WorldWideScience

Sample records for genetic diversity mining

  1. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4 for classification, population genetics and epidemiology

    Directory of Open Access Journals (Sweden)

    Sajduda Anna

    2006-03-01

    Full Text Available Abstract Background The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1 Unique Events Polymorphism (UEP (2 Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database. Results The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes and the infra-species classification and evolutionary history of the species. Indeed, an independent Naïve-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown

  2. Genetic diversity in Entamoeba histolytica

    Indian Academy of Sciences (India)

    C Graham Clark; Mehreen Zaki; Ibne Karim Md Ali

    2002-11-01

    Genetic diversity within Entamoeba histolytica led to the re-description of the species 10 years ago. However, more recent investigation has revealed significant diversity within the re-defined species. Both protein-coding and non-coding sequences show variability, but the common feature in all cases is the presence of short tandem repeats of varying length and sequence. The ability to identify strains of E. histolytica may lead to insights into the population structure and epidemiology of the organism.

  3. Human Capital and Genetic Diversity

    OpenAIRE

    Sequeira, Tiago; Santos, Marcelo,; Ferreira-Lopes, Alexandra

    2013-01-01

    The determinants of human capital have been studied sparsely in the literature. Although there is a huge literature on the determinants of schooling linked with the quality of schooling, there are not many contributions that explore the deep determinants of investment in, quantity and quality of human capital. This paper investigates the relationship between human capital and the ancestral genetic diversity of populations. It highlights a strong hump-shaped relationship between genetic divers...

  4. Genetic diversity in Trichomonas vaginalis.

    Science.gov (United States)

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations.

  5. Genetic diversity in Trichomonas vaginalis.

    Science.gov (United States)

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations. PMID:23702460

  6. Genetic selection and conservation of genetic diversity*.

    Science.gov (United States)

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

  7. Allele mining and enhanced genetic recombination for rice breeding.

    Science.gov (United States)

    Leung, Hei; Raghavan, Chitra; Zhou, Bo; Oliva, Ricardo; Choi, Il Ryong; Lacorte, Vanica; Jubay, Mona Liza; Cruz, Casiana Vera; Gregorio, Glenn; Singh, Rakesh Kumar; Ulat, Victor Jun; Borja, Frances Nikki; Mauleon, Ramil; Alexandrov, Nickolai N; McNally, Kenneth L; Sackville Hamilton, Ruaraidh

    2015-12-01

    Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources. PMID:26606925

  8. Diversity Maintenance in Genetic Programming

    Science.gov (United States)

    Motoki, Tatsuya; Numaguchi, Yasushi

    This paper is motivated by an experimental result that better performing genetic programming runs tend to have higher phenotypic diversity. To maintain phenotypic diversity, we apply implicit fitness sharing and its variant, called unfitness multiplying. To apply these methods to problems in which individuals have infinite kinds of possible behaviours, we classify posible behaviours into 50 achievement levels, and assign a reward or a penalty to each level. In implicit fitness sharing a reward is shared out among individuals with the same achievement level, and in unfitness multiplying a penalty is multiplied by the number of individuals with the same level and is distributed to related individuals. Five benchmark problems (11-multiplexer, sextic polynomial, four-sine, intertwined spiral, and artificial ant problems) are used to illustrate the effect of the methods. The results show that our methods clearly promote diversity and lead population to a smooth frequency distribution of achievement levels, and that our methods usually perform better than the original implicit fitness sharing on success rate and the best (raw) fitness. We also observe that the unfitness multiplying makes a quite different ranking over individuals than the one by the implicit fitness sharing.

  9. Performance Analysis of Genetic Algorithm for Mining Association Rules

    OpenAIRE

    Indira, K.; Kanmani, S.

    2012-01-01

    Association rule (AR) mining is a data mining task that attempts to discover interesting patterns or relationships between data in large databases. Genetic algorithm (GA) based on evolution principles has found its strong base in mining ARs. This paper analyzes the performance of GA in Mining ARs effectively based on the variations and modification in GA parameters. The recent works in the past seven years for mining association rules using genetic algorithm is considered for the analysis. Ge...

  10. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  11. Bacterial diversity in soils around a lead and zinc mine

    Institute of Scientific and Technical Information of China (English)

    HU Qing; QI Hong-yan; ZENG Jing-hai; ZHANG Hong-xun

    2007-01-01

    Five samples of soil collected from a lead and zinc mine were used to assess the effect of combined contamination of heavy metals on soil bacterial communities using a polyphasic approach including characterization of isolates by culture method, community level catabolic profiling in BIOLOG GN microplates, and genetic community fingerprinting by denaturing gradient gel electrophoresis of 16S rDNA fragments amplified by PCR from community DNA (PCR-DGGE). The structure of the bacterial community was affected to a certain extent by heavy metals. The PCR-DGGE analysis of 16S rRNA genes showed that there were significant differences in the structure of the microbial community among the soil samples, which were related to the contamination levels. The number of bacteria and the number of denaturing gradient gel electrophoresis (DGGE) bands in the soils increased with increasing distance from the lead and zinc mine tailing, whereas the concentration of lead (Pb) and cadmium (Cd) was decreased. Heavily polluted soils could be characterized by a community that differs from those of lightly polluted soils in richness and structure of dominating bacterial populations. The clustering analysis of the DGGE profiles showed that the bacteria in all the five samples of soil belonged to three clusters. The data from the BIOLOG analysis also showed the same result. This study showed that heavy metal contamination decreased both the biomass and diversity of the bacterial community in soil.

  12. How does ecological disturbance influence genetic diversity?

    Science.gov (United States)

    Banks, Sam C; Cary, Geoffrey J; Smith, Annabel L; Davies, Ian D; Driscoll, Don A; Gill, A Malcolm; Lindenmayer, David B; Peakall, Rod

    2013-11-01

    Environmental disturbance underpins the dynamics and diversity of many of the ecosystems of the world, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically driven, selectively neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical because disturbance regimes are changing rapidly in a human-modified world. PMID:24054910

  13. Evolution and genetic diversity of Theileria.

    Science.gov (United States)

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development.

  14. Genetic diversity of 11 European pig breeds

    NARCIS (Netherlands)

    Lavall, G.; Iannuccelli, N.; Legault, C.; Milan, D.; Groenen, M.A.M.; Andersson, L.; Fredholm, M.; Geldermann, H.; Foulley, J.L.; Chevalet, C.; Ollivier, L.

    2000-01-01

    A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosi

  15. Implications of recurrent disturbance for genetic diversity.

    Science.gov (United States)

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes. PMID:26839689

  16. Biodiversity assessment in forests - from genetic diversity to landscape diversity

    Directory of Open Access Journals (Sweden)

    Granke O

    2009-01-01

    Full Text Available Assessing biodiversity in forests requires a reliable and sustainable monitoring concept, which must include all levels of diversity, the genetic, the species and the landscape level. Diversity studies should not be reduced to quantitative analysis, but qualitative interpretations are an important part for the understanding of the results. Also, the linkage of terrestrial data and remote sensing data as well the implementation of abiotic and biotic data collected on existing monitoring systems are useful sources to analyse cause-effect relationships and interactions between the different aspects of diversity.

  17. Nephronophthisis: A Genetically Diverse Ciliopathy

    Directory of Open Access Journals (Sweden)

    Roslyn J. Simms

    2011-01-01

    Full Text Available Nephronophthisis (NPHP is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10–15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.

  18. Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques.

    Science.gov (United States)

    Onda, Yoshihiko; Mochida, Keiichi

    2016-08-01

    Food security has emerged as an urgent concern because of the rising world population. To meet the food demands of the near future, it is required to improve the productivity of various crops, not just of staple food crops. The genetic diversity among plant populations in a given species allows the plants to adapt to various environmental conditions. Such diversity could therefore yield valuable traits that could overcome the food-security challenges. To explore genetic diversity comprehensively and to rapidly identify useful genes and/or allele, advanced high-throughput sequencing techniques, also called next-generation sequencing (NGS) technologies, have been developed. These provide practical solutions to the challenges in crop genomics. Here, we review various sources of genetic diversity in plants, newly developed genetic diversity-mining tools synergized with NGS techniques, and related genetic approaches such as quantitative trait locus analysis and genome-wide association study. PMID:27499684

  19. Genetic Diversity of Neisseria gonorrhoeae Housekeeping Genes

    OpenAIRE

    Viscidi, Raphael P.; Demma, James C.

    2003-01-01

    Molecular typing of Neisseria gonorrhoeae strains is an important tool for epidemiological studies of gonococcal infection and transmission. The recently developed multilocus sequence typing (MLST) method is based on the genetic variation among housekeeping genes. As a preliminary investigation for the development of such a method, we characterized the genetic diversity at 18 gonococcal housekeeping gene loci. Approximately 17,500 nucleotides, spanning 18 loci, were sequenced from 24 isolates...

  20. Genetic erosion of diversity in cereals

    OpenAIRE

    Petrović Sofija; Dimitrijević Miodrag

    2012-01-01

    Cereals play an important role in human nutrition. Consequently, one of the main goals in breeding is to obtain varieties with high genetic potential for yield. Modern agricultural production includes the expansion of intensive varieties over large areas that lead to narrow selection criteria in breeding programs. The consequence is a drastic reduction in the number of species and genotypes (genetic erosion), or harming biological diversity of local populat...

  1. Genetic diversity of Rhodopirellula strains.

    Science.gov (United States)

    Frank, Carsten S; Klockow, Christine; Richter, Michael; Glöckner, Frank Oliver; Harder, Jens

    2013-10-01

    Rhodopirellula baltica SH1(T) is a marine planctomycete with 7,325 genes in its genome. Ten strains of the genus Rhodopirellula were studied in whole genome microarray experiments to assess the extent of their genetic relatedness to R. baltica SH1(T). DNA of strains which were previously affiliated with the species R. baltica (OTU A) hybridized with 3,645-5,728 genes of the type strain on the microarray. Strains SH398 and 6C (OTU B), representing a closely related species with an average nucleotide identity of 88 %, showed less hybridization signals: 1,816 and 3,302 genes gave a hybridization signal, respectively. Comparative genomics of eight permanent draft genomes revealed the presence of over 4,000 proteins common in R. baltica SH1(T) and strains of OTU A or B. The genus Rhodopirellula is characterized by large genomes, with over 7,000 genes per genome and a core genome of around 3000 genes. Individual Rhodopirellula strains have a large portion of strain-specific genes. PMID:23975513

  2. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  3. Genetic Programming Approach for Predicting Surface Subsidence Induced by Mining

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors.Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is proposed to predict mining induced surface subsidence in this article.First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence.The model offers a novel method to predict surface subsidence in mining.

  4. Genetic diversity of eleven European pig breeds

    Directory of Open Access Journals (Sweden)

    Foulley Jean-Louis

    2000-03-01

    Full Text Available Abstract A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27, and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity.

  5. Crop genetic diversity benefits farmland biodiversity in cultivated fields

    OpenAIRE

    Chateil, Carole; GOLDRINGER, ISABELLE; Tarallo, Léa; Kerbiriou, Christian; Le Viol, Isabelle; PONGE, Jean-François; Salmon, Sandrine; Gachet, Sophie; Porcher, Emmanuelle

    2013-01-01

    International audience This study tested whether increasing crop genetic diversity benefited farmland biodiversity in bread wheat (Triticum aestivum) fields, using an experimental approach in which arthropod and wild plant diversity were compared in a genetically homogeneous wheat variety vs. a variety mixture. The diversity of wild plant species was not affected by crop genetic diversity. However, we showed for the first time a positive impact of crop genetic diversity on below (collembol...

  6. A Survey of Association Rule Mining Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Anubha Sharma

    2012-08-01

    Full Text Available Data mining is the analysis step of the "Knowledge Discovery in Databases" process, or KDD. It is the process that results in the discovery of new patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract knowledge from an existing data set and transform it into a human-understandable structure. In data mining, association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. Association rules are usually required to satisfy a user-specified minimum support and a user-specified minimum confidence at the same time. Genetic algorithm (GA is a search heuristic that mimics the process of natural evolution. This heuristic is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to the larger class of evolutionary algorithms, which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. In previous, many researchers have proposed Genetic Algorithms for mining interesting association rules from quantitative data. In this paper we represent a survey of Association Rule Mining Using Genetic Algorithm. The techniques are categorized based upon different approaches. This paper provides the major advancement in the approaches for association rule mining using genetic algorithms.

  7. Managing genetic diversity and society needs

    Directory of Open Access Journals (Sweden)

    Arthur da Silva Mariante

    2008-07-01

    Full Text Available Most livestock are not indigenous to Brazil. Several animal species were considered domesticated in the pre-colonial period, since the indigenous people manage them as would be typical of European livestock production. For over 500 years there have been periodic introductions resulting in the wide range of genetic diversity that for centuries supported domestic animal production in the country. Even though these naturalized breeds have acquired adaptive traits after centuries of natural selection, they have been gradually replaced by exotic breeds, to such an extent, that today they are in danger of extinction To avoid further loss of this important genetic material, in 1983 Embrapa Genetic Resources and Biotechnology decided to include conservation of animal genetic resources among its priorities. In this paper we describe the effort to genetically characterize these populations, as a tool to ensure their genetic variability. To effectively save the threatened local breeds of livestock it is important to find a niche market for each one, reinserting them in production systems. They have to be utilized in order to be conserved. And there is no doubt that due to their adaptive traits, the Brazilian local breeds of livestock can play an important role in animal production, to meet society needs.

  8. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H.; Kidd, Jeffrey M.;

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...... species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central....../eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost...

  9. A genetic programming based business process mining approach

    OpenAIRE

    Turner, Christopher James

    2009-01-01

    As business processes become ever more complex there is a need for companies to understand the processes they already have in place. To undertake this manually would be time consuming. The practice of process mining attempts to automatically construct the correct representation of a process based on a set of process execution logs. The aim of this research is to develop a genetic programming based approach for business process mining. The focus of this research is on automated/semi automat...

  10. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  11. Genetic diversity of koala retroviral envelopes.

    Science.gov (United States)

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  12. Genetic diversity in aspen and its relation to arthropod abundance.

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  13. Multiple paternity does not depend on male genetic diversity

    OpenAIRE

    Thonhauser, Kerstin E.; Raveh, Shirley; Penn, Dustin J.

    2014-01-01

    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetic...

  14. Restoration of coral populations in light of genetic diversity estimates

    OpenAIRE

    Shearer, T. L.; Porto, I; Zubillaga, A. L.

    2009-01-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using ...

  15. Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World's Agro-ecological Zones.

    Science.gov (United States)

    Khazaei, Hamid; Caron, Carolyn T; Fedoruk, Michael; Diapari, Marwan; Vandenberg, Albert; Coyne, Clarice J; McGee, Rebecca; Bett, Kirstin E

    2016-01-01

    Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countries to estimate genetic diversity and genetic structure using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span the lentil genome. Using principal coordinate analysis, population structure analysis and UPGMA cluster analysis, the accessions were categorized into three major groups that prominently reflected geographical origin (world's agro-ecological zones). The three clusters complemented the origins, pedigrees, and breeding histories of the germplasm. The three groups were (a) South Asia (sub-tropical savannah), (b) Mediterranean, and (c) northern temperate. Based on the results from this study, it is also clear that breeding programs still have considerable genetic diversity to mine within the cultivated lentil, as surveyed South Asian and Canadian germplasm revealed narrow genetic diversity. PMID:27507980

  16. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton.

    Science.gov (United States)

    Egamberdiev, Sharof S; Saha, Sukumar; Salakhutdinov, Ilkhom; Jenkins, Johnie N; Deng, Dewayne; Y Abdurakhmonov, Ibrokhim

    2016-06-01

    The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton.

  17. Conservation of Genetic Diversity in Culture Plants

    Directory of Open Access Journals (Sweden)

    MAXIM A.

    2010-08-01

    Full Text Available The most important international document relating to the conservation of biodiversity is one adopted by theUN in Rio de Janeiro (1992 that "Convention on Biodiversity". Based on this agreement, the EU has taken a series ofmeasures to reduce genetic erosion in agriculture, which grew with the expansion of industrialized agriculture.Throughout its existence, mankind has used some 10,000 growing plant species. According to FAO statistics, today,90% of food production is ensured by some 120 growing plant species. In addition to drastic reduction in specificdiversity, the advent of industrialized agriculture has generated a process of strong genetic erosion. Old varieties andlocal varieties of crops have mostly been affected, in favour of "modern" varieties. Landraces are characterized by highheterogenity. They have the advantage of being much better adapted to biotic and abiotic stress conditions (diseases,pests, drought, low in nutrients, etc. and have excellent taste qualities, which can justify a higher price recovery thancommercial varieties. Thanks to these features, these crops need small inputs, which correspond to the concept ofsustainable development. Landraces are an invaluable genetic potential for obtaining new varieties of plants and are bestsuited for crop cultivation in ecological systems, becoming more common. Also, for long term food security in thecontext of global warming, rich genetic diversity will be require. “In situ” and “ex situ” conservation are the two majorstrategies used in the conservation of plant genetic resources. There is a fundamental difference between these twostrategies: “ex situ” conservation involves sampling, transfer and storage of a particular species population away fromthe original location, while “in situ” conservation (in their natural habitat implies that the varieties of interest,management and monitoring their place of origin takes place in the community to which they belong. These

  18. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    E. SANTOS; M. MATOS; P. SILVA; A. M. FIGUEIRAS; C. BENITO; O. PINTO-CARNIDE

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale cerealeusing RAPDs, ISSRs and sequence analysis of six exons ofScMATE1gene.Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDsand 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primersgenerated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further,69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of theScMATE1gene also demonstrated a high genetic variability that subsists inSecalegenus. One difference observed in exon 1 sequencesfromS. vaviloviiseems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs,ISSRs and exons ofScMATE1gene were similar.S. ancestrale ,S. kuprijanoviiandS. cerealewere grouped in the same clusterandS. segetalewas in another cluster.S. vaviloviishowed evidences of not being clearly an isolate species and having greatintraspecific difference

  19. Molecular diversity and genetic relationships in Secale.

    Science.gov (United States)

    Santos, E; Matos, M; Silva, P; Figueiras, A M; Benito, C; Pinto-Carnide, O

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships among Secale spp. and among cultivars of Secale cereale using RAPDs, ISSRs and sequence analysis of six exons of ScMATE1 gene. Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDs and 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primers generated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further, 69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of the ScMATE1 gene also demonstrated a high genetic variability that subsists in Secale genus. One difference observed in exon 1 sequences from S. vavilovii seems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs, ISSRs and exons of ScMATE1 gene were similar. S. ancestrale, S. kuprijanovii and S. cereale were grouped in the same cluster and S. segetale was in another cluster. S. vavilovii showed evidences of not being clearly an isolate species and having great intraspecific differences. PMID:27350669

  20. The silent threat of low genetic diversity

    Science.gov (United States)

    Hunter, Margaret E.

    2013-01-01

    Across the Caribbean, protected coastal waters have served as primary feeding and breeding grounds for the endangered Antillean manatee. Unfortunately, these same coastal waters are also a popular “habitat” for humans. In the past, the overlap between human and manatee habitat allowed for manatee hunting and threatened the survival of these gentle marine mammals. Today, however, threats are much more inadvertent and are often related to coastal development, degraded habitats and boat strikes. In the state of Florida, decades of research on the species’ biological needs have helped conservationists address threats to its survival. For example, low wake zones and boater education have protected manatees from boat strikes, and many of their critical winter refuges are now protected. The Florida population has grown steadily, thus increasing from approximately 1,200 in 1991 to more than 5,000 in 2010. It is conceivable that in Florida manatees may one day be reclassified as “threatened” rather than “endangered.” Yet, in other parts of the Caribbean, threats still loom. This includes small, isolated manatee populations found on islands that can be more susceptible to extinction and lack of genetic diversity. To ensure the species’ long-term viability, scientists have turned their sights to the overall population dynamics of manatees throughout the Caribbean. Molecular genetics has provided new insights into long-term threats the species faces. Fortunately, the emerging field of conservation genetics provides managers with tools and strategies for protecting the species’ long-term viability.

  1. Impact of mining on tree diversity of the silica mining forest area at Shankargarh, Allahabad, India

    Institute of Scientific and Technical Information of China (English)

    Kumud Dubey; K.P.Dubey

    2011-01-01

    The Shankargarh forest area is rich in silica,a major mineral used in glass industry.Extensive open cast silica mining has severely damaged the forest as well as productivity of the region.An understanding of the impact of mining on the environment partienlarly on vegetation characteristics is a prerequisite for further management of these mining sites,especially in the selection of species for reclamation works.The present paper deals with the study of the tree composition of silica mining area of Shgankargarh forest,at both disturbed and undisturbed sites.Tree vegetation study was conducted at undisturbed and disturbed sites of Shankargarh forests using standard quadrate method.Density,abundance and frequency values of tree species were calculated.Species were categorized into different classes according to their frequency.The importance value index (IVI) for each species was determined.Species diversity,Concentration of dominance,Species richness and Evenness index were calculated for the undisturbed and disturbed sites.The distribution pattern of the species was studied by using Whifford's index.Similarity index between tree composition of disturbed and undisturbed sites was determined by using Jaccard's and Sorenson's index of similarity.Tree species showed a drastic reduction in their numbers in disturbed sites compared to that of the undisturbed sites.The phytosociological indices also illustrated the impact of mining on the tree composition of the area.The present study led to the conclusion that resultant tree vegetation analysis can be used as important tool for predicting the suitability of particular species for revegetating the mined areas.

  2. Genetic Diversity Increases Insect Herbivory on Oak Saplings

    OpenAIRE

    Castagneyrol, Bastien; Lagache, Lelia; Giffard, Brice; Kremer, Antoine; Jactel, Herve

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four ...

  3. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    OpenAIRE

    Ana Daniela Lopes; Carlos Alberto Scapim; Maria de Fátima Pires da Silva Machado; Claudete Aparecida Mangolin; Tereza Aparecida Silva; Liriana Belizário Cantagali; Flávia França Teixeira; Freddy Mora

    2015-01-01

    Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H) was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity o...

  4. Pyrosequencing and genetic diversity of microeukaryotes

    DEFF Research Database (Denmark)

    Harder, Christoffer Bugge

    Free-living, heterotrophic protozoa have an important ecological role in most terrestrial ecosystems by their grazing of bacteria as one of the first links in food chains and webs. Furthermore, some of them serve as reservoirs for disease-causing bacteria and /or as occasional opportunistic...... pathogens themselves. Protozoa is a morphological group which occurs in many different eukaryotic phyla, and many apparently morphologically similar types are very different from each others genetically. This complicates the development of good primers for analysis of their diversity with modern DNA based...... methods. Compared to other microorganisms such as fungi, algae and bacteria, much less is known about protozoa. It has been an essential element of this thesis to to advance our knowledge of protozoa by developing new primers for DNA-based studies of protozoa impact on ecosystems or as indicators...

  5. [Research Progress on Genetic Diversity in Animal Parasitic Nematodes].

    Science.gov (United States)

    YIN, Fang-yuan; LI, Fa-cai; ZHAO, Jun-long; HU, Min

    2015-10-01

    The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes.

  6. [Research Progress on Genetic Diversity in Animal Parasitic Nematodes].

    Science.gov (United States)

    YIN, Fang-yuan; LI, Fa-cai; ZHAO, Jun-long; HU, Min

    2015-10-01

    The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes. PMID:26931047

  7. Genetic diversity in the Yangtze finless porpoise by RAPD analysis

    Institute of Scientific and Technical Information of China (English)

    He Shunping; Wang Ding; Wang Wei; Chen Daoquan; Zhao Qingzhong; Gong Weiming

    2005-01-01

    To estimate the genetic diversity in the Yangtze finless porpoise (Neophocaenaphocaenoides asiaeorientalis), the randomly amplified polymorphic DNA techniquewas applied to examine ten animals captured from the Yangtze River. Out of 20 arbitrary primers used in the experiment, seventeen produced clearly reproducible bged from 0.0986 to 0.5634. Compared with other cetacean populations, this genetic distance is quite low. Such a low genetic diversity suggests that this population may be suffering from reduced genetic variation, and be very fragile. More studiesare needed for understanding the basis for this apparent low genetic diversity and to help protect this endangered, unique population.

  8. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  9. Predicting mining activity with parallel genetic algorithms

    Science.gov (United States)

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  10. Web Based Genetic Algorithm Using Data Mining

    OpenAIRE

    Ashiqur Rahman; Asaduzzaman Noman; Md. Ashraful Islam; Al-Amin Gaji

    2016-01-01

    This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; fea...

  11. Genetic Diversity of RAPD Mark for Natural Davidia involucrata Populations

    Institute of Scientific and Technical Information of China (English)

    Congwen Song; Manzhu Bao

    2006-01-01

    The genetic diversity and genetic variation within and among populations of five natural Davidia involucrata populations were studied from 13 primers based on random amplified polymorphic DNA (RAPD) analysis.The results show that natural D.involucrata population has a rich genetic diversity,and the differences among populations are significant.Twenty-six percent of genetic variation exists among D.involucrata populations,which is similar to that of the endangered tree species Liriodendron chinense and Cathaya argyrophylla in China,but different from more widely distributed tree species.The analysis of the impacts of sampling method on genetic diversity parameters shows that the number of sampled individuals has little effect on the effective number of alleles and genetic diversity,but has a marked effect on the genetic differentiation among populations and gene flows.This study divides the provenances of D.involucrata into two parts,namely,a southeast and a northwest provenance.

  12. High Performance Data mining by Genetic Neural Network

    Directory of Open Access Journals (Sweden)

    Dadmehr Rahbari

    2013-10-01

    Full Text Available Data mining in computer science is the process of discovering interesting and useful patterns and relationships in large volumes of data. Most methods for mining problems is based on artificial intelligence algorithms. Neural network optimization based on three basic parameters topology, weights and the learning rate is a powerful method. We introduce optimal method for solving this problem. In this paper genetic algorithm with mutation and crossover operators change the network structure and optimized that. Dataset used for our work is stroke disease with twenty features that optimized number of that achieved by new hybrid algorithm. Result of this work is very well incomparison with other similar method. Low present of error show that our method is our new approach to efficient, high-performance data mining problems is introduced.

  13. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness...... upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed...

  14. Human mining activity across the ages determines the genetic structure of modern brown trout (Salmo trutta L.) populations.

    Science.gov (United States)

    Paris, Josephine R; King, R Andrew; Stevens, Jamie R

    2015-07-01

    Humans have exploited the earth's metal resources for thousands of years leaving behind a legacy of toxic metal contamination and poor water quality. The southwest of England provides a well-defined example, with a rich history of metal mining dating to the Bronze Age. Mine water washout continues to negatively impact water quality across the region where brown trout (Salmo trutta L.) populations exist in both metal-impacted and relatively clean rivers. We used microsatellites to assess the genetic impact of mining practices on trout populations in this region. Our analyses demonstrated that metal-impacted trout populations have low genetic diversity and have experienced severe population declines. Metal-river trout populations are genetically distinct from clean-river populations, and also from one another, despite being geographically proximate. Using approximate Bayesian computation (ABC), we dated the origins of these genetic patterns to periods of intensive mining activity. The historical split of contemporary metal-impacted populations from clean-river fish dated to the Medieval period. Moreover, we observed two distinct genetic populations of trout within a single catchment and dated their divergence to the Industrial Revolution. Our investigation thus provides an evaluation of contemporary population genetics in showing how human-altered landscapes can change the genetic makeup of a species. PMID:26136823

  15. Endemic insular and coastal Tunisian date palm genetic diversity.

    Science.gov (United States)

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm. PMID:26895027

  16. Endemic insular and coastal Tunisian date palm genetic diversity.

    Science.gov (United States)

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm.

  17. Beauveria bassiana: quercetinase production and genetic diversity

    Directory of Open Access Journals (Sweden)

    Eula Maria de M. B Costa

    2011-03-01

    Full Text Available Beauveria bassiana genetic diversity and ability to synthesize quercetin 2,3-dioxygenase (quercetinase were analyzed. B. bassiana isolates, obtained from Brazilian soil samples, produced quercetinase after induction using 0.5 g/L quercetin. B. bassiana ATCC 7159 (29.6 nmol/mL/min and isolate IP 11 (27.5 nmol/ml/min showed the best performances and IP 3a (9.5 nmol/mL/min presented the lowest level of quercetinase activity in the culture supernatant. A high level of polymorphism was detected by random amplified polymorphic DNA (RAPD analysis. The use of internal-transcribed-spacer ribosomal region restriction fragment length polymorphism (ITS-RFLP did not reveal characteristic markers to differentiate isolates. However, the ITS1-5.8S-ITS2 region sequence analysis provided more information on polymorphism among the isolates, allowing them to be clustered by relative similarity into three large groups. Correlation was tested according to the Person's correlation. Data of our studies showed, that lower associations among groups, level of quercetinase production, or geographical origin could be observed. This study presents the production of a novel biocatalyst by B. bassiana and suggests the possible industrial application of this fungal species in large-scale biotechnological manufacture of quercetinase.

  18. Multiple paternity does not depend on male genetic diversity.

    Science.gov (United States)

    Thonhauser, Kerstin E; Raveh, Shirley; Penn, Dustin J

    2014-07-01

    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We assessed the rates of multiple paternity when females could choose to mate with two males that were genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared MHC alleles). Multiple mating may depend upon a female's own condition, and, therefore, we also tested whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence that females were more likely to produce multiple-sired litters when they had the opportunity to mate with genetically dissimilar males compared with controls, regardless of whether females were inbred or outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when they have the opportunity to increase the genetic diversity of their offspring, as expected from the genetic diversity hypothesis.

  19. Web Based Genetic Algorithm Using Data Mining

    Directory of Open Access Journals (Sweden)

    Ashiqur Rahman

    2016-09-01

    Full Text Available This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; feature weighting is works better than just feature selection. Many leading educational institutions are working to establish an online teaching and learning presence. Several systems with different capabilities and approaches have been developed to deliver online education in an academic setting. In particular, Michigan State University (MSU has pioneered some of these systems to provide an infrastructure for online instruction. The research presented here was performed on a part of the latest online educational system developed at MSU, the Learning Online Network with Computer-Assisted Personalized Approach (LON-CAPA

  20. Extreme genetic diversity in asexual grass thrips populations.

    Science.gov (United States)

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations. PMID:26864612

  1. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Melissa D Conrad

    Full Text Available Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2 differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  2. Genetic diversity increases insect herbivory on oak saplings.

    Directory of Open Access Journals (Sweden)

    Bastien Castagneyrol

    Full Text Available A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect. Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  3. The structural diversity of artificial genetic polymers

    OpenAIRE

    Anosova, Irina; Kowal, Ewa A.; Dunn, Matthew R.; Chaput, John C.; Van Horn, Wade D.; Egli, Martin

    2015-01-01

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeg...

  4. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications. PMID:23911585

  5. Assessment of genetic diversity in Brazilian barley using SSR markers

    OpenAIRE

    Jéssica Rosset Ferreira; Jorge Fernando Pereira; Caroline Turchetto; Euclydes Minella; Luciano Consoli; Carla Andréa Delatorre

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag1...

  6. Inference of genetic diversity in popcorn S3 progenies.

    Science.gov (United States)

    Pena, G F; do Amaral, A T; Ribeiro, R M; Ramos, H C C; Boechat, M S B; Santos, J S; Mafra, G S; Kamphorst, S H; de Lima, V J; Vivas, M; de Souza Filho, G A

    2016-01-01

    Molecular markers are a useful tool for identification of complementary heterotic groups in breeding programs aimed at the production of superior hybrids, particularly for crops such as popcorn in which heterotic groups are not well-defined. The objective of the present study was to analyze the genetic diversity of 47 genotypes of tropical popcorn to identify possible heterotic groups for the development of superior hybrids. Four genotypes of high genetic value were studied: hybrid IAC 125, strain P2, and varieties UENF 14 and BRS Angela. In addition, 43 endogamous S3 progenies obtained from variety UENF 14 were used. Twenty-five polymorphic SSR-EST markers were analyzed. A genetic distance matrix was obtained and the following molecular diversity parameters were estimated: number of alleles, number of effective alleles, polymorphism information content (PIC), observed and expected heterozygosities, Shannon diversity index, and coefficient of inbreeding. We found a moderate PIC and high diversity index, indicating that the studied population presents both good discriminatory ability and high informativeness for the utilized markers. The dendrogram built based on the dissimilarity matrix indicated six distinct groups. Our findings demonstrate the genetic diversity among the evaluated genotypes and provide evidence for heterotic groups in popcorn. Furthermore, the functional genetic diversity indicates that there are informative genetic markers for popcorn. PMID:27173336

  7. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    Science.gov (United States)

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines were screened for genetic diversity using quantitative traits. Observations were recorded on 14 quantitative traits, out of which 9 diverse traits contributing to maximum variability were selected for genetic diversity analysis. The principle component analysis revealed that the panicle width, stem girth, and leaf breadth contributed maximum towards divergence. By using hierarchical cluster analysis, the 40 accessions were grouped under 6 clusters. Cluster I contained maximum number of accessions and cluster VI contained the minimum. The maximum intercluster distance was observed between cluster VI and cluster IV. Cluster III had the highest mean value for hundred-seed weight and yield. Hence the selection of parents must be based on the wider intercluster distance and superior mean performance for yield and yield components. Thus in the present investigation quantitative data were able to reveal the existence of a wide genetic diversity among the sorghum accessions used providing scope for further genetic improvement. PMID:27382499

  8. Status, Distribution, and Diversity of Birds in Mining Environment of Kachchh, Gujarat

    Directory of Open Access Journals (Sweden)

    Nikunj B. Gajera

    2013-01-01

    Full Text Available Opencast mining is one of the major reasons for the destruction of natural habitats for many wildlife including birds. The Kachchh region belongs to the arid part of India and is one of the rich areas of mineral resources in the country. In the recent time and after the 2001 earthquake, mining and other developmental activities are increased, and as a result, the natural habitats of birds are disturbed and fragmented. So, this study was conducted to assess the impact of mining and associated activities on the diversity and distribution of birds. Birds were studied by surveying 180 transects along 9 zones around three selected major mines, and each zone is made in every 2 km radius from the mine. Based on the record, it was found that the density and diversity of birds are highest in zone 5 and lowest in zone 1 and zone 2, respectively. The result indicates that the diversity and abundance of birds were less in zones which are located close to the mines in comparison to the zones far from the mines. In conclusion, mining and its associated activities have some impacts on the diversity and distribution of birds in Kachchh region in India.

  9. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers fo

  10. Maintenance of genetic diversity through plant-herbivore interactions

    OpenAIRE

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to ...

  11. Impacts of genetic bottlenecks on soybean genome diversity

    OpenAIRE

    Hyten, David L; Song, Qijian; Zhu, Youlin; Choi, Ik-Young; Nelson, Randall L.; Costa, Jose M.; Specht, James E; Shoemaker, Randy C.; Cregan, Perry B

    2006-01-01

    Soybean has undergone several genetic bottlenecks. These include domestication in Asia to produce numerous Asian landraces, introduction of relatively few landraces to North America, and then selective breeding over the past 75 years. It is presumed that these three human-mediated events have reduced genetic diversity. We sequenced 111 fragments from 102 genes in four soybean populations representing the populations before and after genetic bottlenecks. We show that soybean has lost many rare...

  12. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    OpenAIRE

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines w...

  13. Genetic diversity in farm animals - A review

    NARCIS (Netherlands)

    Groeneveld, L. F.; Lenstra, J. A.; Eding, H.; Toro, M. A.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E. K.; Jianlin, H.; Groeneveld, E.; Weigend, S.

    2010-01-01

    Domestication of livestock species and a long history of migrations, selection and adaptation have created an enormous variety of breeds. Conservation of these genetic resources relies on demographic characterization, recording of production environments and effective data management. In addition, m

  14. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  15. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    Science.gov (United States)

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  16. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    Directory of Open Access Journals (Sweden)

    Sara Melito

    Full Text Available BACKGROUND: Helichrysum italicum (Asteraceae is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. METHODS: H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. KEY RESULTS: The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. CONCLUSIONS: The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  17. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  18. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  19. Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. Langbinanensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. Langbinanensis were examined by means of electrophoresis technique. Analysis of 9 enzyme systems including 16 loci showed that all the three natural populations of the pine were high in genetic diversity but low in inter -population genetic differentiation. The proportion of polymorphic loci is 0.667 , with eachlocus holding 2.13 alleles, averagely. The average expected and obse rved heterozygosity was 0.288 and 0.197, respectively. The gene differentiation among populations was 0.052, but the mean genetic distance was only 0.015.

  20. Radiation induced mutants in elite genetic background for the augmentation of genetic diversity

    International Nuclear Information System (INIS)

    Rice (Oryza sativa L.), an important food crop for India, shows large genetic diversity. However, despite the large genetic resource, high genetic similarity is reported in cultivated varieties indicating genetic erosion. Radiation induced mutations provide genetic variability in elite background. In the present study, twenty gamma ray induced mutants of rice variety WL112 (carrying sd-1 semi-dwarfing gene) were analysed for genetic diversity using microsatellite markers. The high range of genetic diversity among mutants indicated that the mutants possess potential for enhancing variability in rice. Cluster analysis showed presence of five clusters having small sub-clusters. Earliness, semi-dwarf stature or resistance to blast disease observed among the mutants showed that these will be useful in breeding programmes. (author)

  1. The structural diversity of artificial genetic polymers.

    Science.gov (United States)

    Anosova, Irina; Kowal, Ewa A; Dunn, Matthew R; Chaput, John C; Van Horn, Wade D; Egli, Martin

    2016-02-18

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703

  2. Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design

    OpenAIRE

    Bell, J.J; Okamura, B.

    2005-01-01

    Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and i...

  3. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  4. Genetic Diversity among Ancient Nordic Populations

    DEFF Research Database (Denmark)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R;

    2010-01-01

    , the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two...

  5. Regional specificity of genetically diverse garlic varieties

    Science.gov (United States)

    Garlic is a profitable crop for small to medium-sized vegetable farmers. Despite the increasing market for specialty garlic, it is remarkable how little is known about the diverse types of garlic available. Farmers need to know which garlic types perform well under their growing conditions, and th...

  6. The Host Genetic Diversity in Malaria Infection

    Directory of Open Access Journals (Sweden)

    Vitor R. R. de Mendonça

    2012-01-01

    Full Text Available Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.

  7. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    Science.gov (United States)

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  8. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    Directory of Open Access Journals (Sweden)

    Ana Daniela Lopes

    2015-12-01

    Full Text Available Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity of sweet corn cultivars. We detected a total of 86 alleles using 30 microsatellite primers. The mean polymorphism was 82 %. The highest heterozygosity values (Ho = 0.20 were found in the PR030-Doce Flor da Serra and BR427 III OPVs, whereas the lowest values (0.14 were recorded in the MG161-Branco Doce and Doce Cubano OPVs. The polymorphism information content ranged from 0.19 (Umc2319 to 0.71 (Umc2205. The analysis of molecular variance revealed that most of the genetic variability was concentrated within the cultivars of sweet corn (75 %, with less variability between them (25 %. The consensus tree derived from the neighbor-joining (NJ algorithm using 1,000 bootstrapping replicates revealed seven genetically different groups. Nei’s diversity values varied between 0.103 (Doce do Hawai × CNPH-1 cultivars and 0.645 (Amarelo Doce × Lili cultivars, indicating a narrow genetic basis. The Lili hybrid was the most distant cultivar, as revealed by Principal Coordinates Analysis and the NJ tree. This study on genetic diversity will be useful for planning future studies on sweet corn genetic resources and can complement the breeding programs for this crop.

  9. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  10. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  11. Genetic diversity among ancient Nordic populations.

    Science.gov (United States)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  12. Genetic structure and diversity of Shorea obtusa (Dipterocarpaceae) in Thailand

    Institute of Scientific and Technical Information of China (English)

    Chadaporn SENAKUN; Suchitra CHANGTRAGOON; Pairot PRAMUAL; Preecha PRATHEPHA

    2011-01-01

    Shorea obtusa is a keystone species of the dry deciduous dipterocarp forest in Thailand. In this study,the genetic structure and diversity of this species were evaluated by means of five microsatellite markers. A total of 146 trees were collected from five populations encompassing major forest regions of Thailand. High levels of genetic diversity were found among the five populations with the average He of 0.664. Genetic differentiations between populations, although significant, were low with approximately 3% of genetic variation partitioned among populations. This may indicate that the populations sampled were recently part of a continuous population. A tree constructed using the unweighted pair group method with arithmetic average, based on Nei's genetic distance, divided the populations into three groups. This separation was consistent with the altitudinal zonation of the populations,thus indicating that altitude might play a significant role in the genetic structure of S. obtusa. Areas of high genetic diversity were identified which could be considered priorities for conservation.

  13. Vietnamese chickens: a gate towards Asian genetic diversity

    Directory of Open Access Journals (Sweden)

    Bed'Hom B

    2010-06-01

    Full Text Available Abstract Background Chickens represent an important animal genetic resource and the conservation of local breeds is an issue for the preservation of this resource. The genetic diversity of a breed is mainly evaluated through its nuclear diversity. However, nuclear genetic diversity does not provide the same information as mitochondrial genetic diversity. For the species Gallus gallus, at least 8 maternal lineages have been identified. While breeds distributed westward from the Indian subcontinent usually share haplotypes from 1 to 2 haplogroups, Southeast Asian breeds exhibit all the haplogroups. The Vietnamese Ha Giang (HG chicken has been shown to exhibit a very high nuclear diversity but also important rates of admixture with wild relatives. Its geographical position, within one of the chicken domestication centres ranging from Thailand to the Chinese Yunnan province, increases the probability of observing a very high genetic diversity for maternal lineages, and in a way, improving our understanding of the chicken domestication process. Results A total of 106 sequences from Vietnamese HG chickens were first compared to the sequences of published Chinese breeds. The 25 haplotypes observed in the Vietnamese HG population belonged to six previously published haplogroups which are: A, B, C, D, F and G. On average, breeds from the Chinese Yunnan province carried haplotypes from 4.3 haplogroups. For the HG population, haplogroup diversity is found at both the province and the village level (0.69. The AMOVA results show that genetic diversity occurred within the breeds rather than between breeds or provinces. Regarding the global structure of the mtDNA diversity per population, a characteristic of the HG population was the occurrence of similar pattern distribution as compared to G. gallus spadiceus. However, there was no geographical evidence of gene flow between wild and domestic populations as observed when microsatellites were used. Conclusions

  14. Genetic diversity among ancient Nordic populations.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13% than among extant Danes and Scandinavians (approximately 2.5% as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  15. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  16. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

    Directory of Open Access Journals (Sweden)

    Lopez Ana

    2012-11-01

    Full Text Available Abstract Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77 for pvama-1; 23 (n = 84 for pvcsp; and 23 (n = 35 for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2 was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30 block 2 (K1, MAD20, and RO33, and both allelic families described for the central domain of pfmsp-2 (n = 11 (3D7 and FC27 were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  17. Genetic diversity studies of Kherigarh cattle based on microsatellite markers

    Indian Academy of Sciences (India)

    A. K. Pandey; Rekha Sharma; Yatender Singh; B. B. Prakash; S. P. S. Ahlawat

    2006-08-01

    We report a genetic diversity study of Kherigarh cattle, a utility draught-purpose breed of India, currently declining at a startling rate, by use of microsatellite markers recommended by the Food and Agriculture Organization. Microsatellite genotypes were derived, and allelic and genotypic frequencies, heterozygosities and gene diversity were estimated. A total of 131 alleles were distinguished by the 21 microsatellite markers used. All the microsatellites were highly polymorphic, with mean (± s.e.) allelic number of 6.24 ± 1.7, ranging 4–10 per locus. The observed heterozygosity in the population ranged between 0.261 and 0.809, with mean (± s.e.) of 0.574 ± 0.131, indicating considerable genetic variation in this population. Genetic bottleneck hypotheses were also explored. Our data suggest that the Kherigarh breed has not experienced a genetic bottleneck in the recent past.

  18. Assessment of genetic diversity in Brazilian barley using SSR markers.

    Science.gov (United States)

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-03-01

    Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  19. Assessment of genetic diversity in Brazilian barley using SSR markers

    Directory of Open Access Journals (Sweden)

    Jéssica Rosset Ferreira

    2016-03-01

    Full Text Available Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC, with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.

  20. Assessment of genetic diversity in Brazilian barley using SSR markers

    Science.gov (United States)

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  1. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Science.gov (United States)

    Rivarola, Maximo; Foster, Jeffrey T; Chan, Agnes P; Williams, Amber L; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M J; Khouri, Hoda M; Beckstrom-Sternberg, Stephen M; Allan, Gerard J; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  2. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Directory of Open Access Journals (Sweden)

    Maximo Rivarola

    Full Text Available Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  3. Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures

    Institute of Scientific and Technical Information of China (English)

    LU Yun-feng; LI Hong-wei; WU Ke-liang; WU Chang-xin

    2013-01-01

    Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity

  4. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    王军; 苏永全; 全成干; 丁少雄; 张纹

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) col-lected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified poly-morphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild popula-tion as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were rel-atively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance be-tween the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overilshing, small number of parents as broodstocks and the debatable arti-ficial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is sug-gested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  5. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) collected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified polymorphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild population as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were relatively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance between the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overfishing, small number of parents as broodstocks and the debatable artificial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is suggested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  6. Genetic diversity in wild populations of Paulownia fortune.

    Science.gov (United States)

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together. PMID:25739286

  7. Genetic diversity of noroviruses in Brazil

    Directory of Open Access Journals (Sweden)

    Julia Monassa Fioretti

    2011-12-01

    Full Text Available Norovirus (NoV infections are a major cause of acute gastroenteritis outbreaks around the world. In Brazil, the surveillance system for acute diarrhoea does not include the diagnosis of NoV, precluding the ability to assess its impact on public health. The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the major capsid viral protein. NoV genogroup II genotype 4 (GII.4 was the prevalent (78% followed by GII.6, GII.7, GII.12, GII.16 and GII.17, demonstrating the great diversity of NoV genotypes circulating in Brazil. Thus, this paper highlights the importance of a virological surveillance system to detect and characterize emerging strains of NoV and their spreading potential.

  8. Genetic diversity of natural Hepatacodium miconioides populations in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    LI Junmin; JIN Zexin

    2006-01-01

    Hepatacodium miconioides is the Class Ⅱ protected plant species in China.This paper studies the genetic diversity and differentiation of its nine natural populations in Zhejiang Province by using random amplified polymorphic DNA (RAPD) technique.Twelve random primers were selected in the amplification,and 164 repetitive loci were produced.The percentage of polymorphic loci in each H.miconioides population ranged from 14.60% to 27.44%,with an average of 20.73%.Among the test populations,Kuochangshan had the highest percentage of polymorphic loci,Simingshan took the second place,and Guanyinping had the lowest percentage.As estimated by Shannon index,the genetic diversity within H.miconioides populations accounted for 27.28% of the total genetic diversity,while that among H.miconioides populations accounted for 72.72%.The genetic differentiation among H.miconioides populations as estimated by Nei index was 0.715,7.This figure was generally consistent with that estimated by Shannon index,i.e.,the genetic differentiation among populations was relatively high,but that within populations was relatively low.The gene flow among H.miconioides populations was relatively low (0.198,7),and the genetic similarity ranged from 0.655,7 to 0.811,9,with an average of 0.730,6.The highest genetic distance among populations was 0.422,9,while the lowest was 0.208,3.All the results showed that there was a distinct genetic differentiation among H.miconioides populations.The genetic distance matrix of nine test populations was calculated using this method,and the clustering analysis was made using the unweighted pair group method with arithmetic mean (UPGMA).The cluster analysis suggested that the ninepopulations of H.miconioides in Zhejiang Province could be divided into two groups,the eastern Zhejiang group and the western Zhejiang group.

  9. A genetic algorithm approach to recognition and data mining

    Energy Technology Data Exchange (ETDEWEB)

    Punch, W.F.; Goodman, E.D.; Min, Pei [Michigan State Univ., East Lansing, MI (United States)] [and others

    1996-12-31

    We review here our use of genetic algorithm (GA) and genetic programming (GP) techniques to perform {open_quotes}data mining,{close_quotes} the discovery of particular/important data within large datasets, by finding optimal data classifications using known examples. Our first experiments concentrated on the use of a K-nearest neighbor algorithm in combination with a GA. The GA selected weights for each feature so as to optimize knn classification based on a linear combination of features. This combined GA-knn approach was successfully applied to both generated and real-world data. We later extended this work by substituting a GP for the GA. The GP-knn could not only optimize data classification via linear combinations of features but also determine functional relationships among the features. This allowed for improved performance and new information on important relationships among features. We review the effectiveness of the overall approach on examples from biology and compare the effectiveness of the GA and GP.

  10. 75 years after mining ends stream insect diversity is still affected by heavy metals.

    Science.gov (United States)

    Lefcort, Hugh; Vancura, James; Lider, Edward L

    2010-11-01

    A century of heavy metal mining in the western United States has left a legacy of abandoned mines. While large operations have left a visible reminder, smaller one and two-man operations have been overgrown and largely forgotten. We revisited an area of northern Idaho that has not had active mining since at least 1932 and probably since 1910. At three sites along each of 10 mountain streams we sampled larval stream insects and correlated their community diversity to stream levels of arsenic, cadmium, lead, zinc, pH, temperature, oxygen content, and conductivity. Although the streams appear pristine, multivariate statistics indicated that cadmium and zinc levels were significantly correlated with fewer animals, fewer families, a smaller percentage of plecopterans (stoneflies), and lower Shannon H diversity values. After at least 75 years, abandoned mines appear to be still influencing stream communities. PMID:20680454

  11. Sequence variation and genetic diversity in the giant panda

    Institute of Scientific and Technical Information of China (English)

    张亚平; Oliver A.Ryder; 范志勇; 张和明; 何廷美; 何光昕; 张安居; 费立松; 钟顺隆; 陈红; 张成林; 杨明海; 朱飞兵; 彭真信; 普天春; 陈玉村; 姚敏达; 郭伟

    1997-01-01

    About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to some extent.

  12. Gene diversity and genetic variation in lung flukes (genus Paragonimus).

    Science.gov (United States)

    Blair, David; Nawa, Yukifumi; Mitreva, Makedonka; Doanh, Pham Ngoc

    2016-01-01

    Paragonimiasis caused by lung flukes (genus Paragonimus) is a neglected disease occurring in Asia, Africa and the Americas. The genus is species-rich, ancient and widespread. Genetic diversity is likely to be considerable, but investigation of this remains confined to a few populations of a few species. In recent years, studies of genetic diversity have moved from isoenzyme analysis to molecular phylogenetic analysis based on selected DNA sequences. The former offered better resolution of questions relating to allelic diversity and gene flow, whereas the latter is more suitable for questions relating to molecular taxonomy and phylogeny. A picture is emerging of a highly diverse taxon of parasites, with the greatest diversity found in eastern and southern Asia where ongoing speciation might be indicated by the presence of several species complexes. Diversity of lung flukes in Africa and the Americas is very poorly sampled. Functional molecules that might be of value for immunodiagnosis, or as targets for medical intervention, are of great interest. Characterisation of these from Paragonimus species has been ongoing for a number of years. However, the imminent release of genomic and transcriptomic data for several species of Paragonimus will dramatically increase the rate of discovery of such molecules, and illuminate their diversity within and between species.

  13. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers.

    Science.gov (United States)

    Ramu, P; Billot, C; Rami, J-F; Senthilvel, S; Upadhyaya, H D; Ananda Reddy, L; Hash, C T

    2013-08-01

    Selection and use of genetically diverse genotypes are key factors in any crop breeding program to develop cultivars with a broad genetic base. Molecular markers play a major role in selecting diverse genotypes. In the present study, a reference set representing a wide range of sorghum genetic diversity was screened with 40 EST-SSR markers to validate both the use of these markers for genetic structure analyses and the population structure of this set. Grouping of accessions is identical in distance-based and model-based clustering methods. Genotypes were grouped primarily based on race within the geographic origins. Accessions derived from the African continent contributed 88.6 % of alleles confirming the African origin of sorghum. In total, 360 alleles were detected in the reference set with an average of 9 alleles per marker. The average PIC value was 0.5230 with a range of 0.1379-0.9483. Sub-race, guinea margaritiferum (Gma) from West Africa formed a separate cluster in close proximity to wild accessions suggesting that the Gma group represents an independent domestication event. Guineas from India and Western Africa formed two distinct clusters. Accessions belongs to the kafir race formed the most homogeneous group as observed in earlier studies. This analysis suggests that the EST-SSR markers used in the present study have greater discriminating power than the genomic SSRs. Genetic variance within the subpopulations was very high (71.7 %) suggesting that the germplasm lines included in the set are more diverse. Thus, this reference set representing the global germplasm is an ideal material for the breeding community, serving as a community resource for trait-specific allele mining as well as genome-wide association mapping.

  14. Pneumocystis carinii: genetic diversity and cell biology.

    Science.gov (United States)

    Smulian, A G

    2001-12-01

    As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host-parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.

  15. Loss of Genetic Diversity of Jatropha curcas L. through Domestication: Implications for Its Genetic Improvement

    DEFF Research Database (Denmark)

    Sanou, Haby; Angel Angulo-Escalante, Miguel; Martinez-Herrera, Jorge;

    2015-01-01

    Jatropha curcas L. has been promoted as a “miracle” tree in many parts of the world, but recent studies have indicated very low levels of genetic diversity in various landraces. In this study, the genetic diversity of landrace collections of J. curcas was compared with the genetic diversity of th...

  16. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  17. Genetic diversity in diploid vs. tetraploid Rorippa amphibia (Brassicaceae)

    NARCIS (Netherlands)

    P.C. Luttikhuizen; M. Stift; P. Kuperus; P.H. van Tienderen

    2007-01-01

    The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin

  18. Assessment of genetic diversity of sweet potato in Puerto Rico

    Science.gov (United States)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  19. Genetic diversity of Ascaris in southwestern Uganda

    DEFF Research Database (Denmark)

    Betson, Martha; Nejsum, Peter; Llewellyn-Hughes, Julia;

    2012-01-01

    Despite the common occurrence of ascariasis in southwestern Uganda, helminth control in the region has been limited. To gain further insights into the genetic diversity of Ascaris in this area, a parasitological survey in mothers (n=41) and children (n=74) living in two villages, Habutobere and M...

  20. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs) of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprisin...

  1. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.;

    2014-01-01

    alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour-joining dendrogram obtained from Nei's standard genetic distance differentiated...

  2. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    Directory of Open Access Journals (Sweden)

    Ocelák M.

    2015-12-01

    Full Text Available The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%, gene diversity (0.103, and Shannon’s information index (0.15 were exhibited by the Santa Lucia population, which was also geographically most distant. This fact may be attributed to a very small size of this group. In contrast, the Dos de Mayo population exhibited the highest percentage of polymorphic bands (78%, and the Santa Cruz population the highest Nei’s gene diversity index (0.238 and Shannon’s information index (0.357. The obtained level of genetic variability was 36% among tested populations and 64% within populations. Although the diversity indices were low, a cluster analysis revealed 8 clusters containing mainly samples belonging to individual populations. Principal coordinate analysis clearly distinguished Chumbaquihui, Pucallpa, Dos de Mayo, and Aguas de Oro populations, the others were intermixed. The obtained results indicated the level of genetic diversity present in this location of Peru, although it is influenced by anthropological aspects and independent on the geographical distances.

  3. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Directory of Open Access Journals (Sweden)

    Sascha van der Meer

    Full Text Available Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68, which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands.

  4. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Science.gov (United States)

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603

  5. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  6. Environmental pollution affects genetic diversity in wild bird populations.

    Science.gov (United States)

    Eeva, Tapio; Belskii, Eugen; Kuranov, Boris

    2006-09-19

    Many common environmental pollutants, together with nuclear radiation, are recognized as genotoxic. There is, however, very little information on pollution-related genetic effects on free-living animal populations, especially in terrestrial ecosystems. We investigated whether genetic diversity in two small insectivorous passerines, the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca), was changed near point sources of heavy metals (two copper smelters) or radioactive isotopes (nuclear material reprocessing plant). We measured concentration of heavy metals and nucleotide diversity in mitochondrial DNA in feather samples taken from nestlings in multiple polluted areas and at control sites. In both species, heavy metal concentrations - especially of arsenic - were increased in feathers collected at smelter sites. The P. major population living near a smelter showed significantly higher nucleotide diversity than a control population in an unpolluted site, suggesting increased mutation rates in a polluted environment. On the contrary, F. hypoleuca showed reduced nucleotide diversity at both smelter sites but increased nucleotide diversity near the source of radioactivity. Our results show that heavy metal pollution and low level nuclear radiation affect the nucleotide diversity in two free-living insectivorous passerines. We suggest that the different response in these two species may be due to their different ability to handle toxic compounds in the body. PMID:16807076

  7. Genetic diversity and molecular genealogy of local silkworm varieties

    Directory of Open Access Journals (Sweden)

    Zhouhe Du

    2013-03-01

    Full Text Available In order to explore the genetic diversity and systematic differentiation pattern among silkworm varieties, aiming to guide hybridization breeding, we sequenced a total of 72 Bmamy2 gene fragments from local silkworm varieties. The analysis of nucleotide sequence diversity and systematic differentiation indicated that there was rich genovariation in the sequencing region of Bmamy2 gene, and the base mutation rate is 5.6–8.2%, the haplotype diversity is 0.8294, and the nucleotide diversity is 0.0236±0.00122, suggesting Bmamy2 being a better marking gene with rich nucleotide sequence diversity, based on which the genetic diversity among different local silkworm varieties can be identified. The same heredity population structure is proclaimed by several analysis methods that every clade consisting of varieties from different geosystems and ecological types, while the varieties from the same geosystem and ecotype belong to different clades in the phylogeny. There is no population structure pattern that different varieties claded together according to geosystem or ecotype. It can be speculated that the silkworm origins from mixture of kinds of several voltinism mulberry silkworm, Bombyx mandarina, while the domestication events took place in several regions, from which the domesticated mulberry silkworms are all devoting to the domesticated silkworm population of today.

  8. Feature Selection in Data-Mining for Genetics Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    V. N. Rajavarman

    2007-01-01

    Full Text Available We discovered genetic features and environmental factors which were involved in multifactorial diseases. To exploit the massive data obtained from the experiments conducted at the General Hospital, Chennai, data mining tools were required and we proposed a 2-Phase approach using a specific genetic algorithm. This heuristic approach had been chosen as the number of features to consider was large (upto 3654 for biological data under our study. Collected data indicated for pairs of affected individuals of a same family their similarity at given points (locus of their chromosomes. This was represented in a matrix where each locus was represented by a column and each pairs of individuals considered by a row. The objective was first to isolate the most relevant associations of features and then to class individuals that had the considered disease according to these associations. For the first phase, the feature selection problem, we used a genetic algorithm (GA. To deal with this very specific problem, some advanced mechanisms had been introduced in the genetic algorithm such as sharing, random immigrant, dedicated genetic operators and a particular distance operator had been defined. Then, the second phase, a clustering based on the features selected during the previous phase, will use the clustering algorithm k-means.

  9. Allozymes Genetic Diversity of Quercus mongolica Fisch in China

    Institute of Scientific and Technical Information of China (English)

    LI Wenying; GU Wanchun

    2006-01-01

    A gel electrophoresis method was used to study the genetic diversity of 8 Quercus mongolica populations throughout its range in China.Eleven of 21 loci from 13 enzymes assayed were polymorphic.Q.mongolica maintained low level of genetic variation compared with the average Quercus species.At the species level,: the mean number of alleles per locus (A) was 1.905, the percentage of polymorphic loci (P) was 52.38%, the observed heterozygosity (He) was 0.092 and the expected heterozygosity (He) was 0.099.At the population level, the estimates were A =1.421, P =28.976%, Ho= 0.088, He =0.085.Genetic differentiation (Gst was high among populations, it was 0.107.According to the UPGMA cluster analysis based on the genetic distance, 4 populations located in northeast and 2 populations in southwest of the geographical distribution are classified into 2 subgroups, but there was no clear relationship between genetic distance and geographic distance among populations.The low level of genetic diversity of Q.mongolica might be related to the long-term exploitation as economic tree species in history are comparatively seriously disturbed and damaged by human beings, and most of the existing stands are secondary forests.

  10. Genetic diversity of Hungarian Maize dwarf mosaic virus isolates.

    Science.gov (United States)

    Gell, Gyöngyvér; Balázs, Ervin; Petrik, Kathrin

    2010-04-01

    The genetic diversity of the coat-protein (CP) region and the untranslated C-terminal region (3'UTR) of Maize dwarf mosaic virus (MDMV) was analyzed to evaluate the variability between isolates (inter-isolate sequence diversity). The results of inter-isolate sequence diversity analysis showed that the diversity of the MDMV CP gene is fairly high (p-distance: up to 0.136). During sequence analysis, a 13 amino-acid residue insertion and an 8 amino-acid residue deletion were found within the N-terminal region of the CP gene. The phylogenetic analysis showed that-unlike other potyvirus species in this subgroup-the MDMV isolates could not be distinguished on the basis of their host plants or geographic origins.

  11. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  12. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    Science.gov (United States)

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution.

  13. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  14. Genetic diversity analysis of Tibetan wild barley using SSR markers.

    Science.gov (United States)

    Feng, Zong-Yun; Liu, Xian-Jun; Zhang, Yi-Zheng; Ling, Hong-Qing

    2006-10-01

    One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA. PMID:17046592

  15. Genetic diversity and population genetics of large lungworms (Dictyocaulus, Nematoda) in wild deer in Hungary.

    Science.gov (United States)

    Ács, Zoltán; Hayward, Alexander; Sugár, László

    2016-09-01

    Dictyocaulus nematode worms live as parasites in the lower airways of ungulates and can cause significant disease in both wild and farmed hosts. This study represents the first population genetic analysis of large lungworms in wildlife. Specifically, we quantify genetic variation in Dictyocaulus lungworms from wild deer (red deer, fallow deer and roe deer) in Hungary, based on mitochondrial cytochrome c oxidase subunit 1 (cox1) sequence data, using population genetic and phylogenetic analyses. The studied Dictyocaulus taxa display considerable genetic diversity. At least one cryptic species and a new parasite-host relationship are revealed by our molecular study. Population genetic analyses for Dictyocaulus eckerti revealed high gene flow amongst weakly structured spatial populations that utilise the three host deer species considered here. Our results suggest that D. eckerti is a widespread generalist parasite in ungulates, with a diverse genetic backround and high evolutionary potential. In contrast, evidence of cryptic genetic structure at regional geographic scales was observed for Dictyocaulus capreolus, which infects just one host species, suggesting it is a specialist within the studied area. D. capreolus displayed lower genetic diversity overall, with only moderate gene flow compared to the closely related D. eckerti. We suggest that the differing vagility and dispersal behaviour of hosts are important contributing factors to the population structure of lungworms, and possibly other nematode parasites with single-host life cycles. Our findings are of relevance for the management of lungworms in deer farms and wild deer populations. PMID:27150969

  16. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  17. Evaluation of genetic diversity in different Pakistani wheat land races

    International Nuclear Information System (INIS)

    Wheat is one of the main sources of nutrition worldwide. Genetic improvement of the seed makes wheat a source of high quality flour for human consumption and for other industrial uses. With the help of molecular markers, the available germplasm of wheat can be assessed for future breeding programs. Therefore, the aim of the present work was to analyze the genetic diversity among 15 Pakistani wheat land races based on Random Amplified Polymorphism DNA (RAPD) markers. A total of 284 DNA fragments were amplified, ranging in size from 200bp to 1100bp by using six primers. The number of DNA fragments for each primer varied from 2 (OPC-6) to 9 (OPC-8) with an average of 6 fragments per primer. Out of 284 amplified products, 120 were monomorphic and 137 were polymorphic showing an average of 7.8% polymorphism per primer. One specific marker was detected both for OPC-1 and OPC-8, two for OPC-5, while no RAPD specific marker was detected for the remaining primers. The genetic similarity index values ranged from 0.36 to 0.93, with an average of 0.64. Maximum genetic similarity (91%) was observed between Sur bej and Khushkawa. On the contrary, minimum genetic similarity (32%) was observed in Khushkaba-1 and Khushkawa. The dendrogram resulting from the NTSYS cluster analysis showed that the studied genotypes are divided into two main clusters from the same node. The first cluster contained 13 land races, while the second cluster contained only 2 land races. The dendrogram clustered the genotypes into 5 groups and showed efficiency in identifying genetic variability. These results indicated the usefulness of RAPD technique in estimating the genetic diversity among wheat genetic resources. (author)

  18. Genetic diversity and construction of core collection in Chinese wheat genetic resources

    Institute of Scientific and Technical Information of China (English)

    HAO ChenYang; DONG YuChen; WANG LanFen; YOU GuangXia; ZHANG HongNa; GE HongMei; JIA JiZeng; ZHANG XueYong

    2008-01-01

    Genetic diversity among 5029 accessions representing a proposed Chinese wheat core collection was analyzed using 78 pairs of fluorescent microsatellite (SSR) primers mapped to 21 chromosomes. A stepwise hierarchical sampling strategy with priority based on 4×105 SSR data-points was used to construct a core collection from the 23090 initial collections. The core collection consisted of 1160 accessions, including 762 landraces, 348 modern varieties and 50 introduced varieties. The core ac-counts for 23.1% of the 5029 candidate core accessions and 5% of the 23090 initial collections, but retains 94.9% of alleles from the candidate collections and captures 91.5% of the genetic variation in the initial collections. These data indicate that it is possible to maintain genetic diversity in a core col-lection while retaining fewer accessions than the accepted standard, i.e., 10% of the initial collections captured more than 70% of their genetic diversity. Estimated genetic representation of the core con-structed by preferred sampling (91.5%) is much higher than that by random sampling (79.8%). Both mean genetic richness and genetic diversity indices of the landraces were higher than those of the modern varieties in the core. Structure and principal coordinate analysis revealed that the landraces and the modern varieties were two relatively independent subpopulations. Strong genetic differentia-tion associated with ecological environments has occurred in the landraces, but was relatively weak in the modern cultivars. In addition, a mini-core collection was constructed, which consisted of 231 ac-cessions with an estimated 70% representation of the genetic variation from the initial collections. The mini-core has been distributed to various research and breeding institutes for detailed phenotyping and breeding of genetic introgression lines.

  19. Genetic diversity and selection regulates evolution of infectious bronchitis virus.

    Science.gov (United States)

    Toro, Haroldo; van Santen, Vicky L; Jackwood, Mark W

    2012-09-01

    Conventional and molecular epidemiologic studies have confirmed the ability of infectious bronchitis virus (IBV) to rapidly evolve and successfully circumvent extensive vaccination programs implemented since the early 1950s. IBV evolution has often been explained as variation in gene frequencies as if evolution were driven by genetic drift alone. However, the mechanisms regulating the evolution of IBV include both the generation of genetic diversity and the selection process. IBV's generation of genetic diversity has been extensively investigated and ultimately involves mutations and recombination events occurring during viral replication. The relevance of the selection process has been further understood more recently by identifying genetic and phenotypic differences between IBV populations prior to, and during, replication in the natural host. Accumulating evidence suggests that multiple environmental forces within the host, including immune responses (or lack thereof) and affinity for cell receptors, as well as physical and biochemical conditions, are responsible for the selection process. Some scientists have used or adopted the related quasispecies frame to explain IBV evolution. The quasispecies frame, while providing a distinct explanation of the dynamics of populations in which mutation is a frequent event, exhibits relevant limitations which are discussed herein. Instead, it seems that IBV populations evolving by the generation of genetic variability and selection on replicons follow the evolutionary mechanisms originally proposed by Darwin. Understanding the mechanisms underlying the evolution of IBV is of basic relevance and, without doubt, essential to appropriately control and prevent the disease.

  20. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    Full Text Available BACKGROUND: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. CONCLUSIONS/SIGNIFICANCE: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  1. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    OpenAIRE

    Ocelák M.; Čepková P. Hlásná; Viehmannová I.; Dvořáková Z.; Huansi D.C.; Lojka B.

    2015-01-01

    The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%), gene diversity (0.103), and Shannon’s information index (0.15) were exhibited by the Santa Lucia population, which was a...

  2. Bartonella Prevalence and Genetic Diversity in Small Mammals from Ethiopia

    DEFF Research Database (Denmark)

    Meheretu, Yonas; Leirs, Herwig E.l.; Welegerima, Kiros;

    2013-01-01

    More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp of the Barto......More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp...... of the Bartonella RNA polymerase beta subunit (rpoB) gene. We used a generalized linear mixed model to relate the probability of Bartonella infection to species, season, locality, habitat, sex, sexual condition, weight, and ectoparasite infestation. Overall, Bartonella infection prevalence among the small mammals...

  3. Genetic diversity in Brazilian tall coconut populations by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Francisco Elias Ribeiro

    2013-12-01

    Full Text Available The tall coconut palm was introduced in Brazil in 1553, originating from the island of Cape Verde. The aim of the presentstudy was to evaluate the genetic diversity of ten populations of Brazilian tall coconut by 13 microsatellite markers. Samples werecollected from 195 individuals of 10 different populations. A total of 68 alleles were detected, with an average of 5.23 alleles perlocus. The mean expected and observed heterozygosity value was 0.459 and 0.443, respectively. The number of alleles per populationranged from 36 to 48, with a mean of 40.9 alleles. We observed the formation of two groups, the first formed by the populationsof Baía Formosa, Georgino Avelino and São José do Mipibu, and the second by the populations of Japoatã, Pacatuba and Praia doForte. These results reveal a high level of genetic diversity in the Brazilian populations.

  4. Genetic diversity of Cuban pineapple germplasm assessed by AFLP Markers

    Directory of Open Access Journals (Sweden)

    Ermis Yanes Paz

    2012-01-01

    Full Text Available The Cuban pineapple germplasm collection represents the genetic diversity of pineapple cultivated in that country and includes other important genotypes obtained from the germplasm collections in Brazil and Martinique. The collection has previously been characterized with morphological descriptors but a molecular characterization has been lacking. With this aim, 56 six genotypes of A. comosus and one of Bromelia pinguin were analyzed with a total of 191 AFLP markers. A dendrogram that represents the genetic relationships between these samples based on the AFLP results showed a low level of diversity in the Cuban pineapple collection. All Ananas comosus accessions, being the majority obtained from farmers in different regions in Cuba, are grouped at distances lower than 0.20. Molecular characterization was in line with morphological characterization. These results are useful for breeding and conservation purposes.

  5. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    Directory of Open Access Journals (Sweden)

    Jonathan S Towner

    2009-07-01

    Full Text Available In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus based on detection of Marburg virus RNA in 31/611 (5.1% bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  6. Genetic diversity and maternal origin of Bangladeshi chicken.

    Science.gov (United States)

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  7. A genomic scale map of genetic diversity in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ackermann Alejandro A

    2012-12-01

    Full Text Available Abstract Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs: TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the

  8. Genetic diversity and maternal origin of Bangladeshi chicken.

    Science.gov (United States)

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  9. Assessment of genetic diversity of Xanthomonas oryzae pv. oryzae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Bacterial blight of rice, caused by Xanthomonas oryzae pv. Oryzae(Xoo. ), is one of the major rice diseases in China. Making clear the shift of genetic diversity of the pathogen will provide important information for rice breeding. Strains collected from 11 provinces located in Southern region of the Changjiang River in China were assessed by using inoculation method and IS-PCR(Insertion Sequence-Based Polymerase Chain Reaction) analysis.

  10. Genetic Diversity Enhances Restoration Success by Augmenting Ecosystem Services

    OpenAIRE

    Reynolds, Laura K.; Karen J McGlathery; Waycott, Michelle

    2012-01-01

    Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actua...

  11. Effects of inbreeding on the genetic diversity of populations.

    OpenAIRE

    Charlesworth, Deborah

    2003-01-01

    The study of variability within species is important to all biologists who use genetic markers. Since the discovery of molecular variability among normal individuals, data have been collected from a wide range of organisms, and it is important to understand the major factors affecting diversity levels and patterns. Comparisons of inbreeding and outcrossing populations can contribute to this understanding, and therefore studying plant populations is important, because related species often hav...

  12. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    OpenAIRE

    Rivarola, Maximo; Foster, Jeffrey T.; Chan, Agnes P.; Williams, Amber L.; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J; Keim, Paul; Ravel, Jacques

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and for...

  13. Analysis of Genetic Diversity Among Sweetpotato Landraces in China

    Institute of Scientific and Technical Information of China (English)

    HE Xue-qin; LIU Qing-chang; WANG Yu-ping; ZHAI Hong

    2004-01-01

    Genetic diversity of 48 sweetpotato landraces randomly sampled from Anhui,Fujian, Henan and Guangdong provinces in China was analyzed using RAPD, ISSR and AFLP markers. Thirty RAPD primers, 14 ISSR primers and 9 AFLP primer pairs generated 227, 249 and 260 polymorphic bands, respectively. AFLP markers were better than RAPD and ISSR markers in terms of the number of polymorphic bands detected and the experimental stability. These three molecular markers revealed the similar results that Chinese landraces exhibited a high level of genetic diversity, and the genetic variation of Guangdong landraces was significantly higher than those of the landraces from the other three regions. These results supported the hypothesis that China was a secondary center of sweetpotato diversity. The present results also supported the view that sweetpotato was first introduced to Guangdong and from there spread to other regions of China. The dendrogram based on the combined RAPD, ISSR and AFLP dataset could separate the 48 landraces into two groups: One mainly including 8 landraces from Guangdong and the other consisting of the remaining landraces from Guangdong and landraces from the other three regions. Thus, the utilization of Guangdong landraces should be specially considered in sweetpotato breeding.

  14. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Directory of Open Access Journals (Sweden)

    Spurthi N Nayak

    Full Text Available Sugarcane (Saccharum spp. and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1 genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2 form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  15. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Science.gov (United States)

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  16. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage.

    Science.gov (United States)

    Desoeuvre, Angélique; Casiot, Corinne; Héry, Marina

    2016-04-01

    Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations. PMID:26603631

  17. Bacterial diversity in soil from geophagic mining sites in the Qwa-Qwa region of South Africa.

    Science.gov (United States)

    de Smidt, Olga; Smit, Nellie Jacoba; Botes, Elsabe

    2015-01-01

    Geophagia is practised in many parts of the world and can be associated with medicinal treatments, ceremonial events and spiritual behaviours/practices. This is the first report on a systematic investigation and description of the bacterial diversity in soil regularly ingested by geophagic individuals using a culture-independent method. Diversity in 17 different mining sites was investigated using denaturing gradient gel electrophoresis. Genetic material from Pantoea, Stenotrophomonas, Listeria, Rhodococcus and Sphingomonads was present in most of the soil samples. Species from these genera are recognised, potential or immerging human pathogens, and are of special interest in immune-compromised individuals. Other genera able to produce a variety of bacteriocins and antimicrobial/antifungal substances inhibitory towards food borne pathogens (Dactylosporangium and Bacillus) and able to degrade a range of environmental pollutants and toxins (Duganella and Massilia) were also present. These essential insights provide the platform for adjusting culturing strategies to isolate specific bacteria, further phylogenetic studies and microbial mining prospect for bacterial species of possible economic importance.

  18. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation.

    Science.gov (United States)

    Holmes, Christopher J; Pantel, Jelena H; Schulz, Kimberly L; Cáceres, Carla E

    2016-07-01

    When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large-scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination ('high' clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher-quality and lower-quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with 'high' clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.

  19. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    Science.gov (United States)

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  20. Analysis of Distributed and Adaptive Genetic Algorithm for Mining Interesting Classification Rules

    Institute of Scientific and Technical Information of China (English)

    YI Yunfei; LIN Fang; QIN Jun

    2008-01-01

    Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules. The paper gives the method to encode for the rules, the fitness function, the selecting, crossover, mutation and migration operator for the DAGA at the same time are designed.

  1. Characterisation of the genetic diversity of Brucella by multilocus sequencing

    Directory of Open Access Journals (Sweden)

    MacMillan Alastair P

    2007-04-01

    Full Text Available Abstract Background Brucella species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of Brucella although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of Brucella isolates representing the known diversity of the genus. Results Nine discrete genomic loci corresponding to 4,396 bp of sequence were examined from 160 Brucella isolates. By assigning each distinct allele at a locus an arbitrary numerical designation the population was found to represent 27 distinct sequence types (STs. Diversity at each locus ranged from 1.03–2.45% while overall genetic diversity equated to 1.5%. Most loci examined represent housekeeping gene loci and, in all but one case, the ratio of non-synonymous to synonymous change was substantially Brucella species, B. abortus, B. melitensis, B. ovis and B. neotomae correspond to well-separated clusters. With the exception of biovar 5, B. suis isolates cluster together, although they form a more diverse group than other classical species with a number of distinct STs corresponding to the remaining four biovars. B. canis isolates are located on the same branch very closely related to, but distinguishable from, B. suis biovar 3 and 4 isolates. Marine mammal isolates represent a distinct, though rather weakly supported, cluster within which individual STs display one of three clear host preferences. Conclusion The sequence database provides a powerful dataset for addressing ongoing controversies in Brucella taxonomy and a tool for unambiguously placing atypical, phenotypically discordant or newly emerging Brucella isolates. Furthermore, by using the phylogenetic backbone described here, robust and rationally selected markers for use in

  2. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta

    Directory of Open Access Journals (Sweden)

    Chen Charlotte

    2012-06-01

    Full Text Available Abstract Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods. The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total was found for Spirogyra (41 NHS and for each clade (totaling 73 NHS. This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae.

  3. Genetic diversity and bottleneck studies in the Marwari horse breed

    Indian Academy of Sciences (India)

    A. K. Gupta; M. Chauhan; S. N. Tandon; Sonia

    2005-12-01

    Genetic diversity within the Marwari breed of horses was evaluated using 26 different microsatellite pairs with 48 DNA samples from unrelated horses. This molecular characterisation was undertaken to evaluate the problem of genetic bottlenecks also, if any, in this breed. The estimated mean (± s.e.) allelic diversity was 5.9 (± 2.24), with a total of 133 alleles. A high level of genetic variability within this breed was observed in terms of high values of mean (± s.e.) effective number of alleles (3.3 ± 1.27), observed heterozygosity (0.5306 ± 0.22), expected Levene’s heterozygosity (0.6612 ± 0.15), expected Nei’s heterozygosity (0.6535 ± 0.14), and polymorphism information content (0.6120 ± 0.03). Low values of Wright’s fixation index, $F_{\\text{IS}}$ (0.2433 ± 0.05) indicated low levels of inbreeding. This basic study indicated the existence of substantial genetic diversity in the Marwari horse population. No significant genotypic linkage disequilibrium was detected across the population, suggesting no evidence of linkage between loci. A normal ‘L’ shaped distribution of mode–shift test, non-significant heterozygote excess on the basis of different models, as revealed from Sign, Standardized differences and Wilcoxon sign rank tests as well as non-significant ratio value suggested that there was no recent bottleneck in the existing Marwari breed population, which is important information for equine breeders. This study also revealed that the Marwari breed can be differentiated from some other exotic breeds of horses on the basis of three microsatellite primers.

  4. Genetic diversity in cattle of eight regions in Costa Rica.

    Directory of Open Access Journals (Sweden)

    Juan Miguel Cordero-Solórzano

    2015-06-01

    Full Text Available The aim of this study was to explore the extent of inter-regional genetic diversity present in the cattle of Costa Rica. 1498 DNA samples were collected (year 2013 from eight different regions within the country. Allelic frequencies and major population genetic parameters were determined for eighteen microsatellite markers. An analysis of molecular variance was also carried out and genetic distances were calculated between cattle from different regions. At the national level, a high allelic diversity was found, with an average of 14.6±1.01 observed alleles and 5.6+0.37 effective alleles per marker. Observed (Ho and expected (He heterozygosities were 0.76±0.01 and 0.81±01, respectively. Polymorphic Information Content (PIC and Coefficient of Inbreeding (FIS were 0.79±0.06 and 0.06±0.004, respectively. At the regional level, Ho ranged between 0.73±0.02 in the South Central region to 0.78±0.01 in the North Huetar region. The dendrogram showed three clearly distinct groups, Metropolitan Central and West Central regions in one group, Caribbean Huetar, South Central, Central Pacific and Chorotega regions in a second group; and North Huetar and Brunca regions in a third intermediate group. Estimates of genetic differentiation (RST were significant between regions from different groups and non-significant for regions within the same group. Genetic differences between regions are related to differential proliferation of breed groups based on their adaptability to the agro-ecological conditions and production systems prevailing in each region.

  5. Indigenous cattle in Sri Lanka: production systems and genetic diversity

    International Nuclear Information System (INIS)

    Production status, farming systems and genetic diversity of indigenous cattle in Sri Lanka were evaluated using six geographically distinct populations. The indigenous cattle population of the country is considered as a nondescript mixture of genotypes, and represents more than half of the total cattle population of 1.2 million heads. Five distinct indigenous populations were investigated for morphological analysis, and four were included in evaluating genetic differences. Farming systems were analysed using a pre-tested structured questionnaire. The genetic variation was assessed within and between populations using 15 autosomal and two Y-specific microsatellite markers, and compared with two indigenous populations from the African region. Farming system analysis revealed that indigenous cattle rearing was based on traditional mixed-crop integration practices and operates under limited or no input basis. The contribution of indigenous cattle to total tangible income ranged from zero to 90% reflecting the high variation in the purpose of keeping. Morphometric measurements explained specific phenotypic characteristics arising from geographical isolation and selective breeding. Though varying according to the region, the compact body, narrow face, small horns and humps with shades of brown and black coat colour described the indigenous cattle phenotype in general. Genetic analysis indicated that indigenous cattle in Sri Lanka have high diversity with average number of alleles per locus ranging from 7.9 to 8.5. Average heterozygosity of different regions varied within a narrow range (0.72 ± 0.04 to 0.76 ± 0.03). Genetic distances between regions were low (0.085 and 0.066) suggesting a similar mixture of genotypes across regions. Y-specific analysis indicated a possible introgression of Taurine cattle in one of the cattle populations. (author)

  6. Genetic diversity of albanian goat breeds estimated by molecular markers.

    Directory of Open Access Journals (Sweden)

    GENTIAN HYKAJ

    2014-06-01

    Full Text Available Goats are one of the most important livestock species in Albania. The aim of this study is evaluation of genetic diversity, genetic structure and genetic distances between six Albanian local goat breeds, using three set of markers: 31 microsatellite markers, AFLP markers based on three primer combinations, and 26 SNP markers. A total of 185 individuals representing six different Albanian goat breeds (Capore, Muzhake, Dukati, Liqenasi, Hasi and Mati were analyzed. All microsatellite markers were highly polymorphic. A total number of 331 alleles were observed at 30 microsatellite loci. The average observed heterozygosity was 0.673.The global heterozygosity deficit (FIT was estimated 0.11 and global breed differentiation evaluated by FST, was estimated 0.02. The AMOVA revealed that percentage of variation among populations was 2.04% and within populations was 97.96%. AFLP analysis using three primer combinations revealed 107 polymorphic markers. The FST value across all markers was 0.031, indicating that 3.1% of total genetic variation is due to breed differentiation. SNPs analysis indicated: Expected heterozygosity per locus ranged from 0.0059 to 0.526 with an average value for all loci, 0.316, while the values of observed heterozygosity (HO ranged from 0.0059 to 0.517, with an average value of 0.282. The results obtained here reflect gaot management in Albania. Based on the results of this study, we may conclude that Albanian goat breed are important reservoir of genetic diversity, have a low level of differentiation and high level of admixture.

  7. Genetic diversity Genetic diversity pattern in finger millet [Eleusine coracana (L. Gaertn

    Directory of Open Access Journals (Sweden)

    S. R. Shinde, S. V. Desai, and R. M. Pawar

    2013-09-01

    Full Text Available The genetic distance for 41 genotypes of finger millet collected from different geographical areas was estimated using D2 statistics. These genotypes were grouped into seven clusters. Cluster II, I, V, VI, and III comprised 17, 10, 7, 3 and 2 genotypes, respectively. The clusters IV and VII were mono-genotypic indicating wide divergence from other clusters. Most of the strains were from same origin and found to be one or more components of seven clusters indicating the presence of wide genetic variability among the material belonging to same geographical origin. The highest inter-cluster distance was observed between clusters II and VII followed by IV and VII suggesting the use of genotypes from these clusters to serve as potential parents for hybridization. The characters iron content (70.12% contributed maximum towards divergence followed by plant height (11.72% , days to physiological maturity (7.07% and days to 50% flowering (5.49%.

  8. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity

    OpenAIRE

    Roullier, C; Kambouo, R; Paofa, J; McKey, D; Lebot, V.

    2013-01-01

    New Guinea is considered the most important secondary centre of diversity for sweet potato (Ipomoea batatas). We analysed nuclear and chloroplast genetic diversity of 417 New Guinea sweet potato landraces, representing agro-morphological diversity collected throughout the island, and compared this diversity with that in tropical America. The molecular data reveal moderate diversity across all accessions analysed, lower than that found in tropical America. Nuclear data confirm p...

  9. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2014-06-01

    Full Text Available The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

  10. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    G. Roopa Lavanya; Jyoti Srivastava; Shirish A. Ranade

    2008-04-01

    RAPD profiles were used to identify the extent of diversity among 54 accessions of mung bean that included both improved and local land races. Out of the 40 primers screened, seven primers generated 174 amplification products with an average of 24.85 bands per primer. The RAPD profiles were analysed for Jaccard’s similarity coefficients that was found to be in the range from 0 to 0.48, indicating the presence of wide range of genetic diversity at molecular level. Cluster analysis was carried out based on distances (1-similarity coefficient) using neighbour-joining method in Free Tree package. The dendrogram resolved all the accessions into two major clusters, I (with 11 accessions) and II (with 43 accessions). However, the cluster was further divided into four subclusters (II A with six, II B with nine, II C with 15 and II D with 13 accessions). The distribution of the accessions in different clusters and subclusters appeares to be related to their performance in field conditions for 10 morphological traits that were scored. This study indicated that the RAPD profiles provide an easy and simple technique for preliminary genetic diversity assessment of mung bean accessions that may reflect morphological trait differences among them.

  11. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    Science.gov (United States)

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  12. Estimation of Genetic Diversity in Genetic Stocks of Hexaploid Wheat Using Seed Storage Proteins

    Directory of Open Access Journals (Sweden)

    Tanweer Kumar

    2014-07-01

    Full Text Available Bread wheat (Triticum aestivum L. is an allohexaploid specie, consist of three genomes AABBDD having 2n = 6x = 42 chromosomes. The wheat is a staple food of human beings due to its bread making quality which is composed of seed storage proteins of wheat especially High Molecular Weight Glutenins (HMW-GS. During present research, HMW-GS were analyzed in genetic stocks of common wheat consist of Nullisomic- tetrasomic, ditelosomic and deletion lines of group 3 homoeologous chromosomes by Sodium Dodecyle Sulpahate Polyacrylamide Gel Electrophoresis (SDS-PAGE. Protocol for protein extraction and separation was optimized. The protein profiles were used to estimate genetic distances and Phylogenetic relationships among the genetic stocks were evaluated. Genetic stocks showed different banding patterns and each protein band was considered as a locus/allele. Alleles were scored as present (1 and absent (0 to generate bivariate 1-0 data matrix. A total of 45 alleles were amplified. Genetic distance among the genetic stocks ranged from 0-72%. A dendrogram was constructed using computer program Pop Gene version 3.2. Genetic stocks of wheat were clustered in 3group A, B and C comprising 4, 4 and 1 genotypes, respectively. Maximum differences were observed among Dit-3BS and NT-3B3D and hence it is recommended that these 2 genetic stocks should be crossed to obtain maximum genetic diversity in the segregating population of wheat.

  13. Genetic diversity of Colombian sheep by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ricardo Ocampo

    2016-03-01

    Full Text Available In Colombia the sheep production systems are managed under extensive conditions and mainly correspond to peasant production systems so their genetic management has led to increased homozygosity and hence productivity loss. The aim of this study was to determine the genetic diversity in 549 individuals corresponding to 13 sheep breeds in Colombia, using a panel of 11 microsatellite molecular markers. One hundred and fifty seven alleles were found (average of 14.27 alleles/locus, with a range of observed and expected heterozygosity from 0.44 to 0.84 and 0.67 to 0.86, respectively. Thirty-three of 143 Hardy Weinberg tests performed showed significant deviations (p < 0.05 due to a general lack of heterozygous individuals. The Fis ranged from 0.01 in Corriedale to 0.15 for the Persian Black Head breed, suggesting that there are presenting low to moderate levels of inbreeding. Overall, Colombian sheep showed high levels of genetic diversity which is very important for future selection and animal breeding programs.

  14. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats.

    Science.gov (United States)

    Du, Jiang; Yang, Li; Ren, Xianwen; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Zhu, Yafang; Yang, Fan; Zhang, Shuyi; Wu, Zhiqiang; Jin, Qi

    2016-06-01

    Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011-2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus (Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases. PMID:27125516

  15. Sézary Syndrome: Translating Genetic Diversity into Personalized Medicine.

    Science.gov (United States)

    Chevret, Edith; Merlio, Jean-Philippe

    2016-07-01

    Sézary syndrome is probably the most studied cutaneous T-cell lymphoma subtype. Beyond the consensus criteria for Sézary syndrome diagnosis, Sézary cells display heterogeneous phenotypes and differentiation profiles. In the face of SS diversity, the great hope is to develop targeted therapies based on next-generation sequencing to define the genetic landscape of Sézary syndrome. Prasad et al. report on the use of exome sequencing and RNA sequencing to study selected CD4(+) blood cells from 15 patients with erythroderma Sézary syndrome, 14 of whom fulfilled the conventional criteria for diagnosis. The most common genetic abnormality, TP53 gene deletion on chromosome arm 17p and/or mutation, was observed in 58% of patients. However, mutations affecting PLCG1, STAT5B, GLI3, and CARD11 each were detected in only one individual. Nevertheless, Prasad et al. report single point mutations or copy number alterations in several new genes and in new fusion genes, with predicted biological relevance. This information underscores the diversity of genetic alterations and of the mechanisms of alterations of single genes. At the individual level, Sézary cells may combine alterations of genes involved in T-cell signaling, NF-kB and JAK-signal transducer and activator of transcription pathways, apoptosis control, chromatin remodeling, and DNA damage response. The therapeutic relevance of these potential targets needs to be evaluated with tests of function. PMID:27342034

  16. New insights into the genetic and metabolic diversity of thiocyanate-degrading microbial consortia.

    Science.gov (United States)

    Watts, Mathew P; Moreau, John W

    2016-02-01

    Thiocyanate is a common contaminant of the gold mining and coal coking industries for which biological degradation generally represents the most viable approach to remediation. Recent studies of thiocyanate-degrading bioreactor systems have revealed new information on the structure and metabolic activity of thiocyanate-degrading microbial consortia. Previous knowledge was limited primarily to pure-culture or co-culture studies in which the effects of linked carbon, sulfur and nitrogen cycling could not be fully understood. High throughput sequencing, DNA fingerprinting and targeted gene amplification have now elucidated the genetic and metabolic diversity of these complex microbial consortia. Specifically, this has highlighted the roles of key consortium members involved in sulfur oxidation and nitrification. New insights into the biogeochemical cycling of sulfur and nitrogen in bioreactor systems allow tailoring of the microbial metabolism towards meeting effluent composition requirements. Here we review these rapidly advancing studies and synthesize a conceptual model to inform new biotechnologies for thiocyanate remediation. PMID:26596573

  17. Genetic diversity and relationships of Vietnamese and European pig breeds

    International Nuclear Information System (INIS)

    Full text: East Asia contains more than 50% of the world's pig population and Europe about 30% (according to FAO inventory. Both indigenous resources were domesticated from different sub-species and are assumed to be the basis of the world-wide genetic diversity in pig. Indigenous resources of Asia, however, are less defined and only rarely compared with European breeds. Taking advantage of DNA diagnostics, animals within as well as between breeds from Vietnam and Europe were analysed for numerous well defined markers in order to gain more knowledge about pig genetic biodiversity. The main objective was to investigate indigenous Vietnamese pig breeds from different local geographic regions. A set of pig breeds was chosen for this study of genetic diversity: five indigenous breeds from Vietnam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Vietnam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar. Samples and data from 317 animals (17 to 32 unrelated animals per breed) were collected. A panel of 27 polymorphic microsatellite loci was chosen according to FAO recommendations for diversity analyses and genetic distance studies. The loci were distributed evenly over the porcine genome with additional loci linked to immunological relevant genes (MHC, IFNG). Moreover, a few Type I loci (RYR1, FSH) were genotyped. DNA was isolated and PCR fragment lengths analysis were carried out on an ALF DNA sequencer (Pharmacia, Freiburg, Germany). Some of the RFLPs were analysed by agarose gel electrophoresis. Selected microsatellite alleles of equal lengths were sequenced for animals of different breeds. Within-breed diversity estimated heterozygosities and tests for Hardy-Weinberg equilibrium by taking into account sample sizes, tests per locus and breed as well as breed-locus combinations. Calculations were performed using the BIOSYS-1 software package. Breed differentiation was evaluated by the

  18. Origin and genetic diversity of diploid parthenogenetic Artemia in Eurasia.

    Directory of Open Access Journals (Sweden)

    Marta Maccari

    Full Text Available There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia. Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.

  19. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  20. The impact of recent events on human genetic diversity.

    Science.gov (United States)

    Jobling, Mark A

    2012-03-19

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics.

  1. Genetic Diversity of Indonesian Snake Fruits as Food Diversification Resources

    Directory of Open Access Journals (Sweden)

    Tri Budiyanti

    2015-01-01

    Full Text Available Indonesia is one of the megabiodivesity, which is rich with germplasms including tropical fruit. Snake fruit (Salacca spp. is a native fruit of Indonesia with a scaly peel and sweet-tart taste. The genetic diversity of 17 accessions of Indonesian snake fruit was resolved using the Random Amplified Polymorphic DNA Polymerase Chain Reaction with 5 primers. The study demonstrated that the samples were grouped in six different clusters with coefficient of similarity ranged from 0.12 to 0.71. The value indicated the wide range of genetic variability among the tested plants. This variability was an important resources for the snake fruit breeding program in developing the consumer‘s preferred product which by the end supports the plant diversification program.

  2. Genetic diversity analysis of Brassica oleracea L.by SSR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    SSR analysis on genetic diversity of 30 samples was carried out. Five primers selected from 36 primers were used to amplify 30 samples in this experiment, PCR products were separated by 6% polyacrylamide gel electrophoresis, silver staining and photographed. The results of SSR were analyzed by UPGMA clustering. The results showed that a total of 21 gene alleles were detected by 5 SSR primers. The number of alleles ranged from 2 to 5 with an average of 4.2.PIC range was 0.257-0.921, with an average of 0.543. The average coefficient of genetic similarity of SSR markers among materials was 0.432. Some of cabbage cultivars in the experiment were divided into four groups except cultivars which come from Japan.

  3. Genetic Diversity Analysis among Greengram genotypes using RAPD Markers

    Directory of Open Access Journals (Sweden)

    M.Pandiyan., N.Senthil, P.Sivakumar, AR.Muthiah and N.Ramamoorthi

    2010-07-01

    Full Text Available Green gram is also one of the important pulse crops. Conventional breeding methods are very much difficult to utilize in thedevelopment of new genotypes. Hence incorporation of the molecular approaches along with the conventional techniques ismost powerful method. Evaluation of the available wild accessions are more useful for selecting desirable gene sources.Genetic diversity analysis place an important role in this purpose. For this molecular analysis of selected 18 accessions ingreengram (representing all nine clusters was carried out through RAPD markers. Out of ten primers used nine werepolymorphic in which the primer OPS-11 exhibited 100 per cent polymorphism. The value of similarity indices 0.72 to 0.91indicates high genetic similarity among the selected accessions at molecular level.

  4. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey.

    Science.gov (United States)

    Bulut, Zafer; Kurar, Ercan; Ozsensoy, Yusuf; Altunok, Vahdettin; Nizamlioglu, Mehmet

    2016-01-01

    The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P 0.05). Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers. PMID:27092309

  5. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Bulut

    2016-01-01

    Full Text Available The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P0.05. Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers.

  6. Hg and As Minerals in Fluid Inclusions from the Williams Mine, Hemlo, and Their Genetic Implications

    Institute of Scientific and Technical Information of China (English)

    LU HUANZHANG(卢焕章); JAYANTA. GUHA; DON. C. HARRIS

    2002-01-01

    The Hemlo mineralization is enigmatic compared to general Archean lode gold deposits based on the fact that it is characterized by an exotic mineralogy containing elements such as As, Hg, Sb, Ba, V and Mo. The genetic concepts range from syngenetic to epigenetic types of mineralization. This reconnaissance study was designed to examine the relationship of Hg-As minerals with respect to fluid inclusions in the Williams mine (formerly known as the Page Williams mine) covering the A and C ore zones.

  7. Comparative molecular analysis of the prokaryotic diversity of two salt mine soils in southwest China.

    Science.gov (United States)

    Xiao, Wei; Wang, Zhi-Gang; Wang, Yong-Xia; Schneegurt, Mark A; Li, Zhi-Ying; Lai, Yong-Hong; Zhang, Shi-Ying; Wen, Meng-Liang; Cui, Xiao-Long

    2013-11-01

    While much is known about the microbial diversity in some hypersaline environments, little is known about those of salt mine tunnel soils. The objective of this study was to conduct a comprehensive phylogenetic comparison of the archaeal and bacterial communities present in Yipinglang salt mine (YPL) and Qiaohou salt mine (QH) tunnels differing in salinity and salt composition using 16S rRNA gene clone libraries. Two hundred twenty-eight sequences for QH and 182 sequences for YPL were analyzed by amplified ribosomal DNA-restriction analysis. Libraries revealed 44 bacterial and 57 archaeal different operational taxonomic units belonging to at least 8 bacterial and 3 archaeal divisions, but not all divisions were observed in both salt mines. The bacterial community affiliated with the Bacteroidetes was the most abundant (60% of clones) in QH, while the community in YPL was dominated by δ-Proteobacteria (45% of clones). All archaeal clones from QH were affiliated with Halobacteriaceae. In contrast, in the YPL library, 49% of clones belonged to Halobacteriaceae, 31% of clones related to unclassified archaea, and 21% of clones belonged to Crenarchaeota. Bioinformatic analysis and comparisons showed that the clone libraries were significantly different between two salt mines. PMID:23457089

  8. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep.

    Science.gov (United States)

    Vahidi, S M F; Faruque, M O; Falahati Anbaran, M; Afraz, F; Mousavi, S M; Boettcher, P; Joost, S; Han, J L; Colli, L; Periasamy, K; Negrini, R; Ajmone-Marsan, P

    2016-08-01

    Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7-22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72-0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST  = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed. PMID:26953226

  9. Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils

    OpenAIRE

    ANUJ KUMAR SINGH; JAMALUDDIN

    2011-01-01

    Singh AK, Jamaluddin (2011) Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils. Biodiversitas 12: 107-111. Limestone mined spoils are devoid of adequate population of beneficial microbial flora. Arbuscular mycorrhizal fungi (AMF) are very important constituent of plant- soil-microbe system. In mined spoils the population of AMF is greatly reduced and hence the spoils become very inhospitable for establishment of vegetation. In t...

  10. Managing Genetic Variation to Conserve Genetic Diversity in Goats and Sheep

    Directory of Open Access Journals (Sweden)

    J. N. B. Shrestha

    2010-01-01

    Full Text Available Domestic goat and sheep populations maintained for many generations with small numbers of male and female parents, or declining in total numbers, not only endure accumulated genetic drift but also a steady rise in inbreeding, which can be directly attributed to dispersive forces of evolutionary significance that influence gene frequency. Increasing effective population size shows theoretical promise in lessening the impact on erosion of biodiversity from genetic drift. For example, doubling the effective numbers of parents which increases effective population size reduces rate of inbreeding by nearly one-half in many of the scenarios in the present study. Similarly, equalizing the number of male and female parents can decrease the variance among progeny of each parent, which in turn increases effective population size. The recurring erosion of domestic goat and sheep diversity has contributed to decreased fecundity, reduced fitness and poor adaptability, all known to influence efficiency of production. The potential loss in performance of livestock and poultry following many generations of accumulated genetic drift, which often goes unnoticed, can be predicted for specific populations from precise estimates of their mean value, additive genetic variance and heritability along with their effective number of male and female parents. For example, when the effective population size decreases from 200 to 40, the potential reduction in mean performance for economically important traits of goat and sheep populations following 20 generations of accumulated genetic drift will nearly double. In contrast, increasing effective population size from 200 to 600 will have the potential reduction in mean performance. The accumulation of favourable mutations could imply an effective population size of 100 or more, which is equal to a rise in rate of inbreeding of 0.5% or less, may be acceptable in sustaining genetic response to artificial selection in commercial

  11. On the Biological and Genetic Diversity in Neospora caninum

    Directory of Open Access Journals (Sweden)

    John T. Ellis

    2010-03-01

    Full Text Available Neospora caninum is a parasite regarded a major cause of foetal loss in cattle. A key requirement to an understanding of the epidemiology and pathogenicity of N. caninum is knowledge of the biological characteristics of the species and the genetic diversity within it. Due to the broad intermediate host range of the species, worldwide geographical distribution and its capacity for sexual reproduction, significant biological and genetic differences might be expected to exist. N. caninum has now been isolated from a variety of different host species including dogs and cattle. Although isolates of this parasite show only minor differences in ultrastructure, considerable differences have been reported in pathogenicity using mainly mouse models. At the DNA level, marked levels of polymorphism between isolates were detected in mini- and microsatellites found in the genome of N. caninum. Knowledge of what drives the biological differences that have been observed between the various isolates at the molecular level is crucial in aiding our understanding of the epidemiology of this parasite and, in turn, the development of efficacious strategies, such as live vaccines, for controlling its impact. The purpose of this review is to document and discuss for the first time, the nature of the diversity found within the species Neospora caninum.

  12. Genetic diversity in the SIR model of pathogen evolution.

    Directory of Open Access Journals (Sweden)

    Isabel Gordo

    Full Text Available We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR. We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts, where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R(0(1+s is higher than the fitness of the resident strain (R(0. We show that this invasion probability is given by the relative increment in R(0 of the new pathogen (s. By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.

  13. Whole mitochondrial genome genetic diversity in an Estonian population sample.

    Science.gov (United States)

    Stoljarova, Monika; King, Jonathan L; Takahashi, Maiko; Aaspõllu, Anu; Budowle, Bruce

    2016-01-01

    Mitochondrial DNA is a useful marker for population studies, human identification, and forensic analysis. Commonly used hypervariable regions I and II (HVI/HVII) were reported to contain as little as 25% of mitochondrial DNA variants and therefore the majority of power of discrimination of mitochondrial DNA resides in the coding region. Massively parallel sequencing technology enables entire mitochondrial genome sequencing. In this study, buccal swabs were collected from 114 unrelated Estonians and whole mitochondrial genome sequences were generated using the Illumina MiSeq system. The results are concordant with previous mtDNA control region reports of high haplogroup HV and U frequencies (47.4 and 23.7% in this study, respectively) in the Estonian population. One sample with the Northern Asian haplogroup D was detected. The genetic diversity of the Estonian population sample was estimated to be 99.67 and 95.85%, for mtGenome and HVI/HVII data, respectively. The random match probability for mtGenome data was 1.20 versus 4.99% for HVI/HVII. The nucleotide mean pairwise difference was 27 ± 11 for mtGenome and 7 ± 3 for HVI/HVII data. These data describe the genetic diversity of the Estonian population sample and emphasize the power of discrimination of the entire mitochondrial genome over the hypervariable regions.

  14. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Institute of Scientific and Technical Information of China (English)

    Jiandong YANG; Zhihe ZHANG; Fujun SHEN; Xuyu YANG; Liang ZHANG; Limin CHEN; Wenping ZHANG; Qing ZHU; Rong HOU

    2011-01-01

    Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species.Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China.Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation.Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population.The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve.Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations.All individuals from the same subpopulation were assigned to one cluster.This indicates high gene flow between subpopulations.F statistic analyses revealed a low Fls-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR.Additionally,our data show a high level of genetic diversity for the Tangjiahe population.Mean allele number (A),Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangiiahe population was 5.9,5.173 and 0.703,respectively.This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6):717-724,2011].

  15. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  16. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  17. Bioprospecting at former mining sites across Europe: microbial and functional diversity in soils.

    Science.gov (United States)

    Sprocati, Anna Rosa; Alisi, Chiara; Tasso, Flavia; Fiore, Alessia; Marconi, Paola; Langella, Francesca; Haferburg, Götz; Nicoara, Andrei; Neagoe, Aurora; Kothe, Erika

    2014-01-01

    The planetary importance of microbial function requires urgently that our knowledge and our exploitation ability is extended, therefore every occasion of bioprospecting is welcome. In this work, bioprospecting is presented from the perspective of the UMBRELLA project, whose main goal was to develop an integral approach for remediation of soil influenced by mining activity, by using microorganisms in association with plants. Accordingly, this work relies on the cultivable fraction of microbial biodiversity, native to six mining sites across Europe, different for geographical, climatic and geochemical characteristics but similar for suffering from chronic stress. The comparative analysis of the soil functional diversity, resulting from the metabolic profiling at community level (BIOLOG ECOPlates) and confirmed by the multivariate analysis, separates the six soils in two clusters, identifying soils characterised by low functional diversity and low metabolic activity. The microbial biodiversity falls into four major bacterial phyla: Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, including a total of 47 genera and 99 species. In each soil, despite harsh conditions, metabolic capacity of nitrogen fixation and plant growth promotion were quite widespread, and most of the strains showed multiple resistances to heavy metals. At species-level, Shannon's index (alpha diversity) and Sørensen's Similarity (beta diversity) indicates the sites are indeed diverse. Multivariate analysis of soil chemical factors and biodiversity identifies for each soil well-discriminating chemical factors and species, supporting the assumption that cultured biodiversity from the six mining sites presents, at phylum level, a convergence correlated to soil factors rather than to geographical factors while, at species level, reflects a remarkable local characterisation. PMID:23775004

  18. Parallel responses of species and genetic diversity to El Nino Southern Oscillation-induced environmental destruction

    NARCIS (Netherlands)

    D.F.R. Cleary; C.Y. Fauvelot; J. Genner; S.B.J. Menken; A.O. Mooers

    2006-01-01

    Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to

  19. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Science.gov (United States)

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.

  20. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  1. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    Directory of Open Access Journals (Sweden)

    Jane E Stewart

    Full Text Available Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum, highbush blueberry (V. corymbosum, and southern highbush blueberry (V. corymbosum hybrids from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing

  2. Indigenous cattle in Sri Lanka: Production systems and genetic diversity

    International Nuclear Information System (INIS)

    Full text: The production status, farming systems and genetic diversity of indigenous cattle in Sri Lanka were evaluated using six geographically distinct populations in Sri Lanka, which is a small island located below the southern tip of Indian subcontinent. The indigenous cattle population of the country is considered as a non-descript type mixture of genotypes, and represent more than the half of total cattle population of 1.2 million heads. Six distinct indigenous populations (NE, NC, So, No, TK and Th) were investigated for morphological and genetic differences. The respective farming systems were also evaluated to complete the requirement in developing conservation and utilization strategies. The sampling was carried out based on the non-existence of artificial insemination facilities to assure the target populations are indigenous. The six populations were assumed genetically isolated from each other in the absence of nomadic pattern of rearing and regular cattle migration. The farming systems were analyzed using a pre-tested structured questionnaire by single visits to each location. Single visits were practiced, as there is no variation in farming system according to the period of the year. Morphometric measurements were taken during the visit and the genetic variation was assessed within and between five populations using 15 autosomal and two Y-specific microsatellite markers. The farming system analysis revealed that indigenous cattle are reared as a traditional practice in all the regions of the country under limited or no input situations. Since the low productivity masks its real contribution to the rural livelihood, the level of utilization was confounded within the attributes of respective farming systems. The contribution of indigenous cattle to total tangible income ranged from 0% to 90% in different regions reflecting the high variation in the purpose of keeping indigenous cattle. Integration with crop, especially with paddy was the common

  3. Genetic diversity assessment in brassica germplasm based on morphological attributes

    International Nuclear Information System (INIS)

    Genetic diversity of 28 Brassica genotypes was studied using different morphological attributes. Data were recorded on days to maturity (DM), plant height (PH), primary branches plant (PBPP), pod length (PL), seed pod (SP), 1000 - seed weight (1000 - SW), yield plant (YPP) and oil (percentage). Three checks (Pakola, CM and TA), were used to check the performance of collected materials with already available brassica varieties. significant statistical differences were observed among the tested genotypes based on the studied morphological traits. Among the tested genotypes, genotype keelboat proved to be superior as compared to other studied genotypes due to maximum level of studied traits like pod length (7.03 cm), seed pod (32.33), 1000 - seed weight (5.38 g), seed yield plant (110.8 g) and oil content (52.9 percentage. The highest level of performance recorded by kalabat in terms of branches plant, pod length (cm), number of seed pod, seed yield plant (g), 1000 - seed weight (g) and oil content (percentage), indicates that this genotype is genetically different and superior than the other studied genotype. Therefore, genotype kalabat can be either used as variety after adaptability trials over a larger area or included in Brassica breeding programmes as a good source of genetic variation. (author)

  4. The Nuclear DNA Content and Genetic Diversity of Lampetra morii

    Science.gov (United States)

    Yan, Xinyu; Meng, Wenbin; Wu, Fenfang; Xu, Anlong; Chen, Shangwu; Huang, Shengfeng

    2016-01-01

    We investigated the nuclear DNA content and genetic diversity of a river lamprey, the Korean lamprey Lampetra morii, which is distributed in the northeast of China. L. morii spends its whole life cycle in fresh water, and its adult size is relatively small (~160 mm long) compared with that of other lampreys. The haploid nuclear DNA content of L. morii is 1.618 pg (approximately 1.582 Gb) in germline cells, and there is ~15% germline DNA loss in somatic cells. These values are significantly smaller than those of Petromyzon marinus, a lamprey with a published draft genome. The chromosomes of L. morii are small and acrocentric, with a diploid modal number of 2n = 132, lower than some other lampreys. Sequence and AFLP analyses suggest that the allelic polymorphism rate (~0.14% based on examined nuclear and mitochondrial DNA sequences) of L. morii is much lower than that (~2%) of P. marinus. Phylogenetic analysis based on a mitochondrial DNA fragment confirms that L. morii belongs to the genus Lampetra, which, together with the genus Lethenteron, forms a sister group to P. marinus. These genetic background data are valuable for subsequent genetic and genomic research on L. morii. PMID:27388621

  5. Genetic diversity revealed by AFLP markers in Albanian goat breeds

    Directory of Open Access Journals (Sweden)

    Hoda Anila

    2012-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP technique with three EcoRI/TaqI primer combinations was used in 185 unrelated individuals, representative of 6 local goat breeds of Albania, and 107 markers were generated. The mean Nei’s expected heterozygosity value for the whole population was 0.199 and the mean Shannon index was 0.249, indicating a high level of within-breed diversity. Wright’s FST index, Nei’s unbiased genetic distance and Reynolds’ genetic distance were calculated. Pairwise Fst values among the populations ranged from 0.019 to 0.047. A highly significant average FST of 0.031 was estimated, showing a low level of breed subdivision. Most of the variation is accounted for by differences among individuals. Cluster analysis based on Reynolds’ genetic distance between breeds and PCA were performed. An individual UPGMA tree based on Jaccard’s similarity index showed clusters with individuals from all goat breeds. Analysis of population structure points to a high level of admixture among breeds.

  6. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    Science.gov (United States)

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  7. Correlating Microbial Diversity Patterns with Geochemistry in an Extreme and Heterogeneous Environment of Mine Tailings

    Science.gov (United States)

    Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng

    2014-01-01

    Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions

  8. The DNA of coral reef biodiversity : predicting and protecting genetic diversity of reef assemblages

    OpenAIRE

    Selkoe, Kim; Gaggiotti, Oscar Eduardo; Treml, Eric; Wren, Johanna; Donovan, Marie; Consortium, Hawaii Reef Connectivity; Toonen, Robert

    2016-01-01

    O.E.G. was supported by the Marine Alliance for Science and Technology for Scotland (MASTS). Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here we use seascape genetic analysis of a diversity metric, allelic richness, for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbor the greatest genetic diversity on average. We found ...

  9. Genetic Diversity Analysis of Lates calcarifer (Bloch 1790) in Captive and Wild Populations Using RAPD Markers

    OpenAIRE

    Muthusamy RAJASEKAR; Muthusamy THANGARAJ; Thathiredypalli R. BARATHKUMAR; Jayachandran SUBBURAJ; Kaliyan MUTHAZHAGAN

    2012-01-01

    Lates calcarifer (Bloch 1790) is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai) and one captive (Mutukadu) population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD) markers. Ten random primers were used for the assessment of their genetic diversity and const...

  10. Low genetic diversity and high genetic differentiation in the critically endangered Omphalogramma souliei (Primulaceae):implications for its conservation

    Institute of Scientific and Technical Information of China (English)

    Yuan HUANG; Chang-Qin ZHANG; De-Zhu LI

    2009-01-01

    Omphalogramma souliei Franch. Is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. Souliei in NW Yunnan, China. The genetic diversity at the species level is low with P= 42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenog-amy predominated and autogamy played an assistant role in O. Souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.

  11. Genetic diversity for sustainable rice blast management in China: adoption and impact

    NARCIS (Netherlands)

    Revilla-Molina, I.M.

    2009-01-01

    Keywords: Disease management, genetic diversity, rice interplanting, competition, resource complementarity, technical efficiency, production function, Magnaporthe grisea The experience on rice blast in Yunnan Province, China, is one of the most successful and widely publicized examples of genetic

  12. Italian Common Bean Landraces: History, Genetic Diversity and Seed Quality

    Directory of Open Access Journals (Sweden)

    Angela R. Piergiovanni

    2010-05-01

    Full Text Available The long tradition of common bean cultivation in Italy has allowed the evolution of many landraces adapted to restricted areas. Nowadays, in response to market demands, old landraces are gradually being replaced by improved cultivars. However, landraces still survive in marginal areas of several Italian regions. Most of them appear severely endangered with risk of extinction due to the advanced age of the farmers and the socio-cultural context where they are cultivated. The present contribution is an overview of the state of the art about the knowledge of Italian common bean germplasm, describing the most important and recent progresses made in its characterization, including genetic diversity and nutritional aspects.

  13. Genetic diversity assessment of summer squash landraces using molecular markers.

    Science.gov (United States)

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  14. Recognition of Spontaneous Combustion in Coal Mines Based on Genetic Clustering

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult because of the complexity of different coal mines. Fuzzy clustering has been proposed to incorporate the uncertainty of spontaneous combustion in coal mines and it can give a clear degree of classification of combustion. Because FCM clustering tends to become trapped in local minima, a new approach of fuzzy c-means clustering based on a genetic algorithm is therefore proposed. Genetic algorithm is capable of locating optimal or near optimal solutions to difficult problems. It can be applied in many fields without first obtaining detailed knowledge about correlation. It is helpful in improving the effectiveness of fuzzy clustering in detecting spontaneous combustion. The effectiveness of the method is demonstrated by means of an experiment.

  15. Genetic diversity and germplasm conservation of three minor Andean tuber crop species

    Directory of Open Access Journals (Sweden)

    Malice M.

    2009-01-01

    Full Text Available In traditional Andean agrosystems, three minor tuber crop species are of regional or local importance: oca (Oxalis tuberosa Molina, ulluco (Ullucus tuberosus Caldas and mashua (Tropaeolum tuberosum Ruiz and Pav.. Genetic diversity within these species is very large and could result from the high ecological and cultural variability that characterizes the Andean area. Nowadays, many anthropic or ecological factors cause the loss of diversity and contribute to genetic erosion. The development of conservation strategies for genetic resources of Andean tubers, in situ as well as ex situ, includes a better knowledge of diversity in addition to the study of Andean farming strategies linked to this genetic diversity.

  16. GENETIC DIVERSITY IN ACCESSIONS OF Stylosanthes spp. USING MORPHOAGRONOMIC DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    RONALDO SIMÃO DE OLIVEIRA

    2016-01-01

    Full Text Available The great diversity of plants in the Brazilian Semiarid environment represents a vital natural resource for the human populations of these areas. Many of these plants have been subject to extractivism and among these, the species of the genus Stylosanthes , which have occurrence in this region, show great potential, however, studies on this topic are limited, and little is known about the existing variability among these plants. Therefore, further study is necessary, to facilitate the development of cultivars. This might reduce the scarcity of fodder supply in this region, but to commence a plant breeding programme, it is essential to identify genetic variability. Therefore, this study evaluated 25 accessions of Stylosanthes spp., to identify the most suitable candidates to be parents in a plant breeding programme for the semiarid region of the state of Bahia. Two experiments were carried out in different sites in an experimental design of randomized blocks with four replicates, with a spacing of 3.0 × 8.0 m. A large amount of genetic diversity was observed among accessions and the genotypes BGF 08 - 007, BGF 08 - 016, BGF 08 - 015 and BGF 08 - 021 were the most divergent in the overall evaluation. For the structuring of segregating populations, it is recommended to combine the genotypes BGF 08 - 016, BGF 08 - 015, BGF 08 - 007 and BGF 08 - 006, and for the interspecific crosses, a hybrid from the accession BGF - 024 with the accessions BGF 08 - 016 or BGF 08 - 015. This might generate superior individuals for mass descriptors, which are the most important for animal forage breeding.

  17. [Genetic Diversity of Vitis vinifera L. in Azerbaijan].

    Science.gov (United States)

    Salayeva, S J; Ojaghi, J M; Pashayeva, A N; Izzatullayeva, V I; Akhundova, E M; Akperov, Z I

    2016-04-01

    To examine the genetic diversity of Vitis vinifera L., growing in the Republic of Azerbaijan in the region near the Caspian Sea, nuclear genomes of 31 cultivated and 34 wild grapevine accessions were studied at population and individual levels using five ISSR primers. In total, 51 fragments were amplified, of which 45 were found to be polymorphic. A high level of polymorphism was revealed (the mean PPF and PIC values constituted 87.69% and 0.94, respectively). High values of the EMR, MI, and RP indices showed the effectiveness of the application of ISSR primers and the possibility of their use in further investigations in this direction. Cluster analysis based on Nei's genetic distance values showed that all genotypes could be grouped into seven main clusters. Furthermore, no differences between the wild and cultivated grape wine accessions were revealed. For instance, there was no distinct distribution of the accessions according to their geographical localization. On the basis of the PIC values, the group of cultivars from Absheron Peninsula--was distinguished by the highest polymorphism level (PIC = 0.36). Natural populations from the Guba and Shabran regions were characterized by a relatively low polymorphism level (PIC = 0.31 and PIC = 0.28, respectively); and a wild population from Nabran demonstrated the lowest polymorphism level (PIC = 0.25). The data obtained confirmed paleontological and historical data of different periods, provide the supposition that Azerbaijan is the center of diversity of V. vinifera L. In addition, our data indicate that Azerbaijan grape landraces originated from local wild forms. PMID:27529978

  18. Genetic diversity of Echinococcus granulosus in center of Iran.

    Science.gov (United States)

    Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh

    2014-08-01

    Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.

  19. Efficient Spatial Data mining using Integrated Genetic Algorithm and ACO

    Directory of Open Access Journals (Sweden)

    K Sankar

    2011-05-01

    Full Text Available Spatial data plays a key role in numerous applications such as network traffic, distributed security applications such as banking, retailing, etc., The spatial data is essential mine, useful for decision making and the knowledge discovery of interesting facts from large amounts of data. Many private institutions, organizations collect the number of congestion on the network while packets of data are sent, the flow of data and the mobility of the same. In addition other databases provide the additional information about the client who has sent the data, the server who has to receive the data, total number of clients on the network, etc. These data contain a mine of useful information for the network traffic risk analysis. Initially study was conducted to identify and predict the number of nodes in the system; the nodes can either be a client or a server. It used a decision tree that studies from the traffic risk in a network. However, this method is only based on tabular data and does not exploit geo routing location. Using the data, combined to trend data relating to the network, the traffic flow, demand, load, etc., this work aims at deducing relevant risk models to help in network traffic safety task. The existing work provided a pragmatic approach to multi-layer geo-data mining. The process behind was to prepare input data by joining each layer table using a given spatial criterion, then applying a standard method to build a decision tree. The existing work did not consider multi-relational data mining domain. The quality of a decision tree depends, on the quality of the initial data which are incomplete, incorrect or non relevant data inevitably leads to erroneous results. The proposed model develops an ant colony algorithm integrated with GA for the discovery of spatial trend patterns found in a network traffic risk analysis database. The proposed ant colony based spatial data mining algorithm applies the emergent intelligent behavior of

  20. Genetic diversity of marine animals in China: a summary and prospectiveness

    OpenAIRE

    Zhaoxia Cui; Huan Zhang; Linsheng Song; Feng You

    2011-01-01

    Genetic diversity can reflect the origin and evolution of species. It can also inform the practices of genetic conservation, breeding and genetic improvement, even stabilization of marine ecosystem. In the past two decades, accumulating studies have focused on the genetic diversity of major marine fish and shellfish in China. Here we summarize the achievements of this area and its application to taxonomy, germplasm identification, phylogenetic evolutionary biology, analysis of population gene...

  1. Genetic diversity and phylogenetic relationship of Chinese cashmere goats based on microsatellite DNA markers

    OpenAIRE

    Ran Di; Xiaohong He; Jianlin Han; Weijun Guan; Yabin Pu; Qianjun Zhao; Baoling Fu; Yuehui Ma

    2007-01-01

    Genetic diversity of nine indigenous Chinese cashmere goat populations and one West African breed were investigated using 19 microsatellite DNA markers and fluorescence PCR. The aim was to investigate the status of the genetic resources of Chinese cashmere goats. Fourteen of the microsatellite loci were highly polymorphic and effective markers for analysis of genetic diversity and relationship among goat populations. Analysis of polymorphic information content and genetic heterozygosity showe...

  2. Genetic signatures of ecological diversity along an urbanization gradient

    Science.gov (United States)

    O’Donnell, James L.; Lowell, Natalie C.; Shelton, Andrew O.; Samhouri, Jameal F.; Hennessey, Shannon M.; Feist, Blake E.; Williams, Gregory D.

    2016-01-01

    Despite decades of work in environmental science and ecology, estimating human influences on ecosystems remains challenging. This is partly due to complex chains of causation among ecosystem elements, exacerbated by the difficulty of collecting biological data at sufficient spatial, temporal, and taxonomic scales. Here, we demonstrate the utility of environmental DNA (eDNA) for quantifying associations between human land use and changes in an adjacent ecosystem. We analyze metazoan eDNA sequences from water sampled in nearshore marine eelgrass communities and assess the relationship between these ecological communities and the degree of urbanization in the surrounding watershed. Counter to conventional wisdom, we find strongly increasing richness and decreasing beta diversity with greater urbanization, and similar trends in the diversity of life histories with urbanization. We also find evidence that urbanization influences nearshore communities at local (hundreds of meters) rather than regional (tens of km) scales. Given that different survey methods sample different components of an ecosystem, we then discuss the advantages of eDNA—which we use here to detect hundreds of taxa simultaneously—as a complement to traditional ecological sampling, particularly in the context of broad ecological assessments where exhaustive manual sampling is impractical. Genetic data are a powerful means of uncovering human-ecosystem interactions that might otherwise remain hidden; nevertheless, no sampling method reveals the whole of a biological community. PMID:27672503

  3. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Joseph S. Lam

    2011-06-01

    Full Text Available Lipopolysccharide (LPS is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacteria-host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag. Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band, and the other a heteropolymer of three to five distinct (and often unique dideoxy sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band. Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host-pathogen interactions and the control/prevention of infection.

  4. Genetic diversity of Leishmania infantum field populations from Brazil

    Directory of Open Access Journals (Sweden)

    Marcela Segatto

    2012-02-01

    Full Text Available Leishmania infantum (syn. Leishmania chagasi is the etiological agent of visceral leishmaniasis (VL in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT, random amplification of polymorphic DNA (RAPD and simple sequence repeats-polymerase chain reaction (SSR-PCR, were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin.

  5. Genetic diversity of human blastocystis isolates in khorramabad, central iran.

    Directory of Open Access Journals (Sweden)

    Ebrahim Badparva

    2014-03-01

    Full Text Available There are some genetic differences in Blastocystis that show the existence of species or genotypes. One of these genes that help in identifying Blastocystis is SSUrRNA. The aim of this study was assessment of genetic diversity of Blastocystis by PCR with seven pairs of STS primers.This study was done on 511 stool samples collected from patients referred to the health care centers of Khorramabad, Central Iran, in 2012. Genomic DNA was extracted and in order to determine the Blastocystis subtype in contaminated samples, seven pairs of primers STS (subtype specific sequence-tagged site were used.Out of 511 samples, 33 (6.5% samples were infected with Blastocystis. Subtype (ST of 30 samples was identified and three subtypes 2, 3 and 4 were determined. Mix infection was reported 10% which 3.33% of the infection was for the mixture of ST 3 and ST5 and 6.67% was for the mixture of ST 2 and ST 3.The predominant subtype was ST3 that is the main human subtype. The dominance of ST2 and 5 are important in this study. This superiority has been reported in some of the studies in ST 2 which is different from the studies in other countries, because they have announced priorities of the ST1 and ST6 after ST3.

  6. Genetic diversity among sea otter isolates of Toxoplasma gondii

    Science.gov (United States)

    Sundar, N.; Cole, R.A.; Thomas, N.J.; Majumdar, D.; Dubey, J.P.; Su, C.

    2008-01-01

    Sea otters (Enhydra lutris) have been reported to become infected with Toxoplasma gondii and at times succumb to clinical disease. Here, we determined genotypes of 39 T. gondii isolates from 37 sea otters in two geographically distant locations (25 from California and 12 from Washington). Six genotypes were identified using 10 PCR-RFLP genetic markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and by DNA sequencing of loci SAG1 and GRA6 in 13 isolates. Of these 39 isolates, 13 (33%) were clonal Type II which can be further divided into two groups at the locus Apico. Two of the 39 isolates had Type II alleles at all loci except a Type I allele at locus L358. One isolate had Type II alleles at all loci except the Type I alleles at loci L358 and Apico. One isolate had Type III alleles at all loci except Type II alleles at SAG2 and Apico. Two sea otter isolates had a mixed infection. Twenty-one (54%) isolates had an unique allele at SAG1 locus. Further genotyping or DNA sequence analysis for 18 of these 21 isolates at loci SAG1 and GRA6 revealed that there were two different genotypes, including the previously identified Type X (four isolates) and a new genotype named Type A (14 isolates). The results from this study suggest that the sea otter isolates are genetically diverse.

  7. Investigation of Web Mining Optimization Using Microbial Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dipali Tungar

    2014-02-01

    Full Text Available In today's modern internet era peopleneed searching on the web and finding relevant information on the web to be efficient and fast. But traditional search engines like Google suppose to be more intelligent, still use the traditional crawling algorithms to find data relevant to the search query. But most of the times it returns irrelevant data as well which becomes confusing for the user. In a normal XML data the user inputs the search query in terms of a keyword or a question and the answer to the search query should be more precise and more relevant. So, using the traditional crawling algorithms over XML data would lead to irrelevant results. Genetic algorithms are the modern algorithms which replicates the Darwinian theory of the natural evolution. The genetic algorithms are best suited for the traditional search problem as the genetic algorithms always tend to return quality as solution for any domain data. It would be a good approach to investigate how the genetic algorithms would be suitable for the search over the XML data of different domains. So, this system implements a steady state tournament selection Microbial Genetic Algorithm over the XML data of the different domains. This would be an investigation of how the genetic algorithm would return accurate results over XML data of different domains.

  8. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations.

  9. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations. PMID:24409897

  10. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions

    Institute of Scientific and Technical Information of China (English)

    Yan-Wen Cai; Xin-Yue Cheng; Ru-Mei Xu; Dong-Hong Duan; Lawrence R. Kirkendall

    2008-01-01

    Sequences of 479 bp region of the mitochondrial COI gene were applied to detect population genetic diversity and structure of Dendroctonus valens populations. By comparing the genetic diversity between native and invasive populations, it was shown that the genetic diversity of Chinese populations was obviously lower than that of native populations with both indices of haplotype diversity and Nei's genetic diversity, suggesting genetic bottleneck occurred in the invasive process of D. valens, and was then followed by a relatively quick population buildup. According to phylogenetic analyses of haplotypes, we suggested that the origin of the Chinese population was from California, USA. Phylogenetic and network analysis of native populations of D. valens revealed strong genetic structure at two distinct spatial and temporal scales in North America. The main cause resulting in current biogeographic pattern was supposedly due to recycled glacial events. Meanwhile, a cryptic species might exist in the Mexican and Guatemalan populations.

  11. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    Science.gov (United States)

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  12. Astrophysical data mining with GPU. A case study: genetic classification of globular clusters

    CERN Document Server

    Cavuoti, Stefano; Brescia, Massimo; Paolillo, Maurizio; Pescape', Antonio; Longo, Giuseppe; Ventre, Giorgio

    2013-01-01

    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU / CUDA parallel computing technology. The model was derived from our CPU serial implementation, named GAME (Genetic Algorithm Model Experiment). It was successfully tested and validated on the detection of candidate Globular Clusters in deep, wide-field, single band HST images. The GPU version of GAME will be made available to the community by integrating it into the web application DAMEWARE (DAta Mining Web Application REsource (http://dame.dsf.unina.it/beta_info.html), a public data mining service specialized on massive astrophysical data. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm leads to a speedup of a factor of 200x in the training phase with respect to the CPU based version.

  13. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    OpenAIRE

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutati...

  14. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Luo

    2013-03-01

    Full Text Available Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  15. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. PMID:26663614

  16. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China.

  17. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    NARCIS (Netherlands)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors

  18. Do Farmers reduce genetic diversity when they domesticate tropical trees? a case study from Amazonia.

    NARCIS (Netherlands)

    Hollingsworth, P.M.; Dawson, I.K.; Goodall-Copestake, W.P.; Richardson, J.E.; Weber, J.C.; Sotelo Montes, C.; Pennington, R.T.

    2005-01-01

    Agroforestry ecosystems may be an important resource for conservation and sustainable use of tropical trees, but little is known of the genetic diversity they contain. Inga edulis, a widespread indigenous fruit tree in South America, is used as a model to assess the maintenance of genetic diversity

  19. Use of SNP markers to conserve genome-wide genetic diversity in livestock

    NARCIS (Netherlands)

    Engelsma, K.A.

    2012-01-01

    Conservation of genetic diversity in livestock breeds is important since it is, both within and between breeds, under threat. The availability of large numbers of SNP markers has resulted in new opportunities to estimate genetic diversity in more detail, and to improve prioritization of animals for

  20. Is there a positive relationship between naturalness and genetic diversity in forest tree communities?

    Energy Technology Data Exchange (ETDEWEB)

    Wehenkel, C.; Corral-Rivas, J. J.; Castellanos-Bocaz, H. A.; Pinedo-Alvarez, A.

    2009-07-01

    Abstract The concepts of genetic diversity and naturalness are well known as measures of conservation values and as descriptors of state or condition. A lack of research evaluating the relationship between genetic diversity and naturalness in biological communities, along with the possible implications in terms of evolutionary aspects and conservation management, make this subject particularly important as regards forest tree communities.We therefore examined the following hypothesis: the genetic diversity of a central-European tree stand averaged over species increases with the naturalness of the stand, as defined by the Potential Natural Vegetation (PNV). The results obtained show that the hypothesis is unsustainable because differences between the averaged genetic diversities of the unnatural and semi-natural stand classes (69 cases) were mostly non-significant. Moreover in three cases, the average genetic diversity of unnatural stand classes was significantly higher than the average genetic diversity of the semi-natural stand classes. A significantly lower average genetic diversity of unnatural stand class was not detected in the statistical analysis. Thus, the naturalness of a tree species community, as inferred from PNV, does not serve as a straightforward indicator of ecological stability when the genetic diversity and the adaptability of tree species are unknown. (Author) 30 refs.

  1. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    Science.gov (United States)

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. PMID:27021167

  2. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  3. Pulsed Field Gel Electrophoresis and Genetic Diversity in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mohammad Poyeede

    2013-07-01

    Full Text Available AbstractBackground and objective: Tuberculosis is a considerable public health problem due to its high risk of person-to-person transmission, morbidity, and mortality especially in developing countries. According to the World Health Organization there is the emergence of multi-drug resistant M. tuberculosis and the association of TB with HIV has led to TB being declared. Molecular genotyping methods are important in detecting the dominance of transmission or reinfection in a population. During one year study genotyping of 100 of M. tuberculosis (M.t. isolates from patients referred to Pasteur Institute of Iran were accomplished with PFGE method. Material and methods: After identification of M.t. isolates and performing of antibiotic susceptibility test using standard methods, Melted Incert agarose and lysozyme were mixed with bacterial suspension to prepare PFGE plaques. After lyses and washing process the plaques digested with XbaI restriction enzyme. Finally the digested DNA fragments on 1% agarose with PFGE method were stained with ethidium bromide and analyzed with GelcomparII software.Results: Dendrogram of genetic diversity among 100 M.t. isolates were obtained in comparison of molecular weight marker and revealed two common types. Pulsotype A with 71 isolates and just one MDR and pulsotype B included 29 isolates and 3 MDR cases. No correlation between antibiotypes and pulsotypes were observed.Conclusion: It is very important to know about the existence of any clonal expansion of special M.t. genotypes with resistant strains. Our research shows 3 MDR isolates into the low incidence pulsotype B which could be an alarm for more accurate MDR-TB surveillance program. Probably such observed limited polymorphism may be due to conservation of restriction sites of XbaI enzyme. In order to investigate the genetic relatedness of isolates using other restriction enzymes and different molecular typing methods simultaneously were recommended.

  4. Genetic diversity of Phytophthora infestans in the Northern Andean region

    Directory of Open Access Journals (Sweden)

    Grünwald Niklaus J

    2011-02-01

    Full Text Available Abstract Background Phytophthora infestans (Mont. de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana and tree tomato (Solanum betaceum, all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a and one mitochondrial (Cox1 region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Results Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. Conclusions The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  5. Genetic Diversity in A Core Subset of Wild Barley Germplasm

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2012-06-01

    Full Text Available Wild barley [Hordeum vulgare ssp. spontaneum (C. Koch Thell.] is a part of the primary gene pool with valuable sources of beneficial genes for barley improvement. This study attempted to develop a core subset of 269 accessions representing 16 countries from the Plant Gene Resources of Canada (PGRC collection of 3,782 accessions, and to characterize them using barley simple sequence repeat (SSR markers. Twenty-five informative primer pairs were applied to screen all samples and 359 alleles were detected over seven barley chromosomes. Analyses of the SSR data showed the effectiveness of the stratified sampling applied in capturing country-wise SSR variation. The frequencies of polymorphic alleles ranged from 0.004 to 0.708 and averaged 0.072. More than 24% or 7% SSR variation resided among accessions of 16 countries or two regions, respectively. Accessions from Israel and Jordan were genetically most diverse, while accessions from Lebanon and Greece were most differentiated. Four and five optimal clusters of accessions were obtained using STRUCTURE and BAPS programs and partitioned 16.3% and 20.3% SSR variations, respectively. The five optimal clusters varied in size from 15 to 104 and two clusters had only country-specific accessions. A genetic separation was detected between the accessions east and west of the Zagros Mountains only at the country, not the individual, level. These SSR patterns enhance our understanding of the wild barley gene pool, and are significant for conserving wild barley germplasm and exploring new sources of useful genes for barley improvement.

  6. Genetic structure and diversity of Oryza sativa L.in Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongLing; CAO YongSheng; WANG XiangKun; LI ZiChao; ZHANG HongLiang; WEI XingHua; QI YongWen; WANG MeiXing; SUN JunLi; DING Li; TANG ShengXiang; QIU Zong'En

    2007-01-01

    Preserving many kinds of rice resources and rich variations, Guizhou Province is one of the districts with the highest genetic diversity of cultivated rice (Oryza sativa L.) in China. In the current research, genetic diversity and structure of 537 accessions of cultivated rice from Guizhou were studied using 36 microsatellite markers and 39 phenotypic characters. The results showed that the model-based genetic structure was the same as genetic-distance-based one using SSRs but somewhat different from the documented classification (mainly based on phenotype) of two subspecies. The accessions being classified into indica by phenotype but japonica by genetic structure were much more than that being classified into japonica by phenotype but indica by genetic structure. Like Ding Ying's taxonomic system of cultivated rice, the subspecific differentiation was the most distinct differentiation within cultivated rice. But the differentiation within indica or japonica population was different: japonica presented clearer differentiation between soil-watery ecotypes than indica, and indica presented clearer differentiation between seasonal ecotypes than japonica. Cultivated rices in Guizhou revealed high genetic diversity at both DNA and phenotypic levels. Possessing the highest genetic diversity and all the necessary conditions as a center of genetic diversity, region Southwestern of Guizhou was suggested as the center of genetic diversity of O. sativa L. from Guizhou.

  7. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    Science.gov (United States)

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines. PMID:26686610

  8. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    Science.gov (United States)

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines.

  9. A preliminary examination of genetic diversity in the Indian false vampire bat Megaderma lyra

    Directory of Open Access Journals (Sweden)

    Emmanuvel Rajan, K.

    2006-12-01

    Full Text Available Habitat loss and fragmentation have serious consequences for species extinction as well as genetic diversity within a species. Random Amplified Polymorphic DNA (RAPD analysis was employed to assess the genetic diversity within and between four natural populations of M. lyra. Our results suggest that the genetic diversity varied from 0.21 to 0.26 with a mean of 0.11 to 0.13 (± SD. The mean Gst value of 0.15 was obtained from all four populations and estimated average Nm (1.41 showing gene flow between the populations. AMOVA analysis showed 88.96% within and 11.04% among the studied populations. Cluster analyses of RAPD phenotypes showed that specimens were not grouped by geographical origin. The genetic diversity found in the M. lyra population may be explained by its breeding behaviors. Though preliminary, the results indicate that all four populations should be considered to maintain the genetic diversity.

  10. Chapter 10: Mining genome-wide genetic markers.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Genome-wide association study (GWAS aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1 An introduction to the background of GWAS. (2 The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3 The limitations of current approaches and future directions.

  11. Genetic Diversity in Gorkhas: an Autosomal STR Study.

    Science.gov (United States)

    Preet, Kiran; Malhotra, Seema; Shrivastava, Pankaj; Jain, Toshi; Rawat, Shweta; Varte, L Robert; Singh, Sayar; Singh, Inderjeet; Sarkar, Soma

    2016-01-01

    Genotyping of highly polymorphic autosomal short tandem repeat (STR) markers is a potent tool for elucidating genetic diversity. In the present study, fifteen autosomal STR markers were analyzed in unrelated healthy male Gorkha individuals (n = 98) serving in the Indian Army by using AmpFlSTR Identifiler Plus PCR Amplification Kit. In total, 138 alleles were observed with corresponding allele frequencies ranging from 0.005 to 0.469. The studied loci were in Hardy-Weinberg Equilibrium (HWE). Heterozygosity ranged from 0.602 to 0.867. The most polymorphic locus was Fibrinogen Alpha (FGA) chain which was also the most discriminating locus as expected. Neighbor Joining (NJ) tree and principal component analysis (PCA) plot clustered the Gorkhas with those of Nepal and other Tibeto-Burman population while lowlander Indian population formed separate cluster substantiating the closeness of the Gorkhas with the Tibeto-Burman linguistic phyla. Furthermore, the dataset of STR markers obtained in the study presents a valuable information source of STR DNA profiles from personnel for usage in disaster victim identification in military exigencies and adds to the Indian database of military soldiers and military hospital repository. PMID:27580933

  12. Exhaustive search for conservation networks of populations representing genetic diversity.

    Science.gov (United States)

    Diniz-Filho, J A F; Diniz, J V B P L; Telles, M P C

    2016-01-01

    Conservation strategies routinely use optimization methods to identify the smallest number of units required to represent a set of features that need to be conserved, including biomes, species, and populations. In this study, we provide R scripts to facilitate exhaustive search for solutions that represent all of the alleles in networks with the smallest possible number of populations. The script also allows other variables to be added to describe the populations, thereby providing the basis for multi-objective optimization and the construction of Pareto curves by averaging the values in the solutions. We applied this algorithm to an empirical dataset that comprised 23 populations of Eugenia dysenterica, which is a tree species with a widespread distribution in the Cerrado biome. We observed that 15 populations would be necessary to represent all 249 alleles based on 11 microsatellite loci, and that the likelihood of representing all of the alleles with random networks is less than 0.0001. We selected the solution (from two with the smallest number of populations) obtained for the populations with a higher level of climatic stability as the best strategy for in situ conservation of genetic diversity of E. dysenterica. The scripts provided in this study are a simple and efficient alternative to more complex optimization methods, especially when the number of populations is relatively small (i.e., <25 populations). PMID:26909939

  13. Genetic diversity of Chlamydia among captive birds from central Argentina.

    Science.gov (United States)

    Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G

    2015-01-01

    To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom. PMID:25469538

  14. Genetic diversity among monoconidial and polyconidial isolates of Bipolaris sorokiniana.

    Science.gov (United States)

    Mann, Michele B; Minotto, Elisandra; Feltrin, Thaisa; Milagre, Luciana P; Spadari, Cristina; Van Der Sand, Sueli T

    2014-12-01

    Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat-growing regions of the world. This fungus shows a high genetic diversity and morphological and physiologic variability. In this study, 19 polysporic and 57 monosporic isolates of B. sorokiniana were characterized using universal rice primers-URP-PCR. The results obtained when the dendrogram was constructed with all the data produced with the amplification products showed very distinct clusters. However, the similarity among the isolates was low where 37 and 26.3 % of the monosporic and polysporic isolates, respectively, showed similarity above 70 %. All primers amplified multiple DNA fragments of polysporic as well as the monosporic isolates. Isolates fingerprints were constructed based on binary characters revealed by the three primers. An amplified fragment of approximately 750 bp was observed among 40 % of the isolates, when primer URP-1F was used. When primers URP-4R and URP-2R were used, a fragment of 450 and 400 bp was present in 31.5 and 29 % of the isolates, respectively. It was expected a higher similarity among the isolates since the monosporic cultures were originated from the polysporic. The dendrogram did not enable the separation of B. sorokiniana isolates by their geographic origin. This low correlation suggests that gene transfer may have occurred by parasexual combination in this fungus population. However, in spite of the research efforts for that end, it has not been possible to establish patterns that characterize the profile of B. sorokiniana.

  15. Genetic diversity of some chili (Capsicum annuum L. genotypes

    Directory of Open Access Journals (Sweden)

    M.J. Hasan

    2014-06-01

    Full Text Available A study on genetic diversity was conducted with 54 Chili (Capsicum annuum L. genotypes through Mohalanobis’s D2 and principal component analysis for twelve quantitative characters viz. plant height, number of secondary branch/plant, canopy breadth , days to first flowering, days to 50% flowering, fruits/plant, 5 fruits weight, fruit length, fruit diameter, seeds/fruit, 1000 seed weight and yield/plant were taken into consideration. Cluster analysis was used for grouping of 54 chili genotypes and the genotypes were fallen into seven clusters. Cluster II had maximum (13 and cluster III had the minimum number (1 of genotypes. The highest inter-cluster distance was observed between cluster I and III and the lowest between cluster II and VII. The characters yield/plant, canopy breadth, secondary branches/plant, plant height and seeds/fruit contributed most for divergence in the studied genotypes. Considering group distance, mean performance and variability the inter genotypic crosses between cluster I and cluster III, cluster III and cluster VI, cluster II and cluster III and cluster III and cluster VII may be suggested to use for future hybridization program.

  16. High Genetic Diversity in Geographically Remote Populations of Endemic and Widespread Coral Reef Angelfishes (genus: Centropyge)

    OpenAIRE

    Munday, Philip L.; Jones, Geoffrey P.; Hobbs, Jean-Paul A.; Lynne van Herwerden; Jerry, Dean R.

    2013-01-01

    In the terrestrial environment, endemic species and isolated populations of widespread species have the highest rates of extinction partly due to their low genetic diversity. To determine if this pattern holds in the marine environment, we examined genetic diversity in endemic coral reef angelfishes and isolated populations of widespread species. Specifically, this study tested the prediction that angelfish (genus: Centropyge) populations at Christmas and Cocos Islands have low genetic divers...

  17. GENETIC DIVERSITY AND POPULATION STRUCTURE OF WILD AND CULTIVATED BROWN SEA MUSTARD, UNDARIA PINNATIFIDA

    OpenAIRE

    Man, Kyu; Hong, Wook

    2002-01-01

    Enzyme electrophoresis was used to estimate genetic diversity and population structure of the wild and cultivated sea mustard, Undaria pinnatifida (Harvey) Suringar. Compared with other ecologically and economically significant brown seaweed, population structure of this species has not been studied. The objectives of this study were to estimate the levels of genetic diversity in the wild and cultivated populations and to describe the distribution of genetic variation within and among its pop...

  18. Pattern of genetic diversity among Fusarium wilt resistant castor germplasm accessions (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    K. Anjani

    2010-03-01

    Full Text Available Wilt caused by Fusarium oxysporum f.sp. ricini (Wr Gordon is one of the major yield losing diseases in castor.Cultivating wilt resistant cultivars is an effective strategy to control the disease. Utilization of diverse sources ofstable resistance is a prerequisite for durable resistance breeding. The experiment was conducted to identifygenetically diverse resistant sources in castor germplasm. Genetic diversity among 20 identified wilt resistantgermplasm was assessed using multivariate classificatory methods. Wide genetic diversity was demonstratedamong these accessions. These accessions are valuable in wilt resistance breeding programme. They wouldserve as base diverse material for wilt resistance breeding, wilt resistant genepool construction and moleculartagging of resistant genes.

  19. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    2014-04-01

    Full Text Available Molecular markers have proven to be invaluable tools for assessing plants’ genetic resources by improving our understanding with regards to the distribution and the extent of genetic variation within and among species. Recently developed marker technologies allow the uncovering of the extent of the genetic variation in an unprecedented way through increased coverage of the genome. Markers have diverse applications in plant sciences, but certain marker types, due to their inherent characteristics, have also shown their limitations. A combination of diverse marker types is usually recommended to provide an accurate assessment of the extent of intra- and inter-population genetic diversity of naturally distributed plant species on which proper conservation directives for species that are at risk of decline can be issued. Here, specifically, natural populations of forest trees are reviewed by summarizing published reports in terms of the status of genetic variation in the pure species. In general, for outbred forest tree species, the genetic diversity within populations is larger than among populations of the same species, indicative of a negligible local spatial structure. Additionally, as is the case for plants in general, the diversity at the phenotypic level is also much larger than at the marker level, as selectively neutral markers are commonly used to capture the extent of genetic variation. However, more and more, nucleotide diversity within candidate genes underlying adaptive traits are studied for signatures of selection at single sites. This adaptive genetic diversity constitutes important potential for future forest management and conservation purposes.

  20. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    Science.gov (United States)

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  1. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    Science.gov (United States)

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.

  2. Mining of lethal recessive genetic variation in Danish cattle

    DEFF Research Database (Denmark)

    Das, Ashutosh

    2015-01-01

    The widespread use of artificial insemination in cattle breeding Worldwide leads to reduced effective population sizes and increased inbreeding levels. Increased inbreeding result in increased probalility of expression of recessive defective alleles, which probably is reflected in a decline...... in fertility. The primary objective of this PhD projekt was to identify recessive lethal gentic variants in the main Danish dairy cattle breed. Holstein-Friesian utilzing next generation sequencing (NGS) data. This study shows a potential for the use of the NGS-based reverse genetic approach in identifying...... lethal or semi-lethal recessive gentic variation...

  3. Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Gowda Cholenahalli LL

    2008-10-01

    Full Text Available Abstract Background Plant genetic resources (PGR are the basic raw materials for future genetic progress and an insurance against unforeseen threats to agricultural production. An extensive characterization of PGR provides an opportunity to dissect structure, mine allelic variations, and identify diverse accessions for crop improvement. The Generation Challenge Program http://www.generationcp.org conceptualized the development of "composite collections" and extraction of "reference sets" from these for more efficient tapping of global crop-related genetic resources. In this study, we report the genetic structure, diversity and allelic richness in a composite collection of chickpea using SSR markers, and formation of a reference set of 300 accessions. Results The 48 SSR markers detected 1683 alleles in 2915 accessions, of which, 935 were considered rare, 720 common and 28 most frequent. The alleles per locus ranged from 14 to 67, averaged 35, and the polymorphic information content was from 0.467 to 0.974, averaged 0.854. Marker polymorphism varied between groups of accessions in the composite collection and reference set. A number of group-specific alleles were detected: 104 in Kabuli, 297 in desi, and 69 in wild Cicer; 114 each in Mediterranean and West Asia (WA, 117 in South and South East Asia (SSEA, and 10 in African region accessions. Desi and kabuli shared 436 alleles, while wild Cicer shared 17 and 16 alleles with desi and kabuli, respectively. The accessions from SSEA and WA shared 74 alleles, while those from Mediterranean 38 and 33 alleles with WA and SSEA, respectively. Desi chickpea contained a higher proportion of rare alleles (53% than kabuli (46%, while wild Cicer accessions were devoid of rare alleles. A genotype-based reference set captured 1315 (78% of the 1683 composite collection alleles of which 463 were rare, 826 common, and 26 the most frequent alleles. The neighbour-joining tree diagram of this reference set represents

  4. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong; ZHAO Ru; GU Senchang; YAN Wen; CHENG Zhou; CHEN Muhong; LU Weifeng; WANG Shuhong; LU Baorong; LU Jun; ZHANG Fan; XIANG Rong; XIAO Shangbin; YAN Pin

    2006-01-01

    Genetic diversity is the basic and most important component of biodiversity. It is essential for the effective conservation and utilization of genetic resources to accurately estimate genetic diversity of the targeted species and populations. This paper reports analyses of genetic diversity of a wild soybean population using three molecular marker technologies (AFLP, ISSR and SSR), and computer simulation studies of randomly selected subsets with different sample size (5-90 individuals) drawn 50 times from a total of 100 wild soybean individuals. The variation patterns of genetic diversity indices, including expected heterozygosity (He), Shannon diversity index (/), and percentage of polymorphic loci (P), were analyzed to evaluate changes of genetic diversity associated with the increase of individuals in each subset. The results demonstrated that (1) values of genetic diversity indices of the same wild soybean population were considerably different when estimated by different molecular marker techniques; (2) genetic diversity indices obtained from subsets with different sample sizes also diverged considerably; (3) P values were relatively more reliable for comparing genetic diversity detected by different molecular marker techniques; and (4) different diversity indices reached 90% of the total genetic diversity of the soybean population quite differently in terms of the sample size (number of individuals) analyzed.When using the P value as a determinator, 30-40individuals could capture over 90% of the total genetic diversity of the wild soybean population. Results from this study provide a strong scientific basis for estimating genetic diversity and for strategic conservation of plant species.

  5. Mine, yours, ours? Sharing data on human genetic variation.

    Directory of Open Access Journals (Sweden)

    Nicola Milia

    Full Text Available The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9% was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%. The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6% suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing.

  6. Old-growth Platycladus orientalis as a resource for reproductive capacity and genetic diversity.

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    Full Text Available AIMS: Platycladus orientalis (Cupressaceae is an old-growth tree species which distributed in the imperial parks and ancient temples in Beijing, China. We aim to (1 examine the genetic diversity and reproductive traits of old-growth and young populations of P. orientalis to ascertain whether the older populations contain a higher genetic diversity, more private alleles and a higher reproductive output compared with younger populations; (2 determine the relationships between the age of the population and the genetic diversity and reproductive traits; and (3 determine whether the imperial parks and ancient temples played an important role in maintaining the reproductive capacity and genetic diversity of Platycladus orientalis. METHODS: Samples from seven young (younger than 100 yrs. and nine old-growth (older than 300 yrs. artificial populations were collected. For comparison, three young and two old-growth natural populations were also sampled. Nine microsatellite loci were used to analyze genetic diversity parameters. These parameters were calculated using FSTAT version 2.9.3 and GenAlex v 6.41. IMPORTANT FINDINGS: The old-growth artificial populations of P. orientalis have significantly higher genetic diversity than younger artificial populations and similar levels to those in extant natural populations. The imperial parks and ancient temples, which have protected these old-growth trees for centuries, have played an important role in maintaining the genetic diversity and reproductive capacity of this tree species.

  7. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  8. Research of Genetic Diversity in Seven Kobresia by AFLP in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong-mei; HU Tian-ming; WANG Quan-zhen; ZHANG Guo-yun; SONG Jiang-hu

    2009-01-01

    This work analyzed the genetic diversity of Kobresia accessions at the molecular level, and further obtained the necessary information for breeding and germplasm evaluation. Genomic DNA of Kobresia was amplified with four E+3 and M+3 primer combinations with AFLP (amplified fragment length polymorphism). AFLP analysis produced 164 scorable bands,of which 154 (93.96%) were polymorphic. The mean Nei's gene diversity index (H) was 0.2430, and the Shannon's information index (I) was 0.4012, indicating the abundant genetic diversity of Kobresia. The 11 Kobresia accessions from Tibetan Plateau, China, can be classified into five groups after cluster analysis based on the UPGMA (unweighted pair group method arithmetic average) method. In general, there was abundant genetic diversity among Kobresia accessions resources, and the genetic coefficient was unrelated to their geographic latitude. Natural habitats influenced genetic differentiation of Kobresia.

  9. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  10. HIV Populations Are Large and Accumulate High Genetic Diversity in a Nonlinear Fashion

    OpenAIRE

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A.; Davey, Richard T.; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A.; Rehm, Catherine; Greer, Sarah E.; Lucey, Daniel L.; Danley, Kristen

    2013-01-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence a...

  11. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    Science.gov (United States)

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  12. An adaptive genetic algorithm with diversity-guided mutation and its global convergence property

    Institute of Scientific and Technical Information of China (English)

    李枚毅; 蔡自兴; 孙国荣

    2004-01-01

    An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of adaptive genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.

  13. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  14. The diverse genetic switch of enterobacterial and marine telomere phages.

    Science.gov (United States)

    Hammerl, Jens A; Jäckel, Claudia; Funk, Eugenia; Pinnau, Sabrina; Mache, Christin; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the enterobacterial telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator, similar to CI, Cro and Q of lambda, respectively. Moreover, N15 and ϕKO2 contain 3 related operator (OR) sites between cI and cro, while only one site (OR3) has been detected in PY54. Marine telomere phages possess a putative cI gene but not a cro-like gene. Instead, a gene is located at the position of cro, whose product shows some similarity to the PY54 ORF42 product, the function of which is unknown. We have determined the transcription start sites of the predicted repressor genes of N15, PY54, ϕKO2 and of the marine telomere phage VP58.5. The influence of the genes on phage propagation was analyzed in E. coli, Y. enterocolitica and V.parahaemolyticus. We show that the repressors and antiterminators of N15, ϕKO2 and PY54 exerted their predicted activities. However, while the proteins of both N15 and ϕKO2 affected lysis and lysogeny by N15, they did not affect PY54 propagation. On the other hand, the respective PY54 proteins exclusively influenced the propagation of this phage. The immB region of VP58.5 contains 2 genes that revealed prophage repressor activity, while a lytic repressor gene could not be identified. The results indicate an unexpected diversity of the growth regulation mechanisms in these temperate phages.

  15. Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates.

    Science.gov (United States)

    Pasam, Raj K; Sharma, Rajiv; Walther, Alexander; Özkan, Hakan; Graner, Andreas; Kilian, Benjamin

    2014-01-01

    Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type - and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches. PMID:25541702

  16. Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates.

    Directory of Open Access Journals (Sweden)

    Raj K Pasam

    Full Text Available Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485 adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type - and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches.

  17. Genetic Diversity and Population Structure in a Legacy Collection of Spring Barley Landraces Adapted to a Wide Range of Climates

    Science.gov (United States)

    Walther, Alexander; Özkan, Hakan; Graner, Andreas; Kilian, Benjamin

    2014-01-01

    Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type – and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches. PMID:25541702

  18. Mapping genetic and phylogenetic diversity of a temperate forest using remote sensing based upscaling methods

    Science.gov (United States)

    Escriba, C. G.; Yamasaki, E.; Leiterer, R.; Tedder, A.; Shimizu, K.; Morsdorf, F.; Schaepman, M. E.

    2015-12-01

    Functioning and resilience of forest ecosystems under environmental pressures increases when biodiversity at genetic, species, canopy and ecosystem level is higher. Therefore mapping and monitoring diversity becomes a necessity to assess changes in ecosystems and understanding their consequences. Diversity can be assessed by using different metrics, such as diversity of functional traits or genetic diversity amongst others. In-situ approaches have provided useful, but usually spatially constrained information, often dependent on expert knowledge. We propose using remote sensing in combination with in-situ sampling at different spatial scales. We map phylogenetic and genetic diversity using airborne imaging spectroscopy in combination with terrestrial and airborne laser scanning, as well as exhaustive in-situ sampling schemes. To this end, we propose to link leaf optical properties using a taxonomic approach (spectranomics) to genetic and phylogenetic diversity. The test site is a managed mixed temperate forest on the south-facing slope of Laegern Mountain, Switzerland (47°28'42.0" N, 8°21'51.8" E, 682 m.a.s.l.). The intensive sampling area is roughly 300m x 300m and dominant species are European beech (Fagus sylvatica) and Ash (Fraxinus excelsior). We perform phylogenetic and intraspecific genetic variation analyses for the five most dominant tree species at the test site. For these species, information on functional biochemical and architectural plant traits diversity is retrieved from imaging spectroscopy and laser scanning data and validated with laboratory and in-situ measurements. To assess regional-scale genetic diversity, the phylogenetic and genetic signals are quantified using the remote sensing data, resulting in spatially distributed intra-specific genetic variation. We discuss the usefulness of combined remote sensing and in-situ sampling, to bridge diversity scales from genetic to canopy level.

  19. Population structure and genetic diversity of the perennial medicinal shrub Plumbago

    OpenAIRE

    Panda, Sayantan; Naik, Dhiraj; Kamble, Avinash

    2015-01-01

    Knowledge of the natural genetic variation and structure in a species is important for developing appropriate conservation strategies. As genetic diversity analysis among and within populations of Plumbago zeylanica remains unknown, we aimed (i) to examine the patterns and levels of morphological and genetic variability within/among populations and ascertain whether these variations are dependent on geographical conditions; and (ii) to evaluate genetic differentiation and population structure...

  20. Gene Flow and Genetic Diversity of a Broadcast-Spawning Coral in Northern Peripheral Populations

    OpenAIRE

    Yuichi Nakajima; Akira Nishikawa; Akira Iguchi; Kazuhiko Sakai

    2010-01-01

    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadca...

  1. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research.

    Science.gov (United States)

    Chesler, Elissa J

    2014-02-01

    The historical origins of classical laboratory mouse strains have led to a relatively limited range of genetic and phenotypic variation, particularly for the study of behavior. Many recent efforts have resulted in improved diversity and precision of mouse genetic resources for behavioral research, including the Collaborative Cross and Diversity Outcross population. These two populations, derived from an eight way cross of common and wild-derived strains, have high precision and allelic diversity. Behavioral variation in the population is expanded, both qualitatively and quantitatively. Variation that had once been canalized among the various inbred lines has been made amenable to genetic dissection. The genetic attributes of these complementary populations, along with advances in genetic and genomic technologies, makes a systems genetic analyses of behavior more readily tractable, enabling discovery of a greater range of neurobiological phenomena underlying behavioral variation.

  2. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    Science.gov (United States)

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. PMID:26656801

  3. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    Science.gov (United States)

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures.

  4. Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicorarat, D.; Dick, W.A.; Dopson, M.; Tuovinen, O.H. [Ohio State University, Columbus, OH (USA)

    2008-02-15

    Microorganisms in acid mine drainage are typically acidophiles that mediate the oxidation of reduced compounds of iron and sulfur. However, microbial populations in wetland systems constructed to treat acid mine drainage are not well characterized. This study was to analyze bacterial diversity, using cultivation-independent molecular ecological techniques, in a constructed wetland that received acid drainage from an abandoned underground coal mine. DNA was purified from Fe(III)-precipitates from the oxidized surface zone of wetland sediments and 16S rRNA gene sequences were amplified and cloned. A total of 200 clones were analyzed by restriction fragment length polymorphism (RFLP) and 77 unique RFLP patterns were obtained with four restriction enzymes. Of these patterns, 30 most dominant unique clones were selected for sequencing of their 16S rRNA genes. Half of these 30 clones could be matched with autotrophic iron- and sulfur-oxidizing bacteria (Acidithiohacillus ferrooxidans and Acidithiobacillus thiooxidans). Several clones also formed a clade with heterotrophic iron-oxidizing bacteria (TRA2-10, TRA3-20, and TRA5-3) and heterotrophic bacteria (Stenotrophomas maltophilia, Bordetella spp., Alcalgenes sp., Alcaligenesfaecalis, and Alcaligenes xylosoxidans). Approximately 40% and 35% of the analyzed RFLP restriction patterns were consistent with A. ferrooxidans and A. thiooxidans, respectively. The relatively high frequency of acidithiobacilli is consistent with the chemical and physical characteristics of this site i.e., continuous, abundant supply of reduced iron and sulfur compounds, pH 3-4, ambient temperature, and limited organics originating from the coal seam and from vegetation or soil surrounding the inlet channel to the wetland.

  5. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    HAO; Chenyang; WANG; Lanfen; ZHANG; Xueyong; YOU; Guangxia; DONG; Yushen; JIA; Jizeng; LIU; Xu; SHANG; Xunwu; LIU; Sancai; CAO; Yongsheng

    2006-01-01

    Genetic diversity of 1680 modern varieties in Chinese candidate core collections was analyzed at 78 SSR loci by fluorescence detection system. A total of 1336 alleles were detected, of which 1253 alleles could be annotated into 71 loci. For these 71 loci, the alleles ranged from 4 to 44 with an average of 17.6, and the PIC values changed from 0.19 to 0.89 with an average of 0.69. (1) In the three genomes of wheat, the average genetic richness was B>A>D, and the genetic diversity indexes were B>D>A. (2) Among the seven homoeologous groups, the average genetic richness was 2=7>3>4>6>5>1, and the genetic diversity indexes were 7>3>2>4>6>5>1. As a whole, group 7 possessed the highest genetic diversity, while groups 1 and 5 were the lowest. (3) In the 21 wheat chromosomes, 7A, 3B and 2D possessed much higher genetic diversity, while 2A, 1B, 4D, 5D and 1D were the lowest. (4) The highest average genetic diversity index existed in varieties bred in the 1950s, and then it declined continually. However, the change tendency of genetic diversity among decades was not greatly sharp. This was further illustrated by changes of the average genetic distance between varieties. In the 1950s it was the largest (0.731). Since the 1960s, it has decreased gradually (0.711, 0.706, 0.696, 0.695). The genetic base of modern varieties is becoming narrower and narrower. This should be given enough attention by breeders and policy makers.

  6. Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-11-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.

  7. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  8. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity.

    Science.gov (United States)

    Smith, Peter F; Konings, Ad; Kornfield, Irv

    2003-09-01

    The importance of species recognition to taxonomic diversity among Lake Malawi cichlids has been frequently discussed. Hybridization - the apparent breakdown of species recognition - has been observed sporadically among cichlids and has been viewed as both a constructive and a destructive force with respect to species diversity. Here we provide genetic evidence of a natural hybrid cichlid population with a unique colour phenotype and elevated levels of genetic variation. We discuss the potential evolutionary consequences of interspecific hybridization in Lake Malawi cichlids and propose that the role of hybridization in generating both genetic variability and species diversity of Lake Malawi cichlids warrants further consideration. PMID:12919487

  9. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    Science.gov (United States)

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning. PMID:25860433

  10. Applying Neural Network with Genetic Algorithm and Fuzzy Selection Models to Select Equipments for Fully-Mechanized Coal Mining

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; WU Rui-min; FENG Chun-hua

    2004-01-01

    According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining.

  11. Temporal changes in taxonomic and functional diversity of fish assemblages downstream from mountaintop mining

    Science.gov (United States)

    Hitt, Nathaniel P.; Chambers, Douglas B.

    2014-01-01

    Mountaintop mining (MTM) affects chemical, physical, and hydrological properties of receiving streams, but the long-term consequences for fish-assemblage structure and function are poorly understood. We sampled stream fish assemblages using electrofishing techniques in MTM exposure sites and reference sites within the Guyandotte River basin, USA, during 2010–2011. We calculated indices of taxonomic diversity (species richness, abundance, Shannon diversity) and functional diversity (functional richness, functional evenness, functional divergence) to compare exposure and reference assemblages between seasons (spring and autumn) and across years (1999–2011). We based temporal comparisons on 2 sites that were sampled during 1999–2001 by Stauffer and Ferreri (2002). Exposure assemblages had lower taxonomic and functional diversity than reference assemblages or simulated assemblages that accounted for random variation. Differences in taxonomic composition between reference and exposure assemblages were associated with conductivity and aqueous Se concentrations. Exposure assemblages had fewer species, lower abundances, and less biomass than reference assemblages across years and seasons. Green Sunfish (Lepomis cyanellus) and Creek Chub (Semotilus atromaculatus) became numerically dominant in exposure assemblages over time because of their persistence and losses of other taxa. In contrast, species richness increased over time in reference assemblages, a result that may indicate recovery from drought. Mean individual biomass increased as fish density decreased and most obligate invertivores were apparently extirpated at MTM exposure sites. Effects of MTM were not related to physical-habitat conditions but were associated with water-quality variables, which may limit quality and availability of benthic macroinvertebrate prey. Simulations revealed effects of MTM that could not be attributed to random variation in fish assemblage structure.

  12. Genetic diversity measures of local European beef cattle breeds for conservation purposes

    Directory of Open Access Journals (Sweden)

    Pereira Albano

    2001-05-01

    Full Text Available Abstract This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P

  13. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    Science.gov (United States)

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  14. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Aureo Banhos

    Full Text Available Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest.

  15. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    Science.gov (United States)

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.

  16. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary.

    Science.gov (United States)

    Fazekas, Mónika; Madar, Anett; Sipiczki, Matthias; Miklós, Ida; Holb, Imre J

    2014-06-01

    The objectives of this study were firstly, to determine the genetic diversity of Monilinia laxa isolates from Hungary, using the PCR-based inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) technique; secondly, to prepare genetic diversity groups based on the dendrograms; and finally, to select some relevant isolates to study their fungicide sensitivity. 55 and 77 random amplified polymorphic ISSR and RAPD markers, of which 23 and 18 were polymorphic and 32 and 59 monomorphic, respectively, were used to assess the genetic diversity and to study the structure of M. laxa populations in Hungary. 27 isolates out of 57 ones were confirmed as M. laxa from several orchards (subpopulations) in three geographical regions, in various inoculum sources and in various hosts, were used. 10 fungicides and 12 isolates selected from genetic diversity groups based on the ISSR dendrograms were used to determine the fungicide sensitivity of the selected isolates. The analysis of population structure revealed that genetic diversity within locations, inoculum sources and host (H(S)) accounted for 99 % of the total genetic diversity (H(T)), while genetic diversity among locations, inoculum sources and host represented only 1 %. The relative magnitude of gene differentiation between subpopulations (G(ST)) and the estimate of the number of migrants per generation (Nm) averaged 0.005-0.009 and 53.9-99.2, respectively, for both ISSR and RAPD data set. The results obtained in dendrograms were in accordance with the gene diversity analysis. Grouping of isolates in the dendrograms was irrespective of whether they came from the same or different geographical locations. There was no relationship between clustering among isolates from inoculum sources and hosts. In the fungicide sensitivity tests, five isolates out of 12 were partly insensitive to boscalid+piraclostrobin, cyprodinil, fenhexamid or prochloraz. Obtained results in genetic diversity of M. laxa

  17. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; WANG Jia-yu; WANG Xiao-xue; YANG Xian-li; SUN Jian; CHEN Wen-fu

    2015-01-01

    Abundant genetic diversity and rational population structure of germplasm beneift crop breeding greatly. To investigate genetic variation among geographical y diverse set of japonica germplasm, we analyzed 233 japonica rice cultivars col-lected from Liaoning, Jilin and Heilongjiang provinces of China, which were released from 1970 to 2011 by using 62 simple sequence repeat (SSR) markers and 8 functional gene tags related to yield. A total of 195 al eles (Na) were detected with an average of 3.61 per locus, indicating a low level of genetic diversity level among al individuals. The genetic diversity of the cultivars from Jilin Province was the highest among the three geographic distribution zones. Moreover, the genetic diversity was increased slightly with the released period of cultivars from 1970 to 2011. The analysis of molecular variance (AMOVA) revealed that genetic differentiation was more diverse within the populations than that among the populations. The neighbor-joining (NJ) tree indicated that cultivar clusters based on geographic distribution represented three independent groups, among which the cluster of cultivars from Heilongjiang is distinctly different to the cluster of cultivars from Liaoning. For the examined functional genes, two or three al elic variations for each were detected, except for IPA1 and GW2, and most of elite genes had been introgressed in modern japonica rice varieties. These results provide a valuable evaluation for genetic backgrounds of current japonica rice and wil be used directly for japonica rice breeding in future.

  18. Tolerance of Grasses to Heavy Metals and Microbial Functional Diversity in Soils Contaminated with Copper Mine Tailings

    Institute of Scientific and Technical Information of China (English)

    TENG Ying; LUO Yong-Ming; HUANG Chang-Yong; LONG Jian; LI Zhen-Gao; P.CHRISTIE

    2008-01-01

    Copper (Cu) mine tallings,because of their high content of heavy metals,are usually hostile to plant colonization.A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China.All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture.However,on pure mine tailings,the growth was minimal,whereas the growth was maximum for the control without mine railings.The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum >Festuca arundinacea >Lolium perenne >Cynodon dactylon.The planting of forage grasses enhanced the soil microbial biomass.The Biolog data indicated that the soil microbial metabolic profile values (average well color development,community richness,and Shannon index) of the four forage grasses also followed the sequence: P.notatum > F.arundinacea > L.perenne > C.dactylon.Thus,P.notatum,under the experimental conditions of this study,may be considered as the preferred plant species for revegetation of Cu mine tailing areas.

  19. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    Science.gov (United States)

    Zhao, Cui; Liu, Cui; Li, Wei; Chi, Shan; Feng, Rongfang; Liu, Tao

    2013-07-01

    Restriction site amplified polymorphism (RSAP) was used, for the first time, to analyze the genetic structure and diversity of four, mainly cultivated, varieties of the brown alga, Saccharina japonica. Eighty-eight samples from varieties " Rongfu ", " Fujian ", " Ailunwan " and " Shengchanzhong " were used for the genetic analyses. One hundred and ninety-eight bands were obtained using eight combinations of primers. One hundred and ninety-one (96.46%) were polymorphic bands. Nei's genetic diversity was 0.360, and the coefficient of genetic differentiation was 0.357. No inbreeding-type recession was found in the four brown alga varieties and the results of the " Ailunwan " variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program. Genetic diversity and cluster analyses results were consistent with these genetic relationships. The results show the RSAP method is suitable for genetic analysis. Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  20. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    Science.gov (United States)

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-01-01

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity. PMID:27323174

  1. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cui; LIU Cui; LI Wei; CHI Shan; FENG Rongfang; LIU Tao

    2013-01-01

    Restriction site amplified polymorphism (RSAP) was used,for the first time,to analyze the genetic structure and diversity of four,mainly cultivated,varieties of the brown alga,Saccharinajaponica.Eighty-eight samples from varieties "Rongfu","Fujian","Ailunwan" and "Shengchanzhong" were used for the genetic analyses.One hundred and ninety-eight bands were obtained using eight combinations of primers.One hundred and ninety-one (96.46%) were polymorphic bands.Nei's genetic diversity was 0.360,and the coefficient of genetic differentiation was 0.357.No inbreeding-type recession was found in the four brown alga varieties and the results of the "Ailunwan" variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program.Genetic diversity and cluster analyses results were consistent with these genetic relationships.The results show the RSAP method is suitable for genetic analysis.Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  2. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    Science.gov (United States)

    Jamie Marie Marranca; Amy Welsh; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  3. Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers.

    Science.gov (United States)

    Liang, X Y; Zhang, X Q; Bai, S Q; Huang, L K; Luo, X M; Ji, Y; Jiang, L F

    2014-01-01

    Chicory is a crop with economically important roles and is cultivated worldwide. The genetic diversity and relationship of 80 accessions of chicories and endives were evaluated by sequence-related amplified polymorphism (SRAP) markers to provide a theoretical basis for future breeding programs in China. The polymorphic rate was 96.83%, and the average polymorphic information content was 0.323, suggesting the rich genetic diversity of chicory. The genetic diversity degree of chicory was higher (GS = 0.677) than that of endive (GS = 0.701). The accessions with the highest genetic diversity (effective number of alleles, NE = 1.609; Nei's genetic diversity, H = 0.372; Shannon information index, I = 0.556) were from Italy. The richest genetic diversity was revealed in a chicory line (NE = 1.478, H = 0.289, I = 0.443) among the 3 types (line, wild, and cultivar). The chicory genetic structure of 8 geographical groups showed that the genetic differentiation coefficient (GST) was 14.20% and the number of immigrants per generation (Nm) was 3.020. A GST of 6.80% and an Nm of 6.853 were obtained from different types. This observation suggests that these chicory lines, especially those from the Mediterranean region, have potential for providing rich genetic resources for further breeding programs, that the chicory genetic structure among different countries obviously differs with a certain amount of gene flow, and that SRAP markers could be applied to analyze genetic relationships and classifications of Cichorium intybus and C. endivia. PMID:25299087

  4. Multilevel Association Rule Mining for Bridge Resource Management Based on Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2014-01-01

    Full Text Available This paper is concerned with the problem of multilevel association rule mining for bridge resource management (BRM which is announced by IMO in 2010. The goal of this paper is to mine the association rules among the items of BRM and the vessel accidents. However, due to the indirect data that can be collected, which seems useless for the analysis of the relationship between items of BIM and the accidents, the cross level association rules need to be studied, which builds the relation between the indirect data and items of BRM. In this paper, firstly, a cross level coding scheme for mining the multilevel association rules is proposed. Secondly, we execute the immune genetic algorithm with the coding scheme for analyzing BRM. Thirdly, based on the basic maritime investigation reports, some important association rules of the items of BRM are mined and studied. Finally, according to the results of the analysis, we provide the suggestions for the work of seafarer training, assessment, and management.

  5. Intrusion detection: a novel approach that combines boosting genetic fuzzy classifier and data mining techniques

    Science.gov (United States)

    Ozyer, Tansel; Alhajj, Reda; Barker, Ken

    2005-03-01

    This paper proposes an intelligent intrusion detection system (IDS) which is an integrated approach that employs fuzziness and two of the well-known data mining techniques: namely classification and association rule mining. By using these two techniques, we adopted the idea of using an iterative rule learning that extracts out rules from the data set. Our final intention is to predict different behaviors in networked computers. To achieve this, we propose to use a fuzzy rule based genetic classifier. Our approach has two main stages. First, fuzzy association rule mining is applied and a large number of candidate rules are generated for each class. Then the rules pass through pre-screening mechanism in order to reduce the fuzzy rule search space. Candidate rules obtained after pre-screening are used in genetic fuzzy classifier to generate rules for the specified classes. Classes are defined as Normal, PRB-probe, DOS-denial of service, U2R-user to root and R2L- remote to local. Second, an iterative rule learning mechanism is employed for each class to find its fuzzy rules required to classify data each time a fuzzy rule is extracted and included in the system. A Boosting mechanism evaluates the weight of each data item in order to help the rule extraction mechanism focus more on data having relatively higher weight. Finally, extracted fuzzy rules having the corresponding weight values are aggregated on class basis to find the vote of each class label for each data item.

  6. Feature Reduction Based on Genetic Algorithm and Hybrid Model for Opinion Mining

    Directory of Open Access Journals (Sweden)

    P. Kalaivani

    2015-01-01

    Full Text Available With the rapid growth of websites and web form the number of product reviews is available on the sites. An opinion mining system is needed to help the people to evaluate emotions, opinions, attitude, and behavior of others, which is used to make decisions based on the user preference. In this paper, we proposed an optimized feature reduction that incorporates an ensemble method of machine learning approaches that uses information gain and genetic algorithm as feature reduction techniques. We conducted comparative study experiments on multidomain review dataset and movie review dataset in opinion mining. The effectiveness of single classifiers Naïve Bayes, logistic regression, support vector machine, and ensemble technique for opinion mining are compared on five datasets. The proposed hybrid method is evaluated and experimental results using information gain and genetic algorithm with ensemble technique perform better in terms of various measures for multidomain review and movie reviews. Classification algorithms are evaluated using McNemar’s test to compare the level of significance of the classifiers.

  7. A Genetic Algorithm Based Multilevel Association Rules Mining for Big Datasets

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2014-01-01

    Full Text Available Multilevel association rules mining is an important domain to discover interesting relations between data elements with multiple levels abstractions. Most of the existing algorithms toward this issue are based on exhausting search methods such as Apriori, and FP-growth. However, when they are applied in the big data applications, those methods will suffer for extreme computational cost in searching association rules. To expedite multilevel association rules searching and avoid the excessive computation, in this paper, we proposed a novel genetic-based method with three key innovations. First, we use the category tree to describe the multilevel application data sets as the domain knowledge. Then, we put forward a special tree encoding schema based on the category tree to build the heuristic multilevel association mining algorithm. As the last part of our design, we proposed the genetic algorithm based on the tree encoding schema that will greatly reduce the association rule search space. The method is especially useful in mining multilevel association rules in big data related applications. We test the proposed method with some big datasets, and the experimental results demonstrate the effectiveness and efficiency of the proposed method in processing big data. Moreover, our results also manifest that the algorithm is fast convergent with a limited termination threshold.

  8. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantz.: I RAPD markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    1998-01-01

    Full Text Available RAPD markers were used to investigate the genetic diversity of 31 Brazilian cassava clones. The results were compared with the genetic diversity revealed by botanical descriptors. Both sets of variates revealed identical relationships among the cultivars. Multivariate analysis of genetic similarities placed genotypes destinated for consumption "in nature" in one group, and cultivars useful for flour production in another. Brazil?s abundance of landraces presents a broad dispersion and is consequently an important resource of genetic variability. The botanical descriptors were not able to differentiate thirteen pairs of cultivars compared two-by-two, while only one was not differentiated by RAPD markers. These results showed the power of RAPD markers over botanical descriptors in studying genetic diversity, identifying duplicates, as well as validating, or improving a core collection. The latter is particularly important in this vegetatively propagated crop.

  9. On the Consequences of Purging and Linkage on Fitness and Genetic Diversity

    OpenAIRE

    Diego Bersabé; Armando Caballero; Andrés Pérez-Figueroa; Aurora García-Dorado

    2016-01-01

    Using computer simulation we explore the consequences of linkage on the inbreeding load of an equilibrium population, and on the efficiency of purging and the loss of genetic diversity after a reduction in population size. We find that linkage tends to cause increased inbreeding load due to the build up of coupling groups of (partially) recessive deleterious alleles. It also induces associative overdominance at neutral sites but rarely causes increased neutral genetic diversity in equilibrium...

  10. Genetic diversity among Salvia miltiorrhiza Bunge and related species inferred from nrDNA ITS sequences

    OpenAIRE

    ZHANG Li; Zhao, Hong-Xia; Fan, Xing; WANG, Meng; Ding, Chun-Bang; Yang, Rui-Wu

    2012-01-01

    To investigate the genetic diversity and phylogenetic relationships of Salvia miltiorrhiza and related species, we analyzed the nuclear ribosomal DNA internal transcribed spacer (ITS) region for 7 accessions of Salvia miltiorrhiza and another 23 samples from other taxa within the genus Salvia by maximum parsimony and Bayesian inference analyses. There were 257 variation sites amounting to 40.8% of the total base pairs. All of the data revealed abundant genetic diversity in the genus Salvia. T...

  11. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia

    OpenAIRE

    William Burgos-Paz; Mario Cerón-Muñoz; Carlos Solarte-Portilla

    2011-01-01

    The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05), genetic differen...

  12. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    OpenAIRE

    Marie Nancy Séraphin; Michael Lauzardo; Richard T Doggett; Jose Zabala; J. Glenn Morris; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped...

  13. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    Science.gov (United States)

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. PMID:27473780

  14. Genetic diversity and germplasm conservation of three minor Andean tuber crop species

    OpenAIRE

    Malice M.; Baudoin JP.

    2009-01-01

    In traditional Andean agrosystems, three minor tuber crop species are of regional or local importance: oca (Oxalis tuberosa Molina), ulluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz and Pav.). Genetic diversity within these species is very large and could result from the high ecological and cultural variability that characterizes the Andean area. Nowadays, many anthropic or ecological factors cause the loss of diversity and contribute to genetic erosion. The development...

  15. Rapid anti-pathogen response in ant societies relies on high genetic diversity

    OpenAIRE

    Ugelvig, Line V.; Kronauer, Daniel J. C.; Schrempf, Alexandra; Heinze, Jürgen; Cremer, Sylvia

    2010-01-01

    Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the ind...

  16. Paradox of Genetic Diversity in the Case of Prionic Diseases in Sheep Breeds from Romania

    Directory of Open Access Journals (Sweden)

    Gheorghe Hrinca

    2016-05-01

    Full Text Available The main target of this debate is the revaluation of the biodiversity concept and especially of its significance in the animal husbandry field. The paper analyzes the genetic diversity at the determinant locus of scrapie (PrP in the sheep breeds from Romania: Palas Merino, Tsigai, Tsurcana, Botosani Karakul, Palas Meat Breed and Palas Milk Breed. The prionic genetic diversity (d has been quantified by means of informational energy (e. This study highlights the impact of increasing the genetic diversity from the PrP locus level on the health status of ovine species and especially on human food safety. The informational statistics processing shows that the resistance / susceptibility to scrapie is in relation to the degree of prionic genetic diversity. The limitation of genetic diversity by selecting the individuals possessing the ARR allele in both homozygous status and in combination with alleles ARQ, ARH AHQ confers to sheep herds certain levels of resistance to contamination with scrapie disease. Instead, promoting to reproduction also individuals possessing the VRQ allele in all possible genotypic combinations (including ARR allele increases genetic diversity but also has as effect increasing the susceptibility of sheep to prion disease onset. From the point of view of morbid phenomenon, the Botosani Karakul breed is clearly advantaged compared to all other indigenous sheep breeds from Romania. For methodological coherency in the interpretative context of this issue, the genetic diversity was analyzed in association with the heterozygosity degree of breeds and their Hardy-Weinberg genetic equilibrium at the PrP locus level. Finally, the paper refers to decisions that the improvers must take to achieve the genetic prophylaxis in the scrapie case taking into account the polymorphism degree of prion protein.

  17. High genetic diversity and population structure in the endangered Canarian endemic Ruta oreojasme (Rutaceae).

    Science.gov (United States)

    Meloni, Marilena; Reid, Andrea; Caujapé-Castells, Juli; Soto, Moisés; Fernández-Palacios, José María; Conti, Elena

    2015-10-01

    Insular species are expected to have low genetic diversity, for their populations are often small and isolated, and characterized by restricted gene flow and increased incidence of inbreeding. However, empirical results do not always match this expectation. For example, population genetic analyses of several Canarian endemics, based mainly on allozymes, show levels of genetic diversity exceptionally high for insular species. To investigate whether genetic variation in rare species endemic to Canary Islands is low, as predicted by theoretical expectations, or high, as documented in some previous studies, we analysed genetic diversity of the endangered Ruta oreojasme, a rare endemic of the island of Gran Canaria, using microsatellite markers, which are more variable than allozymes. Our analyses identified very high levels of genetic diversity (A = 7.625, P = 0.984, H o = 0.558, H e = 0.687) for R. oreojasme. Even though the distribution of the species is restricted to the South of Gran Canaria, only one population shows low genetic diversity, isolation and signs of a recent bottleneck/founder event. Some intrinsic characteristics of R. oreojasme (hermaphroditism, proterandry and polyploidy), the relative climatic stability of the Canarian archipelago during Quaternary glacials/interglacials, the size of most populations (thousands of individuals), its age, and the relative proximity of the archipelago to the mainland might have contributed to the high diversity that characterises this endemic. As expected, given the marked topographic complexity of Gran Canaria, we found marked genetic structure in R. oreojasme populations. Our results support the observation that Canarian endemics are characterised by unexpectedly high genetic diversity and provides important insights for potential applications to the conservation of R. oreojasme.

  18. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  19. Genetic diversity of Norway spruce [Picea abies (L. Karst.] in Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Raul Gheorghe Radu

    2014-07-01

    Full Text Available The genetic diversity of Romanian most important coniferous tree species, the Norway spruce, was estimated by means of allozyme markers. A total of 695 adult trees sampled from eleven populations grouped in six mountainous areas in the Romanian Carpathians were analyzed. In three metapopulations (Maramureş, Postăvar and Parâng, to evaluate the influence of altitudinal gradient on genetic diversity, samples were collected from populations located at high and low altitude. At other location (ApuseniMountains we compared the narrow-crown biotype (Picea abies var. columnaris and the pyramidal crown biotype (Picea abies var. pyramidalis and explored the genetic structure of peat bog ecotype. By analyzing 7 enzyme systems and 12 enzyme coding loci, a total of 38 allelic variants have been detected. The mean value of polymorphic loci for the six sites was 86.1%, ranging between 83.3% and 91.7% and the mean expected heterozygosity was 0.115, resulting in a moderate level of genetic diversity. The highest genetic diversity (He = 0.134 was found in the narrow-crown spruce population. Apuseni metapopulation showed the highest genetic diversity (He = 0.125, being the most valuable for conservation of genetic resources. The small value of fixation index (FST = 0.009 indicates a low genetic differentiation between the six sites and AMOVA test revealed a very high level of genetic diversity within population (99%. Comparative analysis of genetic parameters showed small differences between high and low altitude populations at each site, probably due to the neutral character of the markers analyzed and the effect of gene flow between gradiental populations.

  20. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    Science.gov (United States)

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  1. The accumulation of genetic diversity within a canopy-stored seed bank.

    Science.gov (United States)

    Ayre, David; O'Brien, Eleanor; Ottewell, Kym; Whelan, Rob

    2010-07-01

    Many plants regenerate after fire from a canopy-stored seed bank, in which seed are housed in fire resistant confructescences (cones) that remain on maternal plants. This strategy would be favoured if plants accumulate a sufficiently large and genetically diverse seed bank during interfire intervals. We use a 16-year demographic study and surveys of microsatellite variation to quantify and explain the rate of accumulation of genetic diversity within the canopy seed bank of the shrub Banksia spinulosa. Flowering and fruit set were highly variable. An initial sample in 1991 of 354 reproductively mature plants generated 426 cones over 16 years, of which only 55 cones from 40 maternal plants persisted until 2005. By genotyping seed from these 55 cones we demonstrated that genetic diversity accumulated rapidly within the seed bank. Resampling revealed that diversity was determined by the number, not the age, of cones. Cones were widely distributed among plants, outcrossing rates were high (mean t(m) = 1.00 +/- 0.04) and biparental inbreeding low. Adults displayed little evidence of isolation by distance and the genotypic diversity of seed cohorts was independent of the density of neighbouring potential sires. We therefore estimate that within at least 13 individual years the number of cones produced per year (14-63) would have contained 100% of the adult genetic diversity. We conclude that a highly outcrossed mating system and relatively widespread pollen dispersal ensure the rapid development of a genetically diverse and spatially and temporally homogeneous seed bank.

  2. Genetic diversity in two introduced biofouling amphipods (Amphipods valida and Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversity

    Science.gov (United States)

    We investigated patterns of genetic diversity among invasive populations of A. valida and J. marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute...

  3. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. PMID:27122569

  4. High Genetic Diversity in a Rare, Narrowly Endemic Primrose Species: Primula interjacens by ISSR Analysis

    Institute of Scientific and Technical Information of China (English)

    XUEDa-Wei; GEXue-Jun; HAOGang; ZHANGChang-Qin

    2004-01-01

    Prirnula interjacens Chen (Primulaceae) is a rare and narrow endemic species of centralsouth of Yunnan Province in China. This species consists of two varieties: P.interjacens var. interjacens known with only one population, and P.interjacens var. epilosa with two populations. Intersimple sequence repeat (ISSR) marker was used to detect the genetic diversity of the three extant populations. We expected a low genetic diversity level, but our results revealed a high level of intraspecific genetic diversity (at population level: P=59.75%, HE=0.2368, and Hpop=0.3459; at species level: P=75.47%, HT= 0.320 5, and Hsp = 0.4618), probably resulting from floral heteromorphism and preferring outcrossing. A moderate level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (26.13%) and Shannon's diversity index (25.09%). Although P./ntedacens var. intedacens and P. interjacens var. epilosa were morphologically distinct, UPGMA cluster analysis showed that the two varieties had no distinct genetic differentiation and may be treated as a single taxon. Conservation measures are suggested, including in situ and ex situ strategies, based on the observed population genetic information.

  5. Mining

    Directory of Open Access Journals (Sweden)

    Khairullah Khan

    2014-09-01

    Full Text Available Opinion mining is an interesting area of research because of its applications in various fields. Collecting opinions of people about products and about social and political events and problems through the Web is becoming increasingly popular every day. The opinions of users are helpful for the public and for stakeholders when making certain decisions. Opinion mining is a way to retrieve information through search engines, Web blogs and social networks. Because of the huge number of reviews in the form of unstructured text, it is impossible to summarize the information manually. Accordingly, efficient computational methods are needed for mining and summarizing the reviews from corpuses and Web documents. This study presents a systematic literature survey regarding the computational techniques, models and algorithms for mining opinion components from unstructured reviews.

  6. Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils

    Directory of Open Access Journals (Sweden)

    ANUJ KUMAR SINGH

    2011-04-01

    Full Text Available Singh AK, Jamaluddin (2011 Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils. Biodiversitas 12: 107-111. Limestone mined spoils are devoid of adequate population of beneficial microbial flora. Arbuscular mycorrhizal fungi (AMF are very important constituent of plant- soil-microbe system. In mined spoils the population of AMF is greatly reduced and hence the spoils become very inhospitable for establishment of vegetation. In the present investigation, status of AMF population and its effect on natural regeneration process is studied. It is well known fact that the arbuscular mycorrhizal fungi play very important role in establishment of vegetation in degraded lands. Plantation of seedlings inoculated with arbuscular mycorrhizal fungi provide favorable soil conditions for naturally growing vegetation in the mined overburden spoils. Physico-chemical properties of soil are converted suitable for planted species and thus it allows other species to grow and also provide shade to protect the herbaceous vegetation. Introduction of plant species attracts immigration of other species and if they established, may result into a very distinctive floral cover on disturbed lands. Thus, invasion of native plant species along with planted species may play a significant role in increasing the plant diversity on mined

  7. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis

    NARCIS (Netherlands)

    Pang, W.; Li, X.; Choi, S.R.; Dhandapani, V.; Im, S.; Park, M.Y.; Jang, C.S.; Yang, M.S.; Ham, I.K.; Lee, E.M.; Kim, W.; Lee, S.S.; Bonnema, A.B.; Park, S.; Piao, Z.; Lim, Y.P.

    2015-01-01

    Brassica rapa is an economically important crop with a wide range of morphologies. Developing a set of fixed lines and understanding their diversity has been challenging, but facilitates resource conservation. We investigated the genetic diversity and population structure of 238 fixed lines of leafy

  8. Genetic Diversity through the Looking Glass: Effect of Enrichment Bias

    OpenAIRE

    Dunbar, J.; White, S.; Forney, L

    1997-01-01

    The effect of enrichment bias on the diversity of 2,4-dichlorophenoxyacetate (2,4-D)-degrading (2,4-D(sup+)) bacteria recovered from soil was evaluated by comparing the diversity of isolates obtained by direct plating to the diversity of isolates obtained from 85 liquid batch cultures. By the two methods, a total of 159 isolates were purified from 1 g of soil and divided into populations based on repeated extragenic palindromic sequence PCR (rep-PCR) genomic fingerprints. Approximately 42% of...

  9. Genetic diversity and population structure of Korean and Chinese soybean [Glycine max (L.) Merr.] accessions

    Science.gov (United States)

    Korean and Chinese cultivated soybean [Glycine max (L.) Merr.] populations are major soybean gene pools. Information has been reported comparing genetic diversity between soybeans from the two countries using an unequal number of accessions and only 6 to 35 genetic markers. This study compares diffe...

  10. Mitochondrial DNA-based genetic diversity of genus Lygus (Hemiptera: Miridae) in North America

    Science.gov (United States)

    The genus Lygus is widely distributed in North American and Eurasian continents. It is the most-studied genus in the family Miridae. However, very less information on the genetic diversity of this genus is available. Studying genetic variation among Lygus pest species and thereby constructing a ...

  11. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China

    NARCIS (Netherlands)

    Li, Yinghui; Guan, Rongxia; Liu, Zhangxiong; Ma, Yansong; Wang, Lixia; Li, Linhai; Lin, Fanyun; Luan, Weijiang; Chen, Pengyin; Yan, Zhe; Guan, Yuan; Zhu, Li; Ning, Xuecheng; Smulders, M.J.M.; Li, W.; Piao, Rihua; Cui, Yanhua; Yu, Zhongmei; Guan, Min; Chang, Ruzhen; Hou, Anfu; Shi, Ainong; Zhang, Bo; Zhu, Shenlong; Qiu, L.

    2008-01-01

    The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total o

  12. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci

    Science.gov (United States)

    In this work we evaluate a collection of 88 carrot cultivars and landraces for polymorphisms at SSR loci and use the obtained markers to assess the genetic diversity, and we show molecular evidence for divergence between Asiatic and Western carrot genetic pools. The use of primer pairs flanking repe...

  13. Genetic diversity and population structure of an important wild berry crop.

    Science.gov (United States)

    Zoratti, Laura; Palmieri, Luisa; Jaakola, Laura; Häggman, Hely

    2015-01-01

    The success of plant breeding in the coming years will be associated with access to new sources of variation, which will include landraces and wild relatives of crop species. In order to access the reservoir of favourable alleles within wild germplasm, knowledge about the genetic diversity and the population structure of wild species is needed. Bilberry (Vaccinium myrtillus) is one of the most important wild crops growing in the forests of Northern European countries, noted for its nutritional properties and its beneficial effects on human health. Assessment of the genetic diversity of wild bilberry germplasm is needed for efforts such as in situ conservation, on-farm management and development of plant breeding programmes. However, to date, only a few local (small-scale) genetic studies of this species have been performed. We therefore conducted a study of genetic variability within 32 individual samples collected from different locations in Iceland, Norway, Sweden, Finland and Germany, and analysed genetic diversity among geographic groups. Four selected inter-simple sequence repeat primers allowed the amplification of 127 polymorphic loci which, based on analysis of variance, made it possible to identify 85 % of the genetic diversity within studied bilberry populations, being in agreement with the mixed-mating system of bilberry. Significant correlations were obtained between geographic and genetic distances for the entire set of samples. The analyses also highlighted the presence of a north-south genetic gradient, which is in accordance with recent findings on phenotypic traits of bilberry. PMID:26483325

  14. STUDY ON THE RELATIONSHIP BETWEEN THE DIVERSITY COAL MASS STRUCTURE AND LITHOTYPE OF COAL IN MULTI-COAL SEAM MINE

    Institute of Scientific and Technical Information of China (English)

    吴基文; 赵志根; 陈资平

    1999-01-01

    Through site observation and indoor measurements in XieJiaji No.2 Coal Mine in Huainen and Luling Coal Mine in Huaibei, it is discovered that the fragmentation degree are different in different coal seams in same mining district and even in sublevels of the same coal seam, the coal mass structures exist much difference. By analyzing the relationship between the constitution of coal matters and the epigenesis breakage of coal. This paper points out that the internal factor which causes the diversity of the coal mass structure comes from the diversity in the contents of telocollinite and desmocollinite in the vitrinite. The contenet of desmocollinite is higher than that of telocollinite in intact coal seam (sublevel) but the former is less than the later in breaking sublevel, the diversity of constituent content more affects the epigenetic fragmentation degree of coal seam. The content of desrnocollinite proves lower than that of telocollinite in the broken coal seam. The new understanding has directing, and reference for the study of coal petrology, coal mine gas geology and coal methane.

  15. Molecular diversity of arbuscular mycorrhizal fungi at a large-scale antimony mining area in southern China.

    Science.gov (United States)

    Wei, Yuan; Chen, Zhipeng; Wu, Fengchang; Hou, Hong; Li, Jining; Shangguan, Yuxian; Zhang, Juan; Li, Fasheng; Zeng, Qingru

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the community composition of AMF under natural conditions in soils contaminated by antimony (Sb). The objective of this study was to investigate the characteristics of AMF molecular diversity, and to explore the effects of Sb content and soil properties on the AMF community structure in an Sb mining area. Four Sb mine spoils and one adjacent reference area were selected from around the Xikuangshan mine in southern China. The association of AMF molecular diversity and community composition with the rhizosphere soils of the dominant plant species was studied by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results from all five studied sites showed that the diversity of AMF decreased with increasing Sb concentration. Principal component analysis (PCA) indicated that the AMF community structure was markedly different among these groups. Further redundancy analysis (RDA) showed that Sb contamination was the dominating factor influencing the AMF community structure in the Sb mine area. However, the multivariate analysis showed that, apart from the soil Sb content, extractable nitrogen content and organic matter content also attributed to AMF sequence distribution type. Some AMF sequences were only found in the highly contaminated area and these might be ideal candidates for improving phytoremediation efficiency in Sb mining regions. Gene sequencing analysis revealed that most species were affiliated with Glomus, suggesting that Glomus was the dominant AMF genus in the studied Sb mining area. PMID:25766009

  16. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum

    OpenAIRE

    Melito, Sara; Sias, Angela; Petretto, Giacomo Luigi; Chessa, Mario; Pintore, Giorgio Antonio Mario; Porceddu, Andrea

    2013-01-01

    Background: Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods: H. italicum plants were AFLP fi...

  17. Social Organization of Crop Genetic Diversity. The G × E × S Interaction Model

    OpenAIRE

    Geo Coppens d’Eeckenbrugge; Christian Leclerc

    2011-01-01

    A better knowledge of factors organizing crop genetic diversity in situ increases the efficiency of diversity analyses and conservation strategies, and requires collaboration between social and biological disciplines. Four areas of anthropology may contribute to our understanding of the impact of social factors on crop diversity: ethnobotany, cultural, cognitive and social anthropology. So far, most collaborative studies have been based on ethnobotanical methods, focusing on farmers’ individu...

  18. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antartica Desv.)

    NARCIS (Netherlands)

    van de Wouw, M.J.; Van Dijk, P.J.; Huiskes, A.H.L.

    2008-01-01

    Aim To determine patterns in diversity of a major Antarctic plant species, including relationships of Antarctic populations with those outside the Antarctic zone. Location Antarctic Peninsula, Maritime Antarctica, sub-Antarctic islands, Falkland Islands and South America. Methods Amplified fragment

  19. High and distinct range-edge genetic diversity despite local bottlenecks.

    Science.gov (United States)

    Assis, Jorge; Castilho Coelho, Nelson; Alberto, Filipe; Valero, Myriam; Raimondi, Pete; Reed, Dan; Serrão, Ester Alvares

    2013-01-01

    The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge) are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines. PMID:23967038

  20. Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers.

    Directory of Open Access Journals (Sweden)

    Tamar E Carter

    Full Text Available Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci. For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%, moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61, low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis, and moderate linkage disequilibrium (ISA = 0.05, P<0.0001. In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti's P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data.

  1. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  2. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    OpenAIRE

    Sergio Leonel Simental-Rodríguez; Carmen Zulema Quiñones-Pérez; Daniel Moya; Enrique Hernández-Tecles; Carlos Antonio López-Sánchez; Christian Wehenkel

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is ...

  3. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Directory of Open Access Journals (Sweden)

    Alexandra Erfmeier

    Full Text Available Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of

  4. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Science.gov (United States)

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  5. Genetic diversity and selective breeding of red common carps in China

    OpenAIRE

    Li, S. F.; C. H. Wang

    2001-01-01

    China has a very rich genetic diversity in common carp (Cyprinus carpio) and the red common carp plays an important role in Chinese aquaculture and genetic studies. Selective breeding, particularly crossbreeding has been applied successfully to red common carps in China, and the products of these efforts have been in commercial use since the 1970s. However, knowledge of the quantitative and molecular genetics of these carps is limited. Studies were therefore undertaken to: (1) understand the ...

  6. Bringing genetic diversity to the forefront of conservation policy and management

    DEFF Research Database (Denmark)

    Hoban, S.M.; Hauffe, H.C.; Pérez-Espona, S.;

    2013-01-01

    diversity. Drawing on qualitative results from a questionnaire sent to European conservation professionals by the ConGRESS Framework 7 Support Action (http://www.congressgenetics.eu), we summarise our preliminary findings on the attitudes and experiences of European conservation professionals in using...... genetics. We then discuss the implications of these findings for academics involved in conservation genetics and suggest that a much closer partnership between academic conservation geneticists and conservation practitioners is necessary if the full potential of genetic tools in conservation...

  7. Genetic diversity of Heterobasidion spp. in Scots pine, Norway spruce and European silver fir stands

    Directory of Open Access Journals (Sweden)

    Piotr Łakomy

    2013-12-01

    Full Text Available Investigations of genetic diversity of Heterobasidion spp. in Scots pine, Norway spruce and European silver fir stands indicated that almost all of identified genets occurring in those stands were small and occupied only a single stump. In some cases two, three or even four genets could effectively exist in an individual stump. Genetic similarity of H. annosum s.s. genets varied from 0% to 62%, H. parviporum from 0% to 38% and H. abietinum from 0% to 55%. The oldest and biggest genet was found in laying fir log and overgrew the wood for at least 14 years. This genet belonged to H. abietinum. The size of genets was related to thinning operation, spore dispersal, age of stand or competition in wood colonization.

  8. Genetic diversity of Sardinian goat population based on microsatellites

    Directory of Open Access Journals (Sweden)

    A. Carta

    2010-01-01

    Full Text Available During the last century, the selection for production traits of the main livestock species has led to a reduction in number of local populations with consequent loss of genetic variability. In Sardinia, the genetic improvement strategy has been based on selection for the local pure breed in sheep, whereas in the other species (cattle, swine and goat, an often unplanned crossbreeding with improved breeds has been applied.

  9. Comparative Analysis of Genetic Diversity in Landraces of Waxy Maize from Yunnan and Guizhou Using SSR Markers

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-jian; HUANG Yu-bi; RONG Ting-zhao; TIAN Meng-liang; YANG Jun-pin

    2005-01-01

    Waxy maize landraces are abundant in Yunnan and Guizhou of China. Genetic diversity of waxy maize landraces from Yunnan and Guizhou were analyzed using SSR markers. We screened 38 landraces with 50 primers that generated 3 to 6 polymorphic bands, with an average of 4.13 bands. Shannon's information indices for genetic diversity of the 14 waxy maize landraces from Yunnan varied from 4.9571 to 42.1138 and averaged 26.5252; Shannon's information indices for genetic diversity of the 24 waxy maize landraces from Guizhou varied from 22.0066 to 40.6320 and averaged 32.3156. For the 14 waxy maize landraces from Yunnan, the within-landrace genetic diversity accounted for 45.40% and the among-landrace genetic diversity accounted for 54.60% of the total genetic diversity observed. For the 24 waxy maize landraces from Guizhou, the within-landrace genetic diversity accounted for 50.76% and the among-landrace genetic diversity accounted for 49.24% of the total observed. Some individual landraces possessed as much as 96.86% of the total genetic diversity occurring among landraces within origins. Differentiation between geographic origins accounted for only 3.14% of the total genetic diversity. Both Yunnan and Guizhou would be the diversity centers and the original centers of waxy maize.

  10. Cotyledon storage proteins as markers of the genetic diversity in Castanea sativa Miller.

    Science.gov (United States)

    Alvarez, J B; Muñoz-Diez, C; Martín-Cuevas, A; Lopez, S; Martín, L M

    2003-08-01

    This study has been to analyse the useful nut globulin proteins as a marker of the genetic diversity in Castanea sativa. The evaluated populations were highly polymorphic for the globulins, being detected up to 35 polymorphic bands with a wide distribution among all the evaluated populations. Taken together for populations from all the chestnut regions, about 39.3% of total allelic variation was distributed among the populations. The estimates of genetic similarity between populations were clearly associated with the collecting site. This method of analysis of the nut storage proteins (globulins) could be a useful tool for the evaluation of genetic diversity in this and other species of the Fagaceae.

  11. A comparison of the genetic diversity in Dipteronia sinensis Oliv.and Dipteronia dyeriana Henry

    Institute of Scientific and Technical Information of China (English)

    LI Shan; QIAN Zengqiang; CAI Yuliang; ZHAO Guifang

    2006-01-01

    Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D.dyeriana.Based on random amplified polymorphic DNA (RAPD) markers,a comparative study of the genetic diversity and genetic structure of Dipteronia was performed.In total,128 and 103 loci were detected in 17 D.sinensis populations and 4 D.dyeriana populations,respectively,using 18 random primers.These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%,respectively,indicating that the genetic diversity of D.sinensis was higher than that of D.dyeriana.Analysis,based on similarity coefficients,Shannon diversity index and Nei gene diversity index,also confirmed this result.AMOVA analysis demonstrated that the genetic variation of D.sinensis within and among populations accounted for 56.89% and 43.11% of the total variation,respectively,and that of D.dyeriana was 57.86% and 42.14%,respectively.The Shannon diversity index and Nei gene diversity index showed similar results.The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high.Analysis of the genetic distance among populations also supported this conclusion.Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon.The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D.sinensis (p<0.01),while no significant correlation was found between genetic and geographical distances among populations of D.dyeriana.This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale.This result may be related to differences in the

  12. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  13. Genetic diversity in mazandaranian native cattle: a comparison with Holstein cattle, using ISSR marker.

    Science.gov (United States)

    Pashaei, S; Azari, M A; Hasani, S; Khanahmadi, A; Rostamzadeh, J

    2009-05-01

    This study was carried out to investigate genetic diversity in Mazandaranian native cattle population comparised to the Holstein breed, using Inter Simple Sequence Repeats (ISSR) marker. A total of 175 animals, including 71 native and 104 cattle of Holstein breed were screened. The extraction of DNA samples were carried out, using modified salting out method. A 19-mer oligonucleotide, (GA)9C, was used as primer in PCR reactions. The PCR products showed 15 different fragments with length ranged from 120 to 1600 bp in the two breeds.. Genetic variation indexes, including effective number of alleles, Shannon index, Nei's gene diversity and standard genetic distance were estimated, using POPGene software. Generally, the estimated genetic variation indexes showed low levels of diversity in the two breeds. However, Nei's gene diversity and Shannon index estimation was observed almost two folds in native cattle compared to Holstein breed. Less levels of diversity in Holstein cattle may be because of applying intensive selection programs. Conversely, native cattle have been less affected by selection. Therefore, it seems that Mazandaranian native cattle probably are better for breeding programs than Holstein cattle. Results showed that ISSR Markers are reliable and can be used in genetic diversity investigations. PMID:19634477

  14. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. PMID:26494844

  15. Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds.

    Science.gov (United States)

    Brenneman, R A; Chase, C C; Olson, T A; Riley, D G; Coleman, S W

    2007-02-01

    The objective of this study was to quantify the genetic diversity among breeds under evaluation for tropical adaptability traits that affect the performance of beef cattle at the USDA/ARS SubTropical Agricultural Research Station (STARS) near Brooksville, FL, USA. Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among the breeds American Brahman, Angus, Senepol and Romosinuano; the latter was comprised of two distinct bloodlines (Costa Rican and Venezuelan). Genotypes of 47 animals from each of these STARS herds were analysed for genetic diversity and genetic distance. Using two methods, the greatest genetic distance was detected between the Costa Rican line of Romosinuano and the Senepol. Gene diversity ranged between 0.64 (Costa Rican line of Romosinuano) and 0.75 (American Brahman). The breed relationship inferences, which are based on genetic distance, provide additional tools for consideration in future crossbreeding studies and for testing the relationship between quantified breed diversity and observed heterosis. PMID:17257188

  16. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  17. Hitchhiker’s guide to genetic diversity in socially structured populations

    Directory of Open Access Journals (Sweden)

    L. S. PREMO

    2012-02-01

    Full Text Available When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking. A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration. Under conditions in which genetic and cultural variants are transmitted symmetrically, neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking. Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity, and it may be applicable to humans as well. This paper provides a critical review of recent models of both types of hitch­­hi­king in socially structured populations. The models’ assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species, and vice versa [Current Zoology 58 (1: 287-297, 2012].

  18. Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)

    Science.gov (United States)

    Larson, S.; Monson, D.; Ballachey, B.; Jameson, R.; Wasser, S.K.

    2009-01-01

    Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2 = 0.27, P genetic diversity and cortisol at the individual level (r2 = 0.17, P = 0.04). No relationship was found between genetic diversity and testosterone (P = 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity. ?? 2009 by the Society for Marine Mammalogy.

  19. Utilization of Genetic Diversity on Establishing Chinese Soybean (G.max0 Core Collection

    Institute of Scientific and Technical Information of China (English)

    QiuLijuan; XieHua; ChangRuzhen; LiWei; WangWenhui; ZhangBo; ZhangMinghui; FengZhongfu

    2002-01-01

    Genetic diversity plays a very important role in establishing core collection.In this study,A total of 405 Chinese soybean accessions was selected from the preliminary core collection,which had 5 different ecotypes from three cultivation regions,including northeastern spring sowing soybean(NSpSS),huanghuai summer sowing soybean(HSuSS),southern spring sowing soybean(SSpSS),southern summer sowing soybean(SSuSS),southern autumn sowing soybean(SAuSS).The genetic diversities and genetic relationship of five ecotypes were analyzed at DNA level by using SSR markers in order to provide information for establishemnt of Chinese soybean core collection.A set of 67 SSR primers were used to analyze these accessions,and detected 502 alleles with averaged 7.49 alleles per locus.SAuSS appeared to be the highest number of alleles,HSuSS had the biggest genetic diversity indexes and NSpSS were lowest for both numbers of alleles and genetic diversity indexes among 5 ecotypes.Since five ecotypes differentiated obviously,various sampling strategy for establishing core collection should be adaped for different ecotypes based on the number of alleles and genetic diversity indexes.

  20. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-01-01

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients. PMID:26345916

  1. Assessment of genetic diversity in maize inbred lines using RAPD markers

    Directory of Open Access Journals (Sweden)

    Daniela Cristina Bruel

    2007-01-01

    Full Text Available RAPD molecular markers were used to analyze genetic diversity between 16 corn lines. Twenty-two primerswere used resulting in the amplification of 265 fragments, of which 237 (84.44% were polymorphic. Using the UPGMAmethod the genetic associations obtained showed 5 distinct heterotic groups. A principal coordinates analysis also showed anassociation of lines in 5 groups, in agreement with the results observed in the dendrogram. A bootstrap procedure wasapplied to verify whether the amount of markers used was sufficient to ensure reliability of the results, the procedure showeda coefficient of variation of 8.3%, suggesting that the markers were sufficient to assess genetic diversity between the analyzedlines. The high rate of polymorphism between lines revealed by RAPD markers indicated that the method is efficient to analyzegenetic diversity in corn lines and that the genetic divergence can be used to establish consistent heterotic groups between cornlines.

  2. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests

    DEFF Research Database (Denmark)

    Graudal, Lars; Aravanopoulos, Filippos; Bennadji, Zohra;

    2014-01-01

    -monitoring schemes. Here, we provide a review and an assessment of the different attempts made to provide such indicators for tree genetic diversity from the global level down to the level of the management unit. So far, no generally accepted indicators have been provided as international standards, nor tested...... distributions (patterns of genetic variation of key adaptive traits in the ecological space) of selected species is a realistic way of assessing the trend of intra-specific variation, and thus provides a state indicator of tree genetic diversity also able to reflect possible pressures threatening genetic...... independently of state indicators. A coherent set of indicators covering diversity-productivity-knowledge-management based on the genecological approach is proposed for application on appropriate groups of tree species in the wild and in cultivation worldwide. These indicators realistically reflect the state...

  3. Assessing Genetic Diversity Based on Gliadin Proteins in Aegilops cylindrica Populations from Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Toraj KHABIRI

    2013-02-01

    Full Text Available Wild wheat progenitors served as a valuable gene pool in breeding perspectives. In this respect, gliadins could be an important tool in assessing genetic variability as protein markers. Thus, genetic diversity of gliadin protein patterns in seventeen populations of Aegilops cylindrica collected from northwest of Iran were investigated using acid polyacrylamide gel electrophoresis. Results showed that the highest number of bands in the electrophoregrams were related to the ω type of geliadins. Conversely, the lowest number of bands were pertained to the β type of gliadins. Genetic diversity between populations was greater than within population variation. Assessment of total variation for the three gliadin types indicated that the highest total variation was related to β type while, the lowest one was belonged to ω type. Cluster analysis using complete linkage method divided populations into two separated groups in which genetic diversity does not follow from geographical distribution.

  4. Effect of fluoride pollution on genetic diversity of a medicinal tree, Syzygium cumini.

    Science.gov (United States)

    Khan, Suphiya; Baunthiyal, Mamta; Kumari, Alka; Sharma, Vinay

    2012-07-01

    Syzygium cumini Linn. (Myrtaceae) is a medicinal tree (Jamun) used worldwide in treatment of diabetes. However, no molecular data is available on genetic polymorphism and its relationship, if any with fluoride pollution. In the present study, the genetic variability of two populations of S. cumini growing in fluoride rich soils and normal soils located in Rajasthan and Haryana regions of India, respectively was determined using random amplified polymorphic DNA (RAPD) markers. Different measures of diversity in Rajasthan populations: Shannon's index of phenotypic diversity (I) = 0.440; Nei's genetic diversity (h) = 0.292; effective number of alleles per locus (Ne) = 1.497; total species diversity (Hsp) = 0.307 and within population diversity (Hpop) = 0.158 showed high diversity in comparison to Haryana populations. Thus, it seems that Rajasthan population responds with increased genetic variation resulting possibly from new mutation that affect allele frequencies as a consequence of adaptation to contaminated environment. This may imply that the increased diversity levels may act as a buffer to combat fluoride stress. Cluster analysis and principal component analysis (PCA) results showed mixing between the populations. PMID:23360002

  5. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Science.gov (United States)

    Noreen, Annika M E; Webb, Edward L

    2013-01-01

    Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854), high allelic richness (R = 16.7-19.5), low inbreeding co-efficients (FIS = 0.013-0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss. PMID:24367531

  6. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    Science.gov (United States)

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  7. Application of resistance gene analog markers to analyses of genetic structure and diversity in rice.

    Science.gov (United States)

    Ren, Juansheng; Yu, Yuchao; Gao, Fangyuan; Zeng, Lihua; Lu, Xianjun; Wu, Xianting; Yan, Wengui; Ren, Guangjun

    2013-07-01

    Plant disease resistance gene analog (RGA) markers were designed according to the conserved sequence of known RGAs and used to map resistance genes. We used genome-wide RGA markers for genetic analyses of structure and diversity in a global rice germplasm collection. Of the 472 RGA markers, 138 were polymorphic and these were applied to 178 entries selected from the USDA rice core collection. Results from the RGA markers were similar between two methods, UPGMA and STRUCTURE. Additionally, the results from RGA markers in our study were agreeable with those previously reported from SSR markers, including cluster of ancestral classification, genetic diversity estimates, genetic relatedness, and cluster of geographic origins. These results suggest that RGA markers are applicable for analyses of genetic structure and diversity in rice. However, unlike SSR markers, the RGA markers failed to differentiate temperate japonica, tropical japonica, and aromatic subgroups. The restricted way for developing RGA markers from the cDNA sequence might limit the polymorphism of RGA markers in the genome, thus limiting the discriminatory power in comparison with SSR markers. Genetic differentiation obtained using RGA markers may be useful for defining genetic diversity of a suite of random R genes in plants, as many studies show a differentiation of resistance to a wide array of pathogens. They could also help to characterize the genetic structure and geographic distribution in crops, including rice, wheat, barley, and banana. PMID:24099390

  8. Reducing the loss of genetic diversity associated with assisted colonization-like introductions of animals

    Institute of Scientific and Technical Information of China (English)

    Jaana KEKKONEN; Jon E BROMMER

    2015-01-01

    Translocations, especially assisted colonizations, of animals are increasingly used as a conservation management tool. In many cases, however, limited funding and other logistic challenges limit the number of individuals available for translocation. In conservation genetics, small populations are predicted to rapidly lose genetic diversity which can deteriorate population sur-vival. Thus, how worried should we be about the loss of genetic diversity when introducing small, isolated populations? Histori-cal species introductions provide a means to assess these issues. Here we review 13 studies of “assisted colonization-like” intro-ductions of animals, where only a small known number of founders established an isolated population without secondary contact to the source population. We test which factors could be important in retaining genetic diversity in these cases. In many cases, loss in heterozygosity (-12.1%) was detected, and more seriously the loss in allelic richness (-27.8 %). Number of founders seemed to have an effect but it also indicated that high population growth rate could help to retain genetic diversity, i.e. future management actions could be effective even with a limited number of founders if population growth would be enhanced. On the contrary, translocated organisms with longer generation times did not seem to retain more genetic diversity. We advocate that, where possible, future studies on translocated animals should report the loss of genetic diversity (both heterozygosity and allelic richness), which is essential for meta-analyses like this one for deepening our understanding of the genetic consequences of as-sisted colonization, and justifying management decisions [Current Zoology 61 (5): 827–834, 2015].

  9. CUDA-accelerated genetic feedforward-ANN training for data mining

    International Nuclear Information System (INIS)

    We present an implementation of genetic algorithm (GA) training of feedforward artificial neural networks (ANNs) targeting commodity graphics cards (GPUs). By carefully mapping the problem onto the unique GPU architecture, we achieve order-of-magnitude speedup over a conventional CPU implementation. Furthermore, we show that the speedup is consistent across a wide range of data set sizes, making this implementation ideal for large data sets. This performance boost enables the genetic algorithm to search a larger subset of the solution space, which results in more accurate pattern classification. Finally, we demonstrate this method in the context of the 2009 UC San Diego Data Mining Contest, achieving a world-class lift on a data set of 94682 e-commerce transactions.

  10. CUDA-accelerated genetic feedforward-ANN training for data mining

    Energy Technology Data Exchange (ETDEWEB)

    Patulea, Catalin; Peace, Robert; Green, James, E-mail: cpatulea@sce.carleton.ca, E-mail: rpeace@sce.carleton.ca, E-mail: jrgreen@sce.carleton.ca [School of Systems and Computer Engineering, Carleton University, Ottawa, K1S 5B6 (Canada)

    2010-11-01

    We present an implementation of genetic algorithm (GA) training of feedforward artificial neural networks (ANNs) targeting commodity graphics cards (GPUs). By carefully mapping the problem onto the unique GPU architecture, we achieve order-of-magnitude speedup over a conventional CPU implementation. Furthermore, we show that the speedup is consistent across a wide range of data set sizes, making this implementation ideal for large data sets. This performance boost enables the genetic algorithm to search a larger subset of the solution space, which results in more accurate pattern classification. Finally, we demonstrate this method in the context of the 2009 UC San Diego Data Mining Contest, achieving a world-class lift on a data set of 94682 e-commerce transactions.

  11. Influence of Engineering Bacteria Quantitative Inspection on Diversity of Anpeng Alkali Mine Resources Exploitation

    Directory of Open Access Journals (Sweden)

    Yu Tao

    2016-03-01

    Full Text Available Cadmium (Cd is a heavy metal pollutant seriously threatening creatures, and highly concentrated Cd in soil severely inhibits the activity of microbial populations. Soil in Anpeng Alkali Mine area in Nanyang city (Henan province is seriously polluted by heavy metal. Both copper (Cu and Cd content are found to be over standard, in which, Cu belongs to mild contamination while Cd is a serious contamination. To detect diversity of microbial communities in soil in the process of bioremediation, Cd polluted soil samples are collected from orefield for pot experiment, Biolog micro-plate technology is used to study the influence of applying low, medium and high amount of rice straw (5.3 t/ha, 10.2 t/ha and 23.4 t/ha in polluted soil and combining low, medium and high amount of rice straw with surface displayed engineering bacteria (X4/pCIM on microbial community. In the meantime, X4/pCIM is quantitatively measured by real-time polymerase chain reaction (PCR. Biolog experimental results indicate that the combination of rice straw and engineering bacteria is able to change the composition of soil microbial community, and has a difference in influencing rhizosphere and non-rhizosphere microorganisms. Through real-time PCR, it is found that the number of engineering bacteria falls to 103 after 120 days of bioremediation. Therefore, it can be concluded that combining rice straw with engineering bacteria can change the composition of soil microbial community and have diverse influences as application rate changes, without obvious rules to follow.

  12. Genetic diversity of geographically distinct Streptococcus dysgalactiae isolates from fish

    Directory of Open Access Journals (Sweden)

    M. Abdelsalam

    2015-03-01

    Full Text Available Streptococcus dysgalactiae is an emerging pathogen of fish. Clinically, infection is characterized by the development of necrotic lesions at the caudal peduncle of infected fishes. The pathogen has been recently isolated from different fish species in many countries. Twenty S. dysgalactiae isolates collected from Japan, Taiwan, Malaysia and Indonesia were molecularly characterized by biased sinusoidal field gel electrophoresis (BSFGE using SmaI enzyme, and tuf gene sequencing analysis. DNA sequencing of ten S. dysgalactiae revealed no genetic variation in the tuf amplicons, except for three strains. The restriction patterns of chromosomal DNA measured by BSFGE were differentiated into six distinct types and one subtype among collected strains. To our knowledge, this report gives the first snapshot of S. dysgalactiae isolates collected from different countries that are localized geographically and differed on a multinational level. This genetic unrelatedness among different isolates might suggest a high recombination rate and low genetic stability.

  13. Genetic diversity of Plantago ovata Forsk. through RAPD markers

    Directory of Open Access Journals (Sweden)

    Ashish G Vala1*, R.S.Fougat1 and G.C.Jadeja

    2011-12-01

    Full Text Available Genetic variability of 15 sets of Plantago ovata Forsk. studied using 11 arbitrary oligonucleotide primers. Among the 90 DNAfragments produced 71 fragments were found to be polymorphic. The mean number of polymorphic bands per primer among 15Plantago ovata genotypes was 6.45 . The higher polymorphism (90.00 % was exhibited by primer OPF-17, while the lowerpolymorphism (60.00 % was detected by OPF-2. The genetic similarity matrix from RAPD data for 15 genotypes was calculatedbased on Jaccard’s coefficients of similarity ranged from 0.45 to 0.80. UPGMA cluster analysis reveals that the 15 genotypeswere clustered in to three clusters. Genetically distinct genotypes identified using RAPD markers could be potential sources ofgermplasm for Isabgol improvement.

  14. Entropy and Information Approaches to Genetic Diversity and its Expression: Genomic Geography

    Directory of Open Access Journals (Sweden)

    William B. Sherwin

    2010-07-01

    Full Text Available This article highlights advantages of entropy-based genetic diversity measures, at levels from gene expression to landscapes. Shannon’s entropy-based diversity is the standard for ecological communities. The exponentials of Shannon’s and the related “mutual information” excel in their ability to express diversity intuitively, and provide a generalised method of considering microscopic behaviour to make macroscopic predictions, under given conditions. The hierarchical nature of entropy and information allows integrated modeling of diversity along one DNA sequence, and between different sequences within and among populations, species, etc. The aim is to identify the formal connections between genetic diversity and the flow of information to and from the environment.

  15. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; CHEN Cheng-li; HUANG Chang-yong

    2005-01-01

    The microbial biomass, basal respiration and substrate utilization pattern in copper mining wasteland of red soil area, southern China, were investigated. The results indicated that soil microflora were obviously different compared with that of the non-mine soil.Microbial biomass and basal respiration were negatively affected by the elevated heavy metal levels. Two important microbial ecophysiological parameters, namely, the ratio of microbial biomass C( Cmic )/organic C( Corg ) and metabolic quotient(qCO2 ) were closely correlated to heavy metal stress. There was a significant decrease in the Cmic/Corg ratio and an increase in the metabolic quotient with increasing metal concentration. Multivariate analysis of Biolog data for sole carbon source utilization pattern demonstrated that heavy metal pollution had a significant impact on microbial community structure and functional diversity. All the results showed that soil microbiological parameters had great potential to become the early sensitive, effective and liable indicators of the stresses or perturbations in soils of mining ecosystems.

  16. Evaluation of genetic diversity in Piper spp using RAPD and SRAP markers.

    Science.gov (United States)

    Jiang, Y; Liu, J-P

    2011-01-01

    Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) analysis were applied to 74 individual plants of Piper spp in Hainan Island. The results showed that the SRAP technique may be more informative and more efficient and effective for studying genetic diversity of Piper spp than the RAPD technique. The overall level of genetic diversity among Piper spp in Hainan was relatively high, with the mean Shannon diversity index being 0.2822 and 0.2909, and the mean Nei's genetic diversity being 0.1880 and 0.1947, calculated with RAPD and SRAP data, respectively. The ranges of the genetic similarity coefficient were 0.486-0.991 and 0.520-1.000 for 74 individual plants of Piper spp (the mean genetic distance was 0.505 and 0.480) and the within-species genetic distance ranged from 0.063 to 0.291 and from 0.096 to 0.234, estimated with RAPD and SRAP data, respectively. These genetic indices indicated that these species are closely related genetically. The dendrogram generated with the RAPD markers was topologically different from the dendrogram based on SRAP markers, but the SRAP technique clearly distinguished all Piper spp from each other. Evaluation of genetic variation levels of six populations showed that the effective number of alleles, Nei's gene diversity and the Shannon information index within Jianfengling and Diaoluoshan populations are higher than those elsewhere; consequently conservation of wild resources of Piper in these two regions should have priority. PMID:22179965

  17. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers

    Science.gov (United States)

    Xu, Chaoqun; Gao, Jiao; Du, Zengfeng; Li, Dengke; Wang, Zhe; Li, Yingyue; Pang, Xiaoming

    2016-01-01

    Ziziphus is a genus of spiny shrubs and small trees in the Rhamnaceae family. This group has a controversial taxonomy, with more than 200 species described, including Chinese jujube (Ziziphus jujuba Mill. var. jujuba) and Indian jujube (Z. mauritiana), as well as several other important cultivated fruit crops. Using 24 SSR markers distributed across the Chinese jujube genome, 962 jujube accessions from the two largest germplasm repositories were genotyped with the aim of analyzing the genetic diversity and structure and constructing a core collection that retain high genetic diversity. A molecular profile comparison revealed 622 unique genotypes, among which 123 genotypes were genetically identical to at least one other accessions. STRUCTURE analysis and multivariate analyses (Cluster and PCoA) roughly divided the accessions into three major groups, with some admixture among groups. A simulated annealing algorithm and a heuristic algorithm were chosen to construct the core collection. A final core of 150 accessions was selected, comprising 15.6% of the analyzed accessions and retaining more than 99.5% of the total alleles detected. We found no significant differences in allele frequency distributions or in genetic diversity parameters between the chosen core accessions and the 622 genetically unique accessions. This work contributes to the understanding of Chinese jujube diversification and the protection of important germplasm resources. PMID:27531220

  18. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    Science.gov (United States)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  19. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J. Colin; Xing, Xin-Hui [Tsinghua University, Beijing (China). Dept. of Chemical Engineering

    2009-11-15

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using {sup 13}CH{sub 4} were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments.

  20. Genetic diversity based on SSR analysis of the cultured snakehead fish, Channa argus, (Channidae) in China.

    Science.gov (United States)

    Zhu, S-R; Li, J-L; Xie, N; Zhu, L-M; Wang, Q; Yue, G-H

    2014-02-13

    The snakehead fish Channa argus is an important food fish in China. We identified six microsatellite loci for C. argus. These six microsatellite loci and four other microsatellite markers were used to analyze genetic diversity in four cultured populations of C. argus (SD, JX, HN, and ZJ) and determine their relationships. A total of 154 alleles were detected at the 10 microsatellite loci. The average expected and observed heterozygosities varied from 0.70-0.84 and 0.69-0.83, respectively, and polymorphism information content ranged between 0.66 and 0.82 in the four populations, indicating high genetic diversity. Population JX deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. Analysis of pairwise genetic differentiation revealed FST values that ranged from 0.028 to 0.100, which indicates a moderate level of genetic differentiation. The largest distances were observed between populations HN and SD, whereas the smallest distances were obtained between populations HN and JX. Genetic clustering analysis demonstrated that the ZJ and HN populations probably share the same origin. This information about the genetic diversity within each of the four populations, and their genetic relationships will be useful for future genetic improvement of C. argus through selective breeding.

  1. Analysis of the genetic diversity and differentiation of Fenneropenaeus penicillatus populations using AFLP technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiling; CAO Yuanyu; LI Zhongbao; CHEN Jin; ZHAO Binli; LEI Guanggao; WANG Zhanlin

    2012-01-01

    Fenneropenaeus penicillatus (redtail shrimp) is an important marine commercial animal in China.Recently,its resources have been depleted rapidly as a result of,for example,over-exploitation and environmental degradation of spawning grounds.Therefore,we analyzed the genetic diversity and differentiation of nine wild populations of F.penicillatus of China (Ningde,Lianjiang,Putian,Xiamen,Quanzhou,Zhangpu,Dongshan,Nanao,and Shenzhen populations) by amplified fragment length polymorphism (AFLP) technology,to provide genetic information necessary for resource protection,rejuvenation,artificial breeding,and sustainable use of the resource.Eight AFLP primer pairs were used for amplification,and 508 bands were detected among the populations.The results show that the percentage of polymorphic loci (P) ranged from 41.34% to 63.58%; the Nei's gene diversity (H) of the populations was 0.119 4-0.230 5; and Sharnon's Information Index (I) was 0.184 1-0.342 5.These genetic data indicate that the genetic diversity of F.penicillatus was high.The genetic differentiation coefficient (Gsr=0.216 2) and gene flow (Nm=1.812 4) show that there was a high level of genetic differentiation and a moderate level of gene flow among populations.More studies on the genetic differentiation mechanism of F.penicillatus along the south-eastern coast of China need to be conducted to find more effective scientific protection strategies for the conservation ofF.penicillatus genetic resources.

  2. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina.

    Science.gov (United States)

    Anello, M; Daverio, M S; Romero, S R; Rigalt, F; Silbestro, M B; Vidal-Rioja, L; Di Rocco, F

    2016-02-01

    The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

  3. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirica...

  4. Population Genetic Diversity and Fitness in Multiple Environments(BMCEB)

    Science.gov (United States)

    When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of p...

  5. Detection of Genetic Variation and Genetic Diversity in Two Indian Mudskipper Species (Boleophthalmus boddarti, B. dussumieri using RAPD Marker

    Directory of Open Access Journals (Sweden)

    Vellaichamy RAMANADEVI

    2013-05-01

    Full Text Available Due to the environmental changes and habitat destruction the mudskipper fish population is decreasing in recent years. To predict the fish population structure, frequent manual survey and molecular methods are widely used. Molecular markers such as RAPD, microsatellite, allozyme, D-loop haplotype are frequently adopted to assess the population structure of an organism. In this study ten- arbitrary primers were screened to estimate the genetic relationships and diversity of two mudskipper species (Boleophthalmus boddarti and B. dussumieri in Vellar estuary, Tamilnadu, India. By this RAPD marker study, the genetic diversity (H in B. boddarti was more (0.0116 ± 0.0066 than in B. dussumieri (0.0056 ± 0.0024 in Vellar estuary (India. The genetic distance between B. boddarti and B. dussumieri was 1.7943. By observing the species specific bands and the phylogenetic analysis it is revealed that these two species clearly deviated into separate clusters emphasizing the distinct species status.

  6. A Novel Approach for Discovery Quantitative Fuzzy Multi-Level Association Rules Mining Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Saad M. Darwish

    2016-10-01

    Full Text Available Quantitative multilevel association rules mining is a central field to realize motivating associations among data components with multiple levels abstractions. The problem of expanding procedures to handle quantitative data has been attracting the attention of many researchers. The algorithms regularly discretize the attribute fields into sharp intervals, and then implement uncomplicated algorithms established for Boolean attributes. Fuzzy association rules mining approaches are intended to defeat such shortcomings based on the fuzzy set theory. Furthermore, most of the current algorithms in the direction of this topic are based on very tiring search methods to govern the ideal support and confidence thresholds that agonize from risky computational cost in searching association rules. To accelerate quantitative multilevel association rules searching and escape the extreme computation, in this paper, we propose a new genetic-based method with significant innovation to determine threshold values for frequent item sets. In this approach, a sophisticated coding method is settled, and the qualified confidence is employed as the fitness function. With the genetic algorithm, a comprehensive search can be achieved and system automation is applied, because our model does not need the user-specified threshold of minimum support. Experiment results indicate that the recommended algorithm can powerfully generate non-redundant fuzzy multilevel association rules.

  7. Genetic diversity of Gallibacterium anatis isolates from different chicken flocks

    DEFF Research Database (Denmark)

    Bojesen, A.M.; Torpdahl, Mia; Christensen, H.;

    2003-01-01

    of chickens from an organic, egg-producing flock and a layer parent flock. A subset of strains was also characterized by pulsed-field gel electrophoresis and biotyping. The organic flock isolates were characterized by more than 94% genetic similarity, indicating that only a single clone was apparent...

  8. Genetic diversity in Chilean populations of rainbow trout, Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Claudia B Cárcamo

    2015-03-01

    Full Text Available The rainbow trout Oncorhynchus mykiss, was first introduced in Chile between 1905 and 1920 and is currently widely distributed in Chile from Antofagasta (23°S to Patagonia (55°S. The broad range of the geographic and climatic distributions of this species in Chile offers a unique opportunity to study the effect of naturalization of an introduced species on its genetic variability. It is of particular importance to observe the genetic variability of populations in the northern range of this species distribution, in a transition zone where a Mediterranean-type climate changes to an arid climate. The present study analyzed allozymic variability and distribution within and between populations of O. mykiss from the river basins of Elqui and Limari rivers, and six culture strains, using starch-gel protein electrophoresis. Populations were found to be in Hardy-Weinberg equilibrium and the average values of He (0.045, polymorphism (13.9% and allele per locus (1.19 are similar to rainbow trout in its native distributional range. About 77.8% of the genetic variability was within population, similar to the variability reported for wild populations in the northern hemisphere. However, a marked genetic differentiation between wild populations was also found. This is likely to be the consequence of initial founder effects followed by subsequent introgression of resident populations caused by reseeding with trout of different origins in both basins.

  9. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    NARCIS (Netherlands)

    Lv, J.; Qi, J.; Shi, Q.; Shen, D.; Zhang, S.; Shao, G.; Li, H.; Sun, Z.; Weng, Y.; Shang, Y.; Gu, X.; Li, X.; Zhu, X.; Zhang, J.; Treuren, van R.; Dooijeweert, van W.; Zhang, Z.; Huang, S.

    2012-01-01

    Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also incl

  10. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  11. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    Directory of Open Access Journals (Sweden)

    Galina Radeva

    2014-01-01

    Full Text Available Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA. Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  12. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Science.gov (United States)

    Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...

  13. Genetic diversity in yellow passion fruit (Passiflora edulis Sims based on RAPD

    Directory of Open Access Journals (Sweden)

    Carlos Bernard Moreno Cerqueira-Silva

    2010-01-01

    Full Text Available This study aimed to evaluate the genetic diversity by RAPD markers in 20 genotypes of ‘yellow’ passion fruit (Passiflora edulis Sims. The 16 primers generated 92 markers, 57 (62% of which were polymorphic. The genetic distance (gdij estimated by the complement of the Dice index (gdij = 0.19 and genotype grouping based on UPGMA algorithm showed low variability among genotypes. These results show a narrower genetic basis than reported for other Passiflora populations and the need to increase this variability by germplasm introduction. Divergent genotypes were also identified for the choice of parents for crosses for genetic gains in traits previously selected within the population studied.

  14. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available AIMS: We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China. METHODS: We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China. IMPORTANT FINDINGS: We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  15. Genetic Diversity of Parkia biglobosa from Different Agroecological Zones of Nigeria Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    Oluwafemi Amusa

    2014-01-01

    Full Text Available Parkia biglobosa (Jacq. is an important leguminous tree crop in the African Savannahs useful to the natives where it is found, for domestic use. Previous diversity studies on this tree crop had been majorly on morphological and biochemical analysis. In order to capture the maximum diversity not obtained by previous research, the study aimed at evaluating the genetic diversity of accessions of this crop in the different agroecological zones in Nigeria using RAPD markers. A total of 81 scorable bands with an average of 8.1 bands per primer were amplified among the accessions studied. Intrazonal genetic diversity analysis showed a percentage polymorphism with a range of 11.11% to 65.43% among the agroecological zones studied. Although, gene diversity was highest within Humid forest agroecological zone, a low genetic distance and high genetic similarity between the agroecological zones were observed. Cluster analysis indicated six main groups of which four groups had single accessions while the two groups clustered the remaining accessions, indicating a narrowed genetic base from the 23 accessions studied.

  16. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Salem, Khaled F M; Sallam, Ahmed

    2016-01-01

    Understanding the population structure and genetic diversity is a very important goal to improve the economic value of crops. In rice, a loss of genetic diversity in the last few centuries is observed. To address this challenge, a set of 22 lines from three different regions - India (two), and Philippines (six), and Egypt (14) - were used to assess the genetic diversity and the features of population structure. These genotypes were analyzed using 106 SSR alleles that showed a clear polymorphism among the lines. Genetic diversity was estimated based on the number of different alleles, polymorphism information content (PIC), and gene diversity. A total of 106 SSR alleles was identified from the 23 SSR loci and used to study the population structure and carry out a cluster analysis. All SSR loci showed a wide range of the number of different alleles extended from two (one loci) to seven alleles (three loci). Five and eight loci showed high PIC and gene diversity (≥0.70), respectively. The results of population structure are in agreement with cluster analysis results. Both analyses revealed two different subpopulations (G1 and G2) with different genetic properties in number of private alleles, number of different alleles (Na), number of effective alleles (Ne), expected heterozygosity (He), and Shannon's Information Index (SII). Our findings indicate that five SSR loci (RM 111, RM 307, RM 22, RM 19, and RM 271) could be used in breeding programs to enhance the marker-assisted selection through QTL mapping and association studies. A high genetic diversity found between genotypes which can be exploited to improve and produce rice cultivars for important traits (e.g. high agronomic features and tolerance to biotic or/and abiotic stresses).

  17. Genetic diversity of native potatoes (Solanumspp. conserved in landraces from Peru

    Directory of Open Access Journals (Sweden)

    Julián Soto

    2014-03-01

    Full Text Available This paper analyzes the genetic diversity of 79 accessions of native potato varieties (Solanum spp. using 18 microsatellite markers. A random sample from Ayacucho, Cajamarca, Cusco, Huancavelica and Puno from "chacras" of farmers who collaborated with the "In situ conservation of native crops and wild relatives" were used. 17 markers amplified one single polymorphic locus, the mean number of alleles per locus was 8.79. The mean similarity was 0.62 and clustering indexes varied between 0.41 and 0.98. 19 loci showed a total of 166 alleles. Cuzco had the highest number of alleles (130 alleles. Of the 166 characterized alleles, 72 alleles (43.37% were common or shared with 5 sampling sites. Puno had the highest number of exclusive alleles (8 alleles. The 42 varieties of S. tuberosum subsp. andigena showed a mean diversity of 0.74 and 18 varieties of S. x chauchaan average diversity of 0.70. Polymorphism (PIC = 0.55 to 0.85 and genetic diversity indices show that microsatellites evaluated can identify high levels of genetic diversity, but also are not sufficient to discriminate differentiated by origin or species groups. Our analyzes indicate a high genetic diversity and are consistent with inventories and morphological characterizations performed in situ, we can also conclude that there would be a common pool of genes would be found widely distributed among the regions studied.

  18. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Directory of Open Access Journals (Sweden)

    Lutz Richard A

    2011-04-01

    Full Text Available Abstract Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (recolonization events.

  19. Species and genetic diversity in the genus Drosophila inhabiting the Indian subcontinent

    Indian Academy of Sciences (India)

    Bashisth N. Singh

    2015-06-01

    Biodiversity is the sum total of all living things on the earth with particular reference to the profound variety in structure, function and genetic constitution. It includes both number and frequency of species or genes in a given assemblage and the variety of resulting ecosystems in a region. It is usually considered at three different levels: genetic, species and ecological diversities. Genus Drosophila belongs to the family Drosophilidae (class Insecta, order Diptera), characterized by rich species diversity at global level and also in India, which is a megadiverse country. At global level, more than 1500 species have been described and several thousands estimated. Hawaiian Islands are particularly rich in species diversity with more than 500 species which provides a unique opportunity to study evolution in genus Drosophila. About 150 species of Drosophila have been reported from India. Certain species of Drosophila found in India have been investigated for genetic diversity within the species. In this regard, Drosophila ananassae is noteworthy. It is a cosmopolitan and domestic species with common occurrence in India and is endowed with many genetic peculiarities. Population genetics and evolutionary studies in this species have revealed as to how genetic diversity within a species play an important role in adaptation of populations to varying environments. In addition, the work carried on D. melanogaster, D. nasuta, D. bipectinata and certain other species in India has shown that these species vary in degree and pattern of genetic diversity, and have evolved different mechanisms for adjusting to their environments. The ecological adaptations to various kinds of stress studied in certain species of Drosophila inhabiting the Indian subcontinent are also discussed.

  20. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation

    Directory of Open Access Journals (Sweden)

    Baguette Michel

    2008-11-01

    Full Text Available Abstract Background Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. Results We demonstrate that: (1 lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2 genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity and adult population size; (3 parameters inferred from capture-recapture procedures (population size and dispersal events between patches correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality and dispersal (structural connectivity index. Conclusion Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.

  1. Genetic Diversity of Dalmatian Sage (Salvia offi cinalis L. as Assessed by RAPD Markers

    Directory of Open Access Journals (Sweden)

    Zlatko Liber

    2014-10-01

    Full Text Available Dalmatian or common sage (Salvia officinalis L. is an outcrossing plant species native to East Adriatic coast. Random Amplified Polymorphic DNA markers (RAPD were used to analyze genetic diversity and structure of ten natural populations from the East-Adriatic coastal region. The highest genetic diversity was found in populations from the central and south Dalmatia, while the highest frequency down-weighted marker values were found in the northernmost populations and the southern most inland population. Although analysis of molecular variance (AMOVA revealed that most of the genetic diversity was attributable to differences among individuals within populations, highly significant φST values suggested the existence of genetic differentiation among populations. By assuming Hardy-Weinberg equilibrium within populations, the calculated FST value among population was moderate. Bayesian model-based clustering method revealed that at K = 2 all individuals belonging to two northern populations were assigned to a separate cluster from the individuals belonging to the rest of the population. At K = 3, the newly formed cluster grouped the majority of individuals belonging to populations from central Dalmatia. The high correlation between matrices of genetic and geographical distances showed that isolation by distance may play a considerable role in overall structuring of the genetic diversity.

  2. Genetic Diversity of Dalmatian Sage (Salvia officinalis L. as Assessed by RAPD Markers

    Directory of Open Access Journals (Sweden)

    Zlatko Liber

    2014-09-01

    Full Text Available Dalmatian or common sage (Salvia officinalis L. is an outcrossing plant species native to East Adriatic coast. Random Amplified Polymorphic DNA markers (RAPD were used to analyze genetic diversity and structure of ten natural populations from the East-Adriatic coastal region. The highest genetic diversity was found in populations from the central and south Dalmatia, while the highest frequency down-weighted marker values were found in the northernmost populations and the southern most inland population. Although analysis of molecular variance (AMOVA revealed that most of the genetic diversity was attributable to differences among individuals within populations, highly significant φST values suggested the existence of genetic differentiation among populations. By assuming Hardy-Weinberg equilibrium within populations, the calculated FST value among population was moderate. Bayesian model-based clustering method revealed that at K = 2 all individuals belonging to two northern populations were assigned to a separate cluster from the individuals belonging to the rest of the population. At K = 3, the newly formed cluster grouped the majority of individuals belonging to populations from central Dalmatia. The high correlation between matrices of genetic and geographical distances showed that isolation by distance may play a considerable role in overall structuring of the genetic diversity.

  3. SSR-based genetic diversity and structure of garlic accessions from Brazil.

    Science.gov (United States)

    da Cunha, Camila Pinto; Resende, Francisco Vilela; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2014-10-01

    Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.

  4. Assessing genetic diversity of wild populations of Japanese flounder using AFLP markers

    Institute of Scientific and Technical Information of China (English)

    XU Xiaofei; ZHANG Quanqi; WANG Zhigang; QI Jie; ZHANG Zhifeng; BAO Zhenmin; Heisuke Nakagawa

    2006-01-01

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate the genetic diversity of four wild geographical populations of Japanese flounder (Paralichthys olivaceus). A total of 775 loci (58.32% of which was polymorphic) in the range between 100 and 1 300 base pairs were detected from 110 individuals using seven primer combinations. The percentage of polymorphic loci detected by single primer combination for each population was calculated, ranging from 19.59% to 53.33%. Genetic similarities within and among the populations were calculated from the binary matrices of presence - absence. Phylogenetic tree of four populations was constructed by using the UPGMA method using PHYLIP Version 3.5. According to intrapopulation genetic similarities, CW population displayed the highest genetic diversity value and KY population had the lowest genetic diversity value.The distance between CW and CF populations was the farthest, which was possibly resulted from the farthest distance of Weihai of Shandong and Fujian of China compared with the geographical distance between other locations of populations. The subpopulation differentiation value ( Gst ) is 0.356 5, showing a certain extent of differentiation among the four geographical populations. AFLP technology was confirmed to be an effective tool to assess within- and among-population genetic diversity of Japanese flounder. The present survey provided significant insights for research in the Japanese flounder breeding program.

  5. Loss of genetic diversity and increased embryonic mortality in non-native lizard populations.

    Science.gov (United States)

    Michaelides, Sozos N; While, Geoffrey M; Zajac, Natalia; Aubret, Fabien; Calsbeek, Brittny; Sacchi, Roberto; Zuffi, Marco A L; Uller, Tobias

    2016-09-01

    Many populations are small and isolated with limited genetic variation and high risk of mating with close relatives. Inbreeding depression is suspected to contribute to extinction of wild populations, but the historical and demographic factors that contribute to reduced population viability are often difficult to tease apart. Replicated introduction events in non-native species can offer insights into this problem because they allow us to study how genetic variation and inbreeding depression are affected by demographic events (e.g. bottlenecks), genetic admixture and the extent and duration of isolation. Using detailed knowledge about the introduction history of 21 non-native populations of the wall lizard Podarcis muralis in England, we show greater loss of genetic diversity (estimated from microsatellite loci) in older populations and in populations from native regions of high diversity. Loss of genetic diversity was accompanied by higher embryonic mortality in non-native populations, suggesting that introduced populations are sufficiently inbred to jeopardize long-term viability. However, there was no statistical correlation between population-level genetic diversity and average embryonic mortality. Similarly, at the individual level, there was no correlation between female heterozygosity and clutch size, infertility or hatching success, or between embryo heterozygosity and mortality. We discuss these results in the context of human-mediated introductions and how the history of introductions can play a fundamental role in influencing individual and population fitness in non-native species. PMID:27393416

  6. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    Science.gov (United States)

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-01-01

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  7. Genetic Diversity Caused by Environmental Stress in Natural Populations of Niupidujuan as Revealed by RAPD Technique

    Institute of Scientific and Technical Information of China (English)

    DU Ying-da; XING Ming; YANG Zhi-yong; LIU Yan-fei; CHEN Xia

    2011-01-01

    Multiplex environmental factors are generally expected to have significant effects on genetic diversity of plant populations.In this study,randomly amplified polymorphic DNA(RAPD) technique was used to reveal the genetic diversity in the same species of four populations collected from Niupidujuan(Rhododendron chrysanthum) at different altitudes,an endangered species,endemic to Northeast China.Initially,twenty informative and reproducible primers were chosen for final RAPD analysis.A total of 152 clear bands were obtained,including 143 polymorphic ones.With the help of POPGENE software,the poly rate was calculated to be 94.07% and the evenness of amplified bands for every primer was 6.8.Additionally,the mean observed number of alleles was 1.7265 with an effective number of 1.3608.An examination of the gene indicated a diversity of 0.2162 with an information diversity index of 0.3313.For these data,the clustering blurred analysis was performed with the aid of NTSYS-pc software to define the Nei's gene diversity and the Shannon information diversity index of the four plant populations.The relationships between the genetic diversity indexes on the one hand and the geographic and climatic factors on the other hand were estimated by the Pearson correlation with SPSS 11.0 software.The results of the correlation analysis show that there were significant(P<0.05) or highly significant(P<0.01) correlations between each of the genetic diversity indexes and the different temperature which were mainly caused by the altitude different populations located.These data highlight the importance of native populations in shaping the spatial genetic structure in Niupidujuan.

  8. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  9. Genetic diversity and structure of Sinopodophyllum hexandrum (Royle Ying in the Qinling Mountains, China.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621, but higher at the species level (He = 0.1434. Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27% among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587 in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287 at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.

  10. Genetic Diversity of Gallibacterium anatis Isolates from Different Chicken Flocks

    OpenAIRE

    Bojesen, Anders Miki; Torpdahl, Mia; Christensen, Henrik; Olsen, John Elmerdahl; Bisgaard, Magne

    2003-01-01

    Amplified fragment length polymorphisms (AFLPs) were used to characterize the genotypic diversity of a total of 114 Gallibacterium anatis isolates originating from a reference collection representing 15 biovars from four countries and isolates obtained from tracheal and cloacal swab samples of chickens from an organic, egg-producing flock and a layer parent flock. A subset of strains was also characterized by pulsed-field gel electrophoresis and biotyping. The organic flock isolates were char...

  11. Integrating common and rare genetic variation in diverse human populations

    OpenAIRE

    Altshuler, D. M.; Gibbs, R.A.; Peltonen, L; Dermitzakis, Emmanouil; Schaffner, S. F.; F. Yu; Bonnen, P. E.; de Bakker, P. I.; Deloukas, Panos; Gabriel, Stacey B.; Gwilliam, Rhian; HUNT, SARAH; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno

    2010-01-01

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions i...

  12. Reproduction and genetic diversity of the swamp buffalo

    OpenAIRE

    Yindee, M.

    2011-01-01

    The water buffalo is one of the most important domestic animals in Southeast Asia including Thailand. As the Thai swamp buffalo population declined during the last two decades, the swamp buffalo reproductive performance needs to be improved. Lack of knowledge on swamp buffalo reproduction, improper management and failure to use genetic superior males and females in breeding programs are the major factors to be considered. Artificial insemination was applied in Thailand but is inefficient due ...

  13. Genetic diversity of macauba from natural populations of Brazil

    OpenAIRE

    da Conceição, Léo Duc Haa Carson Schwartzhaupt; Antoniassi, Rosemar; Junqueira, Nilton Tadeu Vilela; Braga, Marcelo Fideles; de Faria-Machado, Adelia Ferreira; Rogério, Joice Barbosa; Duarte, Iara Duprat; Bizzo, Humberto Ribeiro

    2015-01-01

    Background The macauba has been identified as the most promising native species for the production of vegetable oil and biomass. Several studies confirm its potential for numerous purposes (liquid and solid biofuels, food, cosmetics and pharmaceuticals), but this Brazilian biodiversity resource has been little explored, and work aimed at their domestication and genetic improvement are relatively recent. This study consisted of a multivariate approach to levels of trans fatty acids, oil yield ...

  14. Molecular genetic diversity of the Gyeongju Donggyeong dog in Korea.

    Science.gov (United States)

    Lee, Eun-Woo; Choi, Seong-Kyoon; Cho, Gil-Jae

    2014-10-01

    The present study was conducted to analyze the genetic characteristics of the Donggyeong dog and establish parentage conservation systems for it by using 10 microsatellite markers recommended by the International Society for Animal Genetics (ISAG). A total of 369 dogs from 12 dog breeds including the Donggyeong dog were genotyped using 10 microsatellite loci. The number of alleles per locus varied from 5 to 10 with a mean value of 7.6 in the Donggyeong dog. The observed heterozygosity and expected heterozygosity ranged from 0.4706 to 0.9020 (mean 0.7657) and from 0.4303 to 0.8394 (mean 0.7266), respectively. The total exclusion probability of 10 microsatellite loci was 0.99955. Of the 10 microsatellite markers, the AHT121, AHTh260 and CXX279 markers had relatively high PIC values (≥0.7). This study found that there were specific alleles, 116 allele at AHT121 in the Donggyeong dog when compared with other dog breeds. Also, the results showed two (Korean native dogs and the foreign dog breeds) distinct clusters. The closest distance (0.1184) was observed between the Donggyeong dog and Jindo dog, and the longest distance (0.3435) was observed between the Donggyeong dog and Bulgae. The Korean native dog breeds have comparatively near genetic distances between each other.

  15. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers.

    Science.gov (United States)

    Ko, W R; Sa, K J; Roy, N S; Choi, H-J; Lee, J K

    2016-01-01

    In this study, we compared the efficiency of simple sequence repeat (SSR) and sequence specific amplified polymorphism (SSAP) markers for analyzing genetic diversity, genetic relationships, and population structure of 87 super sweet corn inbred lines from different origins. SSR markers showed higher average gene diversity and Shannon's information index than SSAP markers. To assess genetic relationships and characterize inbred lines using SSR and SSAP markers, genetic similarity (GS) matrices were constructed. The dendrogram using SSR marker data showed a complex pattern with nine clusters and a GS of 53.0%. For SSAP markers, three clusters were observed with a GS of 50.8%. Results of combined marker data showed six clusters with 53.5% GS. To analyze the genetic population structure of SSR and SSAP marker data, the 87 inbred lines were divided into groups I, II, and admixed based on the membership probability threshold of 0.8. Using combined marker data, the population structure was K = 3 and was divided into groups I, II, III, and admixed. This study represents a comparative analysis of SSR and SSAP marker data for the study of genetic diversity and genetic relationships in super sweet corn inbred lines. Our results would be useful for maize-breeding programs in Korea. PMID:26909914

  16. Microsatellite Markers based Genetic Diversity Analysis in Damani and Nachi Goat Breeds of Pakistan

    Directory of Open Access Journals (Sweden)

    Tanveer Hussain*1, Masroor Ellahi Babar2, Haleema Sadia1, Misbah Shaheen1, Asif Nadeem1, Akhtar Ali1, Abdul Wajid1 and Sajjad Ali Shah1

    2013-11-01

    Full Text Available The genetic variation in two indigenous Pakistani goat breeds (Damani and Nachi was studied with 9 microsatellite markers in order to determine the genetic diversity between them. A total number of 50 non relative individuals of Damani (25 and Nachi (25 were sampled to explore genetic polymorphisms and relationship between these two important goat breeds. Result revealed considerable level of genetic diversity in both breeds and a total number of 53 alleles were identified with mean of 3.2 in Damani and 4.6 in Nachi. The genetic diversity in both breeds ranged from 0.51(Nachi to 0.73 (Damani. High level of genetic differentiation (FST = 0.20 and low level of gene flow (Nm=0.95 found could be due to their divergent or expanded geographical locations. Heterozygote across two populations (FIT was found to be 0.15. The mean Polymorphic Information Content (PIC was 0.70 ranging from 0.54 (MAF33 to 0.83 (ILSTS011, revealed the high level of polymorphism for studied microsatellite markers set in this study. The measures of genetic variation revealed that there is good scope for effective improvement, conservation and designing national breeding policies for goat breeds in future.

  17. A genetic diversity comparison between captive individuals and wild individuals of Elliot's Pheasant (Syrmaticus ellioti) using mitochondrial DNA

    Institute of Scientific and Technical Information of China (English)

    JIANG Ping-ping; LANG Qiu-lei; FANG Sheng-guo; DING Ping; CHEN Li-ming

    2005-01-01

    Maintaining genetic diversity is a major issue in conservation biology. In this study, we demonstrate the differences of genetic diversity levels between wild and captive individuals of Elliot's Pheasant Syrmaticus ellioti. Wild individuals showed a higher genetic diversity level than that of the captive individuals. Nucleotide diversity and haplotype diversity of wild individuals were 0.00628 and 0.993, while those of captive individuals were 0.00150 and 0.584 respectively. Only 3 haplotypes of mtDNA control region sequence were identified among 36 captive individuals, while 16 unique haplotypes were identified among the 17wild individuals in this study. One captive haplotype was shared by a wild individual from Anhui Province. It is concluded that a low number of founders was the likely reason for the lower level genetic diversity of the captive group. Careful genetic management is suggested for captive populations, particularly of such an endangered species, to maintain genetic variability levels.

  18. Genetic diversity in Penaeus chinensis shrimp as revealed by RAPD technique

    Institute of Scientific and Technical Information of China (English)

    庄志猛; 石拓; 孔杰; 刘萍; 刘振辉; 孟宪红; 邓景耀

    2001-01-01

    The random amplified polymorphic DNA analysis was used to estimate genetic diversity in one successively cultivated stock and three wild stocks of Penaeus chinensis shrimp, two of which were collected from the spawning and wintering grounds in the west coast of Korean Peninsula, and one from the feeding ground in the China coast of the Yellow Sea. A random primer kit was employed to scan the genomic DNA in 20 individuals of each index stock. A total of 110 reproducible RAPD markers were obtained, 68.2 % of which showed a sound eonformability within all the individuals detected, implying that the genetic variability in P. chinensis is relatively low. The proportions of polymorphic loci among these four stocks ranged from 20% to 33.3%, while the degrees of genetic polymorphisms varied from 0.0093 to 0.0307. The genetic variability of inter-stocks was higher than that of intra-stock. The genetic diversity in different stocks differed from each other; that is, a less genetic differentiation in the spawning and wintering stocks from the west coast of Korean Peninsula was revealed and their genetic diversities were higher than that of the spawning stock in the Bohai Sea and the China coast of the Yellow Sea. As detected, the genetic diversity in the successively cultivated stock was the lowest among these four stocks. Through genetic distance analysis between a random pair of individuals, a dendrogram of the above-mentioned four stocks was constructed by unweighted pair group method with arithmetic mean. The results based on cluster analysis well fitted with the geographical distribution of P. chinensis in the Bohai and Yellow Seas.

  19. Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers.

    Science.gov (United States)

    Hu, Jihong; Pan, Lei; Liu, Honggao; Wang, Shuzhen; Wu, Zhihua; Ke, Weidong; Ding, Yi

    2012-04-01

    The sacred lotus (Nelumbo nucifera Gaertn.) is an aquatic plant of economic and ornamental importance in China. In this study, we developed twenty novel sacred lotus SSR markers, and used AFLP and SSR markers to investigate the genetic diversity and genetic relationships among 58 accessions of N. nucifera including 15 seed lotus, 12 rhizome lotus, 24 flower lotus and 7 wild lotus. Our results showed that sacred lotus exhibited a low level of genetic diversity, which may attribute to asexual reproduction and long-term artificial selection. A dendrogram based on both AFLP and SSR clustering data showed that: (1) the seed lotus accessions and rhizome lotus accessions were distinctly clustered into different groups, which indicated the significant genetic differentiation between them. This may be attributed to the two modes of reproduction and lack of genetic exchange; (2) the accessions of Thailand wild lotus were separated from other wild lotus accessions. This implied that the Thailand lotus might be genetically differentiated from other wild lotuses. In addition, Mantel test conducted gave highly significant correlation between AFLP-SSR data and each of the AFLP and SSR ones, with the values of r = 0.941 and r = 0.879, respectively, indicating the higher efficiency of the combination of these techniques (AFLP and SSR) in estimation and validation of the genetic diversity among the accession of sacred lotus. This knowledge of the genetic diversity and genetic relatedness of N. nucifera is potentially useful to improve the current strategies in breeding and germplasm conservation to enhance the ornamental and economic value of sacred lotus.

  20. Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature.

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    Full Text Available The genetic diversity and population genetics of the Echinococcus granulosus sensu stricto complex were investigated based on sequencing of mitochondrial DNA (mtDNA. Total 81 isolates of hydatid cyst collected from ungulate animals from different geographical areas of North India were identified by sequencing of cytochrome c oxidase subunit1 (coxi gene. Three genotypes belonging to E. granulosus sensu stricto complex were identified (G1, G2 and G3 genotypes. Further the nucleotide sequences (retrieved from GenBank for the coxi gene from seven populations of E. granulosus sensu stricto complex covering 6 continents, were compared with sequences of isolates analysed in this study. Molecular diversity indices represent overall high mitochondrial DNA diversity for these populations, but low nucleotide diversity between haplotypes. The neutrality tests were used to analyze signatures of historical demographic events. The Tajima's D test and Fu's FS test showed negative value, indicating deviations from neutrality and both suggested recent population expansion for the populations. Pairwise fixation index was significant for pairwise comparison of different populations (except between South America and East Asia, Middle East and Europe, South America and Europe, Africa and Australia, indicating genetic differentiation among populations. Based on the findings of the present study and those from earlier studies, we hypothesize that demographic expansion occurred in E. granulosus after the introduction of founder haplotype particular by anthropogenic movements.

  1. The genetic differentiation of Colocasia esculenta growing in gold mining areas with arsenic contamination.

    Science.gov (United States)

    Boonmee, Sirilak; Neeratanaphan, Lamyai; Tanee, Tawatchai; Khamon, Prodpran

    2015-05-01

    Arsenic is a heavy metal found in contaminated gold mining areas and which can affect plant and animal species. This study aims to determine the concentration of As in the aquatic plant Colocasia esculenta as well as this plant's genetic variability. Sediment and C. esculenta samples were collected from three studied sites at the edge of a stream around a gold mine. The arsenic concentrations in sediment and C. esculenta samples were analyzed using induction coupled plasma-mass spectrometry (ICP-MS). Genetic differentiations were studied by random amplified polymorphic DNA (RAPD) with dendrogram construction and analysis of genetic similarity (S). The results showed that the arsenic concentrations in sediment and C. esculenta samples ranged from 4.547 ± 0.318 to 229.964 ± 0.978 and 0.108 ± 0.046 to 0.406 ± 0.174 mg kg(-1), respectively. To compare the samples studied to the reference site, RAPD fingerprints from 26 primers successfully produced 2301 total bands used for dendrogram construction and S value analysis. The dendrogram construction separates C. esculenta into four clusters corresponding to their sampling sites. The S values of the studied sample sites compared to the reference site are 0.676-0.779, 0.739-0.791, and 0.743-0.783 for sites 1, 2, and 3, respectively, whereas the values of the individuals within each site are as high as 0.980. These results suggest that As accumulation in aquatic plant species should be of concern because of the potential effects of As on aquatic plants as well as humans.

  2. The genetic differentiation of Colocasia esculenta growing in gold mining areas with arsenic contamination.

    Science.gov (United States)

    Boonmee, Sirilak; Neeratanaphan, Lamyai; Tanee, Tawatchai; Khamon, Prodpran

    2015-05-01

    Arsenic is a heavy metal found in contaminated gold mining areas and which can affect plant and animal species. This study aims to determine the concentration of As in the aquatic plant Colocasia esculenta as well as this plant's genetic variability. Sediment and C. esculenta samples were collected from three studied sites at the edge of a stream around a gold mine. The arsenic concentrations in sediment and C. esculenta samples were analyzed using induction coupled plasma-mass spectrometry (ICP-MS). Genetic differentiations were studied by random amplified polymorphic DNA (RAPD) with dendrogram construction and analysis of genetic similarity (S). The results showed that the arsenic concentrations in sediment and C. esculenta samples ranged from 4.547 ± 0.318 to 229.964 ± 0.978 and 0.108 ± 0.046 to 0.406 ± 0.174 mg kg(-1), respectively. To compare the samples studied to the reference site, RAPD fingerprints from 26 primers successfully produced 2301 total bands used for dendrogram construction and S value analysis. The dendrogram construction separates C. esculenta into four clusters corresponding to their sampling sites. The S values of the studied sample sites compared to the reference site are 0.676-0.779, 0.739-0.791, and 0.743-0.783 for sites 1, 2, and 3, respectively, whereas the values of the individuals within each site are as high as 0.980. These results suggest that As accumulation in aquatic plant species should be of concern because of the potential effects of As on aquatic plants as well as humans. PMID:25838064

  3. Rapid turnover of intra-host genetic diversity in Zucchini yellow mosaic virus.

    Science.gov (United States)

    Simmons, Heather E; Holmes, Edward C; Stephenson, Andrew G

    2011-02-01

    Genetic diversity in RNA viruses is shaped by a variety of evolutionary processes, including the bottlenecks that may occur at inter-host transmission. However, how these processes structure genetic variation at the scale of individual hosts is only partly understood. We obtained intra-host sequence data for the coat protein (CP) gene of Zucchini yellow mosaic virus (ZYMV) from two horizontally transmitted populations - one via aphid, the other without - and with multiple samples from individual plants. We show that although mutations are generated relatively frequently within infected plants, attaining similar levels of genetic diversity to that seen in some animal RNA viruses (mean intra-sample diversity of 0.02%), most mutations are likely to be transient, deleterious, and purged rapidly. We also observed more population structure in the aphid transmitted viral population, including the same mutations in multiple clones, the presence of a sub-lineage, and evidence for the short-term complementation of defective genomes. PMID:21138748

  4. Genotyping and genetic diversity of Arcobacter butzleri by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Atabay, H.I.; Amisu, K.O.;

    2004-01-01

    strains homogeneous with respect to their respective source of isolation. However, contemporaneous strains from the same source could also be distinguished. Conclusions: AFLP profiling is an effective method for typing the genetically diverse organism A. butzleri. Significance and Impact of the Study......: The study represents a comprehensive analysis of the genetic diversity of A. butzleri by use of isolates from six countries spanning three continents and also shows that several distinct A. butzleri genotypes may be found in a given environment. AFLP profiling appears to have considerable potential......Aims: To investigate the potential of amplified fragment length polymorphism (AFLP) profiling for genotyping Arcobacter butzleri and to obtain further data on the genetic diversity of this organism. Methods and Results: Seventy-three isolates of Danish, British, Turkish, Swedish, Nigerian and North...

  5. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    OpenAIRE

    Grzebelus, Dariusz; Iorizzo, Massimo; Senalik, Douglas; Ellison, Shelby; Cavagnaro, Pablo; Macko-Podgorni, Alicja; Heller-Uszynska, Kasia; Kilian, Andrzej; Nothnagel, Thomas; Allender, Charlotte; Simon, Philipp W; Baranski, Rafal

    2013-01-01

    Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attribu...

  6. [Prokaryotic microbial diversity of the ancient salt deposits in the Kunming Salt Mine, P.R. China].

    Science.gov (United States)

    Xiao, Wei; Peng, Qian; Liu, Hong-wei; Wen, Meng-liang; Cui, Xiao-long; Yang, Ya-ling; Duan, Dong-cheng; Chen, Wei; Deng, Lan; Li, Qin-yuan; Chen, Yi-guang; Wang, Zhi-gang; Ren, Zhen; Liu, Ji-hui

    2007-04-01

    The prokaryotic microbial diversity of the ancient salt deposits in the Kunming Salt Mine, PR China was investigated using PCR-DGGE and rRNA approaches. Total community DNA was extracted and purified by a direct method, which yielded amplified DNA of high molecular weight for samples. A variable region of 16S rRNA gene was then amplified by PCR with bacterial and archaeal primers and analyzed by denaturing gradient gel electrophoresis (DGGE). Twenty-seven major bands were detected in the bacterial DGGE profile of the sample, but only one band of pure culture strains of bacteria isolated from the Kunming Salt Mine matched with one band of sample. No band of pure culture strains of archaea isolated from the Kunming Salt Mine matched with 18 major bands of sample. The results indicated that most of microbes in this environment are likely uncultivable. Clones on the plate were not the predominant species in the community. Two 16S rRNA gene clone libraries (bacteria and archaea) were also constructed, and 36 and 20 clones were selected for amplified ribosomal DNA restriction analysis (ARDRA). ARDRA with enzymes Afa I, Hha I, Hae III revealed 10 bacterial operational taxonomic units (OTUs), with three most abundant OTUs accounting for 38.9%, 25.0%, 16.7% of all the bacterial 16S rDNA clones, respectively. The remaining 7 OTUs presented at low levels, were represented by a single clone. Eight archaeal OTUs were obtained but no predominant OTUs. Some clones were sequenced and each sequence was compared with all nucleotide sequences in GenBank database. Examination of 16S rDNA clones showed that the ancient salt deposits in the Kunming Salt Mine contained a phylogenetically diverse population of organisms from the Bacteria domain with members of three major lineages represented: alpha-proteobacteria, gamma-Proteobacteria and Actinobacteria, especially Pseudomonas. Surprisingly, we recovered a variety of sequence closely related to Actinobacteria which was not found in other

  7. Genetic diversity analysis of sugarcane ( Saccharum sp.) clones using simple sequence repeat markers of sugarcane and rice

    OpenAIRE

    G.Banumathi , V.Krishnasamy, M.Maheswaran, R.Samiyappan, P.Govindaraj and N.Kumaravadivel

    2010-01-01

    Molecular markers are powerful tools, which help in differentiating plant varieties at the DNA level and have been widelyused for genetic diversity studies in a number of crop species'. Understanding the genetic diversity of available clones of S.officinarum and S. spontaneum will be helpful in breeding programs. In the present study, a set of 48 sugarcane clones fromNational Hybridization Garden, Sugarcane Breeding Institute, Coimbatore was subjected to genetic diversity analysisinvolving 40...

  8. Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts

    OpenAIRE

    Attard, Catherine R. M.; Luciano B Beheregaray; K Curt S Jenner; Gill, Peter C.; Jenner, Micheline-Nicole M.; Morrice, Margaret G.; Teske, Peter R; Möller, Luciana M.

    2015-01-01

    Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitat...

  9. Genetic diversity and geographic distribution of hantaviruses in Russia.

    Science.gov (United States)

    Garanina, S B; Platonov, A E; Zhuravlev, V I; Murashkina, A N; Yakimenko, V V; Korneev, A G; Shipulin, G A

    2009-08-01

    Haemorrhagic fever with renal syndrome (HFRS) is the most prevalent zoonotic disease in Russia. It is caused by several hantavirus species hosted by small rodents. We describe spatial and temporal patterns of HFRS incidence in the Russian Federation, and the geographic distribution of prevalent hantavirus species: Puumala (PUUV) and Dobrava (DOBV). Partial sequencing of nucleocapsid and glycoprotein genes of 117 PUUV strains and 78 DOBV strains revealed several distinct genetic subgroups. The RNA of Volga PUUV subgroup was detected in patients with HFRS and bank voles Myodes glareolus in the Volga Federal District, where the highest HFRS incidence rate has been registered yearly. The RNA of Siberian PUUV subgroup was found in M. glareolus in the trans-Ural Tyumen and Omsk Provinces, where human HFRS cases have been rare. During an HFRS outbreak in 2007 in the Central Federal District, when more than 1000 patients were affected, specific subgroups of DOBV were discovered in patients and rodents, mainly in the striped field mouse Apodemus agrarius. DOBV strains might have 8–9% of nucleotide difference although they were collected at places separated by 30–100 km. The RNA of a unique DOBV subgroup was discovered in the southern semi-desert Astrakhan Province, mainly in A. agrarius and tamarisk jird Meriones tamariscinus. No human HFRS cases were diagnosed in this province. Russian PUUV and DOBV strains have no close homologues among European strains. Our DOBV strains might be genetically grouped together with Central European DOBV strains isolated from A. agrarius, but not from Apodemus flavicollis. The Volga PUUV subgroup is to some extent similar to Baltic PUUV strain, and Finnish PUUV strains resemble the strains from the Siberian PUUV subgroup. Thus, PCRbased monitoring and typing provided the opportunity to delineate and expand the area of hantaviruses in Russia and to identify their new genetic variants. PMID:19486318

  10. Genetic Diversity of Old Chicken Breeds Kept in Poland

    Directory of Open Access Journals (Sweden)

    Fabio Maretto

    2013-09-01

    Full Text Available The aim of this study was to compare the genetic variation of five local chicken breeds reared in Poland. Twenty-seven microsatellite markers were investigated in 138 birds belonging to five breeds: Miniature Cochin (MCO, Gold Italian (GI, Green Legged Partridge (GLP, Silver Italian (SI and White Leghorn (WL. One hundred eighty five alleles were detected in the overall population, with a mean number of 6.85 ± 3.32 alleles per locus. For the local breeds, the observed and expected heterozygosity ranged from a minimum of 0.287 to a maximum of 0.458 and from 0.397 to 0.499 for the GI and SI breeds, respectively. The overall population heterozygote deficiency was 0.430, the average Wright’s inbreeding coefficient (FIS was 0.061 and the heterozygote deficiency due to breed subdivision was 0.393. Wright’s fixation index was slightly positive for all breeds excluding MCO (FIS = -0.476 and the estimated molecular inbreeding (fij within breed ranged from 0.296 (GLP and SI to 0.361 (WL evidencing limited coancestry. Mean allelic richness, obtained with rarefaction method based on sixteen observations, was 2.12 being the WL the less variable (1.79. Tomiuk and Loeschcke’s DTL genetic distance values were used to draw a neighbornet network which separated the cluster made of MCO and GLP from the cluster of GI, WL and SI. The results arising from our microsatellites analysis represent a starting point for the valorization of these local Polish chicken breeds for monitoring and preserving their genetic variability.

  11. Characterization of the genetic diversity, structure and admixture of British chicken breeds.

    Science.gov (United States)

    Wilkinson, S; Wiener, P; Teverson, D; Haley, C S; Hocking, P M

    2012-10-01

    The characterization of livestock genetic diversity can inform breed conservation initiatives. The genetic diversity and genetic structure were assessed in 685 individual genotypes sampled from 24 British chicken breeds. A total of 239 alleles were found across 30 microsatellite loci with a mean number of 7.97 alleles per locus. The breeds were highly differentiated, with an average F(ST) of 0.25, similar to that of European chicken breeds. The genetic diversity in British chicken breeds was comparable to that found in European chicken breeds, with an average number of alleles per locus of 3.59, ranging from 2.00 in Spanish to 4.40 in Maran, and an average expected heterozygosity of 0.49, ranging from 0.20 in Spanish to 0.62 in Araucana. However, the majority of breeds were not in Hardy-Weinberg Equilibrium, as indicated by heterozygote deficiency in the majority of breeds (average F(IS) of 0.20), with an average observed heterozygote frequency of 0.39, ranging from 0.15 in Spanish to 0.49 in Cochin. Individual-based clustering analyses revealed that most individuals clustered to breed origin. However, genetic subdivisions occurred in several breeds, and this was predominantly associated with flock supplier and occasionally by morphological type. The deficit of heterozygotes was likely owing to a Wahlund effect caused by sampling from different flocks, implying structure within breeds. It is proposed that gene flow amongst flocks within breeds should be enhanced to maintain the current levels of genetic diversity. Additionally, certain breeds had low levels of both genetic diversity and uniqueness. Consideration is required for the conservation and preservation of these potentially vulnerable breeds. PMID:22497565

  12. Demographic histories and genetic diversities of Fennoscandian marine and landlocked ringed seal subspecies.

    Science.gov (United States)

    Nyman, Tommi; Valtonen, Mia; Aspi, Jouni; Ruokonen, Minna; Kunnasranta, Mervi; Palo, Jukka U

    2014-09-01

    Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea 'mainland' and two the 'aquatic islands' composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control-region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post-colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.

  13. Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine.

    Science.gov (United States)

    Knudsen, Erik S; O'Reilly, Eileen M; Brody, Jonathan R; Witkiewicz, Agnieszka K

    2016-01-01

    Patients with pancreatic ductal adenocarcinoma (PDA) have a poor prognosis despite new treatments; approximately 7% survive for 5 years. Although there have been advances in systemic, primarily cytotoxic, therapies, it has been a challenge to treat patients with PDA using targeted therapies. Sequence analyses have provided a wealth of information about the genetic features of PDA and have identified potential therapeutic targets. Preclinical and early-phase clinical studies have found specific pathways could be rationally targeted; it might also be possible to take advantage of the genetic diversity of PDAs to develop therapeutic agents. The genetic diversity and instability of PDA cells have long been thought of as obstacles to treatment, but are now considered exploitable features. We review the latest findings in pancreatic cancer genetics and the promise of targeted approaches in PDA therapy.

  14. Genetic and cytological diversity in cherry tree accessions (Eugenia involucrata DC in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Divanilde Guerra

    2016-09-01

    Full Text Available This study aimed to evaluate the genetic and cytological diversity and stability of 35 cherry tree accessions collected in Rio Grande do Sul. We used 15 RAPD (Random Amplified Polymorphic DNA molecular markers and performed cytological analysis and number count of anthers. Analyses of genetic diversity allowed the separation of accessions into four groups, resulting in an average of 8.93 bands per primer amplified, 7.89 polymorphic bands, 88.08% of polymorphism and 86% of genetic similarity. Cytological analyses of gametic cells allowed for the characterization of accessions as diploids with n=11. In these, the average of meiotic cells considered normal was 82.12%; average pollen viability was 92.44% and in vitro germination was 40.26%; the average number of anthers was 161.85 anthers/flowers. Therefore, the accessions evaluated showed high genetic similarity and cytological stability and can be used in commercial plantations or hybridizations.

  15. Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites.

    Science.gov (United States)

    Saddoud, O; Chatti, K; Salhi-Hannachi, A; Mars, M; Rhouma, A; Marrakchi, M; Trifi, M

    2007-09-01

    The present study portrays the achievement of the genetic polymorphism surveying and the establishment of an ecotypes identification key on the basis of simple sequence repeats data. Seventy-two Tunisian fig ecotypes in situ and ex situ conserved were analyzed using six microsatellite loci. A total of 58 alleles and 124 genotypes were revealed and permitted to evidence high degree of genetic diversity mainly explained at the intra group level. Cluster analysis based on genetic distances proved that a typical continuous genetic diversity characterizes the local germplasm. In addition, the microsatellite multilocus genotyping has permitted to unambiguously distinguish 70 well-defined ecotypes (resolving power of 97.22%). Data are discussed in relation with the reliability of the used markers to check the conformity of the plant material and to rationally manage the conservation of this crop.

  16. The Genetic Diversity Study of Wild Wusuli Raccoon Dog From Nenjiang District

    Institute of Scientific and Technical Information of China (English)

    YANG Chunshan; BAI Xiujuan

    2008-01-01

    The ISSR method was developed to analyze the genetic diversity of 20 wild Wusuli raccoon dog from Nenjiang district. The results showed that there were significant genetic diversity and high polymorphism among individuals of the wild Wusuli raccoon dog.A total of 41 DNA bands were amplified by 9 primers,and 37 of them were polymorphism, the proportion of polymorphism was 90.24%,2-8 polymorphism bands could be amplified by each primer,and 4.56 on average, the length of the product was 200-2 000 bp.

  17. Evaluation on Genetic Diversity of Hybrid Parents Developed in Brassic napus

    Institute of Scientific and Technical Information of China (English)

    LIU Ping-wu; ZHOU Guo-ling; YANG Guang-sheng; FU Ting-dong

    2003-01-01

    Genetic diversity of 50 Brassic napus varieties including 21 sterile lines, 16 restorer lines and 13 check cultivars was estimated by SSR and ISSR. The UPGMA results showed that 50 Brassica napus varieties were divided into 4 groups. The restorer lines tested were classified into groupsⅠ-Ⅲ respectively. The sterile lines tested were classified into groupⅣ. In addition, the sterile lines could be further divided into two subgroups: except 1471AB, all genic male sterile lines were in subgroupⅠ, 1471AB and all cytoplasmic male sterile lines were in the subgroupⅡ. The UPGMA results also indicated that the restorer lines had more genetic diversity than the sterile lines.

  18. Population genetic diversity of sesarmid crab (Perisesarma bidens) in China based on mitochondrial DNA.

    Science.gov (United States)

    Zhou, Haolang; Xu, Jingming; Yang, Mingliu; Wu, Bin; Yan, Bing; Xiong, Yingze

    2016-09-01

    The population genetic diversity of Perisesarma bidens in China was investigated using 627 bp fragment of mtDNA COI gene sequence. A total of 186 individuals were collected from ten localities over most of the species' range and 31 different haplotypes were obtained. The most frequent haplotype was Hap2, which was shared in all ten localities (132 individuals), whereas most haplotypes were rare and existed in only one or two individuals. Haplotype diversity (h) and nucleotide diversity (π) ranged from 0.338 to 0.731 and from 0.00058 to 0.00278, respectively, which represented a moderate level of haplotype diversity and a low level of nucleotide diversity. The genetic distance ranged from 0.0006 to 0.0028 within populations and from 0.0006 to 0.0023 between populations. An analysis of molecular variance and conventional population statistics (FST) revealed a low level of genetic differentiation among ten populations (FST = -0.00439, p > 0.05), indicating that no significant population genetic structure existed in populations from the East China Sea and South China Sea. Both mismatch distribution and neutrality tests implied a recent population expansion event for the sesarmid crab species in the late Pleistocene. PMID:25693695

  19. Rapid anti-pathogen response in ant societies relies on high genetic diversity.

    Science.gov (United States)

    Ugelvig, Line V; Kronauer, Daniel J C; Schrempf, Alexandra; Heinze, Jürgen; Cremer, Sylvia

    2010-09-22

    Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony. PMID:20444720

  20. Genetic diversity of different Tunisian fig (Ficuscarica L.) collections revealed by RAPD fingerprints.

    Science.gov (United States)

    Salhi-Hannachi, Amel; Chatti, Khaled; Saddoud, Olfa; Mars, Messaoud; Rhouma, Abdelmajid; Marrakchi, Mohamed; Trifi, Mokhtar

    2006-12-01

    The genetic diversity in Tunisian fig (Ficus carica L.) was studied using RAPD markers. Thirty-five fig cultivars originating from diverse geographical areas and belonging to three collections were analysed. Random decamer primers were screened to assess their ability to detect polymorphisms in this crop. Forty-four RAPD markers were revealed and used to survey the genetic diversity and to detect cases of mislabelling. As a result, considerable genetic diversity was detected among the studied F. carica accessions. The relationships among the 35 varieties were studied by cluster analysis. The dendrogram showed two main groups composed of cultivars with similar geographic origin. Moreover, the male accessions (caprifigs) were clustered indistinctively within the female ones, suggesting a narrow genetic diversity among these accessions. Our data proved that RAPD markers are useful for germplasm discrimination as well as for investigation of patterns of variation in fig. Since this designed procedure has permitted to establish a molecular database of the reference collections, the opportunity of this study is discussed in relation to the improvement and rational management of fig germplasm.

  1. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    Science.gov (United States)

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  2. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes.

    Science.gov (United States)

    Cahill, Abigail E; Levinton, Jeffrey S

    2016-01-01

    Theory predicts that genetic variation should be reduced at range margins, but empirical support is equivocal. Here, we used genotyping-by-sequencing technology to investigate genetic variation in central and marginal populations of two species in the marine gastropod genus Crepidula. These two species have different development and dispersal types and might therefore show different spatial patterns of genetic variation. Both allelic richness and the proportion of private alleles were highest in the most central populations of both species, and lower at the margin. The species with low dispersal, Crepidula convexa, showed high degrees of structure throughout the range that conform to the pattern found in previous studies using other molecular markers. The northernmost populations of the high-dispersing species, Crepidula fornicata, are distinct from more central populations, although this species has been previously observed to have little genetic structure over much of its range. Although genetic diversity was significantly lower at the range margin, the absolute reduction in diversity observed with these genomewide markers was slight, and it is not yet known whether there are functional consequences for the marginal populations.

  3. Genetic diversity in Capsicum germplasm based on microsatellite and random amplified microsatellite polymorphism markers

    OpenAIRE

    Rai, Ved Prakash; Kumar, Rajesh; Kumar, Sanjay; Rai, Ashutosh; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap; Rai, Awadesh Bahadur; Paliwal, Rajneesh

    2013-01-01

    A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 lan...

  4. Geography, climate, and patterns of genetic diversity in a bdelloid rotifer

    OpenAIRE

    Fontaneto, Diego; Tang, Cuong

    2013-01-01

    The interplay between climate (current and past) and geography is known to be associated with spatial biodiversity patterns. Here we analyse genetic diversity in a bdelloid rotifer species complex along a latitudinal transect in Europe from ~40?N, Sardinia, to ~80?N, Svalbard. Contrary to what is described for larger organisms, none of the analysed patterns of diversity correlates with climate, and a strange relationship with geographical distances is present.

  5. Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development

    OpenAIRE

    de la Fuente, J.; Lew, A.; Lutz, H.; Meli, M. L.; Hofmann-Lehmann, R.; Shkap, V; Molad, T; Mangold, A J; Almazán, C; Naranjo, V.; Gortázar, C.; Torina, A; Caracappa, S.; García-Pérez, A. L.; Barral, M.

    2005-01-01

    The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several pathogens of veterinary and human medical importance. An understanding of the diversity of Anaplasma major surface proteins (MSPs), including those MSPs that modulate infection, development of persistent infections, and transmission of pathogens by ticks, is derived in part, by characterization and phylogenetic analyses of geographic strains. Information concerning the genetic diversity of Anaplasma spp. MSPs will likely in...

  6. Genetic diversity of Albanian goat breeds revealed by mtDNA sequence variation

    OpenAIRE

    Hoda, Anila; Biçoku, Ylli; Dobi, Petrit

    2014-01-01

    Albanian farmers have a long tradition in goat farming. Recently, several studies were carried out to determine genetic diversity of local goat populations, using molecular markers such as SNP (Single Nucleotide Polymorphisms), microsatellites and AFLP (Amplified Fragment Length Polymorphism). In the present study 77 mtDNA D-loop sequences from six different goat breeds were analysed. The results revealed 67 different haplotypes, with haplotype diversity ranging from 0.864 to 1 and nucleotide...

  7. The Effect of Board Directors from Countries with Different Genetic Diversity Levels on Corporate Performance

    OpenAIRE

    Delis, Manthos; Gaganis, Chrysovalantis; Hasan, Iftekhar; Pasiouras, Fotios

    2015-01-01

    We link genetic diversity in the country of origin of the firms’ board members with corporate performance via board members’ nationality. We hypothesize that our approach captures deep-rooted differences in cultural, institutional, social, psychological, physiological, and other traits that cannot be captured by other recently measured indices of diversity. Using a panel of firms listed in the North American and U.K. stock markets, we find that adding board directors from countries with diffe...

  8. The Effect of Board Directors from Countries with Different Genetic Diversity Levels on Corporate Performance

    OpenAIRE

    Delis, Manthos; Gaganis, Chrysovalantis; Hasan, Iftekhar; Pasiouras, Fotios

    2015-01-01

    We link genetic diversity in the country of origin of firms’ board members with corporate performance via board members’ nationality. We hypothesize that our approach captures deep-rooted differences in cultural, institutional, social, psychological, physiological, and other traits that cannot be captured by other recently measured indices of diversity. Using a panel of firms listed in the North American and U.K. stock markets, we find that adding board directors from countries with different...

  9. The effect of board directors from countries with different genetic diversity levels on corporate performance

    OpenAIRE

    Delis, Mantos D.; Gaganis, Chrysovalantis; Hasan, Iftekhar; Pasiouras, Fotios

    2015-01-01

    We link genetic diversity in the country of origin of the firms’ board members with corporate performance via board members’ nationality. We hypothesize that our approach captures deep-rooted differences in cultural, institutional, social, psychological, physiological, and other traits that cannot be captured by other recently measured indices of diversity. Using a panel of firms listed in the North American and U.K. stock markets, we find that adding board directors from countries with diffe...

  10. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers.

    Science.gov (United States)

    Verma, Sushma; Singh, Shweta; Sharma, Suresh; Tewari, S K; Roy, R K; Goel, A K; Rana, T S

    2015-04-01

    Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous turmeric germplasm. Cumulative data analysis for DAMD (15) and ISSR (13) markers resulted into 478 fragments, out of which 392 fragments were polymorphic, revealing 82 % polymorphism across the turmeric genotypes. Wide range of pairwise genetic distances (0.03-0.59) across the genotypes revealed that these genotypes are genetically quite diverse. The UPGMA dendrogram generated using cumulative data showed significant relationships amongst the genotypes. All 29 genotypes studied grouped into two clusters irrespective of their geographical affiliations with 100 % bootstrap value except few genotypes, suggesting considerable diversity amongst the genotypes. These results suggested that the current collection of turmeric genotypes preserve the vast majority of natural variations. The results further demonstrate the efficiency and reliability of DAMD and ISSR markers in determining the genetic diversity and relationships among the indigenous turmeric germplasm. DAMD and ISSR profiling have identified diverse turmeric genotypes, which could be further utilized in various genetic improvement programmes including conventional as well as marker assisted breeding towards development of new and desirable turmeric genotypes.

  11. Tuberculosis, genetic diversity and fitness in the red deer, Cervus elaphus.

    Science.gov (United States)

    Queirós, João; Vicente, Joaquín; Alves, Paulo C; de la Fuente, José; Gortazar, Christian

    2016-09-01

    Understanding how genetic diversity, infections and fitness interact in wild populations is a major challenge in ecology and management. These interactions were addressed through heterozygosity-fitness correlation analyses, by assessing the genetic diversity, tuberculosis (TB) and body size in adult red deer. Heterozygosity-fitness correlation models provided a better understanding of the link between genetic diversity and TB at individual and population levels. A single local effect was found for Ceh45 locus at individual level, enhancing the importance of its close functional genes in determining TB presence. At population level, the ability of the red deer to control TB progression correlated positively with population genetic diversity, indicating that inbred populations might represent more risk of deer TB severity. Statistical models also gained insights into the dynamics of multi-host interaction in natural environments. TB prevalence in neighbouring wild boar populations was positively associated with deer TB at both individual and population levels. Additionally, TB presence correlated positively with red deer body size, for which "general and local effect" hypotheses were found. Although body size might be correlated with age, an indirect genetic effect on TB presence could be implied. This study provides new insights towards understanding host-pathogen interactions in wild populations and their relation to fitness traits. PMID:27245150

  12. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the pacific ocean.

    Science.gov (United States)

    Ritchie, Anna E; Johnson, Zackary I

    2012-04-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.

  13. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    Directory of Open Access Journals (Sweden)

    Harsh Kumar Dikshit

    Full Text Available Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.

  14. Genetic Diversity of European and Chinese Oilseed Brassica rapa Cultivars from Different Breeding Periods

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-guo; Ofori Atta1; LU Chang-ming

    2009-01-01

    The Brassica oilseed crops went through two major breeding bottlenecks during the introgression of genes for zero erucic acid and low glucosinolate content, respectively, which may lead to reduced genetic biodiversity of the crop. This study investigates the impact of these bottlenecks on the genetic diversity within and across European and Chinese winter B. Rapa cultivars. We compared eight cultivars from Europe and China, representing three different seed qualities from three different breeding periods: (1) high erucic acid, high glucosinolates (++); (2) zero erucic acid, high glucosinolates (0+); (3) zero erueic acid, low glueosonolates (00, canola quality). Diversity was estimated on 32 plants per cultivar, with 16 simple sequence repeat (SSR) markers covering each of the B. Rapa linkage groups. The analysis of molecular variance (AMOVA) showed that genetic variations within cultivars, across cultivars and across regions (Europe and China) were significant, with about 60% of the total variation within cultivars. There was a slight, but non-significant loss in genetic diversity within cultivars when comparing the three breeding periods as indicated by effective number of alleles (2.39,2.23, and 1.99 for breeding periods 1, 2, and 3, respectively), Shannon information index (0.93, 0.90, 0.75), and expected heterozygosity (0.51, 0.49, 0.42). By cluster analysis (UPGMA dendrogram) and principal coordinate analysis, Chinese and European cultivars were clearly divided into two distinct groups. In conclusion, quality improvement did not significantly reduce the genetic diversity of European and Chinese B. Rapa cultivars.

  15. Social Organization of Crop Genetic Diversity. The G × E × S Interaction Model

    Directory of Open Access Journals (Sweden)

    Geo Coppens d’Eeckenbrugge

    2011-12-01

    Full Text Available A better knowledge of factors organizing crop genetic diversity in situ increases the efficiency of diversity analyses and conservation strategies, and requires collaboration between social and biological disciplines. Four areas of anthropology may contribute to our understanding of the impact of social factors on crop diversity: ethnobotany, cultural, cognitive and social anthropology. So far, most collaborative studies have been based on ethnobotanical methods, focusing on farmers’ individual motivations and actions, and overlooking the effects of farmer’s social organization per se. After reviewing common shortcomings in studies on sorghum and maize, this article analyzes how social anthropology, through the analysis of intermarriage, residence and seed inheritance practices, can contribute to studies on crop genetic diversity in situ. Crop varieties are thus considered social objects and socially based sampling strategies can be developed. Such an approach is justified because seed exchange is built upon trust and as such seed systems are embedded in a pre-existing social structure and centripetally oriented as a function of farmers’ social identity. The strong analogy between farmers’ cultural differentiation and crop genetic differentiation, both submitted to the same vertical transmission processes, allows proposing a common methodological framework for social anthropology and crop population genetics, where the classical interaction between genetic and environmental factors, G × E, is replaced by a three-way interaction G × E × S, where “S” stands for the social differentiation factors.

  16. Ancient DNA, climatic change, and loss of genetic diversity in an endemic Patagonian mammal

    Science.gov (United States)

    Chan, Y.; Lacey, E.; Ramakrishnan, U.; Pearson, O.; Hadly, E.

    2004-12-01

    Understanding the response of animal populations to climatic change is essential for the future maintenance of biodiversity. One question that remains difficult to answer, and is particularly important to conservation, is how animals respond over time scales relevant to evolutionary change. Ancient DNA provides a unique opportunity to track animal response to Holocene climate change and to study species replacement patterns and genetic diversity over time. We used ancient DNA to compare response to climatic change in two species, C. sociabilis and C. haigi, over the last 8,000 years. Our study site, Cueva Traful, is a late-Holocene raptor roost in Parque Nacional Nahuel Huapi, Argentina. A lack of genetic diversity in modern C. sociabilis populations is indicative of past bottleneck events and a previous ancient DNA study found that it had remained genetically identical for at least 1000 years in the face of climatic change and human disturbance. Since Cueva Traful goes back further in time, our first goal was to examine genetic diversity in order to place a longer term historical perspective on the modern bottleneck. The second goal was to compare changes in genetic diversity in C. sociabilis to C. haigi a closely related species that may respond differently to climatic change. The use of ancient DNA presents unique challenges due to low copy number, environmental damage to template, and high contamination risk. Despite these challenges, ancient DNA provides a unique perspective on evolutionary history.

  17. Simple Sequence Repeat Analysis of Genetic Diversity in Primary Core Collection of Peach (Prunus persica)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, the genetic diversity of 51 cultivars in the primary core collection of peach (Prunus persica (L.) Batsch) was evaluated by using simple sequence repeats (SSRs). The phylogenetic relationships and the evolutionary history among different cultivars were determined on the basis of SSR data. Twenty-two polymorphic SSR primer pairs were selected, and a total of 111 alleles were identified in the 51 cultivars, with an average of 5 alleles per locus. According to traditional Chinese classification of peach cultivars, the 51 cultivars in the peach primary core collection belong to six variety groups. The SSR analysis revealed that the levels of the genetic diversity within each variety group were ranked as Sweet peach > Crisppeach > Flat peach > Nectarine > Honey Peach > Yellow fleshed peach. The genetic diversity among the Chinese cultivars was higher than that among the introduced cultivars. Cluster analysis by the unweighted pair group method with arithmetic averaging (UPGMA)placed the 51 cultivars into five linkage clusters. Cultivar members from the same variety group were distributed in different UPGMA clusters and some members from different variety groups were placed under the same cluster. Different variety groups could not be differentiated in accordance with SSR markers. The SSR analysis revealed rich genetic diversity in the peach primary core collection, representative of genetic resources of peach.

  18. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi).

    Science.gov (United States)

    Álvares-Carvalho, S V; Duarte, J F; Santos, T C; Santos, R M; Silva-Mann, R; Carvalho, D

    2016-01-01

    In the face of a possible loss of genetic diversity in plants due the environmental changes, actions to ensure the genetic variability are an urgent necessity. The extraction of Brazilian pepper fruits is a cause of concern because it results in the lack of seeds in soil, hindering its distribution in space and time. It is important to address this concern and explore the species, used by riparian communities and agro-factories without considering the need for keeping the seeds for natural seed banks and for species sustainability. The objective of this study was to evaluate the structure and the genetic diversity in natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Twenty-two alleles in 223 individuals were identified from eight forest remnants located in the states of Minas Gerais, Espírito Santo, and Sergipe. All populations presented loci in Hardy-Weinberg equilibrium deviation. Four populations presented six combinations of loci in linkage disequilibrium. Six exclusive alleles were detected in four populations. Analysis of molecular variance showed the absence of diversity between regions and that between the populations (GST) was 41%. Genetic diversity was structured in seven clusters (ΔK7). Brazilian pepper populations were not structured in a pattern of isolation by distance and present genetic bottleneck. The populations São Mateus, Canastra, Barbacena, and Ilha das Flores were identified as management units and may support conservation projects, ecological restoration and in implementation of management plans for Brazilian pepper in the State of Sergipe. PMID:27323193

  19. Genetic diversity analysis of Cuban traditional rice (Oryza sativa L. varieties based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    Alba Alvarez

    2007-01-01

    Full Text Available Microsatellite polymorphism was studied in a sample of 39 traditional rice (Oryza sativa L. varieties and 11 improved varieties widely planted in Cuba. The study was aimed at assessing the extent of genetic variation in traditional and improved varieties and to establish their genetic relationship for breeding purposes. Heterozygosity was analyzed at each microsatellite loci and for each genotype using 10 microsatellite primer pairs. Between varieties genetic relationship was estimated. The number of alleles per microsatellite loci was 4 to 8, averaging 6.6 alleles per locus. Higher heterozygosity (H was found in traditional varieties (H TV = 0.72 than in improved varieties (H IV = 0.42, and 68% of the total microsatellite alleles were found exclusively in the traditional varieties. Genetic diversity, represented by cluster analysis, indicated three different genetic groups based on their origin. Genetic relationship estimates based on the proportion of microsatellite loci with shared alleles indicated that the majority of traditional varieties were poorly related to the improved varieties. We also discuss the more efficient use of the available genetic diversity in future programs involving genetic crosses.

  20. Genetic diversity among mandarins in fruit-quality traits.

    Science.gov (United States)

    Goldenberg, Livnat; Yaniv, Yossi; Kaplunov, Tatiana; Doron-Faigenboim, Adi; Porat, Ron; Carmi, Nir

    2014-05-28

    A detailed phenotypic analysis of fruit-quality traits was conducted among 46 mandarin varieties within the Israeli Citrus breeding collection, belonging to genetically different natural subgroups, including common mandarin (C. reticulata Blanco), clementine (C. clementina Hort. ex. Tan), satsuma (C. unshiu Marcovitch), Mediterranean mandarin (C. deliciosa Tenore), King mandarin (C. nobilis Loureiro), and mandarin hybrids, such as tangor (C. reticulata × C. sinensis) and tangelo (C. reticulata × C. paradisi). Evaluated qualities included physical attributes (size, shape, color, peel thickness, and seed number); physiological properties (ripening period, peelability, and segmentation); nutritional and biochemical composition (vitamin C, phenol, flavonoid, and carotenoid contents and total antioxidant activity); and sensory attributes (total soluble solids and acid levels, flavor preference, sweetness, sourness, and fruitiness). The results indicated wide genetic variability in fruit-quality traits among mandarin varieties and natural subgroups, and statistical and hierarchical clustering analysis revealed multiple correlations among attributes. Such phenomic analysis is an obligatory requirement for identification of molecular markers for distinct fruit-quality traits and for selection of appropriate parents for future breeding programs. PMID:24828369

  1. Genetic animal models of dystonia: common features and diversities.

    Science.gov (United States)

    Richter, Franziska; Richter, Angelika

    2014-10-01

    Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder. PMID:25034123

  2. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    OpenAIRE

    Callahan, Colin M.; Rowe, Carol A.; Ryel, Ronald J.; Shaw, John D.; Madritch, Michael D.; Mock, Karen E.

    2013-01-01

    Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics. Location: North America. Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns o...

  3. Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach

    OpenAIRE

    Pascual, Laura; Xu, Jiaxin; Biais, Benoit; Maucourt, Mickael; Ballias, Patricia; Bernillon, Stéphane; Deborde, Catherine; Jacob, Daniel; Desgroux, Aurore; Faurobert, Mireille; Bouchet, Jean-Paul; Gibon, Yves; Moing, Annick

    2013-01-01

    Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and oran...

  4. Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants

    OpenAIRE

    Camille E Granada; Strochein, Marcos; Vargas, Luciano K.; Bruxel, Manuela; de Sá, Enilson Luiz Saccol; Passaglia, Luciane M. P.

    2014-01-01

    This work aimed to evaluate the symbiotic compatibility and nodulation efficiency of rhizobia isolated from Desmodium incanum, Lotus corniculatus, L. subbiflorus, L. uliginosus and L. glaber plants by cross-inoculation. Twelve reference strains and 21 native isolates of rhizobia were genetically analyzed by the BOX-PCR technique, which showed a high genetic diversity among the rhizobia studied. The isolates were also characterized based on their production of indolic compounds and siderophore...

  5. The role of factors promoting genetic diversity within social insect colonies

    OpenAIRE

    Sirviö, A. (Anu)

    2010-01-01

    Abstract The evolution of sociality is often associated with close relatedness and genetic similarity of interacting individuals. However, colonies of advanced social insects (e.g. ants, bees and wasps) characterized by large colony size and division of tasks, are also shaped by acquisition of genetic diversity by polyandry, polygyny, recombination and even by hybridization. The balance between forces selecting for high relatedness on one hand and for improved colony performance though inc...

  6. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38, as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei's genetic diversity index (He of 0.32 and polymorphism information content (PIC of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83% was substantially greater than the between-subpopulation variation (17%. Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.

  7. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Niko eBeerenwinkel

    2012-09-01

    Full Text Available Many viruses, including the clinically relevant RNA viruses HIV and HCV, exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different next-generation sequencing platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of next-generation sequencing to estimate viral diversity.

  8. Glacial Refugia of Ginkgo biloba and Human Impact on Its Genetic Diversity: Evidence from Chloroplast DNA

    Institute of Scientific and Technical Information of China (English)

    Wei Gong; Zhen Zeng; Ye-Ye Chen; Chuan Chen; Ying-Xiong Qiu; Cheng-Xin Fu

    2008-01-01

    Variations in the trnK region of chloroplast DNA were investigated in the present study using polymerase chain reaction-restriction fragment length polymorphism to detect the genetic structure and to infer the possible glacial refugia of Ginkgo biloba L. in China. In total, 220 individuals from 12 populations in China and three populations outside China were analyzed, representing the largest number of populations studied by molecular markers to date. Nineteen haplotypes were produced and haplotype A was found in all populations. Populations in south-western China, including WC, JF, PX, and SP, contained 14 of the 19 haplotypes and their genetic diversity ranged from 0.771 4 to 0.867 6. The TM population from China also showed a high genetic diversity (H=0.848 5). Most of the genetic variation existed within populations and the differentiation among populations was low (GST>=0.2). According to haplotype distribution and the historical record, we suggest that populations of G. biloba have been subjected to extensive human impact, which has compounded our attempt to infer glacial refugia for Ginkgo. Nevertheless, the present results suggest that the center of genetic diversity of Ginkgo is mainly in south-western China and in situ conservation is needed to protect and preserve the genetic resources.

  9. A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants.

    Science.gov (United States)

    Ingvarsson, Pär K

    2002-12-01

    Partial self-fertilization is common in higher plants. Mating system variation is known to have important consequences for how genetic variation is distributed within and among populations. Selfing is known to reduce effective population size, and inbreeding species are therefore expected to have lower levels of genetic variation than comparable outcrossing taxa. However, several recent empirical studies have shown that reductions in genetic diversity within populations of inbreeding species are far greater than the expected reductions based on the reduced effective population size. Two different processes have been argued to cause these patterns, selective sweeps (or hitchhiking) and background selection. Both are expected to be most effective in reducing genetic variation in regions of low recombination rates. Selfing is known to reduce the effective recombination rate, and inbreeding taxa are thus thought to be particularly vulnerable to the effects of hitchhiking or background selection. Here I propose a third explanation for the lower-than-expected levels of genetic diversity within populations of selfing species; recurrent extinctions and recolonizations of local populations, also known as metapopulation dynamics. I show that selfing in a metapopulation setting can result in large reductions in genetic diversity within populations, far greater than expected based the lower effective population size inbreeding species is expected to have. The reason for this depends on an interaction between selfing and pollen migration. PMID:12583577

  10. Genetic diversity in Isoetes yunguiensis,a rare and endangered endemic fern in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jinming; Wahiti R.Gituru; LIU Xing; WANG Qingfeng

    2007-01-01

    Isoetes yunguiensis is an endangered and endemic fern in China.Field survey indicated that only one population and no more than 50 individuals occur in the wild.The genetic variation of 46 individuals from the population remaining at Pingha (Guizhou Province,China)was assessed by Random Amplified Polymorphic DNA (RAPD)fingerprinting.Twelve primers were screened from sixty ten-bp arbitrary primers,and a total of 95 DNA fragments were scored.Of these,62.1%were polymorphic loci,which indicated that high level genetic variation existed in the natural population.The accumulation of genetic variation in the history of the taxon and the apparent minimal reduction effect on genetic diversity following destruction of habitat might be responsible for the high level genetic diversity presently remaining in the I.yunguiensis population.However,with the continuing decrease of population size,the genetic diversity will gradually be lost.We suggest that the materials from the extant population should be used for re-establishment of the populations.

  11. Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains

    Directory of Open Access Journals (Sweden)

    Sebastián Aguilar Pierlé

    2014-01-01

    Full Text Available The ability to capture genetic variation with unprecedented resolution improves our understanding of bacterial populations and their ability to cause disease. The goal of the pathogenomics era is to define genetic diversity that results in disease. Despite the economic losses caused by vector-borne bacteria in the Order Rickettsiales, little is known about the genetic variants responsible for observed phenotypes. The tick-transmitted rickettsial pathogen Anaplasma marginale infects cattle in tropical and subtropical regions worldwide, including Australia. Genomic analysis of North American A. marginale strains reveals a closed core genome defined by high levels of Single Nucleotide Polymorphisms (SNPs. Here we report the first genome sequences and comparative analysis for Australian strains that differ in virulence and transmissibility. A list of genetic differences that segregate with phenotype was evaluated for the ability to distinguish the attenuated strain from virulent field strains. Phylogenetic analyses of the Australian strains revealed a marked evolutionary distance from all previously sequenced strains. SNP analysis showed a strikingly reduced genetic diversity between these strains, with the smallest number of SNPs detected between any two A. marginale strains. The low diversity between these phenotypically distinct bacteria presents a unique opportunity to identify the genetic determinants of virulence and transmission.

  12. Genetic diversity of Paris polyphylla var. yunnanensis, a traditional Chinese medicinal herb, detected by ISSR markers.

    Science.gov (United States)

    He, Jun; Wang, Hong; Li, De-Zhu; Chen, Shao-Feng

    2007-10-01

    Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz. is an important Chinese medicinal herb. Because of overharvesting, the wild populations of this herb have greatly declined and become fragmentized. In this paper, ISSR markers were used to determine the genetic diversity and genetic structure of this variety represented by a total of 153 individuals from three natural populations and three cultivated populations. Fourteen primers produced a total of 251 bands, of which 227 were polymorphic (PPB=90.44%). For the natural populations, the results showed that genetic differentiation was mainly within populations (GST=0.1952), with low genetic diversity at the population level. At the population level, genetic diversity of the cultivated populations was relatively higher than that of the natural populations (PPB=57.24% vs. 53.38%, HE=0.153 vs. 0.151, HO=0.241 vs. 0.235). This pattern can be explained by the recent introduction and artificial selection of cultivars from comparatively wide areas of origin, and subsequent gene flow among populations in cultivation. Although the neighbour-joining cluster analysis seemed to suggest that there was conspicuous genetic differentiation between the natural and cultivated populations, the AMOVA showed that only 4.84% of the total variance existed between groups of natural and cultivated populations, while 67.51% of the variance occurred within populations. In the end, some suggestions for conservation of this important herb are proposed. PMID:17973204

  13. Analysis of the genetic diversity of Candida isolates obtained from diabetic patients and kidney transplant recipients

    Science.gov (United States)

    Benedetti, Volmir Pitt; Savi, Daiani Cristina; Aluizio, Rodrigo; Adamoski, Douglas; Kava-Cordeiro, Vanessa; Galli-Terasawa, Lygia V; Glienke, Chirlei

    2016-01-01

    Yeasts of the genus Candida have high genetic variability and are the most common opportunistic pathogenic fungi in humans. In this study, we evaluated the genetic diversity among 120 isolates of Candida spp. obtained from diabetic patients, kidney transplant recipients and patients without any immune deficiencies from Paraná state, Brazil. The analysis was performed using the ITS1-5.8S-ITS2 region and a partial sequence of 28S rDNA. In the phylogenetic analysis, we observed a consistent separation of the species C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. parapsilosis, C. metapsilosis and C. orthopsilosis, however with low intraspecific variability. In the analysis of the C. albicans species, two clades were formed. Clade A included the largest number of isolates (91.2%) and the majority of isolates from GenBank (71.4%). The phylogenetic analysis showed low intraspecific genetic diversity, and the genetic polymorphisms between C. albicans isolates were similar to genetic divergence found in other studies performed with isolates from Brazil. This low genetic diversity of isolates can be explained by the geographic proximity of the patients evaluated. It was observed that yeast colonisation was highest in renal transplant recipients and diabetic patients and that C. albicans was the species most frequently isolated. PMID:27276363

  14. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers.

    Science.gov (United States)

    Hu, Xingyu; Wang, Jianfei; Lu, Ping; Zhang, Hongsheng

    2009-08-01

    The genetic diversity of 118 accessions of broomcorn millet (Panicum miliaceum L.), collected from various ecological areas, was analyzed. Using 46 SSR (Simple Sequence Repeat) polymorphic markers from rice, wheat, oat and barley, a total of 226 alleles were found, which exhibited moderate level of diversity. The number of alleles per primer ranged from two to nine, with an average of 4.91. The range of polymorphism information content (PIC) was 0.284-0.980 (average, 0.793). The expected heterozygosity (He) varied from 0.346 to 0.989, with an average of 0.834. The average coefficient of the genetic similarity of SSR markers among the 118 accessions was 0.609, and it ranged from 0.461 to 0.851. The UPGMA (Unweight Pair Group Method with Arithmetic Mean) clustering analysis at the genetic similarity value of 0.609 grouped the 118 accessions into five groups. Mantel test meant that geographical origin and genetic distance presented positive correlation. The clustering results were consistent with known information on ecological growing areas. The genetic similarity coefficient of the accessions in the Loess Plateau ecotype was significantly lower than those in the other ecotypes. It indicates that the highest level of genetic diversity occurred in the Loess Plateau, which is probably the original site of Panicum miliaceum. PMID:19683672

  15. Detection of Genetic Diversity in Synthetic Hexaploid Wheats Using Microsatellite Markers

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-yue; LI Li-hui

    2007-01-01

    Ninety-five synthetic hexaploid wheats(2n=6x=42,AABBDD)were analyzed using 45 microsatellite markers to investigate the potential genetic diversity in wheat breeding programs.A total of 326 alleles were detected by these microsatellite primer pairs,with an average of 6.65 alleles per locus.The polymorphic information content(PIC),Simpson index(SI),and genetic similarity(GS)coefficient showed that the D genome is of the highest genetic diversity among the A,B,and D genomes in the synthetic hexaploid wheats.The results also indicated that the synthetic hexaploid wheat is an efficient way to enrich wheat genetic backgrounds,especially to use the genetic variations of the D genome from Aegilops squarrosa for wheat improvement.The UPGMA dendogram,based on a similarity matrix by a simple matching coefficient algorithm,delineated the above accessions into 5 major clusters and was in accordance with the available pedigree information.The results demonstrated the utility of microsatellite markers in detecting DNA polymorphism and estimating genetic diversity.

  16. Assessment of genetic diversity in tomato landraces using ISSR markers

    Directory of Open Access Journals (Sweden)

    Henareh Mashhid

    2016-01-01

    Full Text Available Tomato is one of the most economically important vegetable crops in many parts of the world. Turkey and Iran are the main producers of tomatoes in the world. The objective of this study was to assess the genetic variation of 93 tomato landraces from East Anatolian region of Turkey and North-West of Iran, along with three commercial cultivars using 14 ISSR primers. The percentage of polymorphic loci (PPL for all primers was 100%. The mean of expected heterozygosity (He for the primers varied from 0.153 (UBC808 to 0.30 (UBC848. The dendrogram placed the landraces and commercial cultivars into nine groups. The genotypes originating from the same region, often located in the same group or two adjacent groups. The highest likelihood of the data was obtained when population were located into 2 sub-populations (K = 2. These sub-populations had Fst value of 0.16 and 0.21.

  17. The Genetic Diversity and Phylogenetic Status of Luxi Cattle

    Institute of Scientific and Technical Information of China (English)

    MAO Yong-jiang; CHANG Hong; YANG Zhang-ping; XU Ming; ZHANG Liu; CHANG Guo-bin; SONG Wei-tao; WANG Dong-lei

    2006-01-01

    A total of 87 individuals of Luxi cattle from Juanchen and Liangshan counties, Shangdong Province, China, were sampled by simple random sampling in typical colony. Twenty-one blood proteins and enzymes loci were detected by polyacrylamide gel electrophoresis (PAGE) and starch gel electrophoresis (SGE). In the meantime, the data of 7 loci of 13 cattle populations in China and other countries were collected and phylogeny relationships were studied. The results indicated that 9 out of 21 loci showed polymorphism (42.86%); the level of genetic variation in Luxi cattle population was relatively high, the mean heterozygosity was 0.1416. The Luxi cattle have a close phylogenetic relationship with the cattle populations of east and south of Asia, and this further confirmed the fact that Luxi cattle were the cross-breed between the Bos taurus and Bos indicus in China, but it is impossible that yellow cattle contained the blood of of Bali.

  18. Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity.

    Science.gov (United States)

    Burle, Marília Lobo; Fonseca, Jaime Roberto; Kami, James A; Gepts, Paul

    2010-09-01

    Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples. PMID:20502861

  19. [Genetic polymorphisms commonly influencing efficacy of diverse addictive substances].

    Science.gov (United States)

    Nishizawa, Daisuke; Ikeda, Kazutaka

    2014-04-01

    Opioids, such as morphine and fentanyl, are widely used as effective analgesics for the treatment of acute and chronic pain. In addition, the opioid system has a key role in the rewarding effects of morphine, ethanol, cocaine and various other drugs. The authors have focused on G-protein-activated inwardly rectifying potassium (GIRK) channel subunits, GIRK2 and GIRK3, that are important molecules in opioid transmission, and found that the single-nucleotide polymorphisms (SNPs) within the GIRK2 and GIRK3 gene regions were significantly associated with postoperative requirements of analgesics including opioids in patients who underwent abdominal surgery and mRNA expression of these genes in postmortem specimens, one of which was also associated with vulnerability to methamphetamine (METH) dependence. Further, by conducting a multistage genome-wide association study (GWAS) in healthy subjects, the authors found that genetic polymorphisms within a linkage disequilibrium block that spans 2q33.3-2q34 were strongly associated with the requirements for postoperative opioid analgesics after painful cosmetic surgery. The C allele of the best candidate SNP, rs2952768, was associated with more analgesic requirements, and consistent results were obtained in patients who underwent abdominal surgery. In addition, carriers of the C allele in this SNP exhibited less vulnerability to severe drug dependence in patients with methamphetamine dependence, alcohol dependence, and eating disorders and a lower 'Reward Dependence score on a personality questionnaire in healthy subjects. Furthermore, the C/C genotype of this SNP was significantly associated with the elevated expression of a neighboring gene, CREB1. The results show that SNPs in this locus are the most potent genetic factors associated with human opioid sensitivity known to date, affecting both the efficacy of opioid analgesics and liability to severe substance dependence. These outcomes provide valuable information for the

  20. Annotation and genetic diversity of the chicken collagenous lectins.

    Science.gov (United States)

    Hamzić, Edin; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand; Juul-Madsen, Helle Risdahl

    2015-06-01

    Collectins and ficolins are multimeric proteins present in various tissues and are actively involved in innate immune responses. In chickens, six different collagenous lectins have been characterized so far: mannose-binding lectin (MBL), surfactant protein A (SP-A), collectin 10 (COLEC10), collectin 11 (COLEC11), collectin 12 (COLEC12), lung lectin (LL) and one ficolin (FCN). However, the structural and functional features of the chicken collectins and ficolin are still not fully understood. Therefore, the aims of this study were: (i) to make an overview of the genetic structure and function of chicken collectins and the ficolin, (ii) to investigate the variation in the chicken collectins and the ficolin gene in different chicken populations, and (iii) to assess the presence of MBL gene variants in different chicken populations. We performed comparative genomic analysis using publically available data. The obtained results showed that collectins and ficolins have conserved protein sequences and gene structure across all vertebrate groups and this is especially notable for COLEC10, COLEC11 and COLEC12. For the purpose of studying the genetic variation, 179 animals from 14 populations were genotyped using 31 SNPs covering five genomic regions. The obtained results revealed low level of heterozygosity in the collagenous lectins except for the COLEC12 gene and the LL-SPA-MBL region compared to heterozygosity at neutral microsatellite markers. In addition, the MBL gene variants were assessed in different chicken populations based on the polymorphisms in the promoter region. We observed 10 previously identified MBL variants with A2/A8 and A4 as the most frequent alleles.

  1. Mitochondrial control region genetic diversity and maternal ancestry of a Brangus-Ibage cattle populations

    OpenAIRE

    Luiz Ernani Henkes; Wilson Araújo Silva Jr; José Carlos Ferrugem Moraes; Tania de Azevedo Weimer

    2005-01-01

    The genetic diversity of 277 nucleotides in the mitochondrial DNA control region (nt 15,964 to 16,240 in reference sequence) was analyzed in crossbreed beef cattle (Brangus-Ibage, 5/8 Bos primigenius taurus x 3/8 Bos primigenius indicus) as well as in some Nellore samples (B. p. indicus). Fifty-seven mutations were found in Brangus-Ibage comprising 18 haplotypes (haplotype diversity, h = 0.851 ± 0.041 and nucleotide diversity, ntd = 0.009 ± 0.006) and 66 in Nellore (h = 1.00 ± 0.27, ntd = 0.0...

  2. GENETIC DIVERSITY WITHIN THE SOUTHERN PLAINS WOODRAT (NEOTOMA MICROPUS) IN SOUTHERN TEXAS

    OpenAIRE

    Méndez-Harclerode, Francisca M.; HANSON, J. DELTON; Fulhorst, Charles F.; Milazzo, Mary L.; Ruthven, Donald C.; Bradley, Robert D.

    2005-01-01

    Genetic diversity within a population of the southern plains woodrat was examined using DNA sequences (967 base pairs [bp]) obtained from the control or d-loop region of the mitochondrial genome. One hundred fourteen individuals from 10 collection sites were assigned to 42 haplotypes. Haplotype diversity values were moderate to high (0.974 overall and ranged from 0.524 to 0.964 across collecting sites), whereas nucleotide diversity values were low (0.008 overall and ranged from 0.001 to 0.010...

  3. Loss and recovery of genetic diversity in adapting populations of HIV.

    Directory of Open Access Journals (Sweden)

    Pleuni S Pennings

    2014-01-01

    Full Text Available The evolution of drug resistance in HIV occurs by the fixation of specific, well-known, drug-resistance mutations, but the underlying population genetic processes are not well understood. By analyzing within-patient longitudinal sequence data, we make four observations that shed a light on the underlying processes and allow us to infer the short-term effective population size of the viral population in a patient. Our first observation is that the evolution of drug resistance usually occurs by the fixation of one drug-resistance mutation at a time, as opposed to several changes simultaneously. Second, we find that these fixation events are accompanied by a reduction in genetic diversity in the region surrounding the fixed drug-resistance mutation, due to the hitchhiking effect. Third, we observe that the fixation of drug-resistance mutations involves both hard and soft selective sweeps. In a hard sweep, a resistance mutation arises in a single viral particle and drives all linked mutations with it when it spreads in the viral population, which dramatically reduces genetic diversity. On the other hand, in a soft sweep, a resistance mutation occurs multiple times on different genetic backgrounds, and the reduction of diversity is weak. Using the frequency of occurrence of hard and soft sweeps we estimate the effective population size of HIV to be 1.5 x 10(5 (95% confidence interval [0.8 x 10(5,4.8 x 10(5]. This number is much lower than the actual number of infected cells, but much larger than previous population size estimates based on synonymous diversity. We propose several explanations for the observed discrepancies. Finally, our fourth observation is that genetic diversity at non-synonymous sites recovers to its pre-fixation value within 18 months, whereas diversity at synonymous sites remains depressed after this time period. These results improve our understanding of HIV evolution and have potential implications for treatment strategies.

  4. Detection of Genetic Variation and Genetic Diversity in Two Indian Mudskipper Species (Boleophthalmus boddarti, B. dussumieri) using RAPD Marker

    OpenAIRE

    Vellaichamy RAMANADEVI; Muthusamy THANGARAJ; Anbazhagan SURESHKUMAR; Jayachandran SUBBURAJ

    2013-01-01

    Due to the environmental changes and habitat destruction the mudskipper fish population is decreasing in recent years. To predict the fish population structure, frequent manual survey and molecular methods are widely used. Molecular markers such as RAPD, microsatellite, allozyme, D-loop haplotype are frequently adopted to assess the population structure of an organism. In this study ten- arbitrary primers were screened to estimate the genetic relationships and diversity of two mudskipper spec...

  5. Introgression of transgenic crop alleles: Its evolutionary impacts on conserving genetic diversity of crop wild relatives

    Institute of Scientific and Technical Information of China (English)

    Bao-Rong LU

    2013-01-01

    Effective conservation of crop wild relative (CWR) species is essential for the sustainable use and genetic improvement of crop varieties,which offers greater opportunities for world food security,particularly in modem agroecosystems where CWR diversity is under severe threat.Factors such as habitat fragmentation,human disturbances,global climate change,and invasion of harmful alien species have been identified to be responsible for losses and threats to CWR diversity.However,a neglected factor,gene introgression from domesticated species through repeated outcrossing,may have a significant impact on CWR diversity.Introgression can influence genetic diversity and evolutionary processes of CWR populations through effects such as demographic swarming,genetic assimilation,and selective sweep.When largely enhancing or reducing fitness of wild plants,the introgression of crop genes will impose more significant genetic and evolutionary impacts on CWR populations,leading to undesired consequences for conserved CWR populations and species.This situation is particularly true when genetically engineered (GE) crops are deployed for commercial cultivation.It is argued that a GE crop usually contains transgenes with strong natural selection advantages,and such transgenes introgressed into CWR populations may have strong impacts on their genetic diversity and evolutionary processes,threatening their conservation.This article reviews the challenge of crop-wild gene flow,and particularly transgene introgression from GE crops,for the in situ conservation of wild relative species.The design of effective management strategies for conserving CWR species under the scenario of extensive cultivation of GE crops is also discussed.

  6. Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in eastern Kenya.

    Directory of Open Access Journals (Sweden)

    Vanesse Labeyrie

    Full Text Available Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the

  7. Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars.

    Science.gov (United States)

    Chatti, Khaled; Baraket, Ghada; Ben Abdelkrim, Ahmed; Saddoud, Olfa; Mars, Messaoud; Trifi, Mokhtar; Salhi Hannachi, Amel

    2010-10-01

    Fig, Ficus carica L., is a useful genetic resource for commercial cultivation. In this study, RAPD (60), ISSR (48), RAMPO (63), and SSR (34) markers were compared to detect polymorphism and to establish genetic relationships among Tunisian fig tree cultivars. The statistical procedures conducted on the combined data show considerable genetic diversity, and the tested markers discriminated all fig genotypes studied. The identification key established on the basis of SSR permitted the unambiguous discrimination of cultivars and confirmed the reliability of SSR for fingerprinting fig genotypes. The study findings are discussed in relation to the establishment of a national reference collection that will aid in the conservation of Tunisian fig resources.

  8. Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity.

    Directory of Open Access Journals (Sweden)

    Michael Hellmair

    Full Text Available Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi, show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species.

  9. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary.

    Science.gov (United States)

    Cotter, Daniel J; Brotman, Sarah M; Wilson Sayres, Melissa A

    2016-05-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the n