (United States)

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm.

  7. Beauveria bassiana: Quercetinase production and genetic diversity

    Science.gov (United States)

    Eula Maria de M. B., Costa; Fabiana Cristina, Pimenta; Christian, Luz; Valéria de, Oliveira; Marília, Oliveira; Elda, Bueno; Silvana, Petrofeza

    2011-01-01

    Beauveria bassiana genetic diversity and ability to synthesize quercetin 2,3-dioxygenase (quercetinase) were analyzed. B. bassiana isolates, obtained from Brazilian soil samples, produced quercetinase after induction using 0.5 g/L quercetin. B. bassiana ATCC 7159 (29.6 nmol/mL/min) and isolate IP 11 (27.5 nmol/ml/min) showed the best performances and IP 3a (9.5 nmol/mL/min) presented the lowest level of quercetinase activity in the culture supernatant. A high level of polymorphism was detected by random amplified polymorphic DNA (RAPD) analysis. The use of internal-transcribed-spacer ribosomal region restriction fragment length polymorphism (ITS-RFLP) did not reveal characteristic markers to differentiate isolates. However, the ITS1-5.8S-ITS2 region sequence analysis provided more information on polymorphism among the isolates, allowing them to be clustered by relative similarity into three large groups. Correlation was tested according to the Person's correlation. Data of our studies showed, that lower associations among groups, level of quercetinase production, or geographical origin could be observed. This study presents the production of a novel biocatalyst by B. bassiana and suggests the possible industrial application of this fungal species in large-scale biotechnological manufacture of quercetinase. PMID:24031599

  8. Beauveria bassiana: quercetinase production and genetic diversity

    Directory of Open Access Journals (Sweden)

    Eula Maria de M. B Costa

    2011-03-01

    Full Text Available Beauveria bassiana genetic diversity and ability to synthesize quercetin 2,3-dioxygenase (quercetinase were analyzed. B. bassiana isolates, obtained from Brazilian soil samples, produced quercetinase after induction using 0.5 g/L quercetin. B. bassiana ATCC 7159 (29.6 nmol/mL/min and isolate IP 11 (27.5 nmol/ml/min showed the best performances and IP 3a (9.5 nmol/mL/min presented the lowest level of quercetinase activity in the culture supernatant. A high level of polymorphism was detected by random amplified polymorphic DNA (RAPD analysis. The use of internal-transcribed-spacer ribosomal region restriction fragment length polymorphism (ITS-RFLP did not reveal characteristic markers to differentiate isolates. However, the ITS1-5.8S-ITS2 region sequence analysis provided more information on polymorphism among the isolates, allowing them to be clustered by relative similarity into three large groups. Correlation was tested according to the Person's correlation. Data of our studies showed, that lower associations among groups, level of quercetinase production, or geographical origin could be observed. This study presents the production of a novel biocatalyst by B. bassiana and suggests the possible industrial application of this fungal species in large-scale biotechnological manufacture of quercetinase.

  9. Centennial olive trees as a reservoir of genetic diversity

    Science.gov (United States)

    Díez, Concepción M.; Trujillo, Isabel; Barrio, Eladio; Belaj, Angjelina; Barranco, Diego; Rallo, Luis

    2011-01-01

    Background and Aims Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. Methods The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. Key Results Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. Conclusions This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity. PMID:21852276

  10. Genetic prediction of male pattern baldness

    Science.gov (United States)

    Harris, Sarah E.; Ritchie, Stuart J.; Davies, Gail; Gale, Catharine R.; Porteous, David J.; Deary, Ian J.; Marioni, Riccardo E.

    2017-01-01

    Male pattern baldness can have substantial psychosocial effects, and it has been phenotypically linked to adverse health outcomes such as prostate cancer and cardiovascular disease. We explored the genetic architecture of the trait using data from over 52,000 male participants of UK Biobank, aged 40–69 years. We identified over 250 independent genetic loci associated with severe hair loss (P<5x10-8). By splitting the cohort into a discovery sample of 40,000 and target sample of 12,000, we developed a prediction algorithm based entirely on common genetic variants that discriminated (AUC = 0.78, sensitivity = 0.74, specificity = 0.69, PPV = 59%, NPV = 82%) those with no hair loss from those with severe hair loss. The results of this study might help identify those at greatest risk of hair loss, and also potential genetic targets for intervention. PMID:28196072

  11. Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces.

    Science.gov (United States)

    Barnaud, Adeline; Deu, Monique; Garine, Eric; McKey, Doyle; Joly, Hélène I

    2007-01-01

    We present the first study of patterns of genetic diversity of sorghum landraces at the local scale. Understanding landrace diversity aids in deciphering evolutionary forces under domestication, and has applications in the conservation of genetic resources and their use in breeding programs. Duupa farmers in a village in Northern Cameroon distinguished 59 named sorghum taxa, representing 46 landraces. In each field, seeds are sown as a mixture of landraces (mean of 12 landraces per field), giving the potential for extensive gene flow. What level of genetic diversity underlies the great morphological diversity observed among landraces? Given the potential for gene flow, how well defined genetically is each landrace? To answer these questions, we recorded spatial patterns of planting and farmers' perceptions of landraces, and characterized 21 landraces using SSR markers. Analysis using distance and clustering methods grouped the 21 landraces studied into four clusters. These clusters correspond to functionally and ecologically distinct groups of landraces. Within-landrace genetic variation accounted for 30% of total variation. The average F(is) over landraces was 0.68, suggesting high inbreeding within landraces. Differentiation among landraces was substantial and significant (F(st) = 0.36). Historical factors, variation in breeding systems, and farmers' practices all affected patterns of genetic variation. Farmers' practices are key to the maintenance, despite gene flow, of landraces with different combinations of agronomically and ecologically pertinent traits. They must be taken into account in strategies of conservation and use of genetic resources.

  12. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  13. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    National Research Council Canada - National Science Library

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    .... It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation...

  14. Neotropical birds show a humped distribution of within-population genetic diversity along a latitudinal transect.

    Science.gov (United States)

    Miller, Matthew J; Bermingham, Eldredge; Klicka, John; Escalante, Patricia; Winker, Kevin

    2010-05-01

    The latitudinal gradient in species richness is a nearly universal ecological phenomenon. Similarly, conspecific genetic diversity often increases towards the equator - usually explained as the consequence of post-glacial range expansion or due to the shared response of genetic diversity to processes that promote species richness. However, no study has yet examined the relationship between latitude and within-population genetic diversity in exclusively tropical species. We surveyed genetic variation in nine resident bird species co-occurring in tropical lowlands between southern Mexico and western Ecuador, where avian species richness increases with decreasing latitude. Within-population genetic variation was always highest at mid-range latitudes, and not in the most equatorial populations. Differences in demography and gene flow across species' ranges may explain some of our observations; however, much of the pattern may be due simply to geometric constraints. Our findings have implications for conservation planning and for understanding how biodiversity scales from genes to communities.

  15. Climate change and amphibian diversity patterns in Mexico

    DEFF Research Database (Denmark)

    Ochoa-Ochoa, Leticia M.; Rodríguez, Pilar; Mora, Franz

    2012-01-01

    The aim of this article is to characterize at fine scale alpha and beta diversity patterns for Mexican amphibians and analyze how these patterns might change under a moderate climate-change scenario, highlighting the overall consequences for amphibian diversity at the country level. We used a geo...

  16. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    Science.gov (United States)

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  17. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    Science.gov (United States)

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.

  18. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus.

    Science.gov (United States)

    Furlan, Elise; Stoklosa, J; Griffiths, J; Gust, N; Ellis, R; Huggins, R M; Weeks, A R

    2012-04-01

    Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.

  19. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness......Polyandry is often difficult to explain because benefits of the behaviour have proved elusive. In social insects, polyandry increases the genetic diversity of workers within a colony and this has been suggested to improve the resistance of the colony to disease. Here we examine the possible impact...... upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed...

  20. Dispersal responses override density effects on genetic diversity during post-disturbance succession.

    Science.gov (United States)

    Smith, Annabel L; Landguth, Erin L; Bull, C Michael; Banks, Sam C; Gardner, Michael G; Driscoll, Don A

    2016-03-30

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity inN. stellatus Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. © 2016 The Author(s).

  1. Genetic diversity increases insect herbivory on oak saplings.

    Directory of Open Access Journals (Sweden)

    Bastien Castagneyrol

    Full Text Available A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect. Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  2. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  3. Patterns of cis regulatory variation in diverse human populations.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    Full Text Available The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for

  4. Patterns of cis regulatory variation in diverse human populations.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    Full Text Available The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for

  5. Population Genetic Diversity in the Australian 'Seascape': A Bioregion Approach.

    Directory of Open Access Journals (Sweden)

    Lisa C Pope

    Full Text Available Genetic diversity within species may promote resilience to environmental change, yet little is known about how such variation is distributed at broad geographic scales. Here we develop a novel Bayesian methodology to analyse multi-species genetic diversity data in order to identify regions of high or low genetic diversity. We apply this method to co-distributed taxa from Australian marine waters. We extracted published summary statistics of population genetic diversity from 118 studies of 101 species and > 1000 populations from the Australian marine economic zone. We analysed these data using two approaches: a linear mixed model for standardised data, and a mixed beta-regression for unstandardised data, within a Bayesian framework. Our beta-regression approach performed better than models using standardised data, based on posterior predictive tests. The best model included region (Integrated Marine and Coastal Regionalisation of Australia (IMCRA bioregions, latitude and latitude squared. Removing region as an explanatory variable greatly reduced model performance (delta DIC 23.4. Several bioregions were identified as possessing notably high genetic diversity. Genetic diversity increased towards the equator with a 'hump' in diversity across the range studied (-9.4 to -43.7°S. Our results suggest that factors correlated with both region and latitude play a role in shaping intra-specific genetic diversity, and that bioregion can be a useful management unit for intra-specific as well as species biodiversity. Our novel statistical model should prove useful for future analyses of within species genetic diversity at broad taxonomic and geographic scales.

  6. Genetic diversity in soybean genotypes with resistance to Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Nogueira

    2011-01-01

    Full Text Available The purpose of this study was to analyze the genetic diversity among soybean genotypes inoculated with Heteroderaglycines race 3. The experiments were conducted in a greenhouse. In two performance tests of morphological characteristics andresistance to the pathogen, 27 soybean genotypes were assessed. The coefficient of genotypic determination was estimated by themethod of analysis of variance and the genetic diversity analyzed based on dendrograms and optimization method. The estimatedcoefficients of determination indicated a predominantly genetic origin of the genotypic differences in the traits. The genetic variabilitywas maintained in the superior genotypes, which can be used in breeding programs for resistance to soybean cyst nematode

  7. Genetic diversity in introduced populations with an Allee effect.

    Science.gov (United States)

    Wittmann, Meike J; Gabriel, Wilfried; Metzler, Dirk

    2014-09-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations.

  8. Assessment of genetic diversity in Triticum spp. and Aegilops spp ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... 83111, Iran. 2Ilam Agricultural Research Center, Ilam-69317 73834, Iran. ... important food crops such as wheat and its wild relatives. These species ..... diversity trends during domestication and breeding. Theor. Appl. Genet.

  9. Genetic diversity of Ghanaian local chicken populations based on ...

    African Journals Online (AJOL)

    Genetic diversity of Ghanaian local chicken populations based on ... raised across distinct agro-ecological zones and constitute unique populations with variable ... (GHFO) in the southwest and the Coastal Savannah (GHCS) along the coast in ...

  10. Genetic diversity in Kenyan populations of Acacia senegal (L.) willd ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... A. senegal is widely distributed because it tolerates .... Locations of study areas for genetic diversity study of A. senegal in Kenya situated in four districts of ..... Molecular Biology and Biotechnology Center, University of Alberta,.

  11. Analysis of Genetic diversity and reltionships in local Tunisian barley ...

    African Journals Online (AJOL)

    Yomi

    Key words: Barley, RAPD markers, SSR markers, genetic diversity. INTRODUCTION. Barley ... surveyed by each kind of marker, their distribution ..... that belong to the Center. ..... tagged-site facilitated PCR for barley genome mapping. Theor.

  12. 1 Hierarchical Approaches to the Analysis of Genetic Diversity in ...

    African Journals Online (AJOL)

    2015-04-14

    Apr 14, 2015 ... Keywords: Genetic diversity, Hierarchical approach, Plant, Clustering,. Descriptive ... utilization) or by clustering (based on a phonetic analysis of individual ...... Improvement of Food Crop Preservatives for the next Millennium.

  13. analysis of genetic diversity in linseed using aflp markers

    African Journals Online (AJOL)

    ADMIN

    environments, enhanced resistance to pathogens, pests and other ... parental genotypes are often selected on the basis of phenotypic ..... M. Sc. Thesis, ... Genotype-environment interactions and ... genetic diversity assessment among wheat.

  14. Study on genetic diversity in Pakistani wheat varieties using simple ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... genetic diversity of 10 varieties of wheat (T. aestivum) were analyzed using 14 simple sequence repeat. (SSR) primer sets ... wheat every year. To increase .... All PCR reactions were carried out in 25 µl reaction containing 50 -.

  15. Assessing the genetic diversity of cultivars and wild soybeans using ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... In this study, we demonstrated the differences of genetic diversity level among 40 soybean accessions of ... It has many advantages, including .... several other provinces abroad and of unknown origin; as control and these ...

  16. Assessment of the genetic diversity of geographically unrelated ...

    African Journals Online (AJOL)

    JOHN

    2005-05-05

    May 5, 2005 ... Key words: Molecular markers, distribution, cyanobacteria, genetic diversity. ..... Degree of polymorphism and average polymorphism information content (PIC) and marker index (MI) for the ..... monomorphic bands (Table 2).

  17. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems.

  18. Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR.

    Science.gov (United States)

    Teixeira, Helena; Rodríguez-Echeverría, Susana; Nabais, Cristina

    2014-01-01

    Juniperus thurifera L. is an important tree endemic to the western Mediterranean basin that it is able to grow in semi-arid climates. It nowadays exhibits a disjunct distribution pattern, occurring in North Africa, Spain, France and the Italian Alps. The Strait of Gibraltar has acted as an efficient barrier against gene flow between African and European populations, which are considered different subspecies by some authors. We aimed at describing the intraspecific genetic diversity of J. thurifera in populations from the Iberian Peninsula and Morocco and the phylogeographical relationships among these populations. The ploidy level of J. thurifera was examined and eleven nuclear microsatellites (nSSRs) developed for J. thurifera were assessed for genotyping this species. Six nSSRs were polymorphic and subsequently used to assess the genetic diversity and structure of the studied populations. Genotyping of the tetraploid J. thurifera using nuclear microsatellites supports the separation of Moroccan and Spanish populations into two genetically differentiated groups that correspond to the proposed subspecies africana and thurifera. High values of within population genetic diversity were found, that accounted for 90% of the total genetic variance, while population structure was weak. The estimators of genetic diversity were higher in populations of Spain than in populations of Morocco pointing for a possible loss of genetic diversity during the spread of this species to Africa from Europe.

  19. GENETIC DIVERSITY AND ECO-GEOGRAPHICAL DISTRIBUTION ...

    African Journals Online (AJOL)

    ACSS

    3Department of Plant Biology and Biodiversity Management, Addis Ababa University, Ethiopia ... Allelic frequency based inter-species genetic distance analysis, showed wider .... taxonomy, evolution and origin of the species ...... Age International (P) Limited, New Delhi, India ... Integrated analysis environment for genetic.

  20. Mapping genetic diversity of cherimoya (Annona cherimola Mill.: application of spatial analysis for conservation and use of plant genetic resources.

    Directory of Open Access Journals (Sweden)

    Maarten van Zonneveld

    Full Text Available There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill., a Neotropical fruit tree species. We present spatial analyses to (1 improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs; and (2 formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could

  1. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources

    Science.gov (United States)

    van Zonneveld, Maarten; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A.; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I.

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  2. Genetic diversity of functional food species Spinacia oleracea L. by protein markers.

    Science.gov (United States)

    Rashid, M; Yousaf, Z; Haider, M S; Khalid, S; Rehman, H A; Younas, A; Arif, A

    2014-01-01

    Exploration of genetic diversity contributes primarily towards crop improvement. Spinaciaoleracea L. is a functional food species but unfortunately the genetic diversity of this vegetable is still unexplored. Therefore, this research was planned to explore the genetic diversity of S. oleracea by using morphological and protein markers. Protein profile of 25 accessions was generated on sodium dodecyl sulphate polyacrylamide gel. Total allelic variation of 27 bands was found. Out of these, 20 were polymorphic and the rest of the bands were monomorphic. Molecular weights of the bands ranged from 12.6 to 91.2 kDa. Major genetic differences were observed in accession 20541 (Peshawar) followed by 20180 (Lahore) and 19902 (AVRDC). Significant differences exist in the protein banding pattern. This variation can further be studied by advanced molecular techniques, including two-dimensional electrophoresis and DNA markers.

  3. Assessing Genetic Diversity Based on Gliadin Proteins in Aegilops cylindrica Populations from Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Toraj KHABIRI

    2013-02-01

    Full Text Available Wild wheat progenitors served as a valuable gene pool in breeding perspectives. In this respect, gliadins could be an important tool in assessing genetic variability as protein markers. Thus, genetic diversity of gliadin protein patterns in seventeen populations of Aegilops cylindrica collected from northwest of Iran were investigated using acid polyacrylamide gel electrophoresis. Results showed that the highest number of bands in the electrophoregrams were related to the ω type of geliadins. Conversely, the lowest number of bands were pertained to the β type of gliadins. Genetic diversity between populations was greater than within population variation. Assessment of total variation for the three gliadin types indicated that the highest total variation was related to β type while, the lowest one was belonged to ω type. Cluster analysis using complete linkage method divided populations into two separated groups in which genetic diversity does not follow from geographical distribution.

  4. A call for tiger management using "reserves" of genetic diversity.

    Science.gov (United States)

    Bay, Rachael A; Ramakrishnan, Uma; Hadly, Elizabeth A

    2014-01-01

    Tigers (Panthera tigris), like many large carnivores, are threatened by anthropogenic impacts, primarily habitat loss and poaching. Current conservation plans for tigers focus on population expansion, with the goal of doubling census size in the next 10 years. Previous studies have shown that because the demographic decline was recent, tiger populations still retain a large amount of genetic diversity. Although maintaining this diversity is extremely important to avoid deleterious effects of inbreeding, management plans have yet to consider predictive genetic models. We used coalescent simulations based on previously sequenced mitochondrial fragments (n = 125) from 5 of 6 extant subspecies to predict the population growth needed to maintain current genetic diversity over the next 150 years. We found that the level of gene flow between populations has a large effect on the local population growth necessary to maintain genetic diversity, without which tigers may face decreases in fitness. In the absence of gene flow, we demonstrate that maintaining genetic diversity is impossible based on known demographic parameters for the species. Thus, managing for the genetic diversity of the species should be prioritized over the riskier preservation of distinct subspecies. These predictive simulations provide unique management insights, hitherto not possible using existing analytical methods.

  5. Investigating Genetic Diversity of Foeniculum Vulgare Mill using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Omid Jadidi

    2016-06-01

    Full Text Available Medicinal plants are considered valuable genetic resources in Iran. One of these medicinal as well as spice plants is Foeniculum Vulgare Mill from Umbellifetae family used in different industries such as food, medicine, and cosmetics. It seems that due to different climate conditions in Iran this plant represents a high and valuable genetic diversity; therefore, management of genetic resources protection and obtaining information about genetic diversity will help awareness of evolution processes as well as genetic erosion of this valuable plant. Genetic diversity in local masses of Foeniculum Vulgare Mill can be investigated using molecule markers such as AFLP, RAPD, ISSR, SRAP, RFLP, and so on. In investigation of over 30 ecotype of local Foeniculum Vulgare Mill, different markers have shown that mean polymorphic content (PIC is about 36% and mean genetic diversity is estimated about 40% in different samples. Data obtained from molecule software analyses help to categorize Foeniculum Vulgare Mill genotype in different groups based on climate and geographical conditions. Principle components analysis (PCOA has also confirmed the results of cluster analysis. Dendrogram obtained by cluster analysis based on similarity coefficient of simple matching (SM and UPGMA algorithm can also categorize population of Foeniculum Vulgare Mill in different groups. Results of molecular variance analysis (AMOVA have shown that most genetic variance between geographical groups can be seen in populations. In general, according to investigations, there is a significant genetic diversity regarding agronomic and molecular traits of Foeniculum Vulgare Mill masses in Iran and knowing this genetic diversity will help in breeding programs, complementary studies, categorization, and so on.

  6. Genetic diversity of seagrass seeds influences seedling morphology and biomass.

    Science.gov (United States)

    Randall Hughes, A; Hanley, Torrance C; Schenck, Forest R; Hays, Cynthia G

    2016-12-01

    Genetic diversity can influence ecological processes throughout ontogeny, yet whether diversity at early life history stages is important in long-lived taxa with overlapping generations is unclear. Seagrass systems provide some of the best evidence for the ecological effects of genetic diversity among adult shoots, but we do not know if the genetic diversity of seeds and seedlings also influences seagrass ecology. We tested the effects of seagrass (Zostera marina) seed diversity and relatedness on germination success, seedling morphology, and seedling production by comparing experimental assemblages of seeds collected from single reproductive shoots ("monocultures") to assemblages of seeds collected from multiple reproductive shoots ("polycultures"). There was no difference in seedling emergence, yet seedlings from polycultures had larger shoots above and below ground than seedlings from monocultures at the end of the 1-yr experiment. Genetic relatedness of the seedlings predicted some aspects of shoot morphology, with more leaves and longer roots and shoots at intermediate levels of relatedness, regardless of seed diversity. Our results suggest that studies of only adult stages may underestimate the importance of genetic diversity if the benefits at early life history stages continue to accrue throughout the life cycle. © 2016 by the Ecological Society of America.

  7. GENETIC DIVERSITY OF WHEAT CULTIVARS ESTIMATED BY SSR MARKERS

    Directory of Open Access Journals (Sweden)

    K. Dvojković

    2008-09-01

    Full Text Available Presence and utilization of the genetic variability in the breeding programmes is prerequisite for their successfulness. Important factor for crop improvement is knowledge about the genetic diversity which providing a basis for the precise selection of parental combinations. Since beginning of 20th century, generation of wheat breeders and scientists in Croatia developed numerous advanced and successful wheat cultivars. Previous researches aimed to genetic diversity evaluation in Croatia were conducted by means of morphological traits, pedigree data (coefficients of parentage, proteins (glutenins and gliadins and RAPD DNA markers. DNA markers detect directly variation of DNA sequence for particular loci and they are not under influence of environment, epistatic and pleiotropic effects. Microsatellite markers (Simple Sequence Repeats; SSRs, as highly polymorphic, informative and codominant DNA marker system, have been extensively used for genetic diversity studies on wheat world wide. A set of 98 wheat cultivars released in Croatia during the period 1905-2007, and 24 foreign cultivar (included because of their ancestral significance or as standards, were screened by 45 microsatellite markers, covering all three wheat genomes. The objectives of this study were to evaluate the microsatellites-based genetic diversity with emphasize on cultivars created at the Agricultural Institute Osijek, as well as to investigate SSR application for selection of genetically the most distant parental pairs. Preliminary data obtained by means of SSR markers showed a satisfactory level of genetic diversity and usefulness of microsatellites for parental selection.

  8. The genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... variation and, hence, restricting the amount of adapted genetic diversity ... the phenotypic diversity of common bean in Uganda. The selection ... The place of collection/origin was also consi- dered in ..... Bean Research and Development Programs at NaCRRI and CIAT .... Evolution 92:1101-1104. Kami JA ...

  9. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers fo

  10. Accumulation of genetic diversity in the US Potato Genebank

    Science.gov (United States)

    Efficient management of ex-situ collections includes understanding how conservation technologies impact the genetic diversity and integrity of these collections. For over 60 years, research at the US Potato Genebank has produced helpful scientific insights on diverse aspects of potato conservation. ...

  11. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.|info:eu-repo/dai/nl/067852335

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers

  12. Gene flow and maintenance of genetic diversity in invasive mosquitofish (Gambusia holbrooki.

    Directory of Open Access Journals (Sweden)

    David Díez-del-Molino

    Full Text Available Genetic analyses contribute to studies of biological invasions by mapping the origin and dispersal patterns of invasive species occupying new territories. Using microsatellite loci, we assessed the genetic diversity and spatial population structure of mosquitofish (Gambusia holbrooki that had invaded Spanish watersheds, along with the American locations close to the suspected potential source populations. Mosquitofish populations from the Spanish streams that were studied had similar levels of genetic diversity to the American samples; therefore, these populations did not appear to have undergone substantial losses of genetic diversity during the invasion process. Population structure analyses indicated that the Spanish populations fell into four main clusters, which were primarily associated with hydrography. Dispersal patterns indicated that local populations were highly connected upstream and downstream through active dispersal, with an average of 21.5% fish from other locations in each population. After initially introducing fish to one location in a given basin, such dispersal potential might contribute to the spread and colonization of suitable habitats throughout the entire river basin. The two-dimension isolation-by-distance pattern here obtained, indicated that the human-mediated translocation of mosquitofish among the three study basins is a regular occurrence. Overall, both phenomena, high natural dispersal and human translocation, favor gene flow among river basins and the retention of high genetic diversity, which might help retain the invasive potential of mosquitofish populations.

  13. Genetic diversity and differentiation in roses: A gardenrose perspective

    NARCIS (Netherlands)

    Vukosavljev, M.; Zhang, J.; Esselink, G.; Westende, van 't W.P.C.; Cox, P.; Visser, R.G.F.; Arens, P.; Smulders, M.J.M.

    2013-01-01

    tFor the first time genetic diversity among modern garden rose cultivars has been evaluated using a setof 24 microsatellite markers covering most chromosomes. A total of 518 different alleles were obtainedin the set of 138 rose cultivars and this led to the conclusion that in terms of genetic

  14. Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats

    Science.gov (United States)

    Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...

  15. Genetic diversity and demographic evolution of baobab (Adansonia ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-09-18

    Sep 18, 2013 ... This study evaluated the spatial genetic structure of baobab ... digitata, haplotype, genetic diversity, demographic evolution. ... use in domestication, conservation, management and .... Benin, and inferred some impact of the environment and ... new diploid species from Africa, which co-exists with A.

  16. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    pc

    2016-11-02

    Nov 2, 2016 ... diversity and genetic structure of 35 maize accessions using 10 microsatellite markers. These accessions ... In addition, they provide new sources of resistance to ..... http://taylor0.biology.ucla.edu/structureHarvester/.The .... environment and in other areas. ..... Molecular population genetics and evolution. In:.

  17. Genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    fire7-

    2016-12-28

    Dec 28, 2016 ... markers to assess the genetic diversity within and between common bean landraces, classifying them based on ... since the 1980's from continuous introduction of new ... control genotypes for the Andean and Mesoamerican gene pools, ... http://biology.anu.edu.au/GenAlEx/) was used to calculate genetic.

  18. Genetic diversity in green gram [Vigna radiata (L.)] landraces ...

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... Sciences, School of Biological Sciences, Madurai Kamaraj University, ... Nadu, India, to determine the extent of genetic diversity at DNA level by random amplified polymorphic ... evolutionary forces such as natural selection and genetic ... supernatant was transferred to a new centrifuge tube, and 0.7.

  19. Study of genetic diversity in finger millet (Eleusine coracana L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... portions of genome, and detects evolutionary homologous changes. ... using these data either to estimate genetic variation present within and ... Development costs ..... possibility of linkage with an area of specific phenotype. Presence of .... Assessment of genome origins and genetic diversity in the genus.

  20. Genetic diversity analysis of pearl millet (Pennisetum glauccum [L ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... Random amplified polymorphic DNA (RAPD) analysis was applied ... ding reliable information for the calculation of genetic dis- tance and pedigree studies. Thus, for genetic diversity assessment, molecular markers offer considerable ad- .... morphism (%) = total number of bands - number of monomorphic.

  1. Genetic structure and diversity within and among six populations of ...

    African Journals Online (AJOL)

    Yomi

    2010-04-24

    Apr 24, 2010 ... positive correlation between molecular genetic variation and actual population size. ... Key words: Capparis decidua, Tandhab, Assos, Population size, RAPD markers, Genetic diversity. .... polymorphism in some population, and were monomorphic ... highly informative and produced 152 bands with an ...

  2. Assessment of genetic diversity within sour cherry clones

    DEFF Research Database (Denmark)

    Clausen, S. K.; Andersen, S. B.; Henriksen, K.;

    2013-01-01

    of improved breeding material. However, no differences in allele profile were found between or within the clones, calling into question the extent of the available genetic diversity and indicating that the observed variance in yield may have to be explained by other genetic mechanisms, including epigenetic...

  3. Conserving the genetic diversity of Bolivian wild potatoes

    NARCIS (Netherlands)

    Cadima Fuentes, X.

    2014-01-01

    Abstract thesis Ximena Cadima Fuentes (to be defended on 8 Dec 2014): Conserving the genetic diversity of Bolivian wild potatoes The wild relatives of potatoes (Solanum sect. Petota) form the genetic reservoir for the improvement of the cultivated

  4. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools

    Directory of Open Access Journals (Sweden)

    Kai Voss-Fels

    2015-07-01

    Full Text Available Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat ( L., the staple food for 35% of the world’s population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

  5. Highlighting nonlinear patterns in population genetics datasets

    KAUST Repository

    Alanis Lobato, Gregorio

    2015-01-30

    Detecting structure in population genetics and case-control studies is important, as it exposes phenomena such as ecoclines, admixture and stratification. Principal Component Analysis (PCA) is a linear dimension-reduction technique commonly used for this purpose, but it struggles to reveal complex, nonlinear data patterns. In this paper we introduce non-centred Minimum Curvilinear Embedding (ncMCE), a nonlinear method to overcome this problem. Our analyses show that ncMCE can separate individuals into ethnic groups in cases in which PCA fails to reveal any clear structure. This increased discrimination power arises from ncMCE\\'s ability to better capture the phylogenetic signal in the samples, whereas PCA better reflects their geographic relation. We also demonstrate how ncMCE can discover interesting patterns, even when the data has been poorly pre-processed. The juxtaposition of PCA and ncMCE visualisations provides a new standard of analysis with utility for discovering and validating significant linear/nonlinear complementary patterns in genetic data.

  6. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic

  7. Genetic diversity in farm animals - A review

    NARCIS (Netherlands)

    Groeneveld, L. F.; Lenstra, J. A.; Eding, H.; Toro, M. A.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E. K.; Jianlin, H.; Groeneveld, E.; Weigend, S.

    2010-01-01

    Domestication of livestock species and a long history of migrations, selection and adaptation have created an enormous variety of breeds. Conservation of these genetic resources relies on demographic characterization, recording of production environments and effective data management. In addition, m

  8. Benefits of host genetic diversity for resistance to infection depend on parasite diversity.

    Science.gov (United States)

    Ganz, Holly H; Ebert, Dieter

    2010-05-01

    Host populations with high genetic diversity are predicted to have lower levels of infection prevalence. This theory assumes that host genetic diversity results in variation in susceptibility and that parasites exhibit variation in infectivity. Empirical studies on the effects of host heterogeneity typically neglect the role of parasite diversity. We conducted three laboratory experiments designed to test if genetic variation in Daphnia magna populations and genetic variation in its parasites together influence the course of parasite spread after introduction. We found that a natural D. magna population exhibited variation in susceptibility to infection by three parasite species and had strong host clone-parasite species interactions. There was no effect of host heterogeneity in experimental host populations (polycultures and monocultures) separately exposed to single strains of three parasite species. When we manipulated the genetic diversity of a single parasite species and exposed them to host monocultures and polycultures, we found that parasite prevalence increased with the number of parasite strains. Host monocultures exposed to several parasite strains had higher mean parasite prevalence and higher variance than polycultures. These results indicate that effect of host genetic diversity on the spread of infection depends on the level of genetic diversity in the parasite population.

  9. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  10. Bamboo: an overview on its genetic diversity and characterization.

    Science.gov (United States)

    Yeasmin, Lucina; Ali, Md Nasim; Gantait, Saikat; Chakraborty, Somsubhra

    2015-02-01

    Genetic diversity represents the heritable variation both within and among populations of organisms, and in the context of this paper, among bamboo species. Bamboo is an economically important member of the grass family Poaceae, under the subfamily Bambusoideae. India has the second largest bamboo reserve in Asia after China. It is commonly known as "poor man's timber", keeping in mind the variety of its end use from cradle to coffin. There is a wide genetic diversity of bamboo around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, the identification, characterization and documentation of genetic diversity of bamboo are essential for this purpose. During recent years, multiple endeavors have been undertaken for characterization of bamboo species with the aid of molecular markers for sustainable utilization of genetic diversity, its conservation and future studies. Genetic diversity assessments among the identified bamboo species, carried out based on the DNA fingerprinting profiles, either independently or in combination with morphological traits by several researchers, are documented in the present review. This review will pave the way to prepare the database of prevalent bamboo species based on their molecular characterization.

  11. Social identity patterns and trust in demographically diverse work teams

    NARCIS (Netherlands)

    van der Zee, Karen; Vos, Menno; Luijters, Kyra

    The article presents a model that links trust in a demographically diverse work context to three different social-identity patterns. Trust is considered to be beneficial for interpersonal relationships and work outcomes in diverse teams as well as for a healthy work relationship between minority

  12. Social identity patterns and trust in demographically diverse work teams

    NARCIS (Netherlands)

    van der Zee, Karen; Vos, Menno; Luijters, Kyra

    2009-01-01

    The article presents a model that links trust in a demographically diverse work context to three different social-identity patterns. Trust is considered to be beneficial for interpersonal relationships and work outcomes in diverse teams as well as for a healthy work relationship between minority mem

  13. Geographical patterns in the beta diversity of China's woody plants

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao

    2012-01-01

    Beta diversity (i.e. species turnover rate across space) is fundamental for understanding mechanisms controlling large-scale species richness patterns. However, the influences on beta diversity are still a matter of debate. In particular, the relative role of environmental and spatial processes (...

  14. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    Science.gov (United States)

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  15. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    Directory of Open Access Journals (Sweden)

    Sara Melito

    Full Text Available BACKGROUND: Helichrysum italicum (Asteraceae is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. METHODS: H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. KEY RESULTS: The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. CONCLUSIONS: The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  16. Do global diversity patterns of vertebrates reflect those of monocots?

    Directory of Open Access Journals (Sweden)

    Lynsey McInnes

    Full Text Available Few studies of global diversity gradients in plants exist, largely because the data are not available for all species involved. Instead, most global studies have focussed on vertebrates, as these taxa have historically been associated with the most complete data. Here, we address this shortfall by first investigating global diversity gradients in monocots, a morphologically and functionally diverse clade representing a quarter of flowering plant diversity, and then assessing congruence between monocot and vertebrate diversity patterns. To do this, we create a new dataset that merges biome-level associations for all monocot genera with country-level associations for almost all ∼70,000 species. We then assess the evidence for direct versus indirect effects of this plant diversity on vertebrate diversity using a combination of linear regression and structural equation modelling (SEM. Finally, we also calculate overlap of diversity hotspots for monocots and each vertebrate taxon. Monocots follow a latitudinal gradient although with pockets of extra-tropical diversity, mirroring patterns in vertebrates. Monocot diversity is positively associated with vertebrate diversity, but the strength of correlation varies depending on the clades being compared. Monocot diversity explains marginal amounts of variance (<10% after environmental factors have been accounted for. However, correlations remain among model residuals, and SEMs apparently reveal some direct effects of monocot richness. Our results suggest that collinear responses to environmental gradients are behind much of the congruence observed, but that there is some evidence for direct effects of producer diversity on consumer diversity. Much remains to be done before broad-scale diversity gradients among taxa are fully explained. Our dataset of monocot distributions will aid in this endeavour.

  17. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  18. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  19. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  20. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management

    Science.gov (United States)

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  1. Genetic Diversity among Ancient Nordic Populations

    DEFF Research Database (Denmark)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R;

    2010-01-01

    , the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two...

  2. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  3. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H.; Kidd, Jeffrey M.

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...

  4. Ensuring the genetic diversity of potatoes

    Science.gov (United States)

    Opportunities for advances in the potato crop through genetics are great, since potato has many needs for improvement, and many related species with the traits required are available. Genebanks provide a centralized and specialized resource for providing the services of acquisition, classification, ...

  5. [Genetic diversity of eukaryotic picoplankton of eight lakes in Nanjing].

    Science.gov (United States)

    Zhao, Bi-ying; Chen, Mei-jun; Sun, Ying; Chen, Fei-zhou; Yang, Jia-xin

    2010-05-01

    The method of terminal restriction fragment length polymorphism (T-RFLP) was used to study the genetic diversity of eukaryotic picoplankton (0.2-5.0 microm) in the pelagic and littoral zones in 8 lakes with different trophic status in Nanjing. The objectives of this study were to confirm the difference of the genetic diversity of eukaryotic picoplankton among lakes and the main factors affecting this difference. T-RFLP indicated that there were various fingerprints among lakes and zones. The average terminal restriction fragments (T-RFs) in the littoral and pelagic zones were 16.4 and 15.9, respectively. The littoral zone in Lake Nan and the pelagic zone in Lake Mochou had 30 T-RFs and 27 T-RFs, respectively. The T-RFs were the least abundant (10) in the pelagic zone in Lake Baijia with relatively low trophic status. The genetic diversity of eukaryotic picoplankton was higher in the littoral zone than that in the pelagic zone except Lake Pipa and Mochou. The cluster analysis indicated that the similarities of the littoral zones and the pelagic zones were very high except Lake Baijia, Qian and Nan. The canonical correspondence analysis between the genetic diversity of eukaryotic picoplankton and environmental factors revealed the concentration of chlorophyll a had the most important impact on the eukaryotic picoplankton communities (p = 0.004). The results indicated that the genetic diversity of eukaryotic picoplankton is affected by the trophic status and has the difference in the pelagic and littoral zones.

  6. Genetic diversity in Hemileia vastatrix based on RAPD markers.

    Science.gov (United States)

    Gouveia, M Manuela C; Ribeiro, Ana; Várzea, Vítor M P; Rodrigues, Carlos J

    2005-01-01

    Random amplified polymorphic DNA (RAPD) was used to assess the genetic structure of Hemileia vastatrix populations. Forty-five rust isolates with different virulence spectra and from different hosts and geographical regions were analyzed. Out of 45 bands, generated with three RAPD primers, 35 (78%) were polymorphic and scored as molecular markers. Cluster analysis exhibits unstructured variability of this pathogen with regard to physiological race, geographical origin or host. The genotypic diversity (H') inferred from Shannon's index was higher than gene diversity (Ht), suggesting that diversity is distributed among clonal lineages. Estimates of gene diversity in Africa and Asia populations were higher in total (Ht) as compared to within population diversity (Hs). Genetic differentiation was considerable among coffee rust isolates from Africa (Gst = 0.865) and Asia (Gst = 0.768) but not among isolates from South America (Gst = 0.266). We concluded that genetic diversity in H. vastatrix was moderately low and that the genetic differentiation among populations shows that asexual reproduction is likely to play an important role in the population biology of this fungus. This should be taken into account for the development of breeding programs.

  7. Genetic diversity among ancient Nordic populations

    DEFF Research Database (Denmark)

    Melchior, Linea Cecilie; Lynnerup, Niels; Siegismund, Hans Redlef

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however......, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two...... locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among...

  8. SSR Analysis of Genetic Diversity Among 192 Diploid Potato Cultivars

    Directory of Open Access Journals (Sweden)

    Xiaoyan Song

    2016-05-01

    Full Text Available In potato breeding, it is difficult to improve the traits of interest at the tetraploid level due to the tetrasomic inheritance. A promising alternative is diploid breeding. Thus it is necessary to assess the genetic diversity of diploid potato germplasm for efficient exploration and deployment of desirable traits. In this study, we used SSR markers to evaluate the genetic diversity of diploid potato cultivars. To screen polymorphic SSR markers, 55 pairs of SSR primers were employed to amplify 39 cultivars with relatively distant genetic relationships. Among them, 12 SSR markers with high polymorphism located at 12 chromosomes were chosen to evaluate the genetic diversity of 192 diploid potato cultivars. The primers produced 6 to 18 bands with an average of 8.2 bands per primer. In total, 98 bands were amplified from 192 cultivars, and 97 of them were polymorphic. Cluster analysis using UPGMA showed the genetic relationships of all accessions tested: 186 of the 192 accessions could be distinguished by only 12 pairs of SSR primers, and the 192 diploid cultivars were divided into 11 groups, and 83.3% constituted the first group. Clustering results showed relatively low genetic diversity among 192 diploid cultivars, with closer relationship at the molecular level. The results can provide molecular basis for diploid potato breeding.

  9. Genetic diversity among ancient Nordic populations.

    Science.gov (United States)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  10. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    Science.gov (United States)

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species.

  11. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  12. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  13. Genetic diversity analysis of common beans based on molecular markers

    Science.gov (United States)

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  14. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  15. Synthetic Pattern of Fish Diversity in Alabama, USA

    Directory of Open Access Journals (Sweden)

    Chen, X.

    2006-12-01

    Full Text Available The state of Alabama has a rich fish fauna. Analyzing the current distributional patterns of fish diversity by synthesizing information and integrating different spatial and temporal scales is important for understanding the underlying mechanisms of diversity and making strategies for fish conservation. Basing the study on long-term intensive samples (9,244 collections of fish species at 3,716 field stations across Alabama from 1845 to 1994, I analyzed the general pattern of fish diversity in Alabama at the county level. The results indicate that more than half the area of Alabama has high fish diversity, including fish species endemic to the USA. Most of the counties with the highest fish diversity are in southwestern Alabama. Nonnative fish species occurred mainly in the southernmost counties, such as Mobile and Baldwin. Twelve counties have the rare species which has only one occurence location in each country, with Lauderdale County having the most (10 rare species; the counties with the rare species are generally distributed at the four corner areas of the state boundaries, particularly on the northern and southern boundaries. A high positive correlation exists between species diversity and endemic species, but there is no significant correlation between species diversity and diversification. Both Power-law and logarithmic relationships exist between class of species diversity and its frequency; counties with higher fish diversity tend to have low human-population densities, and are located at or nearby the Alluvial-deltaic Plain and Gulf Coast floodplain.

  16. Genetic diversity of the yeast Candida utilis.

    Science.gov (United States)

    Stoltenburg, R; Klinner, U; Ritzerfeld, P; Zimmermann, M; Emeis, C C

    1992-12-01

    The electrophoretic karyotypes and some mtDNA restriction fragment patterns of 13 strains of Candida utilis and one strain of Hansenula jadinii were compared. PFGE separations revealed remarkable chromosome length polymorphisms between two groups of strains suggesting that perhaps they do not belong to the same species. However, all strains had the same or similar EcoRI, HindIII and BamHI mtDNA restriction patterns. The mtDNA genomes had an average size range of 55 kb. These results support the supposition that C. utilis is a yeast with a highly variable electrophoretic karyotype as already known for another imperfect yeast species, Candida albicans.

  17. Genetic structure and diversity of Shorea obtusa (Dipterocarpaceae) in Thailand

    Institute of Scientific and Technical Information of China (English)

    Chadaporn SENAKUN; Suchitra CHANGTRAGOON; Pairot PRAMUAL; Preecha PRATHEPHA

    2011-01-01

    Shorea obtusa is a keystone species of the dry deciduous dipterocarp forest in Thailand. In this study,the genetic structure and diversity of this species were evaluated by means of five microsatellite markers. A total of 146 trees were collected from five populations encompassing major forest regions of Thailand. High levels of genetic diversity were found among the five populations with the average He of 0.664. Genetic differentiations between populations, although significant, were low with approximately 3% of genetic variation partitioned among populations. This may indicate that the populations sampled were recently part of a continuous population. A tree constructed using the unweighted pair group method with arithmetic average, based on Nei's genetic distance, divided the populations into three groups. This separation was consistent with the altitudinal zonation of the populations,thus indicating that altitude might play a significant role in the genetic structure of S. obtusa. Areas of high genetic diversity were identified which could be considered priorities for conservation.

  18. Female promiscuity is positively associated with neutral and selected genetic diversity in passerine birds.

    Science.gov (United States)

    Gohli, Jostein; Anmarkrud, Jarl A; Johnsen, Arild; Kleven, Oddmund; Borge, Thomas; Lifjeld, Jan T

    2013-05-01

    Passerine birds show large interspecific variation in extrapair paternity rates. There is accumulating evidence that such promiscuous behavior is driven by indirect, genetic benefits to females. Sexual selection theory distinguishes between two types of genetic benefits, additive and nonadditive effects, mediated by preferences for good and compatible genes, respectively. Good genes preferences should imply directional selection and mating skew among males, and thus reduced genetic diversity in the population. In contrast, compatible genes preferences should give balancing selection that retains genetic diversity. Here, we test how well these predictions fit with patterns of variation in genetic diversity and promiscuity levels among passerine birds. We found that more promiscuous species had higher nucleotide diversity at autosomal introns, but not at Z-chromosome introns. We also found that major histocompatibility complex (MHC) class IIB alleles had higher sequence diversity, and therefore should recognize a broader spectrum of pathogens, in more promiscuous species. Our results suggest that female promiscuity targets a multitude of autosomal genes for their nonadditive, compatibility benefits. Also, as immunity genes seem to be of particular importance, we hypothesize that interspecific variation in female promiscuity among passerine birds has arisen in response to the strength of pathogen-mediated selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. Genetic diversity among ancient Nordic populations.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13% than among extant Danes and Scandinavians (approximately 2.5% as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  20. Diversity-Oriented Synthesis as a Tool for Chemical Genetics

    Directory of Open Access Journals (Sweden)

    Elena Lenci

    2014-10-01

    Full Text Available Chemical genetics is an approach for identifying small molecules with the ability to induce a biological phenotype or to interact with a particular gene product, and it is an emerging tool for lead generation in drug discovery. Accordingly, there is a need for efficient and versatile synthetic processes capable of generating complex and diverse molecular libraries, and Diversity-Oriented Synthesis (DOS of small molecules is the concept of choice to give access to new chemotypes with high chemical diversity. In this review, the combination of chemical genetics and diversity-oriented synthesis to identify new chemotypes as hit compounds in chemical biology and drug discovery is reported, giving an overview of basic concepts and selected case studies.

  1. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  2. Genetic diversity and structure in the Endangered Allen Cays Rock Iguana, Cyclura cychlura inornata

    Directory of Open Access Journals (Sweden)

    Andrea C. Aplasca

    2016-03-01

    Full Text Available The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each. However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations.

  3. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

    Directory of Open Access Journals (Sweden)

    Lopez Ana

    2012-11-01

    Full Text Available Abstract Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77 for pvama-1; 23 (n = 84 for pvcsp; and 23 (n = 35 for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2 was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30 block 2 (K1, MAD20, and RO33, and both allelic families described for the central domain of pfmsp-2 (n = 11 (3D7 and FC27 were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  4. Genetic diversity studies of Kherigarh cattle based on microsatellite markers

    Indian Academy of Sciences (India)

    A. K. Pandey; Rekha Sharma; Yatender Singh; B. B. Prakash; S. P. S. Ahlawat

    2006-08-01

    We report a genetic diversity study of Kherigarh cattle, a utility draught-purpose breed of India, currently declining at a startling rate, by use of microsatellite markers recommended by the Food and Agriculture Organization. Microsatellite genotypes were derived, and allelic and genotypic frequencies, heterozygosities and gene diversity were estimated. A total of 131 alleles were distinguished by the 21 microsatellite markers used. All the microsatellites were highly polymorphic, with mean (± s.e.) allelic number of 6.24 ± 1.7, ranging 4–10 per locus. The observed heterozygosity in the population ranged between 0.261 and 0.809, with mean (± s.e.) of 0.574 ± 0.131, indicating considerable genetic variation in this population. Genetic bottleneck hypotheses were also explored. Our data suggest that the Kherigarh breed has not experienced a genetic bottleneck in the recent past.

  5. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    OpenAIRE

    Menzies, Brandon R.; Renfree, Marilyn B; Thomas Heider; Frieder Mayer; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived...

  6. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    OpenAIRE

    Menzies, Brandon R; Renfree, Marilyn B.; Thomas Heider; Frieder Mayer; Thomas B. Hildebrandt; Pask, Andrew J

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived...

  7. Genetic diversity of Tricholoma matsutake in Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    SHA Tao; ZHANG HanBo; DING HuaSun; LI ZongJu; CHENG LiZhong; ZHAO ZhiWei; ZHANG YaPing

    2007-01-01

    To investigate the genetic diversity of Tricholoma matsutake, we studied ITS and IGS1 sequences and PCR polymorphism of a retrotransposon in 56 fruit bodies collected from 13 counties of 9 regions in Yunnan Province. We found one and three haplotypes based on ITS and IGS1 sequences, respectively.Moreover, there was no significant difference in PCR polymorphism of the retrotransposon among different populations. Compared with Jilin Province (China) and Japanese populations, although Yunnan was highly homogenous to Japanese populations, Iow genetic diversity of T. matsutake in Yunnan did not support the view that this species originated from Yunnan.

  8. Genetic diversity analysis of fruit characteristics of hawthorn germplasm.

    Science.gov (United States)

    Su, K; Guo, Y S; Wang, G; Zhao, Y H; Dong, W X

    2015-12-07

    One hundred and six accessions of hawthorn intraspecific resources, from the National Germplasm Repository at Shenyang, were subjected to genetic diversity and principal component analysis based on evaluation data of 15 fruit traits. Results showed that the genetic diversity of hawthorn fruit traits varied. Among the 15 traits, the fruit shape variable coefficient had the most obvious evaluation, followed by fruit surface state, dot color, taste, weight of single fruit, sepal posture, peduncle form, and metula traits. These are the primary traits by which hawthorn could be classified in the future. The principal component demonstrated that these traits are the most influential factors of hawthorn fruit characteristics.

  9. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Directory of Open Access Journals (Sweden)

    Maximo Rivarola

    Full Text Available Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  10. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Science.gov (United States)

    Rivarola, Maximo; Foster, Jeffrey T; Chan, Agnes P; Williams, Amber L; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M J; Khouri, Hoda M; Beckstrom-Sternberg, Stephen M; Allan, Gerard J; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  11. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    Science.gov (United States)

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  12. Population Structure, Genetic Diversity, Effective Population Size, Demographic History and Regional Connectivity Patterns of the Endangered Dusky Grouper, Epinephelus marginatus (Teleostei: Serranidae), within Malta’s Fisheries Management Zone

    Science.gov (United States)

    Vella, Adriana

    2016-01-01

    The objective of this study is to describe the genetic population structure and demographic history of the endangered marine fish, Epinephelus marginatus, within Malta’s Fisheries Management Zone for the purpose of localised conservation planning. Epinephelus marginatus is a long-lived, sedentary, reef-associated protogynous hermaphrodite with high commercial and recreational value that is at risk of extinction throughout its global distribution. Based on global trends, population substructuring and gaps in local knowledge this has led to an increased interest in evaluation of local stock. Assessment of Maltese demography was based on historical and contemporary catch landings data whilst genetic population structure and regional connectivity patterns were evaluated by examining 175 individuals collected within the central Mediterranean region between 2002 and 2009 using 14 nuclear microsatellite loci. Demographic stock assessment of Maltese E. marginatus’ revealed a 99% decline in catch landings between 1947 and 2009 within the Fisheries Management Zone. A contemporary modest mean size was observed, 3 ± 3 kg, where approximately 17% of the population was juvenile, 68% female/sex-changing and 15% were male with a male-to-female sex ratio of 1:5. Genetic analysis describes the overall population of E. marginatus’ within the Fisheries Management Zone as decreasing in size (ƟH = 2.2), which has gone through a significant size reduction in the past (M = 0.41) and consequently shows signs of moderate inbreeding (FIS = 0.10, p < 0.001) with an estimated effective population size of 130 individuals. Results of spatially explicit Bayesian genetic cluster analysis detected two geographically distinct subpopulations within Malta’s Fisheries Management Zone and that they are connected to a larger network of E. marginatus’ within the Sicily Channel. Results suggest conservation management should be designed to reflect E. marginatus’ within Malta’s Fisheries

  13. Genetic diversity of Phytophthora infestans in the Northern Andean region

    Directory of Open Access Journals (Sweden)

    Grünwald Niklaus J

    2011-02-01

    Full Text Available Abstract Background Phytophthora infestans (Mont. de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana and tree tomato (Solanum betaceum, all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a and one mitochondrial (Cox1 region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Results Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. Conclusions The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  14. Genetic diversity of bovine Neospora caninum determined by microsatellite markers.

    Science.gov (United States)

    Salehi, N; Gottstein, B; Haddadzadeh, H R

    2015-10-01

    Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed.

  15. Genetic diversity among monoconidial and polyconidial isolates of Bipolaris sorokiniana.

    Science.gov (United States)

    Mann, Michele B; Minotto, Elisandra; Feltrin, Thaisa; Milagre, Luciana P; Spadari, Cristina; Van Der Sand, Sueli T

    2014-12-01

    Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat-growing regions of the world. This fungus shows a high genetic diversity and morphological and physiologic variability. In this study, 19 polysporic and 57 monosporic isolates of B. sorokiniana were characterized using universal rice primers-URP-PCR. The results obtained when the dendrogram was constructed with all the data produced with the amplification products showed very distinct clusters. However, the similarity among the isolates was low where 37 and 26.3 % of the monosporic and polysporic isolates, respectively, showed similarity above 70 %. All primers amplified multiple DNA fragments of polysporic as well as the monosporic isolates. Isolates fingerprints were constructed based on binary characters revealed by the three primers. An amplified fragment of approximately 750 bp was observed among 40 % of the isolates, when primer URP-1F was used. When primers URP-4R and URP-2R were used, a fragment of 450 and 400 bp was present in 31.5 and 29 % of the isolates, respectively. It was expected a higher similarity among the isolates since the monosporic cultures were originated from the polysporic. The dendrogram did not enable the separation of B. sorokiniana isolates by their geographic origin. This low correlation suggests that gene transfer may have occurred by parasexual combination in this fungus population. However, in spite of the research efforts for that end, it has not been possible to establish patterns that characterize the profile of B. sorokiniana.

  16. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    王军; 苏永全; 全成干; 丁少雄; 张纹

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) col-lected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified poly-morphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild popula-tion as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were rel-atively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance be-tween the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overilshing, small number of parents as broodstocks and the debatable arti-ficial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is sug-gested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  17. Genetic diversity and population structure of cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Jing Lv

    Full Text Available Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.

  18. Genetic diversity in wild populations of Paulownia fortune.

    Science.gov (United States)

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  19. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) collected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified polymorphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild population as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were relatively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance between the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overfishing, small number of parents as broodstocks and the debatable artificial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is suggested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  20. Species and genetic diversity in the genus Drosophila inhabiting the Indian subcontinent

    Indian Academy of Sciences (India)

    Bashisth N. Singh

    2015-06-01

    Biodiversity is the sum total of all living things on the earth with particular reference to the profound variety in structure, function and genetic constitution. It includes both number and frequency of species or genes in a given assemblage and the variety of resulting ecosystems in a region. It is usually considered at three different levels: genetic, species and ecological diversities. Genus Drosophila belongs to the family Drosophilidae (class Insecta, order Diptera), characterized by rich species diversity at global level and also in India, which is a megadiverse country. At global level, more than 1500 species have been described and several thousands estimated. Hawaiian Islands are particularly rich in species diversity with more than 500 species which provides a unique opportunity to study evolution in genus Drosophila. About 150 species of Drosophila have been reported from India. Certain species of Drosophila found in India have been investigated for genetic diversity within the species. In this regard, Drosophila ananassae is noteworthy. It is a cosmopolitan and domestic species with common occurrence in India and is endowed with many genetic peculiarities. Population genetics and evolutionary studies in this species have revealed as to how genetic diversity within a species play an important role in adaptation of populations to varying environments. In addition, the work carried on D. melanogaster, D. nasuta, D. bipectinata and certain other species in India has shown that these species vary in degree and pattern of genetic diversity, and have evolved different mechanisms for adjusting to their environments. The ecological adaptations to various kinds of stress studied in certain species of Drosophila inhabiting the Indian subcontinent are also discussed.

  1. Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures

    Institute of Scientific and Technical Information of China (English)

    LU Yun-feng; LI Hong-wei; WU Ke-liang; WU Chang-xin

    2013-01-01

    Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity

  2. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes.

    Science.gov (United States)

    Cahill, Abigail E; Levinton, Jeffrey S

    2016-01-01

    Theory predicts that genetic variation should be reduced at range margins, but empirical support is equivocal. Here, we used genotyping-by-sequencing technology to investigate genetic variation in central and marginal populations of two species in the marine gastropod genus Crepidula. These two species have different development and dispersal types and might therefore show different spatial patterns of genetic variation. Both allelic richness and the proportion of private alleles were highest in the most central populations of both species, and lower at the margin. The species with low dispersal, Crepidula convexa, showed high degrees of structure throughout the range that conform to the pattern found in previous studies using other molecular markers. The northernmost populations of the high-dispersing species, Crepidula fornicata, are distinct from more central populations, although this species has been previously observed to have little genetic structure over much of its range. Although genetic diversity was significantly lower at the range margin, the absolute reduction in diversity observed with these genomewide markers was slight, and it is not yet known whether there are functional consequences for the marginal populations.

  3. Genetic structure of wild bonobo populations: diversity of mitochondrial DNA and geographical distribution.

    Directory of Open Access Journals (Sweden)

    Yoshi Kawamoto

    Full Text Available Bonobos (Pan paniscus inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species' range. In 136 effective samples from different individuals (range: 7-37 per population, we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D, which included a newly identified clade (D. MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.

  4. Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity.

    Science.gov (United States)

    Eidesen, Pernille Bronken; Ehrich, Dorothee; Bakkestuen, Vegar; Alsos, Inger Greve; Gilg, Oliver; Taberlet, Pierre; Brochmann, Christian

    2013-11-01

    We provide the first comparative multispecies analysis of spatial genetic structure and diversity in the circumpolar Arctic using a common strategy for sampling and genetic analyses. We aimed to identify and explain potential general patterns of genetic discontinuity/connectivity and diversity, and to compare our findings with previously published hypotheses. We collected and analyzed 7707 samples of 17 widespread arctic-alpine plant species for amplified fragment length polymorphisms (AFLPs). Genetic structure, diversity and distinctiveness were analyzed for each species, and extrapolated to cover the geographic range of each species. The resulting maps were overlaid to produce metamaps. The Arctic and Atlantic Oceans, the Greenlandic ice cap, the Urals, and lowland areas between southern mountain ranges and the Arctic were the strongest barriers against gene flow. Diversity was highest in Beringia and gradually decreased into formerly glaciated areas. The highest degrees of distinctiveness were observed in Siberia. We conclude that large-scale general patterns exist in the Arctic, shaped by the Pleistocene glaciations combined with long-standing physical barriers against gene flow. Beringia served as both refugium and source for interglacial (re)colonization, whereas areas further west in Siberia served as refugia, but less as sources for (re)colonization.

  5. Genetic diversity of natural Hepatacodium miconioides populations in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    LI Junmin; JIN Zexin

    2006-01-01

    Hepatacodium miconioides is the Class Ⅱ protected plant species in China.This paper studies the genetic diversity and differentiation of its nine natural populations in Zhejiang Province by using random amplified polymorphic DNA (RAPD) technique.Twelve random primers were selected in the amplification,and 164 repetitive loci were produced.The percentage of polymorphic loci in each H.miconioides population ranged from 14.60% to 27.44%,with an average of 20.73%.Among the test populations,Kuochangshan had the highest percentage of polymorphic loci,Simingshan took the second place,and Guanyinping had the lowest percentage.As estimated by Shannon index,the genetic diversity within H.miconioides populations accounted for 27.28% of the total genetic diversity,while that among H.miconioides populations accounted for 72.72%.The genetic differentiation among H.miconioides populations as estimated by Nei index was 0.715,7.This figure was generally consistent with that estimated by Shannon index,i.e.,the genetic differentiation among populations was relatively high,but that within populations was relatively low.The gene flow among H.miconioides populations was relatively low (0.198,7),and the genetic similarity ranged from 0.655,7 to 0.811,9,with an average of 0.730,6.The highest genetic distance among populations was 0.422,9,while the lowest was 0.208,3.All the results showed that there was a distinct genetic differentiation among H.miconioides populations.The genetic distance matrix of nine test populations was calculated using this method,and the clustering analysis was made using the unweighted pair group method with arithmetic mean (UPGMA).The cluster analysis suggested that the ninepopulations of H.miconioides in Zhejiang Province could be divided into two groups,the eastern Zhejiang group and the western Zhejiang group.

  6. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  7. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)

    Science.gov (United States)

    2010-01-01

    Background Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p < 0.01). Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity. PMID:20082707

  8. Gene diversity and genetic variation in lung flukes (genus Paragonimus).

    Science.gov (United States)

    Blair, David; Nawa, Yukifumi; Mitreva, Makedonka; Doanh, Pham Ngoc

    2016-01-01

    Paragonimiasis caused by lung flukes (genus Paragonimus) is a neglected disease occurring in Asia, Africa and the Americas. The genus is species-rich, ancient and widespread. Genetic diversity is likely to be considerable, but investigation of this remains confined to a few populations of a few species. In recent years, studies of genetic diversity have moved from isoenzyme analysis to molecular phylogenetic analysis based on selected DNA sequences. The former offered better resolution of questions relating to allelic diversity and gene flow, whereas the latter is more suitable for questions relating to molecular taxonomy and phylogeny. A picture is emerging of a highly diverse taxon of parasites, with the greatest diversity found in eastern and southern Asia where ongoing speciation might be indicated by the presence of several species complexes. Diversity of lung flukes in Africa and the Americas is very poorly sampled. Functional molecules that might be of value for immunodiagnosis, or as targets for medical intervention, are of great interest. Characterisation of these from Paragonimus species has been ongoing for a number of years. However, the imminent release of genomic and transcriptomic data for several species of Paragonimus will dramatically increase the rate of discovery of such molecules, and illuminate their diversity within and between species.

  9. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella.

    Science.gov (United States)

    Noyer, Charlotte; Thomas, Olivier P; Becerro, Mikel A

    2011-01-01

    The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.

  10. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella.

    Directory of Open Access Journals (Sweden)

    Charlotte Noyer

    Full Text Available The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.

  11. Sequence variation and genetic diversity in the giant panda

    Institute of Scientific and Technical Information of China (English)

    张亚平; Oliver A.Ryder; 范志勇; 张和明; 何廷美; 何光昕; 张安居; 费立松; 钟顺隆; 陈红; 张成林; 杨明海; 朱飞兵; 彭真信; 普天春; 陈玉村; 姚敏达; 郭伟

    1997-01-01

    About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to some extent.

  12. Soybean parent selection based on genetic diversity

    Directory of Open Access Journals (Sweden)

    Valéria Carpentieri-Pípolo

    2000-01-01

    Full Text Available Thirty-four soybean lines were assessed for twelve traits. The genetic distances were estimates using multivariate techniques, to identify parents to be included in breeding programs for hybridization. Grouping by the Tocher method, from generalized Mahalanobis distances, divided the 34 lines into four groups. The most important agronomic traits, weight of seeds per plot, plant height, height of first pod and days to maturity were considered when recommending for crossing. The following crosses were recommended based on the genetic divergence and the key agronomic traits: lines 23, 10, 2, 27 and 25 (group I with genotype 6 (group II and genotype 16 (group III. Thus only ten crosses would be made, representing only 2% of the total crosses which could be made in the partial diallel among the 34 lines assessed, which would allow up to 561 combinations.Trinta e quatro linhagens de soja foram avaliadas para doze características. As distâncias genéticas foram estimadas utilizando técnicas multivariadas com objetivo de identificar parentais a serem incluidos em um programa de melhoramento envolvendo hibridação. O agrupamento pelo método de Tocher, a partir das distâncias generalizadas de Mahalanobis, dividiu as 34 linhagens em 4 grupos. As caracterísiticas agronômicas mais importantes, peso de sementes por parcela, altura de planta, altura da primeira vagem e dias para maturação foram consideradas para a recomendação dos cruzamentos. Os seguintes cruzamentos foram recomendados baseado na divergência genética e nas características agronômicas chave: linhagens 23, 10, 2, 27 e 25 (grupo I com genótipo 6 (grupoII e com o genótipo 16 (grupo III. Portanto somente 10 cruzamentos poderiam ser realizados representando somente 2% do total de cruzamentos qu poderiam ser realizados em um dialelo parcial entre as 34 linhagens avaliadas as quais admitiriam até 561 combinações.

  13. Genetic diversity of Kenyan native oyster mushroom (Pleurotus).

    Science.gov (United States)

    Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

    2015-01-01

    Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation.

  14. A Reassessment of the Impact of European Contact on the Structure of Native American Genetic Diversity.

    Science.gov (United States)

    Hunley, Keith; Gwin, Kiela; Liberman, Brendan

    2016-01-01

    Our current understanding of pre-Columbian history in the Americas rests in part on several trends identified in recent genetic studies. The goal of this study is to reexamine these trends in light of the impact of post-Columbian admixture and the methods used to study admixture. The previously-published data consist of 645 autosomal microsatellite genotypes from 1046 individuals in 63 populations. We used STRUCTURE to estimate ancestry proportions and tested the sensitivity of these estimates to the choice of the number of clusters, K. We used partial correlation analyses to examine the relationship between gene diversity and geographic distance from Beringia, controlling for non-Native American ancestry (from Africa, Europe and East Asia), and taking into account alternative paths of migration. Principal component analysis and multidimensional scaling were used to investigate the relationships between Andean and non-Andean populations and to explore gene-language correspondence. We found that 1) European and East Asian ancestry estimates decline as K increases, especially in Native Canadian populations, 2) a north-south decline in gene diversity is driven by low diversity in Amazonian and Paraguayan populations, not serial founder effects from Beringia, 3) controlling for non-Native American ancestry, populations in the Andes and Mesoamerica have higher gene diversity than populations in other regions, and 4) patterns of genetic and linguistic diversity are poorly correlated. We conclude that patterns of diversity previously attributed to pre-Columbian processes may in part reflect post-Columbian admixture and the choice of K in STRUCTURE analyses. Accounting for admixture, the pattern of diversity is inconsistent with a north-south founder effect process, though the genetic similarities between Mesoamerican and Andean populations are consistent with rapid dispersal along the western coast of the Americas. Further, even setting aside the disruptive effects of

  15. Genetic Diversity in Introduced Golden Mussel Populations Corresponds to Vector Activity

    Science.gov (United States)

    Ghabooli, Sara; Zhan, Aibin; Sardiña, Paula; Paolucci, Esteban; Sylvester, Francisco; Perepelizin, Pablo V.; Briski, Elizabeta; Cristescu, Melania E.; MacIsaac, Hugh J.

    2013-01-01

    We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (HE = 0.667–0.746) than those in South America (HE = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, FST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise FST values within both Asia (FST = 0.017–0.126, P = 0.000–0.009) and South America (FST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (FST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species. PMID:23533614

  16. Genetic diversity in introduced golden mussel populations corresponds to vector activity.

    Directory of Open Access Journals (Sweden)

    Sara Ghabooli

    Full Text Available We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H(E = 0.667-0.746 than those in South America (H(E =  0.519-0.575, suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise Ф(ST, F(ST, bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F(ST values within both Asia (F(ST = 0.017-0.126, P = 0.000-0.009 and South America (F(ST =0.004-0.107, P = 0.000-0.721 were lower than those between continents (F(ST = 0.180-0.319, P = 0.000. Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species.

  17. Assessment of genetic diversity in Cattleya intermedia Lindl. (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Nelson Barbosa Machado Neto

    2011-10-01

    Full Text Available Orchids are valuable pot plants and Cattleya intermedia is a promising species underused in breeding programs. Recently, breeding work with this species produced superior plants that are believed to be not the true species owing to the morphological differences from wild plants. The aim of this study was to estimate the level of genetic diversity and interrelationships between wild and bred Cattleya intermedia collected at three different Brazilian states and from commercial breeders with RAPD markers. A total of 65 polymorphic bands were used to generate a genetic distance matrix. No specific groupings were revealed by the cluster analysis as bred materials were not different from wild plants. The genetic differentiation (F ST = 0.01626 was very low indicating a high gene flow in C. intermedia due to artificial crosses and a high differentiation between populations. The genetic variability available within this species is high enough to allow genetic progress in flower shape and size.

  18. Genetic diversity in the Paramecium aurelia species complex.

    Science.gov (United States)

    Catania, Francesco; Wurmser, François; Potekhin, Alexey A; Przybos, Ewa; Lynch, Michael

    2009-02-01

    Current understanding of the population genetics of free-living unicellular eukaryotes is limited, and the amount of genetic variability in these organisms is still a matter of debate. We characterized-reproductively and genetically-worldwide samples of multiple Paramecium species belonging to a cryptic species complex, Paramecium aurelia, whose species have been shown to be reproductively isolated. We found that levels of genetic diversity both in the nucleus and in the mitochondrion are substantial within groups of reproductively compatible P. aurelia strains but drop considerably when strains are partitioned according to their phylogenetic groupings. Our study reveals the existence of discrepancies between the mating behavior of a number of P. aurelia strains and their multilocus genetic profile, a controversial finding that has major consequences for both the current methods of species assignment and the species problem in the P. aurelia complex.

  19. Genetic diversity of Ascaris in southwestern Uganda

    DEFF Research Database (Denmark)

    Betson, Martha; Nejsum, Peter; Llewellyn-Hughes, Julia

    2012-01-01

    Despite the common occurrence of ascariasis in southwestern Uganda, helminth control in the region has been limited. To gain further insights into the genetic diversity of Ascaris in this area, a parasitological survey in mothers (n=41) and children (n=74) living in two villages, Habutobere and M...

  20. Morphological and molecular genetic diversity of Syrian indigenous ...

    African Journals Online (AJOL)

    This study aimed to assess the morphological variation, genetic diversity and ... questionnaire was used in recording both qualitative (coat color, eye color, horn ... these goat breeds have not yet undergone an organized breeding program. ... The Syrian goat populations had observed and expected heterozygosity values ...

  1. Ortholog identification in genera of high genetic diversity and evolution

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Vesth, Tammi Camilla; Frisvad, Jens Christian

    In the era of high-throughput sequencing, comparative genomics is vastly used in the discovery of genetic diversity between species, but also in defining the core and pan genome of single species to whole genera. Current comparative approaches are implementing ortholog identification to establish...... genome annotations, gene or protein evolutions or defining functional features in individual species and groups....

  2. Genetic diversity of Przewalski's gazelle using noninvasive DNA and ...

    African Journals Online (AJOL)

    Cynthia

    2015-04-01

    Apr 1, 2015 ... 1Institute of Forestry Ecology, Environment and Protection and the Key Laboratory of Forest Ecology and ... In order to understand the genetic structure and diversity of ... important for the purposes of conservation management, especially for the identification of evolutionary significant ..... Biological.

  3. Assessing genetic diversity of perennial ryegrass (Lolium perenne L ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... cult to quantify, comparison of variability of traits over geological ... Africa, Asia and America. A second objective was to compare genetic diversity between commercial cultivars ...... population size when local extinction and recolonization of ... grosvenorii), an economic species endemic to South China, as.

  4. genetic diversity and prevalence of antiretroviral drug resistance ...

    African Journals Online (AJOL)

    PROGMANAGER

    2013-04-24

    Apr 24, 2013 ... Human immunodeficiency virus type-1 (HIV-1) genetic ... enrolled for HIV care at the Jos University Teaching Hospital (JUTH) HIV Treatment Center between ... algorithm. ..... and RT sequences revealed distribution of HIV-1 subtype's diversity circulating .... resistance position 210W; which is a rare finding.

  5. Morphological and molecular genetic diversity of Syrian indigenous ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-04

    May 4, 2016 ... This study aimed to assess the morphological variation, genetic diversity and population ... goat breed was well differentiated and grouped into a separate cluster that suggests its evolutionary ... research and development centers in representative ... Phenotypic and molecular characterizations have been.

  6. Genetic diversity and differentiation of Pseudophoenix (Arecaceae) in Hispaniola

    Science.gov (United States)

    Technical Abstract Pseudophoenix ekmanii Burret, P. lediniana Read, and P. vinifera (Mart.) Becc. (Arecaceae) are endemic to Hispaniola. The more wide-ranging P. sargentii H.Wendl. ex Sarg. occurs on this island as well. The population genetic diversity and structure of Pseudophoenix was investigate...

  7. Genetic diversity as assessed by morphological and microsatellite ...

    African Journals Online (AJOL)

    lap

    2012-10-18

    Oct 18, 2012 ... combination of morphological and molecular markers increases the efficiency of diversity measured and the adzuki bean microsatellite markers are highly polymorphic and can be successfully used .... information about the magnitude of genetic variability. ... Two primers MB77 and CP37 were monomorphic.

  8. Genetic diversity among varieties and wild species accessions of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Key words: Genetic diversity, SSR, Pisum, cluster analysis, assignment test. INTRODUCTION ... phological characters and (or) molecular techniques (Ellis et al., 1998; Hoey et ..... Associations among 57 wild Pisum accessions and 20 varieties were ..... repeats (SSRs) in cultivated Brassica species. Theor.

  9. Genetic diversity and population structure of begomoviruses infecting sweet potato

    Science.gov (United States)

    Begomoviruses infecting sweet potatoes (Ipomoea batatas) exhibit high genetic diversity, and approximately eight species including Sweet potato leaf curl virus (SPLCV) have been described from different regions around the world. In this study, the complete genomic sequences of 17 geographically dist...

  10. Assessment of genetic diversity of sweet potato in Puerto Rico

    Science.gov (United States)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  11. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs) of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprisin...

  12. Genetic diversity Study of Dioscoreas Using Morphological Traits ...

    African Journals Online (AJOL)

    Prof. Ogunji

    major yam species are tropical plants and do not grow well below 200 C. ... cayenesis - rotundata complex were collected in. West Africa and ... tropical forest with mean annual rainfall of. 1,200mm, mean ..... Genetic structure and diversity in ...

  13. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  14. Application of SRAP in the genetic diversity of Tricholoma matsutake ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... The study firstly applied SRAP technique into genetic diversity of T. matsutake. A total of ... widely in coniferous trees, especially Pinus densiflora forests, and ..... Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z,.

  15. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    Directory of Open Access Journals (Sweden)

    Ocelák M.

    2015-12-01

    Full Text Available The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%, gene diversity (0.103, and Shannon’s information index (0.15 were exhibited by the Santa Lucia population, which was also geographically most distant. This fact may be attributed to a very small size of this group. In contrast, the Dos de Mayo population exhibited the highest percentage of polymorphic bands (78%, and the Santa Cruz population the highest Nei’s gene diversity index (0.238 and Shannon’s information index (0.357. The obtained level of genetic variability was 36% among tested populations and 64% within populations. Although the diversity indices were low, a cluster analysis revealed 8 clusters containing mainly samples belonging to individual populations. Principal coordinate analysis clearly distinguished Chumbaquihui, Pucallpa, Dos de Mayo, and Aguas de Oro populations, the others were intermixed. The obtained results indicated the level of genetic diversity present in this location of Peru, although it is influenced by anthropological aspects and independent on the geographical distances.

  16. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas.

    Science.gov (United States)

    Taylor, Jesse E; Pacheco, M Andreína; Bacon, David J; Beg, Mohammad A; Machado, Ricardo Luiz; Fairhurst, Rick M; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A

    2013-09-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.

  17. The 'Out of Africa' Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    Science.gov (United States)

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a long-lasting effect on the pattern of comparative economic development that is not captured by geographical, institutional, and cultural factors. In particular, the level of genetic diversity within a society is found to have a hump-shaped effect on development outcomes in both the pre-colonial and the modern era, reflecting the trade-off between the beneficial and the detrimental effects of diversity on productivity. While the intermediate level of genetic diversity prevalent among Asian and European populations has been conducive for development, the high degree of diversity among African populations and the low degree of diversity among Native American populations have been a detrimental force in the development of these regions. PMID:25506083

  18. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L.

    Science.gov (United States)

    Spataro, G; Tiranti, B; Arcaleni, P; Bellucci, E; Attene, G; Papa, R; Spagnoletti Zeuli, P; Negri, V

    2011-05-01

    Phaseolus coccineus L. is closely related to P. vulgaris and is the third most important cultivated Phaseolus species. Little is known about the patterns of its diversity. In this work, a representative collection of its worldwide diversity was initially developed. The collection includes 28 wild forms (WFs) and 52 landraces (LRs) from Mesoamerica (the crop domestication area), and 148 LRs from Europe (where the crop was introduced in the sixteenth century). The collection was studied by using 12 SSR molecular markers that were developed for the P. vulgaris genome. They were proved to be effective and reliable in P. coccineus in this work. Fourteen LRs of P. dumosus (previously identified as a subspecies of P. coccineus) were also studied. The genetic diversity, population structure and phylogenetic relationships were investigated. The results indicate that: (a) the European and Mesoamerican gene pools are clearly differentiated, (b) a certain reduction of diversity occurred with introduction into Europe, and (c) the Mesoamerican LRs (P. dumosus included) and WFs are closely related and are connected by a high gene flow. Inferences on the domestication process of P. coccineus are also presented. This study provides a picture of the genetic diversity distribution and outcomes with introduction into the Old World, which was not available before. It also underlines that the genetic diversity of both WFs and LRs is an important source for Phaseolus spp. breeding programs and deserves to be preserved in situ and ex situ.

  19. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    Science.gov (United States)

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation.

  20. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  1. Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Maria Miragaia

    Full Text Available BACKGROUND: The methicillin-resistant Staphylococcus aureus clone USA300 contains a novel mobile genetic element, arginine catabolic mobile element (ACME, that contributes to its enhanced capacity to grow and survive within the host. Although ACME appears to have been transferred into USA300 from S. epidermidis, the genetic diversity of ACME in the latter species remains poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: To assess the prevalence and genetic diversity of ACME, 127 geographically diverse S. epidermidis isolates representing 86 different multilocus sequence types (STs were characterized. ACME was found in 51% (65/127 of S. epidermidis isolates. The vast majority (57/65 of ACME-containing isolates belonged to the predominant S. epidermidis clonal complex CC2. ACME was often found in association with different allotypes of staphylococcal chromosome cassette mec (SCCmec which also encodes the recombinase function that facilities mobilization ACME from the S. epidermidis chromosome. Restriction fragment length polymorphism, PCR scanning and DNA sequencing allowed for identification of 39 distinct ACME genetic variants that differ from one another in gene content, thereby revealing a hitherto uncharacterized genetic diversity within ACME. All but one ACME variants were represented by a single S. epidermidis isolate; the singular variant, termed ACME-I.02, was found in 27 isolates, all of which belonged to the CC2 lineage. An evolutionary model constructed based on the eBURST algorithm revealed that ACME-I.02 was acquired at least on 15 different occasions by strains belonging to the CC2 lineage. CONCLUSIONS/SIGNIFICANCE: ACME-I.02 in diverse S. epidermidis isolates were nearly identical in sequence to the prototypical ACME found in USA300 MRSA clone, providing further evidence for the interspecies transfer of ACME from S. epidermidis into USA300.

  2. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Directory of Open Access Journals (Sweden)

    Sascha van der Meer

    Full Text Available Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68, which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands.

  3. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Science.gov (United States)

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands.

  4. Thai pigs and cattle production, genetic diversity of livestock and strategies for preserving animal genetic resources

    Directory of Open Access Journals (Sweden)

    Kesinee Gatphayak

    2013-03-01

    Full Text Available This paper reviews the current situation of livestock production in Thailand, genetic diversity and evaluation, as well as management strategies for animal genetic resources focusing on pigs and cattle. Sustainable conservation of indigenous livestock as a genetic resource and vital components within the agricultural biodiversity domain is a great challenge as well as an asset for the future development of livestock production in Thailand.

  5. Extraordinary Genetic Diversity in a Wood Decay Mushroom

    Science.gov (United States)

    Baranova, Maria A.; Logacheva, Maria D.; Penin, Aleksey A.; Seplyarskiy, Vladimir B.; Safonova, Yana Y.; Naumenko, Sergey A.; Klepikova, Anna V.; Gerasimov, Evgeny S.; Bazykin, Georgii A.; James, Timothy Y.; Kondrashov, Alexey S.

    2015-01-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10−8 (95% CI: 1.1 × 10−8 to 4.1 × 10−8) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. PMID:26163667

  6. A simple method for estimating genetic diversity in large populations from finite sample sizes

    Directory of Open Access Journals (Sweden)

    Rajora Om P

    2009-12-01

    Full Text Available Abstract Background Sample size is one of the critical factors affecting the accuracy of the estimation of population genetic diversity parameters. Small sample sizes often lead to significant errors in determining the allelic richness, which is one of the most important and commonly used estimators of genetic diversity in populations. Correct estimation of allelic richness in natural populations is challenging since they often do not conform to model assumptions. Here, we introduce a simple and robust approach to estimate the genetic diversity in large natural populations based on the empirical data for finite sample sizes. Results We developed a non-linear regression model to infer genetic diversity estimates in large natural populations from finite sample sizes. The allelic richness values predicted by our model were in good agreement with those observed in the simulated data sets and the true allelic richness observed in the source populations. The model has been validated using simulated population genetic data sets with different evolutionary scenarios implied in the simulated populations, as well as large microsatellite and allozyme experimental data sets for four conifer species with contrasting patterns of inherent genetic diversity and mating systems. Our model was a better predictor for allelic richness in natural populations than the widely-used Ewens sampling formula, coalescent approach, and rarefaction algorithm. Conclusions Our regression model was capable of accurately estimating allelic richness in natural populations regardless of the species and marker system. This regression modeling approach is free from assumptions and can be widely used for population genetic and conservation applications.

  7. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources

    Science.gov (United States)

    The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characte...

  8. Allozymes Genetic Diversity of Quercus mongolica Fisch in China

    Institute of Scientific and Technical Information of China (English)

    LI Wenying; GU Wanchun

    2006-01-01

    A gel electrophoresis method was used to study the genetic diversity of 8 Quercus mongolica populations throughout its range in China.Eleven of 21 loci from 13 enzymes assayed were polymorphic.Q.mongolica maintained low level of genetic variation compared with the average Quercus species.At the species level,: the mean number of alleles per locus (A) was 1.905, the percentage of polymorphic loci (P) was 52.38%, the observed heterozygosity (He) was 0.092 and the expected heterozygosity (He) was 0.099.At the population level, the estimates were A =1.421, P =28.976%, Ho= 0.088, He =0.085.Genetic differentiation (Gst was high among populations, it was 0.107.According to the UPGMA cluster analysis based on the genetic distance, 4 populations located in northeast and 2 populations in southwest of the geographical distribution are classified into 2 subgroups, but there was no clear relationship between genetic distance and geographic distance among populations.The low level of genetic diversity of Q.mongolica might be related to the long-term exploitation as economic tree species in history are comparatively seriously disturbed and damaged by human beings, and most of the existing stands are secondary forests.

  9. Geographical patterns in the beta diversity of China's woody plants

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao

    2012-01-01

    with their environmental niches due to dispersal limitation induced by China’s topography and/or their low dispersal ability. The projected rapid climatic changes will likely endanger such species. Species dispersal processes should be taken into account in future conservation strategies in China.......Beta diversity (i.e. species turnover rate across space) is fundamental for understanding mechanisms controlling large-scale species richness patterns. However, the influences on beta diversity are still a matter of debate. In particular, the relative role of environmental and spatial processes (e.......g. environmental niche versus dispersal limitation of species) remains elusive, and the influence of species range size has been poorly tested. Here, using distribution maps of 11 405 woody species in China (ca 9.6 ¿ 106 km2), we investigated 1) the geographical and directional patterns of beta diversity for all...

  10. Genetic diversity of coastal bottlenose dolphins revealed by structurally and functionally diverse hemoglobins.

    Science.gov (United States)

    Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia

    2007-08-15

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.

  11. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers.

    Science.gov (United States)

    Wangsomnuk, P P; Khampa, S; Wangsomnuk, P; Jogloy, S; Mornkham, T; Ruttawat, B; Patanothai, A; Fu, Y B

    2011-12-12

    Jerusalem artichoke (Helianthus tuberosus) is a wild relative of the cultivated sunflower (H. annuus); it is an old tuber crop that has recently received renewed interest. We used RAPD markers to characterize 147 Jerusalem artichoke accessions from nine countries. Thirty RAPD primers were screened; 13 of them detected 357 reproducible RAPD bands, of which 337 were polymorphic. Various diversity analyses revealed several different patterns of RAPD variation. More than 93% of the RAPD variation was found within accessions of a country. Weak genetic differentiation was observed between wild and cultivated accessions. Six groups were detected in this germplasm set. Four ancestral groups were found for the Canadian germplasm. The most genetically distinct accessions were identified. These findings provide useful diversity information for understanding the Jerusalem artichoke gene pool, for conserving Jerusalem artichoke germplasm, and for choosing germplasm for genetic improvement.

  12. Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation.

    Science.gov (United States)

    Tsumura, Y; Matsumoto, A; Tani, N; Ujino-Ihara, T; Kado, T; Iwata, H; Uchida, K

    2007-08-01

    We investigated 25 natural populations of Chamaecyparis obtusa using 51 cleaved amplified polymorphic sequence (CAPS) markers, which were developed using information on sequence-tagged sites (STS) in Cryptomeria japonica. Most CAPS markers have codominant expression patterns, and are suitable for population studies because of their robustness and convenience. We estimated various genetic diversity parameters, including average heterozygosity (H(e)) and allelic richness and found that the more peripheral populations tended to have lower genetic diversity than central populations, in agreement with a previous theoretical study. The overall genetic differentiation between populations was low, but statistically significant (G(ST)=0.039), and similar to the level reported in a previous allozyme study. We attempted to detect non-neutral loci associated with local adaptation to clarify the relationship between the fixation index (F(ST)) and H(e) values for each locus and found seven candidates non-neutral loci. Phylogenetic tree analysis of the populations and Bayesian clustering analysis revealed a pattern of gradually increasing isolation of populations with increasing geographical distance. Three populations had a high degree of linkage disequilibrium, which we attribute to severe bottlenecks due to human disturbance or competition with other species during their migration from refugia after the most recent glaciation. We concluded that the small populations in western Japan and in Kanto district are more important, from a conservation perspective, than the populations in central Japan, due to their genetic divergence, relatively small sizes and restricted areas.

  13. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    Science.gov (United States)

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  14. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    Directory of Open Access Journals (Sweden)

    Pia Tahvanainen

    Full Text Available This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS sequences and Amplified Fragment Length Polymorphism (AFLP of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  15. Genetic diversity of Hungarian Maize dwarf mosaic virus isolates.

    Science.gov (United States)

    Gell, Gyöngyvér; Balázs, Ervin; Petrik, Kathrin

    2010-04-01

    The genetic diversity of the coat-protein (CP) region and the untranslated C-terminal region (3'UTR) of Maize dwarf mosaic virus (MDMV) was analyzed to evaluate the variability between isolates (inter-isolate sequence diversity). The results of inter-isolate sequence diversity analysis showed that the diversity of the MDMV CP gene is fairly high (p-distance: up to 0.136). During sequence analysis, a 13 amino-acid residue insertion and an 8 amino-acid residue deletion were found within the N-terminal region of the CP gene. The phylogenetic analysis showed that-unlike other potyvirus species in this subgroup-the MDMV isolates could not be distinguished on the basis of their host plants or geographic origins.

  16. Genetic diversity in a germplasm bank of Oenocarpus mapora (Arecaceae).

    Science.gov (United States)

    Moura, E F; de Oliveira, M S P

    2012-11-26

    Oenocarpus mapora is an Amazonian palm species commonly used by native populations for food and in folk medicine. We measured genetic variability, using RAPD markers, of material kept in a germplasm bank composed of accessions sampled from the Brazilian Amazon. These included 74 individuals from 23 accessions sampled from 9 localities in three States of the Brazilian Amazon. Jaccard genetic similarities were calculated based on 137 polymorphic bands, amplified by 15 primers. Dendrograms constructed based on the genetic similarities among individuals and sample localities demonstrated genetic separation of Acre State from the States of Amazonas and Pará. Two models in three hierarchical levels were considered for AMOVA: one considering the grouping of sampling sites in each state, and the other considering sampling sites in each subgroup formed by the dendrograms. The first model showed no significant genetic variation among states. On the other hand, genetic variation among subgroups was significant. In this model, the within-sample-site genetic diversity was 47.15%, which is considered to be low, since O. mapora is allogamous. By means of Bayesian analysis, the sample sites were clustered into five groups, and their distribution was similar to what we found in the dendrograms based on genetic similarity.

  17. Diversity in needle morphology and genetic markers in a marginal Abies cephalonica (Pinaceae population

    Directory of Open Access Journals (Sweden)

    Aristotelis C. Papageorgiou

    2015-12-01

    Full Text Available Differences in needle traits of coniferous tree species are considered as the combined result of direct environmental pressure and specific genetic adaptations. In this study, diversity and differentiation within and among four Abies cephalonica subpopulations of a marginal population on Mt. Parnitha - Greece, were estimated using needle morphological traits and gene markers. We tested the connection of morphological variability patterns of light and shade needles with possible adaptation strategies and genetic diversity. Six morphological characteristics were used for the description of both light and shade needles at 100 trees, describing needle size and shape, stomatal density and needle position on the twigs. Additionally, six RAPD and three ISSR markers were applied on DNA from the same trees. Light needles were significantly different than shade needles, in all traits measured, apparently following a different light harvesting strategy. All four subpopulations exhibited high genetic diversity and the differentiation among them was relatively low. Differences among populations in light needles seemed to depend on light exposure and aspect. In shade needles, the four subpopulations seemed to deviate stronger from each other and express a rather geographic pattern, similarly to the genetic markers. Two of the subpopulations studied were lost during a wildfire, two years after sampling. Although the subpopulations burnt were most diverse and most differentiated, we expect a large part of the total genetic diversity of the burnt trees to still exist in the surviving subpopulations, since gene flow must have been effective in keeping all subpopulations connected.

  18. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    Science.gov (United States)

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution.

  19. Microbialite genetic diversity and composition relate to environmental variables.

    Science.gov (United States)

    Centeno, Carla M; Legendre, Pierre; Beltrán, Yislem; Alcántara-Hernández, Rocío J; Lidström, Ulrika E; Ashby, Matthew N; Falcón, Luisa I

    2012-12-01

    Microbialites have played an important role in the early history of life on Earth. Their fossilized forms represent the oldest evidence of life on our planet dating back to 3500 Ma. Extant microbialites have been suggested to be highly productive and diverse communities with an evident role in the cycling of major elements, and in contributing to carbonate precipitation. Although their ecological and evolutionary importance has been recognized, the study of their genetic diversity is yet scanty. The main goal of this study was to analyse microbial genetic diversity of microbialites living in different types of environments throughout Mexico, including desert ponds, coastal lagoons and a crater-lake. We followed a pyrosequencing approach of hypervariable regions of the 16S rRNA gene. Results showed that microbialite communities were very diverse (H' = 6-7) and showed geographic variation in composition, as well as an environmental effect related to pH and conductivity, which together explained 33% of the genetic variation. All microbialites had similar proportions of major bacterial and archaeal phyla. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  1. Genetic diversity in some local chicken breeds using microsatellite markers

    Directory of Open Access Journals (Sweden)

    M. Cassandro

    2010-04-01

    Full Text Available Genetic relationships among Veneto native breeds of chickens were studied on the basis of microsatellites polymorphisms. A total of 100 DNA samples from 2 local chicken breeds (45 Robusta Lionata and 43 Robusta Maculata and a commercial broiler line (12 Golden Comet were analyzed using 19 microsatellite markers. The average number of alleles per locus was 4.05 and the expected heterozigosity resulted lower for the local breeds than the broiler line. The Robusta Lionata breed and the broiler line showed a significant deficit and excess of heterozygotes, respectively, deviating from Hardy-Weinberg equilibrium. Nei’s standard genetic distances corrected for bias due to sampling of individuals (Da, based on allele frequencies, were calculated among breeds. The local breeds resulted very similar confirming the same genetic origin. The results suggested that microsatellite markers are a useful tool for studying the genetic diversity among local chicken breeds.

  2. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  3. ATPase 8/6 GENE BASED GENETIC DIVERSITY ASSESSMENT OF SNAKEHEAD MURREL, Channa striata (Perciformes, Channidae).

    Science.gov (United States)

    Baisvar, V S; Kumar, R; Singh, M; Singh, A K; Chauhan, U K; Nagpure, N S; Kushwaha, B

    2015-10-01

    The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel.

  4. THE EFFECT OF INDIVIDUAL SELECTION FOR GENETIC DIVERSITY OF Acacia mangium SEEDLING SEED ORCHARD USING AFLP MARKERS

    Directory of Open Access Journals (Sweden)

    A. Y.P.B.C. Widyatmoko

    2006-07-01

    Full Text Available Establishment of seed orchard is aimed at producing good quality seeds which is an important activity for breeding program. Seed orchard is also a base population, thus its genetic diversity is depending on its design and composition (provenance, family and individual tree. Selection of an individual tree in seed orchard is needed for the enhancement of  retaining good-character trees. However, selection of individual tree can change the genetic diversity of seed orchard, and the degrees to which the genetic diversity will change depend on the used selection methods. In order to investigate the effects of selection methods, 4 simulations of selection methods based on height, diameter and stem performance of individual trees were used. The differences among the 4 methods were the ranking of individual trees those selected, and families and provenances those have been represented. Seedling seed orchard of Acacia mangium in Wonogiri, Central Java was used as materials. Analysis of genetic diversity was carried out using AFLP markers. Nine primer combinations were used to produce 1025 AFLP banding patterns. Among those banding patterns, only 109 were polymorphic markers. No significant effect of individual tree selection was revealed in this study. Even though the selection was done intensively, only 7.1% of genetic diversity was reduced. In other words, the selection activity did not reduce the genetic diversity of seed orchard significantly. The result is important for developing future tree improvement of A. mangium, including development of hybrid between A. mangium and A. auriculiformis.

  5. Genetic Diversity and Phylogeny of Antagonistic Bacteria against Phytophthora nicotianae Isolated from Tobacco Rhizosphere

    OpenAIRE

    Jin, Fengli; Ding, Yanqin; Ding, Wei; Reddy, M. S.; Fernando, W. G. Dilantha; Du,Binghai

    2011-01-01

    The genetic diversity of antagonistic bacteria from the tobacco rhizosphere was examined by BOXAIR-PCR, 16S-RFLP, 16S rRNA sequence homology and phylogenetic analysis methods. These studies revealed that 4.01% of the 6652 tested had some inhibitory activity against Phytophthora nicotianae. BOXAIR-PCR analysis revealed 35 distinct amplimers aligning at a 91% similarity level, reflecting a high degree of genotypic diversity among the antagonistic bacteria. A total of 25 16S-RFLP patterns were i...

  6. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view.

    Science.gov (United States)

    Soto, A; Robledo-Arnuncio, J J; González-Martínez, S C; Smouse, P E; Alía, R

    2010-04-01

    Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long-term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species-specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold-enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold-tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.

  7. GENETIC DIVERSITY AND THE ORIGINS OF CULTURAL FRAGMENTATION

    Science.gov (United States)

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    Despite the importance attributed to the effects of diversity on the stability and prosperity of nations, the origins of the uneven distribution of ethnic and cultural fragmentation across countries have been underexplored. Building on the role of deeply-rooted biogeographical forces in comparative development, this research empirically demonstrates that genetic diversity, predominantly determined during the prehistoric “out of Africa” migration of humans, is an underlying cause of various existing manifestations of ethnolinguistic heterogeneity. Further exploration of this uncharted territory may revolutionize the understanding of the effects of deeply-rooted factors on economic development and the composition of human capital across the globe. PMID:25506084

  8. Genetic diversity and selection regulates evolution of infectious bronchitis virus.

    Science.gov (United States)

    Toro, Haroldo; van Santen, Vicky L; Jackwood, Mark W

    2012-09-01

    Conventional and molecular epidemiologic studies have confirmed the ability of infectious bronchitis virus (IBV) to rapidly evolve and successfully circumvent extensive vaccination programs implemented since the early 1950s. IBV evolution has often been explained as variation in gene frequencies as if evolution were driven by genetic drift alone. However, the mechanisms regulating the evolution of IBV include both the generation of genetic diversity and the selection process. IBV's generation of genetic diversity has been extensively investigated and ultimately involves mutations and recombination events occurring during viral replication. The relevance of the selection process has been further understood more recently by identifying genetic and phenotypic differences between IBV populations prior to, and during, replication in the natural host. Accumulating evidence suggests that multiple environmental forces within the host, including immune responses (or lack thereof) and affinity for cell receptors, as well as physical and biochemical conditions, are responsible for the selection process. Some scientists have used or adopted the related quasispecies frame to explain IBV evolution. The quasispecies frame, while providing a distinct explanation of the dynamics of populations in which mutation is a frequent event, exhibits relevant limitations which are discussed herein. Instead, it seems that IBV populations evolving by the generation of genetic variability and selection on replicons follow the evolutionary mechanisms originally proposed by Darwin. Understanding the mechanisms underlying the evolution of IBV is of basic relevance and, without doubt, essential to appropriately control and prevent the disease.

  9. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    Full Text Available BACKGROUND: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. CONCLUSIONS/SIGNIFICANCE: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  10. Genetic diversity analysis of highly incomplete SNP genotype data with imputations: an empirical assessment.

    Science.gov (United States)

    Fu, Yong-Bi

    2014-03-13

    Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data.

  11. Genetic diversity of Bambara groundnut (Vigna subterranea (L ...

    African Journals Online (AJOL)

    FORRESTER

    2015-01-28

    Jan 28, 2015 ... failures and dispersal of germplasm within the centre of origin or limited ... studied diversity based on seed patterns in 1,384 and. 1,973 accessions ..... genotypes in cluster I appeared less heterogeneous. Accessions from ...

  12. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary.

    Science.gov (United States)

    Cotter, Daniel J; Brotman, Sarah M; Wilson Sayres, Melissa A

    2016-05-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.

  13. Diversity of eating patterns in older adults: A new scenario?

    Directory of Open Access Journals (Sweden)

    Patrícia Moraes Ferreira

    2014-01-01

    Full Text Available OBJECTIVE: To identify eating patterns and their distribution in a representative sample of older adults from the municipality of Botucatu, São Paulo, Brazil. METHODS: This cross-sectional study used food frequency and sociodemographic questionnaires to collect the respective data from 355 older users, selected by stratified sampling, of Botucatu's primary health care units from March to June 2011. Principal component analysis extracted six eating patterns. Individual food intake scores were divided into tertiles, classifying individual adherence to each eating pattern as low, moderate, or high, to measure the relationship between adherence tertiles and sociodemographic variables. RESULTS: Six eating patterns were identified and named as follows: healthy foods; snacks and weekend meals; fruits; light and whole foods; soft diet; and traditional diet. Individuals with elementary school adhered highly to the patterns 'healthy foods' and 'fruits'. On the other hand, men and individuals with the highest education levels adhered highly to the pattern 'snacks and weekend meal'. Females adhered more often to the patterns 'light and whole foods' and 'soft diet'. The pattern 'soft diet' was also preferred by the oldest subgroup. CONCLUSION: The study population presented a diversity of eating patterns influenced by sociodemographic characteristics.

  14. Reduced Genetic Diversity and Increased Dispersal in Guigna (Leopardus guigna) in Chilean Fragmented Landscapes.

    Science.gov (United States)

    Napolitano, Constanza; Díaz, Diego; Sanderson, Jim; Johnson, Warren E; Ritland, Kermit; Ritland, Carol E; Poulin, Elie

    2015-01-01

    Landscape fragmentation is often a major cause of species extinction as it can affect a wide variety of ecological processes. The impact of fragmentation varies among species depending on many factors, including their life-history traits and dispersal abilities. Felids are one of the groups most threatened by fragmented landscapes because of their large home ranges, territorial behavior, and low population densities. Here, we model the impacts of habitat fragmentation on patterns of genetic diversity in the guigna (Leopardus guigna), a small felid that is closely associated with the heavily human-impacted temperate rainforests of southern South America. We assessed genetic variation in 1798 base pairs of mitochondrial DNA sequences, 15 microsatellite loci, and 2 sex chromosome genes and estimated genetic diversity, kinship, inbreeding, and dispersal in 38 individuals from landscapes with differing degrees of fragmentation on Chiloé Island in southern Chile. Increased fragmentation was associated with reduced genetic diversity, but not with increased kinship or inbreeding. However, in fragmented landscapes, there was a weaker negative correlation between pairwise kinship and geographic distance, suggesting increased dispersal distances. These results highlight the importance of biological corridors to maximize connectivity in fragmented landscapes and contribute to our understanding of the broader genetic consequences of habitat fragmentation, especially for forest-specialist carnivores.

  15. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    Science.gov (United States)

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.

  16. Genetic diversity of Cuban pineapple germplasm assessed by AFLP Markers

    Directory of Open Access Journals (Sweden)

    Ermis Yanes Paz

    2012-01-01

    Full Text Available The Cuban pineapple germplasm collection represents the genetic diversity of pineapple cultivated in that country and includes other important genotypes obtained from the germplasm collections in Brazil and Martinique. The collection has previously been characterized with morphological descriptors but a molecular characterization has been lacking. With this aim, 56 six genotypes of A. comosus and one of Bromelia pinguin were analyzed with a total of 191 AFLP markers. A dendrogram that represents the genetic relationships between these samples based on the AFLP results showed a low level of diversity in the Cuban pineapple collection. All Ananas comosus accessions, being the majority obtained from farmers in different regions in Cuba, are grouped at distances lower than 0.20. Molecular characterization was in line with morphological characterization. These results are useful for breeding and conservation purposes.

  17. Bartonella Prevalence and Genetic Diversity in Small Mammals from Ethiopia

    DEFF Research Database (Denmark)

    Meheretu, Yonas; Leirs, Herwig E.l.; Welegerima, Kiros

    2013-01-01

    More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp of the Barto......More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp...... of the Bartonella RNA polymerase beta subunit (rpoB) gene. We used a generalized linear mixed model to relate the probability of Bartonella infection to species, season, locality, habitat, sex, sexual condition, weight, and ectoparasite infestation. Overall, Bartonella infection prevalence among the small mammals...

  18. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    Science.gov (United States)

    Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Carroll, Serena A Reeder; Comer, James A; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D; Balinandi, Stephen; Khristova, Marina L; Formenty, Pierre B H; Albarino, Cesar G; Miller, David M; Reed, Zachary D; Kayiwa, John T; Mills, James N; Cannon, Deborah L; Greer, Patricia W; Byaruhanga, Emmanuel; Farnon, Eileen C; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Ksiazek, Thomas G; Nichol, Stuart T; Rollin, Pierre E

    2009-07-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  19. Bartonella Prevalence and Genetic Diversity in Small Mammals from Ethiopia

    DEFF Research Database (Denmark)

    Meheretu, Yonas; Leirs, Herwig E.l.; Welegerima, Kiros;

    2013-01-01

    More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp of the Barto......More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp...... of the Bartonella RNA polymerase beta subunit (rpoB) gene. We used a generalized linear mixed model to relate the probability of Bartonella infection to species, season, locality, habitat, sex, sexual condition, weight, and ectoparasite infestation. Overall, Bartonella infection prevalence among the small mammals...

  20. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    Directory of Open Access Journals (Sweden)

    Jonathan S Towner

    2009-07-01

    Full Text Available In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus based on detection of Marburg virus RNA in 31/611 (5.1% bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  1. A genomic scale map of genetic diversity in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ackermann Alejandro A

    2012-12-01

    Full Text Available Abstract Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs: TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the

  2. Genetic diversity and maternal origin of Bangladeshi chicken.

    Science.gov (United States)

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  3. Back to the suture: the distribution of intraspecific genetic diversity in and around anatolia.

    Science.gov (United States)

    Bilgin, Rasit

    2011-01-01

    The effect of ice ages in speciation and diversification is well established in the literature. In Europe, the Iberian, the Italian and the Balkan peninsulas comprise the main glacial refugia, where the subsequent re-population of Europe started. Though not studied as extensively, Anatolia has also been hinted to be a potential glacial refugium for Europe, and with its proximity to the Caucasus and the Middle East at the same time, has potential to exhibit high levels of intraspecific diversity. The more ubiquitous use and cheaper availability of molecular methods globally now makes it possible to better understand molecular ecology and evolution of the fauna and flora in the genetically understudied regions of the world, such as Anatolia. In this review, the molecular genetic studies undertaken in Anatolia in the last decade, for 29 species of plants and animals, are examined to determine general phylogeographic patterns. In this regard, two major patterns are observed and defined, showing genetic breaks within Anatolia and between Anatolia and the Balkans. A third pattern is also outlined, which suggests Anatolia may be a center of diversity for the surrounding regions. The patterns observed are discussed in terms of their relevance to the location of suture zones, postglacial expansion scenarios, the effect of geographic barriers to gene flow and divergence time estimates, in order to better understand the effect of the geological history of Anatolia on the evolutionary history of the inhabitant species. In view of the current state of knowledge delineated in the review, future research directions are suggested.

  4. Genetic and phenotypic diversity in breast tumor metastases.

    Science.gov (United States)

    Almendro, Vanessa; Kim, Hee Jung; Cheng, Yu-Kang; Gönen, Mithat; Itzkovitz, Shalev; Argani, Pedram; van Oudenaarden, Alexander; Sukumar, Saraswati; Michor, Franziska; Polyak, Kornelia

    2014-03-01

    Metastatic disease is the main cause of cancer-related mortality due to almost universal therapeutic resistance. Despite its high clinical relevance, our knowledge of how cancer cell populations change during metastatic progression is limited. Here, we investigated intratumor genetic and phenotypic heterogeneity during metastatic progression of breast cancer. We analyzed cellular genotypes and phenotypes at the single cell level by performing immunoFISH in intact tissue sections of distant metastatic tumors from rapid autopsy cases and from primary tumors and matched lymph node metastases collected before systemic therapy. We calculated the Shannon index of intratumor diversity in all cancer cells and within phenotypically distinct cell populations. We found that the extent of intratumor genetic diversity was similar regardless of the chromosomal region analyzed, implying that it may reflect an inherent property of the tumors. We observed that genetic diversity was highest in distant metastases and was generally concordant across lesions within the same patient, whereas treatment-naïve primary tumors and matched lymph node metastases were frequently genetically more divergent. In contrast, cellular phenotypes were more discordant between distant metastases than primary tumors and matched lymph node metastases. Diversity for 8q24 was consistently higher in HER2(+) tumors compared with other subtypes and in metastases of triple-negative tumors relative to primary sites. We conclude that our integrative method that couples ecologic models with experimental data in human tissue samples could be used for the improved prognostication of patients with cancer and for the design of more effective therapies for progressive disease.

  5. Assessment of genetic diversity of Xanthomonas oryzae pv. oryzae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Bacterial blight of rice, caused by Xanthomonas oryzae pv. Oryzae(Xoo. ), is one of the major rice diseases in China. Making clear the shift of genetic diversity of the pathogen will provide important information for rice breeding. Strains collected from 11 provinces located in Southern region of the Changjiang River in China were assessed by using inoculation method and IS-PCR(Insertion Sequence-Based Polymerase Chain Reaction) analysis.

  6. Analysis of Genetic Diversity Among Sweetpotato Landraces in China

    Institute of Scientific and Technical Information of China (English)

    HE Xue-qin; LIU Qing-chang; WANG Yu-ping; ZHAI Hong

    2004-01-01

    Genetic diversity of 48 sweetpotato landraces randomly sampled from Anhui,Fujian, Henan and Guangdong provinces in China was analyzed using RAPD, ISSR and AFLP markers. Thirty RAPD primers, 14 ISSR primers and 9 AFLP primer pairs generated 227, 249 and 260 polymorphic bands, respectively. AFLP markers were better than RAPD and ISSR markers in terms of the number of polymorphic bands detected and the experimental stability. These three molecular markers revealed the similar results that Chinese landraces exhibited a high level of genetic diversity, and the genetic variation of Guangdong landraces was significantly higher than those of the landraces from the other three regions. These results supported the hypothesis that China was a secondary center of sweetpotato diversity. The present results also supported the view that sweetpotato was first introduced to Guangdong and from there spread to other regions of China. The dendrogram based on the combined RAPD, ISSR and AFLP dataset could separate the 48 landraces into two groups: One mainly including 8 landraces from Guangdong and the other consisting of the remaining landraces from Guangdong and landraces from the other three regions. Thus, the utilization of Guangdong landraces should be specially considered in sweetpotato breeding.

  7. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    Directory of Open Access Journals (Sweden)

    Félix Marie-Anne

    2013-01-01

    Full Text Available Abstract Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and

  8. Spatial Patterns of Palm Diversity from a Phylogenetic Perspective

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Svenning, J.-C.; Kissling, W. Daniel;

    With ~2,500 species and a Pantropical distribution, the palm family (Arecaceae) has emerged as an important model taxon for studies of tropical plant diversity. In a recent review we showed that palm species distributions, species composition, and species richness depend on ecological factors...... at various spatial scales, but there are also strong indications of historical legacies. The influence of contemporary environments notwithstanding, diversity patterns can be shaped over tens of millions of years by the processes of speciation, extinction, niche evolution, and long-term dispersal limitation....... Robust and well-resolved phylogenetic trees, in combination with comprehensive distributional and trait data, can provide important insights into the long-term causes of spatial biodiversity patterns. Palms lend themselves to such research not least due to an exceptionally good data basis, and several...

  9. Patterns of diversity of citric acid cycle enzymes.

    Science.gov (United States)

    Weitzman, P D

    1987-01-01

    The citric acid cycle performs a dual role in cell metabolism, acting as a source of both 'energy' and biosynthetic starting materials. The widespread occurrence of the cycle throughout Nature is an excellent example of the unity of biochemistry, but closer examination reveals that there is considerable diversity in the citric acid cycle of different organisms with respect to metabolic role, molecular enzymology and mode of regulation. Two enzymes of the cycle--citrate synthase and succinate thiokinase--have been found to exhibit particularly striking patterns of diversity in structure and catalytic and regulatory function. Some of these patterns show a correlation with the taxonomic groupings of the organisms and with their physiological characteristics. Comparative enzyme studies have a contribution to make to an ultimate understanding of the cycle and its cellular operation, and there are substantial benefits to be gained from interactive studies on both prokaryotic and eukaryotic systems.

  10. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers...... eight populations into four groups including Yorkshire, two wild populations, Mong Cai population and a group of four other indigenous populations. The Bayesian clustering with the admixture model implemented in Structure 2.1 indicated seven possible homogenous clusters among eight populations. From 79......% (Ha Lang) to 98% (Mong Cai). individuals in indigenous pigs were assigned to their own populations. The results confirmed high level of genetic diversity and shed a new light on genetic structure of Vietnam indigenous pig populations....

  11. Genetic and Functional Diversity of Propagating Cells in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sara G.M. Piccirillo

    2015-01-01

    Full Text Available Glioblastoma (GBM is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.

  12. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    Science.gov (United States)

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  13. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Directory of Open Access Journals (Sweden)

    Spurthi N Nayak

    Full Text Available Sugarcane (Saccharum spp. and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1 genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2 form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  14. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Science.gov (United States)

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  15. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers

    Indian Academy of Sciences (India)

    Shi Ying Yang; Rachit A. Saxena; Pawan L. Kulwal; Gavin J. Ash; Anuja Dubey; John D. I. Harper; Hari D. Upadhyaya; Ragini Gothalwal; Andrzej Kilian; Rajeev K. Varshney

    2011-04-01

    With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% ($P \\gt 0.001$) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

  16. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    Science.gov (United States)

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  17. Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China.

    Science.gov (United States)

    Chen, Shi-Yi; Xu, Ling; Lü, Long-Bao; Yao, Yong-Gang

    2011-02-01

    Due to their special phylogenetic position in the Euarchontoglires and close affinity to primates, tree shrews have been proposed as an alternative experimental animal to primates in biomedical research. However, the population genetic structure of tree shrews has largely remained unknown and this has hindered the development of tree shrew breeding and selection. Here we sampled 80 Chinese tree shrews (Tupaia belangeri chinensis) in Kunming, China, and analyzed partial mtDNA control region sequence variation. Based on our samples and two published sequences from northern tree shrews (T. belangeri), we identified 29 substitutions in the mtDNA control region fragment (~604 bp) across 82 individuals and defined 13 haplotypes. Seventeen samples were selected for sequencing of the cytochrome b (Cyt b; 1134 bp) gene based on control region sequence variation and were analyzed in combination with 34 published sequences to solidify the phylogenetic pattern obtained from control region data. Overall, tree shrews from Kunming have high genetic diversity and present a remarkable long genetic distance to the two reported northern tree shrews outside China. Our results provide some caution when using tree shrews to establish animal models because of this apparent genetic difference. In addition, the high genetic diversity of Chinese tree shrews inhabiting Kunming suggests that systematic genetic investigations should be conducted before establishing an inbred strain for medical and biological research.

  18. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil

    Directory of Open Access Journals (Sweden)

    Almeida Leonardo D

    2007-12-01

    Full Text Available Abstract Background Brazil holds the largest commercial cattle populations worldwide. Local cattle breeds can be classified according to their origin, as exotic or Creole. Exotic breeds imported in the last 100 years, both zebuine and taurine, currently make up the bulk of the intensively managed populations. Locally adapted Creole breeds, originated from cattle introduced by the European conquerors derive from natural selection and events of breed admixture. While historical knowledge exists on the Brazilian Creole breeds very little is known on their genetic composition. The objective of this study was to assess the levels of genetic diversity, phylogenetic relationships and patterns of taurine/zebuine admixture among ten cattle breeds raised in Brazil. Results Significant reduction of heterozygosity exists due both to within-population inbreeding and to breed differentiation in both subspecies (taurine and zebuine. For taurine breeds the number of markers that contribute to breed differentiation is larger than for zebuine. A consistently similar number of alleles was seen in both subspecies for all microsatellites. Four Creole breeds were the most genetically diverse followed by the zebuine breeds, the two specialized taurine breeds and the Creole Caracu. Pairwise genetic differentiation were all significant indicating that all breeds can be considered as genetically independent entities. A STRUCTURE based diagram indicated introgression of indicine genes in the local Creole breeds and suggested that occasional Creole introgression can be detected in some Zebuine animals. Conclusion This study reports on a comprehensive study of the genetic structure and diversity of cattle breeds in Brazil. A significant amount of genetic variation is maintained in the local cattle populations. The genetic data show that Brazilian Creole breeds constitute an important and diverse reservoir of genetic diversity for bovine breeding and conservation. The

  19. Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes

    Science.gov (United States)

    Serra, François; Becher, Verónica; Dopazo, Hernán

    2013-01-01

    It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or “species” of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or “species” populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. PMID:23798991

  20. Parallel declines in species and genetic diversity driven by anthropogenic disturbance: a multispecies approach in a French Atlantic dune system.

    Science.gov (United States)

    Frey, David; Arrigo, Nils; Granereau, Gilles; Sarr, Anouk; Felber, François; Kozlowski, Gregor

    2016-03-01

    Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas.

  1. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.

  2. Multifractal spatial patterns and diversity in an ecological succession.

    Science.gov (United States)

    Saravia, Leonardo Ariel; Giorgi, Adonis; Momo, Fernando

    2012-01-01

    We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae) biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions D(q). Using D(q) we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D(1) as an index of successional stage. We did not find cycles but the values of D(1) showed an increasing trend as the succession developed and the biomass was higher. D(1) was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D(1) could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas.

  3. Multifractal spatial patterns and diversity in an ecological succession.

    Directory of Open Access Journals (Sweden)

    Leonardo Ariel Saravia

    Full Text Available We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions D(q. Using D(q we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D(1 as an index of successional stage. We did not find cycles but the values of D(1 showed an increasing trend as the succession developed and the biomass was higher. D(1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D(1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas.

  4. Genetic diversity of Poa pratensis L. depending on geographical origin and compared with genetic markers

    Directory of Open Access Journals (Sweden)

    Magdalena Szenejko

    2016-09-01

    Full Text Available Background Poa pratensis is one of the most common species of meadow grass in Europe. Most cultivars of the species found in Poland were originally derived from its ecotypes. We compared the effectiveness of the RAPD and ISSR methods in assessing the genetic diversity of the selected populations of P. pratensis. We examined whether these methods could be useful for detecting a possible link between the geographical origin of a given population and its assessed genetic variation. Methods The molecular markers RAPD and ISSR were used and their efficiency compared using, inter alia, statistical multivariate methods (UPGMA and PCA. Results The low value of Dice’s coefficient (0.369 along with the significantly high percentage of polymorphic products indicates a substantial degree of genetic diversity among the studied populations. Our results found a correlation between the geographical origin of the studied populations and their genetic variations. For ISSR, which proved to be the more effective method in that respect, we selected primers with the greatest differentiating powers correlating to geographical origin. Discussion The populations evaluated in this study were characterized by a high genetic diversity. This seems to confirm the hypothesis that ecotypes of P. pratensis originating from different regions of Central Europe with different terrain structures and habitat conditions can be a source of great genetic variability.

  5. Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population.

    Science.gov (United States)

    Lefèvre, F; Fady, B; Fallour-Rubio, D; Ghosn, D; Bariteau, M

    2004-12-01

    Recently established, temperate tree populations combine a high level of differentiation for adaptive traits, suggesting rapid genetic evolution, with a high level of genetic diversity within population, suggesting a limited impact of genetic drift and purifying selection. To study experimentally the evolutionary forces in a recently established population, we assessed the spatial and temporal patterns of genetic diversity within a disjunct population of Cedrus atlantica established 140 years ago in south-eastern France from a North African source. The population is expanding through natural regeneration. Three generations were sampled, including founder trees. We analysed 12 isozyme loci, three of which were previously found in tight association with selected genes, and quantitative traits. No bottleneck effect was detected in the founder generation, but a simple test of allelic association revealed an initial disequilibrium which disappeared in the following generations. The impact of genetic drift during secondary evolution was limited, as suggested by the weak temporal differentiation. The genetic load was not reduced after 3 generations, and the quantitative variation for adaptive traits did not change either. Thus, initial genetic changes first proceed from a rapid re-organisation of the diversity through mating and recombination, whereas genetic erosion through drift and selection is delayed due to temporal and spatial stochasticity. Two life-history traits of trees contribute to slowing down the processes of genetic erosion: perenniality and large spatial scale. Thus, one would expect recently established tree populations to have a higher diversity than older ones, which seems in accordance with experimental surveys.

  6. Molecular Insights into the Genetic Diversity of Garcinia cambogia Germplasm Accessions

    Directory of Open Access Journals (Sweden)

    C Tharachand

    2015-10-01

    Full Text Available ABSTRACTIn this work, the genetic relationship among twelveGarcinia cambogia (Gaertn. Desr. accessions were evaluated using Random Amplified Polymorphic DNA markers. The samples were part of the germplasm collected and maintained at NBPGR Regional station, Thrissur, India. Out of thirty RAPD primers used for screening, seven primers produced a total of 128 polymorphic markers in twelve accessions. The Polymorphic Information Content (PIC ranged from 0.28 (OPA18 to 0.37 (OPA9 and Marker Index (MI ranged between 3.61 (OPA12 and 5.93 (OPA3 among the primers used. Jaccard's coefficient of genetic similarity ranged between 0.07 and 0.64. The dendrogram constructed based on the similarity matrix generated from the molecular and morphological data showed the genetic relationship among the sampled accessions. Mantel matrix test showed a positive correlation (r = 0.49 between the cluster analysis of RAPD data and morphological data. The clustering pattern in the molecular dendrogram and Principle Coordinate Analysis (PCoA showed that the genotypes were diverse, which was in congruence with the similarity index values and morphological dendrogram. High frequency of similarity values in the range of 0.11 to 0.17 suggested the existence of high genetic diversity among the accessions. The high level of genetic diversity among the studied accessions ofG.cambogia was also supported by the large variation in the morphological characters observed in the flowers, leaves, fruits and seeds of these sampled accessions. This is the first report for the molecular based genetic diversity studies for these accessions.

  7. Genetic Diversity in ex-situ Conserved Lens culinaris for Botanical Descriptors, Biochemical and Molecular Markers and Identification of Landraces from Indigenous Genetic Resources of Pakistan

    Institute of Scientific and Technical Information of China (English)

    Tayyaba Sultana; Abdul Ghafoor

    2008-01-01

    Lentil, one of the oldest legumes was Investigated for diversity based on botanical descriptors, total seed proteins,isozymes and random amplified polymorphic DNA (RAPD) markers. About one fourth of accessions were heterogeneous for botanical descriptors and a seed protein profile. The germplaem collected from the province of Baluchistan revealed the prevalence of indigenous landraces as high diversity was observed for all of the techniques. Diversity explored through various techniques revealed validity Irrespective of the sample size or geographic pattern, RAPD being the best choice for Investigating both inter- and intra-accession variation In lentil. Although all of the techniques were able to resolve genetic diversity In lentil, isozymes and seed proteins gave low levels of genetic diversity, suggesting that more investigation into isozymes of specific proteins is required. RAPD is the best option for determining inter- and Intra-accession variation, and will be required to extend germplasme and primers to continue the study of botanical descriptors.

  8. Genetic diversity and conservation of South African indigenous chicken populations.

    Science.gov (United States)

    Mtileni, B J; Muchadeyi, F C; Maiwashe, A; Groeneveld, E; Groeneveld, L F; Dzama, K; Weigend, S

    2011-06-01

    In this study, we compare the level and distribution of genetic variation between South African conserved and village chicken populations using microsatellite markers. In addition, diversity in South African chickens was compared to that of a reference data set consisting of other African and purebred commercial lines. Three chicken populations Venda, Ovambo and Eastern Cape and four conserved flocks of the Venda, Ovambo, Naked Neck and Potchefstroom Koekoek from the Poultry Breeding Resource Unit of the Agricultural Research Council were genotyped at 29 autosomal microsatellite loci. All markers were polymorphic. Village chicken populations were more diverse than conservation flocks. structure software was used to cluster individuals to a predefined number of 2 ≤ K ≤ 6 clusters. The most probable clustering was found at K = 5 (95% identical runs). At this level of differentiation, the four conservation flocks separated as four independent clusters, while the three village chicken populations together formed another cluster. Thus, cluster analysis indicated a clear subdivision of each of the conservation flocks that were different from the three village chicken populations. The contribution of each South African chicken populations to the total diversity of the chickens studied was determined by calculating the optimal core set contributions based on Marker estimated kinship. Safe set analysis was carried out using bootstrapped kinship values calculated to relate the added genetic diversity of seven South African chicken populations to a set of reference populations consisting of other African and purebred commercial broiler and layer chickens. In both core set and the safe set analyses, village chicken populations scored slightly higher to the reference set compared to conservation flocks. Overall, the present study demonstrated that the conservation flocks of South African chickens displayed considerable genetic variability that is different from that of the

  9. Characterisation of the genetic diversity of Brucella by multilocus sequencing

    Directory of Open Access Journals (Sweden)

    MacMillan Alastair P

    2007-04-01

    Full Text Available Abstract Background Brucella species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of Brucella although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of Brucella isolates representing the known diversity of the genus. Results Nine discrete genomic loci corresponding to 4,396 bp of sequence were examined from 160 Brucella isolates. By assigning each distinct allele at a locus an arbitrary numerical designation the population was found to represent 27 distinct sequence types (STs. Diversity at each locus ranged from 1.03–2.45% while overall genetic diversity equated to 1.5%. Most loci examined represent housekeeping gene loci and, in all but one case, the ratio of non-synonymous to synonymous change was substantially Brucella species, B. abortus, B. melitensis, B. ovis and B. neotomae correspond to well-separated clusters. With the exception of biovar 5, B. suis isolates cluster together, although they form a more diverse group than other classical species with a number of distinct STs corresponding to the remaining four biovars. B. canis isolates are located on the same branch very closely related to, but distinguishable from, B. suis biovar 3 and 4 isolates. Marine mammal isolates represent a distinct, though rather weakly supported, cluster within which individual STs display one of three clear host preferences. Conclusion The sequence database provides a powerful dataset for addressing ongoing controversies in Brucella taxonomy and a tool for unambiguously placing atypical, phenotypically discordant or newly emerging Brucella isolates. Furthermore, by using the phylogenetic backbone described here, robust and rationally selected markers for use in

  10. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta

    Directory of Open Access Journals (Sweden)

    Chen Charlotte

    2012-06-01

    Full Text Available Abstract Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods. The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total was found for Spirogyra (41 NHS and for each clade (totaling 73 NHS. This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae.

  11. Genetic diversity and bottleneck studies in the Marwari horse breed

    Indian Academy of Sciences (India)

    A. K. Gupta; M. Chauhan; S. N. Tandon; Sonia

    2005-12-01

    Genetic diversity within the Marwari breed of horses was evaluated using 26 different microsatellite pairs with 48 DNA samples from unrelated horses. This molecular characterisation was undertaken to evaluate the problem of genetic bottlenecks also, if any, in this breed. The estimated mean (± s.e.) allelic diversity was 5.9 (± 2.24), with a total of 133 alleles. A high level of genetic variability within this breed was observed in terms of high values of mean (± s.e.) effective number of alleles (3.3 ± 1.27), observed heterozygosity (0.5306 ± 0.22), expected Levene’s heterozygosity (0.6612 ± 0.15), expected Nei’s heterozygosity (0.6535 ± 0.14), and polymorphism information content (0.6120 ± 0.03). Low values of Wright’s fixation index, $F_{\\text{IS}}$ (0.2433 ± 0.05) indicated low levels of inbreeding. This basic study indicated the existence of substantial genetic diversity in the Marwari horse population. No significant genotypic linkage disequilibrium was detected across the population, suggesting no evidence of linkage between loci. A normal ‘L’ shaped distribution of mode–shift test, non-significant heterozygote excess on the basis of different models, as revealed from Sign, Standardized differences and Wilcoxon sign rank tests as well as non-significant ratio value suggested that there was no recent bottleneck in the existing Marwari breed population, which is important information for equine breeders. This study also revealed that the Marwari breed can be differentiated from some other exotic breeds of horses on the basis of three microsatellite primers.

  12. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.

    2001-01-01

    . The culturable heterotrophic diversity was investigated by colony morphology and colony appearance on solid LB medium. Functional diversity was analysed as sole carbon utilisation patterns in ECOplates. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGCE) gels obtained...... analysed by Shannon-Weaver indices, functional diversity was found to increase almost immediately after mercury addition and to remain at a level higher than the control soil for the rest of the experiment. The fraction of culturable heterotrophic bacteria increased from 1% to 10% of the total bacterial...

  13. Genetic and Epigenetic Diversities Shed Light on Domestication of Cultivated Ginseng (Panax ginseng).

    Science.gov (United States)

    Li, Ming-Rui; Shi, Feng-Xue; Zhou, Yu-Xin; Li, Ya-Ling; Wang, Xin-Feng; Zhang, Cui; Wang, Xu-Tong; Liu, Bao; Xiao, Hong-Xing; Li, Lin-Feng

    2015-11-01

    Chinese ginseng (Panax ginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements.

  14. Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity

    Science.gov (United States)

    Nessel, James A.; Miranda, Felix A.; Zaman, Afroz

    2007-01-01

    A printed, folded, Hilbert-curve fractal microwave antenna has been designed and built to offer advantages of compactness and low mass, relative to other antennas designed for the same operating frequencies. The primary feature of the antenna is that it offers the advantage of radiation-pattern diversity without need for electrical or mechanical switching: it can radiate simultaneously in an end-fire pattern at a frequency of 2.3 GHz (which is in the S-band) and in a broadside pattern at a frequency of 16.8 GHz (which is in the Ku-band). This radiation-pattern diversity could be utilized, for example, in applications in which there were requirements for both S-band ground-to-ground communications and Ku-band ground-to-aircraft or ground-to-spacecraft communications. The lack of switching mechanisms or circuitry makes this antenna more reliable, easier, and less expensive to fabricate than it otherwise would be.

  15. Genetic diversity in cattle of eight regions in Costa Rica.

    Directory of Open Access Journals (Sweden)

    Juan Miguel Cordero-Solórzano

    2015-06-01

    Full Text Available The aim of this study was to explore the extent of inter-regional genetic diversity present in the cattle of Costa Rica. 1498 DNA samples were collected (year 2013 from eight different regions within the country. Allelic frequencies and major population genetic parameters were determined for eighteen microsatellite markers. An analysis of molecular variance was also carried out and genetic distances were calculated between cattle from different regions. At the national level, a high allelic diversity was found, with an average of 14.6±1.01 observed alleles and 5.6+0.37 effective alleles per marker. Observed (Ho and expected (He heterozygosities were 0.76±0.01 and 0.81±01, respectively. Polymorphic Information Content (PIC and Coefficient of Inbreeding (FIS were 0.79±0.06 and 0.06±0.004, respectively. At the regional level, Ho ranged between 0.73±0.02 in the South Central region to 0.78±0.01 in the North Huetar region. The dendrogram showed three clearly distinct groups, Metropolitan Central and West Central regions in one group, Caribbean Huetar, South Central, Central Pacific and Chorotega regions in a second group; and North Huetar and Brunca regions in a third intermediate group. Estimates of genetic differentiation (RST were significant between regions from different groups and non-significant for regions within the same group. Genetic differences between regions are related to differential proliferation of breed groups based on their adaptability to the agro-ecological conditions and production systems prevailing in each region.

  16. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    Science.gov (United States)

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  17. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    G. Roopa Lavanya; Jyoti Srivastava; Shirish A. Ranade

    2008-04-01

    RAPD profiles were used to identify the extent of diversity among 54 accessions of mung bean that included both improved and local land races. Out of the 40 primers screened, seven primers generated 174 amplification products with an average of 24.85 bands per primer. The RAPD profiles were analysed for Jaccard’s similarity coefficients that was found to be in the range from 0 to 0.48, indicating the presence of wide range of genetic diversity at molecular level. Cluster analysis was carried out based on distances (1-similarity coefficient) using neighbour-joining method in Free Tree package. The dendrogram resolved all the accessions into two major clusters, I (with 11 accessions) and II (with 43 accessions). However, the cluster was further divided into four subclusters (II A with six, II B with nine, II C with 15 and II D with 13 accessions). The distribution of the accessions in different clusters and subclusters appeares to be related to their performance in field conditions for 10 morphological traits that were scored. This study indicated that the RAPD profiles provide an easy and simple technique for preliminary genetic diversity assessment of mung bean accessions that may reflect morphological trait differences among them.

  18. Limited genetic diversity preceded extinction of the Tasmanian tiger.

    Science.gov (United States)

    Menzies, Brandon R; Renfree, Marilyn B; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B; Pask, Andrew J

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago.

  19. Limited genetic diversity preceded extinction of the Tasmanian tiger.

    Directory of Open Access Journals (Sweden)

    Brandon R Menzies

    Full Text Available The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago.

  20. Genetic diversity and molecular evolution of Chinese waxy maize germplasm.

    Directory of Open Access Journals (Sweden)

    Hongjian Zheng

    Full Text Available Waxy maize (Zea mays L. var. certaina Kulesh, with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima's D and Fu and Li's F* were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection.

  1. Patterns of Vertebrate Diversity and Protection in Brazil.

    Directory of Open Access Journals (Sweden)

    Clinton N Jenkins

    Full Text Available Most conservation decisions take place at national or finer spatial scales. Providing useful information at such decision-making scales is essential for guiding the practice of conservation. Brazil is one of the world's megadiverse countries, and consequently decisions about conservation in the country have a disproportionate impact on the survival of global biodiversity. For three groups of terrestrial vertebrates (birds, mammals, and amphibians, we examined geographic patterns of diversity and protection in Brazil, including that of endemic, small-ranged, and threatened species. To understand potential limitations of the data, we also explored how spatial bias in collection localities may influence the perceived patterns of diversity. The highest overall species richness is in the Amazon and Atlantic Forests, while the Atlantic Forest dominates in terms of country endemics and small-ranged species. Globally threatened species do not present a consistent pattern. Patterns for birds were similar to overall species richness, with higher concentrations of threatened species in the Atlantic Forest, while mammals show a more generalized pattern across the country and a high concentration in the Amazon. Few amphibians are listed as threatened, mostly in the Atlantic Forest. Data deficient mammals occur across the country, concentrating in the Amazon and southeast Atlantic Forest, and there are no data deficient birds in Brazil. In contrast, nearly a third of amphibians are data deficient, widespread across the country, but with a high concentration in the far southeast. Spatial biases in species locality data, however, possibly influence the perceived patterns of biodiversity. Regions with low sampling density need more biological studies, as do the many data deficient species. All biomes except the Amazon have less than 3% of their area under full protection. Reassuringly though, rates of protection do correlate with higher biodiversity, including

  2. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Science.gov (United States)

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  3. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  4. Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity

    Directory of Open Access Journals (Sweden)

    Vanessa Almendro

    2014-02-01

    Full Text Available Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  5. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    Science.gov (United States)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  6. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  7. High unexpected genetic diversity of a narrow endemic terrestrial mollusc.

    Science.gov (United States)

    Madeira, Pedro M; Chefaoui, Rosa M; Cunha, Regina L; Moreira, Francisco; Dias, Susana; Calado, Gonçalo; Castilho, Rita

    2017-01-01

    The Iberian Peninsula has an extensive record of species displaying strong genetic structure as a result of their survival in isolated pockets throughout the Pleistocene ice ages. We used mitochondrial and nuclear sequence data to analyze phylogeographic patterns in endemic land snails from a valley of central Portugal (Vale da Couda), putatively assigned to Candidula coudensis, that show an exceptionally narrow distributional range. The genetic survey presented here shows the existence of five main mitochondrial lineages in Vale da Couda that do not cluster together suggesting independent evolutionary histories. Our results also indicate a departure from the expectation that species with restricted distributions have low genetic variability. The putative past and contemporary models of geographic distribution of Vale da Couda lineages are compatible with a scenario of species co-existence in more southern locations during the last glacial maximum (LGM) followed by a post-LGM northern dispersal tracking the species optimal thermal, humidity and soil physical conditions.

  8. Genetic diversity of geographically distinct Streptococcus dysgalactiae isolates from fish

    Directory of Open Access Journals (Sweden)

    M. Abdelsalam

    2015-03-01

    Full Text Available Streptococcus dysgalactiae is an emerging pathogen of fish. Clinically, infection is characterized by the development of necrotic lesions at the caudal peduncle of infected fishes. The pathogen has been recently isolated from different fish species in many countries. Twenty S. dysgalactiae isolates collected from Japan, Taiwan, Malaysia and Indonesia were molecularly characterized by biased sinusoidal field gel electrophoresis (BSFGE using SmaI enzyme, and tuf gene sequencing analysis. DNA sequencing of ten S. dysgalactiae revealed no genetic variation in the tuf amplicons, except for three strains. The restriction patterns of chromosomal DNA measured by BSFGE were differentiated into six distinct types and one subtype among collected strains. To our knowledge, this report gives the first snapshot of S. dysgalactiae isolates collected from different countries that are localized geographically and differed on a multinational level. This genetic unrelatedness among different isolates might suggest a high recombination rate and low genetic stability.

  9. [Genetic diversity of a germplasm collection of Cucumis melo L. using SRAP markers].

    Science.gov (United States)

    Chen, Yun; Li, Guan; Wang, Xian Lei

    2010-07-01

    Genetic relationships and classifications of a set of melon accessions were analyzed to provide the experimental support for utilizing effectively genetic materials for breeding. Sequence-related amplified polymorphism technique was adopted to analyze 61 melon accessions. Sixteen primer combinations with clear band pattern and polymorphism were selected from over 42 primer combinations. Four hundred and fifty-two loci were detected by 16 pairs of SRAP primers. Among them, 265 were polymorphic, the polymorphic rate was 58.63%, and 28.56 loci and 16.56 polymorphic loci were amplified by each pairs of primers on average. The genetic similarity coefficient of the 61 accessions ranged from 0.48 to 0.93, with an average of 0.73. These results suggested that there was rich genetic diversity among the melon accessions tested. The varieties examined were clustered into two groups,which were thick-skinned melon and thin-skinned melon. Five groups were clustered according to genetic similarity coefficient of 0.74. The Nei's gene diversity index and Shannon's Information index of melon were 0.2231 and 0.3422, respectively, in Xinjiang, the highest among all the ecological regions.

  10. Development of 10 microsatellite markers from Pantala flavescens and their applicability in studying genetics diversity.

    Science.gov (United States)

    Cao, Lingzhen; Fu, Xiaowei; Wu, Kongming

    2015-08-01

    Pantala flavescens (Fabricius 1798) is one of the most common species among migration dragonflies. It is often encountered in large swarms during migration or directed dispersal flights. For a better understanding of its gene flow, genetic structure and migration patterns throughout the world, 10 polymorphic microsatellite markers were isolated in this study. We respectively collected 32 P. flavescens from three places (Hunan, Liaoning and Heilongjiang) and 20 P. flavescens from Beijing. Partial genomic libraries containing microsatellite sequences were constructed with magnetic-bead enrichment method. By screening, sequence analysis, PCR amplification and so on, ten 10 polymorphic microsatellite markers were isolated. In order to assess their applicability, genetic diversity of these novel markers was tested in 96 individuals from three populations in China (Hunan, Liaoning and Heilongjiang). These markers were highly polymorphic, with 3-12 alleles per markers. The observed (Ho) and expected (He) heterozygosities ranged 0.321-0.667 and from 0.531 to 0.948 respectively. The genetic difference between Hunan and Liaoning is 0.429, while the genetic difference between Liaoning and Heilongjiang is 0.0508. These microsatellite markers for P. flavescens were developed for the first time, and will be a powerful tool for studying population genetic diversity and dispersal behavior of P. flavescens in China and worldwide.

  11. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures.

    Directory of Open Access Journals (Sweden)

    Olav Rueppell

    Full Text Available Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.

  12. Genetic diversity in the parthenogenetic reproducing tardigrade Echiniscus testudo (Heterotardigrada: Echiniscoidea

    Directory of Open Access Journals (Sweden)

    Aslak Jørgensen

    2013-04-01

    Full Text Available Little is known about the genetic structure of microscopic animals from mosses and lichens. A few studies have investigated the geographic variation in tardigrades from mosses, but so far no study has investigated the intra-population or local clonal lineage variation. Echiniscus testudo (Echiniscoidea: Echiniscidae belongs to a large cosmopolitan genus of terrestrial tardigrades comprising more than 150 species. It is a common tardigrade in mosses in the temperate part of the Northern hemisphere, and is highly tolerant of desiccation and freezing. In a previous study, we reported a maximum of 1.28% sequence variation (uncorrected p-distance in cytochrome c oxidase subunit I (COI haplotypes between clonal lineages covering a large geographical area. However, in this previous study we used pooled specimens to constitute a sample, and the genetic diversity from single specimens within a locality therefore remains unknown. Accordingly, the present study investigates the COI sequence variation and haplotype diversity between single specimens of E. testudo collected at three Danish localities, separated by 80 m and 186 km. A total of 10 COI haplotypes were found in the present study (Et2, Et3, Et9, Et12-Et18; only three of these were previously reported (Et2, Et3 and Et9. The uncorrected COI sequence diversity ranged between 0-2.07%, with haplotype Et18 having the highest genetic difference. The second most variable haplotypes (Et14, Et15, and Et17 all showed a maximum diversity of 1.19% compared to the other haplotypes. No general pattern of haplotype distribution was evident. Our data suggest that E. testudo has dispersed across the Baltic sea as haplotypes Et3, Et13 and Et14 are present at all three localities. The most likely dispersal mode is passive wind dispersal in the cryptobiotic tun stage. The current study emphasises that numerous sequences from single specimens are needed to describe the genetic diversity within single moss cushions.

  13. Soil microbial diversity patterns of a lowland spring environment.

    Science.gov (United States)

    Vasileiadis, Sotirios; Puglisi, Edoardo; Arena, Maria; Cappa, Fabrizio; van Veen, Johannes A; Cocconcelli, Pier S; Trevisan, Marco

    2013-11-01

    The Po river plain lowland springs represent unique paradigms of managed environments. Their current locations used to be swamps that were drained 6-7 centuries ago, and they have been in constant use ever since. Our aims were to identify the effects of land use on the microbial communities of these soils, look for associated diversity drivers, and assess the applicability of ecology theories with respect to identified patterns. We screened the microbial diversity across a land use transect via high-throughput sequencing of partial 16S rrRNA gene amplicons. Land use had a major effect on soil properties and microbial community structures. Total organic carbon and pH were major diversity drivers for Bacteria, and pH was important for Archaea. We identified the potential contribution of soil amendments to the indigenous microbial communities, and also gained insights into potential roles of taxa in the organic carbon turnover. Verrucomicrobia coincided with the higher values of the recalcitrant organic carbon. Actinobacteria and Acidobacteria correlated with the more labile organic carbon. Finally, the higher diversity found in the soils less enzymatically active and relatively poorer in nutrients, may be explained to an extent by niche-based theories such as the resource heterogeneity hypothesis and Connell's intermediate disturbance hypothesis.

  14. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  15. Genetic diversity among wild and cultivated barley as revealed by RFLP

    DEFF Research Database (Denmark)

    Petersen, L.; Østergård, H.; Giese, H.

    1994-01-01

    Genetic variability of cultivated and wild barley, Hordeum vulgare ssp. vulgare and spontaneum, respectively, was assessed by RFLP analysis. The material consisted of 13 European varietes, single-plant offspring lines of eight land races from Ethiopia and Nepal, and five accessions of ssp....... spontaneum from Israel, Iran and Turkey. Seventeen out of twenty-one studied cDNA and gDNA probes distributed across all seven barley chromosomes revealed polymorphism when DNA was digested with one of four restriction enzymes. A tree based on genetic distances using frequencies of RFLP banding patterns...... an intermediate level. The proportion of gene diversity residing among,geographical groups (F-ST) varied from 0.19 to 0.94 (average 0.54) per RFLP pattern, indicating large diversification between geographical groups....

  16. Origin and Genetic Diversity of Diploid Parthenogenetic Artemia in Eurasia

    Science.gov (United States)

    Maccari, Marta; Amat, Francisco; Gómez, Africa

    2013-01-01

    There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages. PMID:24376692

  17. Origin and genetic diversity of diploid parthenogenetic Artemia in Eurasia.

    Science.gov (United States)

    Maccari, Marta; Amat, Francisco; Gómez, Africa

    2013-01-01

    There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.

  18. A simple ssr analysis for genetic diversity estimation of maize landraces

    Directory of Open Access Journals (Sweden)

    Ignjatovic-Micic Dragana

    2015-01-01

    Full Text Available collection of 2217 landraces from western Balkan (former Yugoslavia is maintained at Maize Research Institute Zemun Polje gene bank. Nine flint and nine dent accessions from six agro-ecological groups (races, chosen on the basis of diverse pedigrees, were analyzed for genetic relatedness using phenotypic and simple sequence repeat (SSR markers. One of the aims was to establish a reliable set of SSR markers for a rapid diversity analysis using polyacrilamide gels and ethidium bromide staining. In the principal component analysis (PCA the first three principal components accounted for 80.86% of total variation and separated most of the flint from dent landraces. Ten SSR primers revealed a total of 56 and 63 alleles in flint and dent landraces, respectively, with low stuttering and good allele resolution on the gels. High average PIC value (0.822 also supports informativeness and utility of the markers used in this study. Higher genetic variation was observed among flint genotypes, as genetic distances between flint landraces covered a larger range of values (0.11- 0.38 than between dent (0.22 - 0.33 genotypes. Both phenotypic and SSR analyses distinguished flint and dent landraces, but neither of them could abstract agro-ecological groups. The SSR method used gave clear, easy to read band patterns that could be used for reliable allele frequency determination. Genetic diversity revealed for both markers indicated that the landraces were highly adapted to specific environmental conditions and purposes and could be valuable sources of genetic variability. [Projekat Ministarstva nauke Republike Srbije, br. TR31028: Exploitation of maize diversity to improve grain quality and drought tolerance

  19. Clinal distribution of human genomic diversity across the Netherlands despite archaeological evidence for genetic discontinuities in Dutch population history

    NARCIS (Netherlands)

    O. Lao Grueso (Oscar); E. Altena (Eveline); C.R. Becker (Christian); S. Brauer (Silke); T. Kraaijenbrink (Thirsa); M. van Oven (Mannis); P. Nürnberg (Peter); P. de Knijff (Peter); M.H. Kayser (Manfred)

    2013-01-01

    textabstractBackground: The presence of a southeast to northwest gradient across Europe in human genetic diversity is a well-established observation and has recently been confirmed by genome-wide single nucleotide polymorphism (SNP) data. This pattern is traditionally explained by major prehistoric

  20. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations.

    Science.gov (United States)

    Ito, Hideyuki; Ogden, Rob; Langenhorst, Tanya; Inoue-Murayama, Miho

    2017-01-01

    Zoo conservation breeding programs manage the retention of population genetic diversity through analysis of pedigree records. The range of demographic and genetic indices determined through pedigree analysis programs allows the conservation of diversity to be monitored relative to the particular founder population for a species. Such approaches are based on a number of well-documented founder assumptions, however without knowledge of actual molecular genetic diversity there is a risk that pedigree-based measures will be misinterpreted and population genetic diversity misunderstood. We examined the genetic diversity of the captive populations of Grevy's zebra, Hartmann's mountain zebra and plains zebra in Japan and the United Kingdom through analysis of mitochondrial DNA sequences. Very low nucleotide variability was observed in Grevy's zebra. The results were evaluated with respect to current and historic diversity in the wild, and indicate that low genetic diversity in the captive population is likely a result of low founder diversity, which in turn suggests relatively low wild genetic diversity prior to recent population declines. Comparison of molecular genetic diversity measures with analogous diversity indices generated from the studbook data for Grevy's zebra and Hartmann's mountain zebra show contrasting patterns, with Grevy's zebra displaying markedly less molecular diversity than mountain zebra, despite studbook analysis indicating that the Grevy's zebra population has substantially more founders, greater effective population size, lower mean kinship, and has suffered less loss of gene diversity. These findings emphasize the need to validate theoretical estimates of genetic diversity in captive breeding programs with empirical molecular genetic data. Zoo Biol. 36:87-94, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Genetic diversity in populations of Gentoo penguins (Pygoscelis papua).

    Science.gov (United States)

    Dranitsina, A S; Telegeev, G D; Maliuta, S S; Bezrukov, V F

    2006-01-01

    RAPD analysis was used to examine the extent of genetic polymorphism in two populations of Gentoo penguin (Pygoscelis papua) from Antarctic Islands (Petermann and Livingston). The chosen two of three 10 mer oligonucleotide primers accordingly to preliminary results showed different levels of polymorphism in Gentoo penguins at Petermann Island (from 23.53 to 42.86%) and Livingston Island (from 52.94 to 57.14%). Nei's similarity coefficients were in range from 0.5606 (when Gentoo genome profiles were compared with RAPD profiles of two related penguin species: Pygoscelis adeliae (Adelie) and Pygoscelis antarctica (Chinstrep)) to 0.9281 among observed Gentoo penguin populations. Nei's distances values ranged from 0.0746 to 0.5787 among the populations and species. The obtained results will be used for further estimation of genetic diversity of Gentoo penguins and determination of their taxonomic status.

  2. The impact of recent events on human genetic diversity.

    Science.gov (United States)

    Jobling, Mark A

    2012-03-19

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics.

  3. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Bulut

    2016-01-01

    Full Text Available The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P0.05. Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers.

  4. A pattern-forming instability co-driven by distinct mechanisms increases pattern diversity

    CERN Document Server

    Kinast, Shai; Bel, Golan; Meron, Ehud

    2013-01-01

    We use the context of dryland vegetation to study a general problem of complex pattern forming systems - multiple pattern-forming instabilities that are driven by distinct mechanisms but share the same spectral properties. We find that the co-occurrence of such instabilities results in the growth of a single mode rather than two interacting modes. The interplay between the two mechanisms, which promote or counteract each other, compensates for the simpler dynamics of a single mode by inducing higher pattern diversity. Possible implications to biodiversity of ecosystems are discussed.

  5. Differential effects of historical migration, glaciations and human impact on the genetic structure and diversity of the mountain pasture weed Veratrum album L

    DEFF Research Database (Denmark)

    Treier, Urs; Müller-Schärer, H.

    2011-01-01

    migration into Europe from a proposed Asian origin. However, the strong geographic pattern in the genetic structure, pronounced isolation by distance (R2 = 0.74) and moderate overall population differentiation (FST = 0.13) suggests high historical gene flow, possibly during glacials, and vicariance...... not agree with the expectations from east–west migration into Europe. Furthermore, managed habitats showed higher levels of genetic diversity compared to unmanaged habitats. Stepwise linear regression determined shoot density and soil phosphorus as the main predictors of within-population genetic diversity...... by post-glacial vicariance while patterns of genetic diversity seemed mainly to be influenced by human land use. Our findings highlight the importance of applying a synthetic approach, testing the influence of both historical and contemporary processes on genetic structure and diversity in order...

  6. The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    Directory of Open Access Journals (Sweden)

    Navarro-Sigüenza Adolfo G

    2011-05-01

    Full Text Available Abstract Background Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, Cardinalis cardinalis. Results Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species' range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America. Conclusion We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in C. cardinalis. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered

  7. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    Science.gov (United States)

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape

  8. Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity.

    Science.gov (United States)

    Faye, A; Deblauwe, V; Mariac, C; Richard, D; Sonké, B; Vigouroux, Y; Couvreur, T L P

    2016-12-01

    The tropical rain forests of Central Africa contain high levels of species diversity. Paleovegetation or biodiversity patterns suggested successive contraction/expansion phases on this rain forest cover during the last glacial maximum (LGM). Consequently, the hypothesis of the existence of refugia e.g. habitat stability that harbored populations during adverse climatic periods has been proposed. Understory species are tightly associated to forest cover and consequently are ideal markers of forest dynamics. Here, we used two central African rain forest understory species of the palm genus, Podococcus, to assess the role of past climate variation on their distribution and genetic diversity. Species distribution modeling in the present and at the LGM was used to estimate areas of climatic stability. Genetic diversity and phylogeography were estimated by sequencing near complete plastomes for over 120 individuals. Areas of climatic stability were mainly located in mountainous areas like the Monts de Cristal and Monts Doudou in Gabon, but also lowland coastal forests in southeast Cameroon and northeast Gabon. Genetic diversity analyses shows a clear North-South structure of genetic diversity within one species. This divide was estimated to have originated some 500,000years ago. We show that, in Central Africa, high and unique genetic diversity is strongly correlated with inferred areas of climatic stability since the LGM. Our results further highlight the importance of coastal lowland rain forests in Central Africa as harboring not only high species diversity but also important high levels of unique genetic diversity. In the context of strong human pressure on coastal land use and destruction, such unique diversity hotspots need to be considered in future conservation planning.

  9. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    Science.gov (United States)

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  10. Genetic diversity affects the strength of population regulation in a marine fish.

    Science.gov (United States)

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  11. A genetic approach to architectural pattern discovery

    NARCIS (Netherlands)

    Peters, J.G.T.; van der Werf, J.M.E.M.

    2016-01-01

    Architectural patterns represent reusable design of software architecture at a high level of abstraction. They can be used to structure new applications and to recover the modular structure of existing systems. Techniques like Architecture Compliance Checking (ACC) focus on testing whether realised

  12. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    Jordana Jordi

    2001-07-01

    Full Text Available Abstract Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P A distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans.

  13. On the Biological and Genetic Diversity in Neospora caninum

    Directory of Open Access Journals (Sweden)

    John T. Ellis

    2010-03-01

    Full Text Available Neospora caninum is a parasite regarded a major cause of foetal loss in cattle. A key requirement to an understanding of the epidemiology and pathogenicity of N. caninum is knowledge of the biological characteristics of the species and the genetic diversity within it. Due to the broad intermediate host range of the species, worldwide geographical distribution and its capacity for sexual reproduction, significant biological and genetic differences might be expected to exist. N. caninum has now been isolated from a variety of different host species including dogs and cattle. Although isolates of this parasite show only minor differences in ultrastructure, considerable differences have been reported in pathogenicity using mainly mouse models. At the DNA level, marked levels of polymorphism between isolates were detected in mini- and microsatellites found in the genome of N. caninum. Knowledge of what drives the biological differences that have been observed between the various isolates at the molecular level is crucial in aiding our understanding of the epidemiology of this parasite and, in turn, the development of efficacious strategies, such as live vaccines, for controlling its impact. The purpose of this review is to document and discuss for the first time, the nature of the diversity found within the species Neospora caninum.

  14. Genetic diversity of caprine Blastocystis from Peninsular Malaysia.

    Science.gov (United States)

    Tan, Tian Chye; Tan, Peng Chiang; Sharma, Reuben; Sugnaseelan, Sumita; Suresh, Kumar Govind

    2013-01-01

    Blastocystis sp. is a common intestinal parasite found in humans and animals. The possibility of zoonotic transmission to humans from livestock especially goats led us to investigate the genetic diversity of caprine Blastocystis sp. obtained from five different farms in Peninsular Malaysia. Moreover, there is a lack of information on the prevalence as well as genetic diversity of Blastocystis sp. in goat worldwide. Results showed that 73/236 (30.9 %) of the goats were found to be positive for Blastocystis infection. The most predominant Blastocystis sp. subtype was ST1 (60.3 %) followed by ST7 (41.1 %), ST6 (41.1 %), and ST3 (11.0 %) when amplified by PCR using sequenced-tagged site (STS) primers. Four farms had goats infected only with ST1 whereas the fifth showed mixed infections with multiple STs. The proximity of the fifth farm to human dwellings, nearby domesticated animals and grass land as opposed to a sterile captive environment in the first four farms may account for the multiple STs seen in the fifth farm. Since ST1, ST3, ST6 and ST 7 were previously reported in human infection worldwide in particular Malaysia, the potential of the zoonotic transmission of blastocystosis should not be disregarded. The implications of different farm management systems on the distribution of Blastocystis sp. STs are discussed.

  15. Whole mitochondrial genome genetic diversity in an Estonian population sample.

    Science.gov (United States)

    Stoljarova, Monika; King, Jonathan L; Takahashi, Maiko; Aaspõllu, Anu; Budowle, Bruce

    2016-01-01

    Mitochondrial DNA is a useful marker for population studies, human identification, and forensic analysis. Commonly used hypervariable regions I and II (HVI/HVII) were reported to contain as little as 25% of mitochondrial DNA variants and therefore the majority of power of discrimination of mitochondrial DNA resides in the coding region. Massively parallel sequencing technology enables entire mitochondrial genome sequencing. In this study, buccal swabs were collected from 114 unrelated Estonians and whole mitochondrial genome sequences were generated using the Illumina MiSeq system. The results are concordant with previous mtDNA control region reports of high haplogroup HV and U frequencies (47.4 and 23.7% in this study, respectively) in the Estonian population. One sample with the Northern Asian haplogroup D was detected. The genetic diversity of the Estonian population sample was estimated to be 99.67 and 95.85%, for mtGenome and HVI/HVII data, respectively. The random match probability for mtGenome data was 1.20 versus 4.99% for HVI/HVII. The nucleotide mean pairwise difference was 27 ± 11 for mtGenome and 7 ± 3 for HVI/HVII data. These data describe the genetic diversity of the Estonian population sample and emphasize the power of discrimination of the entire mitochondrial genome over the hypervariable regions.

  16. Human KIR repertoires: shaped by genetic diversity and evolution.

    Science.gov (United States)

    Manser, Angela R; Weinhold, Sandra; Uhrberg, Markus

    2015-09-01

    Killer cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells are crucially involved in the control of cancer development and virus infection by probing cells for proper expression of HLA class I. The clonally distributed expression of KIRs leads to great combinatorial diversity that develops in the presence of the evolutionary older CD94/NKG2A receptor to create highly stochastic but tolerant repertoires of NK cells. These repertoires are present at birth and are subsequently shaped by an individuals' immunological history toward recognition of self. The single most important factor that shapes functional NK cell repertoires is the genetic diversity of KIR, which is characterized by the presence of group A and B haplotypes with complementary gene content that are present in all human populations. Group A haplotypes constitute the minimal genetic entity that provides high affinity recognition of all major human leukocyte antigen class I-encoded ligands, whereas group B haplotypes contribute to the diversification of NK cell repertoires by providing sets of stimulatory KIR genes that modify NK cell responses. We suggest a cooperative model for the balancing selection of A and B haplotypes, which is driven by the need to provide a suitable corridor of repertoire complexity in which A/A individuals with only 16 different KIR combinations coexist with A/B and B/B donors expressing up to 2048 different clone types.

  17. Population Genomic Analysis Reveals Differential Evolutionary Histories and Patterns of Diversity across Subgenomes and Subpopulations of Brassica napus L.

    Science.gov (United States)

    Gazave, Elodie; Tassone, Erica E; Ilut, Daniel C; Wingerson, Megan; Datema, Erwin; Witsenboer, Hanneke M A; Davis, James B; Grant, David; Dyer, John M; Jenks, Matthew A; Brown, Jack; Gore, Michael A

    2016-01-01

    The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  18. Genetic relationship and diversity in a sesame (Sesamum indicum L. germplasm collection using amplified fragment length polymorphism (AFLP

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-02-01

    Full Text Available Abstract Background Sesame is an important oil crop in tropical and subtropical areas. Despite its nutritional value and historic and cultural importance, the research on sesame has been scarce, particularly as far as its genetic diversity is concerned. The aims of the present study were to clarify genetic relationships among 32 sesame accessions from the Venezuelan Germplasm Collection, which represents genotypes from five diversity centres (India, Africa, China-Korea-Japan, Central Asia and Western Asia, and to determine the association between geographical origin and genetic diversity using amplified fragment length polymorphism (AFLP. Results Large genetic variability was found within the germplasm collection. A total of 457 AFLP markers were recorded, 93 % of them being polymorphic. The Jaccard similarity coefficient ranged from 0.38 to 0.85 between pairs of accessions. The UPGMA dendrogram grouped 25 of 32 accessions in two robust clusters, but it has not revealed any association between genotype and geographical origin. Indian, African and Chinese-Korean-Japanese accessions were distributed throughout the dendrogram. A similar pattern was obtained using principal coordinates analysis. Genetic diversity studies considering five groups of accessions according to the geographic origin detected that only 20 % of the total diversity was due to diversity among groups using Nei's coefficient of population differentiation. Similarly, only 5% of the total diversity was attributed to differences among groups by the analysis of molecular variance (AMOVA. This small but significant difference was explained by the fact that the Central Asia group had a lower genetic variation than the other diversity centres studied. Conclusion We found that our sesame collection was genetically very variable and did not show an association between geographical origin and AFLP patterns. This result suggests that there was considerable gene flow among diversity centres

  19. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-03-01

    Full Text Available Abstract Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP, Duffy-binding protein (DBP, Merozoite surface protein-1 (MSP-1, Apical membrane antigen-1 (AMA-1 and Thrombospondin related anonymous protein (TRAP. Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.

  20. Genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River (upper Mekong).

    Science.gov (United States)

    Chen, Weitao; Shen, Yanjun; Gan, Xiaoni; Wang, Xuzhen; He, Shunping

    2016-09-01

    The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai-Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re-examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River.

  1. Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

    Science.gov (United States)

    Kim, Ji-Su; Kang, Nam Jun; Kwak, Youn-Sig; Lee, Choungkeun

    2017-01-01

    Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-α, and β-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the β-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region. PMID:28381961

  2. Genetic Diversity Assessment of Portuguese Cultivated Vicia faba L. through IRAP Markers

    Directory of Open Access Journals (Sweden)

    Diana Tomás

    2016-03-01

    Full Text Available Faba bean have been grown in Portugal for a long time and locally adapted populations are still maintained on farm. The genetic diversity of four Portuguese faba bean populations that are still cultivated in some regions of the country was evaluated using the Inter Retrotransposons Amplified Polymorphism (IRAP technique. It was shown that molecular markers based on retrotransposons previously identified in other species can be efficiently used in the genetic variability assessment of Vicia faba. The IRAP experiment targeting Athila yielded the most informative banding patterns. Cluster analysis using the neighbor-joining algorithm generated a dendrogram that clearly shows the distribution pattern of V. faba samples. The four equina accessions are separated from each other and form two distinct clades while the two major faba bean accessions are not unequivocally separated by the IRAP. Fluorescent In Situ Hybridization (FISH analysis of sequences amplified by IRAP Athila revealed a wide distribution throughout V. faba chromosomes, confirming the whole-genome coverage of this molecular marker. Morphological characteristics were also assessed through cluster analysis of seed characters using the unweighted pair group method arithmetic average (UPGMA and principal component analysis (PCA, showing a clear discrimination between faba bean major and equina groups. It was also found that the seed character most relevant to distinguish accessions was 100 seed weight. Seed morphological traits and IRAP evaluation give similar results supporting the potential of IRAP analysis for genetic diversity studies.

  3. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  4. GENETIC DIVERSITY, PARENTAGE VERIFICATION AND GENETIC BOTTLENECKS EVALUATION IN IRANIAN TURKMEN HORSE BREED.

    Science.gov (United States)

    Rahimi-Mianji, G; Nejati-Javaremi, A; Farhadi, A

    2015-09-01

    The present study was undertaken to genetically evaluate Turkmen horses for genetic diversity and to evaluate whether they have experienced any recent genetic bottlenecks. A total of 565 individuals from Turkmen horses were characterized for within breed diversity using 12 microsatellite markers. The estimated mean allelic diversity was (9.42 ± 1.78) per locus, with a total of 131 alleles in genotyped samples. A high level of genetic variability within this breed was observed in terms of high values of effective number of alleles (4.70 ± 1.36), observed heterozygosity (0.757 ± 0.19), expected Nei's heterozygosity (0.765 ± 0.13), and polymorphism information content (0.776 ± 0.17). The estimated cumulative probability of exclusion of wrongly named parents (PE) was high, with an average value of 99.96% that indicates the effectiveness of applied markers in resolving of parentage typing in Turkmen horse population. The paternity testing results did not show any misidentification and all selected animals were qualified based on genotypic information using a likelihood-based method. Low values of Wright's fixation index, F(IS) (0.012) indicated low levels of inbreeding. A significant heterozygote excess on the basis of different models, as revealed from Sign and Wilcoxon sign rank test suggested that Turkmen horse population is not in mutation-drift equilibrium. But, the Mode-shift indicator test showed a normal 'L' shaped distribution for allelic class and proportion of alleles, thus indicating the absence of bottleneck events in the recent past history of this breed. Further research work should be carrying out to clarify the cause of discrepancy observed forbottleneck results in this breed. In conclusion, despite unplanned breeding in Turkmen horse population, this breed still has sufficient genetic variability and could provide a valuable source of genetic material that may use for meeting the demands of future breeding programs.

  5. Analysis of genetic diversity of maize hybrids in the regional tests in Sichuan and Southwest China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study,analyses of phenotypic characters,SSR molecular markers and pedigrees were done to study the genetic diversity in 186 maize hybrids that were tested in regional trials in Sichuan and Southwest China.The results showed that there were differences in the variation coefficients of different characteristics,but all of the variation coefficients changed within a narrow range.Sixty pairs of simple sequence repeat (SSR) primer distributed on the ten chromosomes of maize produced stable amplified bands and 608 alleles were detected among the hybrids.The average number of alleles per locus was 10.1 ranging from 3 to 23.The values of polymorphism information content (PIC) for each SSR locus varied from 0.5179 to 0.9256 with an average of 0.7826.The genetic similarities of SSR marker pattern among the 186 hybrids ranged from 0.6067 to 0.9162,with an average of 0.7722.There were 16499 pairs of genetic similarity,in which 96.9% were 0.70000 to 0.9256.The cluster analysis showed that the hybrids could be classified into ten clusters,with 88.2% of the hybrids included in Cluster 4,Cluster 8 and Cluster 10.The analysis of pedigree sources of 51 hybrids showed that 36 hybrids had close genetic relationships with the hybrids developed by the Pioneer Company in the late 1980s and early 1990s in the United States,such as Y78599,Y7865 and Y78698,accounting for 70.58%.Meanwhile,13 hybrids had close genetic relationships with Y78599,accounting for 8.66%.The genetic similarities of SSR marker pattern among the 51 hybrids ranged from 0.66192 to 0.8799,with an average of 0.7686.There were 1196 pairs of genetic similarity ranged between 0.7000 to 0.8796,accounting for 93.80% of all the genetic similarity pairs.The cluster analysis showed that 88.2% of the 51 hybrids were in Cluster 4,Cluster 8 and Cluster 10,which indicated that similarity was high and genetic diversity narrow among the 186 hybrids.This showed that it is necessary to broaden the genetic basis of breeding

  6. Tree assemblages and diversity patterns in Tropical Juri Forest, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Swapan Kumar Sarker; Muhammad Nur-Un-Nabi; Md. Mohasinul Haque; Mahmuda Sharmin; Sanjay Saha Sonet; Sourav Das; Niamjit Das

    2015-01-01

    Juri is a biodiversity-rich primary forest in Bangladesh, which remains ecologically unexplored. We identified tree species and examined the richness, alpha (α) diversity and floristic similarity patterns within the identi-fied communities. Vegetation and environmental data were sampled in 120 (0.04 ha) study plots. Tree communities were delimited by two-way indicator species analysis (TWINSPAN). In total, 78 tree species of 35 families and 58 genera were identified. TWINSPAN identified six tree communities: A—Tricalysia singularis; B—Kydia calyci-na-Castanopsis tribuloides;C—Polyalthia simiarum-Dua-banga grandiflora; D—Ficus roxburghii; E—Artocarpus lacucha;F—Artocarpus lacucha. Mean richness, Shannon and Gini-Simpson indices were highest for the Polyalthia simiarum-Duabanga grandiflora community, while Ficus roxburghii showed lowest diversity. Significant differences (p=0.05) in three diversity indices were recorded between Polyalthia simiarum-Duabanga grandiflora and Ficus roxburghii. Tree compositional similarity was greatest between Kydia calycina-Castanopsis tribuloides and Polyalthia simiarum-Duabanga grandiflora (0.712).

  7. Parallel responses of species and genetic diversity to El Nino Southern Oscillation-induced environmental destruction

    NARCIS (Netherlands)

    Cleary, D.F.R.; Fauvelot, C.Y.; Genner, J.; Menken, S.B.J.; Mooers, A.O.

    2006-01-01

    Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to

  8. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  9. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Science.gov (United States)

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.

  10. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  11. Sézary Syndrome: Translating Genetic Diversity into Personalized Medicine.

    Science.gov (United States)

    Chevret, Edith; Merlio, Jean-Philippe

    2016-07-01

    Sézary syndrome is probably the most studied cutaneous T-cell lymphoma subtype. Beyond the consensus criteria for Sézary syndrome diagnosis, Sézary cells display heterogeneous phenotypes and differentiation profiles. In the face of SS diversity, the great hope is to develop targeted therapies based on next-generation sequencing to define the genetic landscape of Sézary syndrome. Prasad et al. report on the use of exome sequencing and RNA sequencing to study selected CD4(+) blood cells from 15 patients with erythroderma Sézary syndrome, 14 of whom fulfilled the conventional criteria for diagnosis. The most common genetic abnormality, TP53 gene deletion on chromosome arm 17p and/or mutation, was observed in 58% of patients. However, mutations affecting PLCG1, STAT5B, GLI3, and CARD11 each were detected in only one individual. Nevertheless, Prasad et al. report single point mutations or copy number alterations in several new genes and in new fusion genes, with predicted biological relevance. This information underscores the diversity of genetic alterations and of the mechanisms of alterations of single genes. At the individual level, Sézary cells may combine alterations of genes involved in T-cell signaling, NF-kB and JAK-signal transducer and activator of transcription pathways, apoptosis control, chromatin remodeling, and DNA damage response. The therapeutic relevance of these potential targets needs to be evaluated with tests of function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    Directory of Open Access Journals (Sweden)

    Jane E Stewart

    Full Text Available Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum, highbush blueberry (V. corymbosum, and southern highbush blueberry (V. corymbosum hybrids from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing

  13. Late Quaternary loss of genetic diversity in muskox (Ovibos

    Directory of Open Access Journals (Sweden)

    Mol Dick

    2005-10-01

    Full Text Available Abstract Background The modern wildherd of the tundra muskox (Ovibos moschatus is native only to the New World (northern North America and Greenland, and its genetic diversity is notably low. However, like several other megafaunal mammals, muskoxen enjoyed a holarctic distribution during the late Pleistocene. To investigate whether collapse in range and loss of diversity might be correlated, we collected mitochondrial sequence data (hypervariable region and cytochrome b from muskox fossil material recovered from localities in northeastern Asia and the Arctic Archipelago of northern North America, dating from late Pleistocene to late Holocene, and compared our results to existing databases for modern muskoxen. Results Two classes of haplotypes were detected in the fossil material. "Surviving haplotypes" (SHs, closely similar or identical to haplotypes found in modern muskoxen and ranging in age from ~22,000 to ~160 yrbp, were found in all New World samples as well as some samples from northeastern Asia. "Extinct haplotypes" (EHs, dating between ~44,000 and ~18,000 yrbp, were found only in material from the Taimyr Peninsula and New Siberian Islands in northeastern Asia. EHs were not found in the Holocene muskoxen specimens available for this study, nor have they been found in other studies of extant muskox populations. Conclusion We provisionally interpret this evidence as showing that genetic variability was reduced in muskoxen after the Last Glacial Maximum but before the mid-Holocene, or roughly within the interval 18,000-4,000 yrbp. Narrowing this gap further will require the recovery of more fossils and additional genetic information from this interval.

  14. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    Science.gov (United States)

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.

  15. High DNA methylation pattern intratumoral diversity implies weak selection in many human colorectal cancers.

    Directory of Open Access Journals (Sweden)

    Kimberly D Siegmund

    Full Text Available BACKGROUND: It is possible to infer the past of populations by comparing genomes between individuals. In general, older populations have more genomic diversity than younger populations. The force of selection can also be inferred from population diversity. If selection is strong and frequently eliminates less fit variants, diversity will be limited because new, initially homogeneous populations constantly emerge. METHODOLOGY AND RESULTS: Here we translate a population genetics approach to human somatic cancer cell populations by measuring genomic diversity within and between small colorectal cancer (CRC glands. Control tissue culture and xenograft experiments demonstrate that the population diversity of certain passenger DNA methylation patterns is reduced after cloning but subsequently increases with time. When measured in CRC gland populations, passenger methylation diversity from different parts of nine CRCs was relatively high and uniform, consistent with older, stable lineages rather than mixtures of younger homogeneous populations arising from frequent cycles of selection. The diversity of six metastases was also high, suggesting dissemination early after transformation. Diversity was lower in DNA mismatch repair deficient CRC glands, possibly suggesting more selection and the elimination of less fit variants when mutation rates are elevated. CONCLUSION/SIGNIFICANCE: The many hitchhiking passenger variants observed in primary and metastatic CRC cell populations are consistent with relatively old populations, suggesting that clonal evolution leading to selective sweeps may be rare after transformation. Selection in human cancers appears to be a weaker than presumed force after transformation, consistent with the observed rarity of driver mutations in cancer genomes. Phenotypic plasticity rather than the stepwise acquisition of new driver mutations may better account for the many different phenotypes within human tumors.

  16. Genome-wide distribution of genetic diversity and linkage disequilibrium in elite sugar beet germplasm

    Directory of Open Access Journals (Sweden)

    Weißleder Knuth

    2011-10-01

    Full Text Available Abstract Background Characterization of population structure and genetic diversity of germplasm is essential for the efficient organization and utilization of breeding material. The objectives of this study were to (i explore the patterns of population structure in the pollen parent heterotic pool using different methods, (ii investigate the genome-wide distribution of genetic diversity, and (iii assess the extent and genome-wide distribution of linkage disequilibrium (LD in elite sugar beet germplasm. Results A total of 264 and 238 inbred lines from the yield type and sugar type inbreds of the pollen parent heterotic gene pools, respectively, which had been genotyped with 328 SNP markers, were used in this study. Two distinct subgroups were detected based on different statistical methods within the elite sugar beet germplasm set, which was in accordance with its breeding history. MCLUST based on principal components, principal coordinates, or lapvectors had high correspondence with the germplasm type information as well as the assignment by STRUCTURE, which indicated that these methods might be alternatives to STRUCTURE for population structure analysis. Gene diversity and modified Roger's distance between the examined germplasm types varied considerably across the genome, which might be due to artificial selection. This observation indicates that population genetic approaches could be used to identify candidate genes for the traits under selection. Due to the fact that r2 >0.8 is required to detect marker-phenotype association explaining less than 1% of the phenotypic variance, our observation of a low proportion of SNP loci pairs showing such levels of LD suggests that the number of markers has to be dramatically increased for powerful genome-wide association mapping. Conclusions We provided a genome-wide distribution map of genetic diversity and linkage disequilibrium for the elite sugar beet germplasm, which is useful for the application of

  17. Population size and time since island isolation determine genetic diversity loss in insular frog populations.

    Science.gov (United States)

    Wang, Supen; Zhu, Wei; Gao, Xu; Li, Xianping; Yan, Shaofei; Liu, Xuan; Yang, Ji; Gao, Zengxiang; Li, Yiming

    2014-02-01

    Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land-bridge archipelagoes offer ideal model systems for identifying the long-term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square-root-transformed) and population size (log-transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.

  18. Genetic diversity within and between European pig breeds using microsatellite markers

    NARCIS (Netherlands)

    SanCristobal, M.; Chevalet, C.; Haley, C.S.; Joosten, R.; Rattink, A.P.; Harlizius, B.; Groenen, M.A.M.

    2006-01-01

    An important prerequisite for a conservation programme is a comprehensive description of genetic diversity. The aim of this study was to use anonymous genetic markers to assess the between- and the within-population components of genetic diversity for European pig breeds at the scale of the whole co

  19. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    Science.gov (United States)

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  20. Genetic diversity of neotropical Myotis (chiroptera: vespertilionidae with an emphasis on South American species.

    Directory of Open Access Journals (Sweden)

    Roxanne J Larsen

    Full Text Available BACKGROUND: Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. METHODOLOGY AND PRINCIPAL FINDINGS: Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. CONCLUSIONS: Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus.

  1. Genetic diversity of Plasmodium vivax isolates from Azerbaijan

    Directory of Open Access Journals (Sweden)

    Majori Giancarlo

    2004-11-01

    Full Text Available Abstract Background Plasmodium vivax, although causing a less serious disease than Plasmodium falciparum, is the most widespread of the four human malarial species. Further to the recent recrudescence of P. vivax cases in the Newly Independent States (NIS of central Asia, a survey on the genetic diversity and dissemination in Azerbaijan was undertaken. Azerbaijan is at the crossroads of Asia and, as such, could see a rise in the number of cases, although an effective malaria control programme has been established in the country. Methods Thirty-six P. vivax isolates from Central Azerbaijan were characterized by analysing the genetic polymorphism of the circumsporozoite protein (CSP and the merozoite surface protein 1 (MSP-1 genes, using PCR amplifications and amplicons sequencing. Results Analysis of CSP sequences showed that all the processed isolates belong to the VK 210 type, with variations in the alternation of alanine residue (A or aspartic acid residue (D in the repeat motif GDRA(A/DGQPA along the sequence. As far as MSP-1 genotyping is concerned, it was found that the majority of isolates analysed belong to Belem and Sal I types. Five recombinant isolates were also identified. Combined analysis with the two genetic markers allowed the identification of 19 plasmodial sub-types. Conclusion The results obtained in the present study indicate that there are several P. vivax clones circulating in Azerbaijan and, consequently, a careful malaria surveillance could be of paramount importance to identify, at early stage, the occurrence of possible P. vivax malaria outbreaks.

  2. Genetic diversity revealed by AFLP markers in Albanian goat breeds

    Directory of Open Access Journals (Sweden)

    Hoda Anila

    2012-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP technique with three EcoRI/TaqI primer combinations was used in 185 unrelated individuals, representative of 6 local goat breeds of Albania, and 107 markers were generated. The mean Nei’s expected heterozygosity value for the whole population was 0.199 and the mean Shannon index was 0.249, indicating a high level of within-breed diversity. Wright’s FST index, Nei’s unbiased genetic distance and Reynolds’ genetic distance were calculated. Pairwise Fst values among the populations ranged from 0.019 to 0.047. A highly significant average FST of 0.031 was estimated, showing a low level of breed subdivision. Most of the variation is accounted for by differences among individuals. Cluster analysis based on Reynolds’ genetic distance between breeds and PCA were performed. An individual UPGMA tree based on Jaccard’s similarity index showed clusters with individuals from all goat breeds. Analysis of population structure points to a high level of admixture among breeds.

  3. Assessment of genetic diversity in Indian rice germplasm (Oryza sativa L.): use of random versus trait-linked microsatellite markers

    Indian Academy of Sciences (India)

    Sheel Yadav; Ashutosh Singh; M. R. Singh; Nitika Goel; K. K. Vinod; T. Mohapatra; A. K. Singh

    2013-12-01

    Assessment of genetic diversity in a crop germplasm is a vital part of plant breeding. DNA markers such as microsatellite or simple sequence repeat markers have been widely used to estimate the genetic diversity in rice. The present study was carried out to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic variability, and to assess the efficiency of random vis-à-vis QTL linked/gene based simple sequence repeat markers in diversity estimation. A set of 88 rice accessions that included landraces, farmer’s varieties and popular Basmati lines were evaluated for agronomic traits and molecular diversity. The random set of SSR markers included 50 diversity panel markers developed under IRRI’s Generation Challenge Programme (GCP) and the trait-linked/gene based markers comprised of 50 SSR markers reportedly linked to yield and related components. For agronomic traits, significant variability was observed, ranging between the maximum for grains/panicle and the minimum for panicle length. The molecular diversity based grouping indicated that varieties from a common centre were genetically similar, with few exceptions. The trait-linked markers gave an average genetic dissimilarity of 0.45 as against that of 0.37 by random markers, along with an average polymorphic information constant value of 0.48 and 0.41 respectively. The correlation between the kinship matrix generated by trait-linked markers and the phenotype based distance matrix (0.29) was higher than that of random markers (0.19). This establishes the robustness of trait-linked markers over random markers in estimating genetic diversity of rice germplasm.

  4. Back to the Suture: The Distribution of Intraspecific Genetic Diversity in and Around Anatolia

    Directory of Open Access Journals (Sweden)

    Rasit Bilgin

    2011-06-01

    Full Text Available The effect of ice ages in speciation and diversification is well established in the literature. In Europe, the Iberian, the Italian and the Balkan peninsulas comprise the main glacial refugia, where the subsequent re-population of Europe started. Though not studied as extensively, Anatolia has also been hinted to be a potential glacial refugium for Europe, and with its proximity to the Caucasus and the Middle East at the same time, has potential to exhibit high levels of intraspecific diversity. The more ubiquitous use and cheaper availability of molecular methods globally now makes it possible to better understand molecular ecology and evolution of the fauna and flora in the genetically understudied regions of the world, such as Anatolia. In this review, the molecular genetic studies undertaken in Anatolia in the last decade, for 29 species of plants and animals, are examined to determine general phylogeographic patterns. In this regard, two major patterns are observed and defined, showing genetic breaks within Anatolia and between Anatolia and the Balkans. A third pattern is also outlined, which suggests Anatolia may be a center of diversity for the surrounding regions. The patterns observed are discussed in terms of their relevance to the location of suture zones, postglacial expansion scenarios, the effect of geographic barriers to gene flow and divergence time estimates, in order to better understand the effect of the geological history of Anatolia on the evolutionary history of the inhabitant species. In view of the current state of knowledge delineated in the review, future research directions are suggested.

  5. Marine reserves help preserve genetic diversity after impacts derived from climate variability: Lessons from the pink abalone in Baja California

    Directory of Open Access Journals (Sweden)

    Adrián Munguía-Vega

    2015-07-01

    Full Text Available Genetic diversity is crucial for the adaptation of exploited species like the pink abalone (Haliotis corrugata, faced with threats from climate change, overfishing and impacts associated with aquaculture production. While marine reserves are commonly used to mitigate risks to marine populations, the duration, size, location and larval connectivity needed for a reserve to help conserve genetic resources is still poorly understood. Here, we examine the effects of fishing, reserves, and restocking on the genetic diversity of 10 populations from central Baja California, Mexico, and Southern California, USA. We demonstrate that each population shows characteristic genetic signatures according to recent management decisions. We found high allelic diversity, particularly rare alleles, a larger effective population size and a lack of a recent genetic bottleneck in pink abalones within a small (0.8 km2, recently established (5 years reserve in Baja California, compared to other fished sites after a climatic bottleneck. Higher diversity may result from the presence of older animals in the reserve. Due to its location, the reserve may also act as an important hub connecting distant populations via larval dispersal. In contrast, a population from California showed genetic isolation, loss of allelic diversity and high relatedness, consistent with the collapse of fisheries in the 1990s and their lack of recovery thereafter. In addition, a fished area in Baja California with a history of restocking for over a decade showed an increase in frequency of related individuals and high genetic differentiation from nearby sites that were consistent with the production of larvae from a few adults in the laboratory. A network of strategically placed small marine reserves that considers ocean circulation patterns could help to maintain genetic diversity and connectivity of exploited populations.

  6. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping.

    Science.gov (United States)

    Jin, Liang; Lu, Yan; Xiao, Peng; Sun, Mei; Corke, Harold; Bao, Jinsong

    2010-08-01

    Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25-50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker-trait association mapping. This new association population has the potential to identify

  7. Genet-specific spawning patterns in Acropora palmata

    Science.gov (United States)

    Miller, M. W.; Williams, D. E.; Fisch, J.

    2016-12-01

    The broadcast spawning elkhorn coral, Acropora palmata, requires outcrossing among different genets for effective fertilization. Hence, a low density of genets in parts of its range emphasizes the need for precise synchrony among neighboring genets as sperm concentration dilutes rapidly in open-ocean conditions. We documented the genet-specific nightly occurrence of spawning of A. palmata over 8 yr in a depauperate population in the Florida Keys to better understand this potential reproductive hurdle. The observed population failed to spawn within the predicted monthly window (nights 2-6 after the full moon in August) in three of the 8 yr of observation; negligible spawning was observed in a fourth year. Moreover, genet-specific patterns are evident in that (1) certain genets have significantly greater odds of spawning overall and (2) certain genets predictably spawn on the earlier and others on the later lunar nights within the predicted window. Given the already low genet density in this population, this pattern implies a substantial degree of wasted reproductive effort and supports the hypothesis that depensatory factors are impairing recovery in this species.

  8. Typing of bacteriophages by randomly amplified polymorphic DNA (RAPD)-PCR to assess genetic diversity.

    Science.gov (United States)

    Gutiérrez, Diana; Martín-Platero, Antonio M; Rodríguez, Ana; Martínez-Bueno, Manuel; García, Pilar; Martínez, Beatriz

    2011-09-01

    The recent boom in phage therapy and phage biocontrol requires the design of suitable cocktails of genetically different bacteriophages. The current methods for typing phages need significant quantities of purified DNA, may require a priori genetic information and are cost and time consuming. We have evaluated the randomly amplified polymorphic DNA (RAPD)-PCR technique to produce unique and reproducible band patterns from 26 different bacteriophages infecting Staphylococcus epidermidis, Staphylococcus aureus, Lactococcus lactis, Escherichia coli, Streptococcus thermophilus, Bacillus subtilis and Lactobacillus casei bacterial strains. Initially, purified DNA and phage suspensions of seven selected phages were used as a template. The conditions that were found to be optimal 8 μM of 10-mer primers, 3 μM magnesium oxalacetate and 5% dimethyl sulfoxide. The RAPD genomic fingerprints using a phage titer suspension higher than 10(9) PFU mL(-1) were highly reproducible. Clustering by the Pearson correlation coefficient and the unweighted pair group method with arithmetic averages clustering algorithm correlated largely with genetically different phages infecting the same bacterial species, although closely related phages with a similar DNA restriction pattern were indistinguishable. The results support the use of RAPD-PCR for quick typing of phage isolates and preliminary assessment of their genetic diversity bypassing tedious DNA purification protocols and previous knowledge of their sequence.

  9. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia.

    Science.gov (United States)

    Low, V L; Lim, P E; Chen, C D; Lim, Y A L; Tan, T K; Norma-Rashid, Y; Lee, H L; Sofian-Azirun, M

    2014-06-01

    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus.

  10. Fitness-related patterns of genetic variation in rhesus macaques.

    Science.gov (United States)

    Blomquist, Gregory E

    2009-03-01

    The patterning of quantitative genetic descriptions of genetic and residual variation for 15 skeletal and six life history traits was explored in a semi-free-ranging group of rhesus macaques (Macaca mulatta Zimmerman 1780). I tested theoretical predictions that explain the magnitude of genetic and residual variation as a result of 1. strength of a trait's association with evolutionary fitness, or 2. developmental and physiological relationships among traits. I found skeletal traits had higher heritabilities and lower coefficients of residual variation than more developmentally and physiologically dependent life history traits. Total lifetime fertility had a modest heritability (0.336) in this population, and traits with stronger correlations to fitness had larger amounts of residual variance. Censoring records of poorly-performing individuals on lifetime fertility and lifespan substantially reduced their heritabilities. These results support models for the fitness-related patterning of genetic variation based on developmental and physiological relationships among traits rather than the action of selection eroding variation.

  11. The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China

    Directory of Open Access Journals (Sweden)

    Yupeng eGeng

    2016-02-01

    Full Text Available Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial versus aquatic habitats. This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China when compared to the native range (Argentina, but that phenotypic plasticity may allow the species’ full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas.

  12. The Relative Importance of Genetic Diversity and Phenotypic Plasticity in Determining Invasion Success of a Clonal Weed in the USA and China.

    Science.gov (United States)

    Geng, Yupeng; van Klinken, Rieks D; Sosa, Alejandro; Li, Bo; Chen, Jiakuan; Xu, Cheng-Yuan

    2016-01-01

    Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial vs. aquatic habitats). This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China) when compared to the native range (Argentina), but that phenotypic plasticity may allow the species' full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas.

  13. Inter simple sequence repeat fingerprints for assess genetic diversity of tunisian garlic populations

    OpenAIRE

    Jabbes, Naouel; Geoffriau, Emmanuel; Le Clerc, Valérie; Dridi, Boutheina; Hannechi, Chérif

    2011-01-01

    Garlic (Allium sativum L.) that is cultivated in Tunisia is heterogeneous and unclassified with no registered local cultivars. At present, the level of genetic diversity in Tunisian garlic is almost unknown. Inter Simple Sequence Repeats (ISSR) genetic markers were therefore used to assess the genetic diversity and its distribution in 31 Tunisian garlic accessions with 4 French classified clones used as control. It was the first time that ISSR markers were used to detect diversity in garlic. ...

  14. Genetic diversity and population structure of black Dahe pig based on DNA sequences analyses of mitochondrial and nuclear genes.

    Science.gov (United States)

    Tang, Lizhou; Yu, Long; Wang, Junjie; Liu, Chao; Shi, Xiaodong; Ding, Wei; Zhu, Lei; Guo, Songchang

    2016-01-01

    To investigate the genetic diversity and population structure of black Dahe pigs, we collected 175 samples from 5 local populations and sequenced them using a combination of two selected molecular markers for mitochondrial cytochrome b and Major Histocompatibility Complex (MHC) DRB. Overall, the results of AMOVA and phylogenetic tree and gene flow analyses detected high levels of gene flow among the five populations, particularly individual pigs from Dahe town (Pop1) or Yingshang town (Pop2) to other populations (Pop3, Pop4, and Pop5). The genetic diversity analyses showed that the diversity indices of the five populations did not vary significantly, but they were much lower than those of other Chinese pig species. These results suggest that distinct gene flow, unstable population pattern, and lower genetic diversity have been influenced mainly by human introductions for economic ends. These findings provide genetic information that could be used for the preservation and further genetic improvement of the black Dahe pig, as well as an important reference for the evaluation, conservation, and utilization of the genetic resources of this breed.

  15. Genetic diversity and differentiation of Pinus sylvestris L. from the IUFRO 1982 provenance trial revealed by AFLP analysis

    Directory of Open Access Journals (Sweden)

    Androsiuk Piotr

    2015-01-01

    Full Text Available DNA markers have become effective tools in genetic diversity studies of forest trees. However, molecular marker analyses are associated with laborious and costly effort. One of the possibilities to overcome these constraints is to analyze bulked samples per population, rather than individual plants. We have used bulked DNA-based AFLP analysis to investigate genetic variations in Pinus sylvestris L. (Scots pine from the IUFRO 1982 provenance trial in Kórnik (western Poland. Four AFLP primer combinations yielded a total of 309 bands, of which 208 (67.31% were polymorphic. Thirty-six (11.65% unique alleles were deployed randomly among the populations. Estimated genetic diversity and differentiation was high, as expressed by He = 0.238 and I = 0.356, and by genetic distance values which ranged from 0.154 to 0.363. A geographic pattern of interpopulation differentiation was observed, pointing to the individual character of populations from northeastern Europe. In the light of available data, we discuss the influence of historical migration routes, gene flow and human activity on observed genetic diversity and differentiation of Scots pine in Europe. Our results indicate that the AFLP method applied to DNA templates extracted from bulked leaf samples provides an efficient approach to elucidate genetic diversity and relationships among Scots pine populations.

  16. Italian Common Bean Landraces: History, Genetic Diversity and Seed Quality

    Directory of Open Access Journals (Sweden)

    Angela R. Piergiovanni

    2010-05-01

    Full Text Available The long tradition of common bean cultivation in Italy has allowed the evolution of many landraces adapted to restricted areas. Nowadays, in response to market demands, old landraces are gradually being replaced by improved cultivars. However, landraces still survive in marginal areas of several Italian regions. Most of them appear severely endangered with risk of extinction due to the advanced age of the farmers and the socio-cultural context where they are cultivated. The present contribution is an overview of the state of the art about the knowledge of Italian common bean germplasm, describing the most important and recent progresses made in its characterization, including genetic diversity and nutritional aspects.

  17. Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden.

    Science.gov (United States)

    Ampomah, Osei Yaw; Huss-Danell, Kerstin

    2016-05-01

    Despite the recognition that Rhizobium leguminosarum sv. viciae is the most common symbiont of Vicia species worldwide, there is no available information on rhizobia nodulating native Vicia species in Sweden. We have therefore studied the genetic diversity and phylogeny of root nodule bacteria isolated from V. cracca, V. hirsuta, V. sepium, V. tetrasperma and V. sylvatica growing in different locations in Sweden as well as an isolate each from V. cracca in Tromsø, Norway, and V. multicaulis in Siberia, Russia. Out of 25 isolates sampled from the six Vicia species in 12 different locations, there were 14 different genotypes based on the atpD, recA and nodA gene phylogenies. All isolates were classified into Rhizobium leguminosarum sv. viciae group based on the concatenated atpD and recA phylogeny and the nodA phylogeny.

  18. Genetic diversity assessment of summer squash landraces using molecular markers.

    Science.gov (United States)

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  19. Genetic diversity of Dekkera bruxellensis yeasts isolated from Australian wineries.

    Science.gov (United States)

    Curtin, Chris D; Bellon, Jennifer R; Henschke, Paul A; Godden, Peter W; de Barros Lopes, Miguel A

    2007-05-01

    Yeasts of the genus Dekkera and its anamorph Brettanomyces represent a significant spoilage issue for the global wine industry. Despite this, there is limited knowledge of genetic diversity and strain distribution within wine and winery-related environments. In this study, amplified fragment length polymorphism (AFLP) analysis was conducted on 244 Dekkera bruxellensis isolates from red wine made in 31 winemaking regions of Australia. The results indicated there were eight genotypes among the isolates, and three of these were commonly found across multiple winemaking regions. Analysis of 26S rRNA gene sequences provided further evidence of three common, conserved groups, whereas a phylogeny based upon the AFLP data demonstrated that the most common D. bruxellensis genotype (I) in Australian red wine was highly divergent from the D. bruxellensis type strain (CBS 74).

  20. Insights into Penicillium roqueforti Morphological and Genetic Diversity.

    Directory of Open Access Journals (Sweden)

    Guillaume Gillot

    Full Text Available Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton. A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR, (ii whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection.

  1. Genetic diversity of Echinococcus granulosus in center of Iran.

    Science.gov (United States)

    Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh

    2014-08-01

    Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.

  2. Epidemiology and genetic diversity of Taenia asiatica: a systematic review.

    Science.gov (United States)

    Ale, Anita; Victor, Bjorn; Praet, Nicolas; Gabriël, Sarah; Speybroeck, Niko; Dorny, Pierre; Devleesschauwer, Brecht

    2014-01-22

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species.

  3. High local genetic diversity of canine parvovirus from Ecuador.

    Science.gov (United States)

    Aldaz, Jaime; García-Díaz, Juan; Calleros, Lucía; Sosa, Katia; Iraola, Gregorio; Marandino, Ana; Hernández, Martín; Panzera, Yanina; Pérez, Ruben

    2013-09-27

    Canine parvovirus (CPV) comprises three antigenic variants (2a, 2b, and 2c) that are distributed globally with different frequencies and levels of genetic variability. CPVs from central Ecuador were herein analyzed to characterize the strains and to provide new insights into local viral diversity, evolution, and pathogenicity. Variant prevalence was analyzed by PCR and partial sequencing for 53 CPV-positive samples collected during 2011 and 2012. The full-length VP2 gene was sequenced in 24 selected strains and a maximum-likelihood phylogenetic tree was constructed using both Ecuadorian and worldwide strains. Ecuadorian CPVs have a remarkable genetic diversity that includes the circulation of all three variants and the existence of different evolutionary groups or lineages. CPV-2c was the most prevalent variant (54.7%), confirming the spread of this variant in America. Ecuadorian CPV-2c strains clustered in two lineages, which represent the first evidence of polyphyletic CPV-2c circulating in South America. CPV-2a strains constituted 41.5% of the samples and clustered in a single lineage. The two detected CPV-2b strains (3.8%) were clearly polyphyletic and appeared related to Ecuadorian CPV-2a or foreign CPV-2b strains. Besides the substitution at residue 426 that is used to identify the variants, two amino acid changes occurred in Ecuadorian strains: Val139Iso and Thr440Ser. Ser(440) occurred in a biologically relevant domain of VP2 and is here described for the first time in CPV. The associations of Ecuadorian CPV-2c and CPV-2a with clinical symptoms indicate that dull mentation, hemorrhagic gastroenteritis and hypothermia occurred more frequently in infection with CPV-2c than with CPV-2a.

  4. [Genetic Diversity of Vitis vinifera L. in Azerbaijan].

    Science.gov (United States)

    Salayeva, S J; Ojaghi, J M; Pashayeva, A N; Izzatullayeva, V I; Akhundova, E M; Akperov, Z I

    2016-04-01

    To examine the genetic diversity of Vitis vinifera L., growing in the Republic of Azerbaijan in the region near the Caspian Sea, nuclear genomes of 31 cultivated and 34 wild grapevine accessions were studied at population and individual levels using five ISSR primers. In total, 51 fragments were amplified, of which 45 were found to be polymorphic. A high level of polymorphism was revealed (the mean PPF and PIC values constituted 87.69% and 0.94, respectively). High values of the EMR, MI, and RP indices showed the effectiveness of the application of ISSR primers and the possibility of their use in further investigations in this direction. Cluster analysis based on Nei's genetic distance values showed that all genotypes could be grouped into seven main clusters. Furthermore, no differences between the wild and cultivated grape wine accessions were revealed. For instance, there was no distinct distribution of the accessions according to their geographical localization. On the basis of the PIC values, the group of cultivars from Absheron Peninsula--was distinguished by the highest polymorphism level (PIC = 0.36). Natural populations from the Guba and Shabran regions were characterized by a relatively low polymorphism level (PIC = 0.31 and PIC = 0.28, respectively); and a wild population from Nabran demonstrated the lowest polymorphism level (PIC = 0.25). The data obtained confirmed paleontological and historical data of different periods, provide the supposition that Azerbaijan is the center of diversity of V. vinifera L. In addition, our data indicate that Azerbaijan grape landraces originated from local wild forms.

  5. GENETIC DIVERSITY IN ACCESSIONS OF Stylosanthes spp. USING MORPHOAGRONOMIC DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    RONALDO SIMÃO DE OLIVEIRA

    2016-01-01

    Full Text Available The great diversity of plants in the Brazilian Semiarid environment represents a vital natural resource for the human populations of these areas. Many of these plants have been subject to extractivism and among these, the species of the genus Stylosanthes , which have occurrence in this region, show great potential, however, studies on this topic are limited, and little is known about the existing variability among these plants. Therefore, further study is necessary, to facilitate the development of cultivars. This might reduce the scarcity of fodder supply in this region, but to commence a plant breeding programme, it is essential to identify genetic variability. Therefore, this study evaluated 25 accessions of Stylosanthes spp., to identify the most suitable candidates to be parents in a plant breeding programme for the semiarid region of the state of Bahia. Two experiments were carried out in different sites in an experimental design of randomized blocks with four replicates, with a spacing of 3.0 × 8.0 m. A large amount of